CINXE.COM
Search results for: amino acid profile
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: amino acid profile</title> <meta name="description" content="Search results for: amino acid profile"> <meta name="keywords" content="amino acid profile"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="amino acid profile" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="amino acid profile"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5469</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: amino acid profile</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5469</span> Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semuel%20Unwakoly">Semuel Unwakoly</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinner%20Puppela"> Reinner Puppela</a>, <a href="https://publications.waset.org/abstracts/search?q=Maresthy%20Rumalean"> Maresthy Rumalean</a>, <a href="https://publications.waset.org/abstracts/search?q=Healthy%20Kainama"> Healthy Kainama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (<em>M. maculata</em>) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (<em>M. maculata</em>) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moonfish%20%28M.%20maculata%29" title="Moonfish (M. maculata)">Moonfish (M. maculata)</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/75018/fatty-acid-and-amino-acid-composition-in-mene-maculata-in-the-sea-of-maluku" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5468</span> Underivatized Amino Acid Analyses Using Liquid Chromatography-Tandem Mass Spectrometry in Scalp Hair of Children with Autism Spectrum Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayat%20Bani%20Rashaid">Ayat Bani Rashaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Zain%20Khasawneh"> Zain Khasawneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazin%20Alqhazo"> Mazin Alqhazo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreen%20Nusair"> Shreen Nusair</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20El-Khateeb"> Mohammad El-Khateeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Bashtawi"> Mahmoud Bashtawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autism Spectrum disorder (ASD) is a psychiatric disorder with unknown etiology that mainly affects children in the first three years of life. Alterations of amino acid levels are believed to contribute to ASD. The levels of six essential amino acids (methionine, histidine, valine, leucine, threonine, and phenylalanine), five conditional amino acids (proline, tyrosine, glutamine, cysteine, and cystine), and five non-essential amino acids (asparagine, aspartic acid, alanine, serine, and glutamic acid) in hair samples of children with ASD (n = 25) were analyzed and compared to corresponding levels in healthy age-matched controls (n = 25). The results showed that the levels of methionine, alanine, and asparagine were significantly lower in the hair samples of ASD group compared to those of the control group (p ≤ 0.05). However, the levels of glutamic acid were significantly higher in the ASD group than the control group (p ≤ 0.05). The current findings could contribute towards further understanding of ASD etiology and provide specialists with a hair amino acid profile utilized as a biomarker for early diagnosis of ASD. Such biomarkers could participate in future developments of therapies that reduce ASD-related symptoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography-tandem%20mass%20spectrometry" title=" liquid chromatography-tandem mass spectrometry"> liquid chromatography-tandem mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20hair" title=" human hair"> human hair</a> </p> <a href="https://publications.waset.org/abstracts/128805/underivatized-amino-acid-analyses-using-liquid-chromatography-tandem-mass-spectrometry-in-scalp-hair-of-children-with-autism-spectrum-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5467</span> Modified Ninhydrin Reagent for the Detection of Amino Acids on TLC Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Elgubbi">H. Elgubbi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mlitan"> A. Mlitan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alzridy"> A. Alzridy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ninhydrin is the most well known spray reagent for identification of amino acids. Spring with Ninhydrin as a non-specific reagent is well-known and widely used for its remarkable high sensitivity. Using Ninhydrin reagent alone to detect amino acid on thin layer chromatography (TLA) paper is not advisable due to its lower sensitivity. A new spray reagent, Stannus chloride solution (Sn CL2) has been used to detect amino acids on filtter paper (witman 14) and TLC paper, silica Gel, 60 F254 TLC Aluminium Sheet 20x20cm Merck- Germany. Also, modified TLC pre-staining method was used, which only consisted of 3 steps: spotting, separating and color. The improved method was rapid and inexpensive and the results obtained were clear and reliable. In addition, it is suitable for screening different amino acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title="amino acid">amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ninhydrin" title=" ninhydrin"> ninhydrin</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20ninhydrin%20reagent" title=" modified ninhydrin reagent"> modified ninhydrin reagent</a>, <a href="https://publications.waset.org/abstracts/search?q=stannus%20chloride%20reagent" title=" stannus chloride reagent"> stannus chloride reagent</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-layer%20chromatography%20%28TLC%29" title=" thin-layer chromatography (TLC)"> thin-layer chromatography (TLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC%20pre-staining" title=" TLC pre-staining "> TLC pre-staining </a> </p> <a href="https://publications.waset.org/abstracts/22504/modified-ninhydrin-reagent-for-the-detection-of-amino-acids-on-tlc-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5466</span> Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Chandra">Abhishek Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Singh"> Man Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticle" title="silver nanoparticle">silver nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a> </p> <a href="https://publications.waset.org/abstracts/38205/amino-acid-coated-silver-nanoparticles-a-green-catalyst-for-methylene-blue-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5465</span> Amino Acid Profile, Protein Digestibility, Antioxidant and Functional Properties of Protein Concentrate of Local Varieties (Kwandala, Yardass, Jeep, and Jamila) of Rice Brands from Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Chinma">C. E. Chinma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Azeez"> S. O. Azeez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Anuonye"> J. C. Anuonye</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20B.%20Ocheme"> O. B. Ocheme</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Yakubu"> C. M. Yakubu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20James"> S. James</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20U.%20Ohuoba"> E. U. Ohuoba</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Baba"> I. A. Baba </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is growing interest in the use of rice bran protein in food formulation due to its hypoallergenic protein, high nutritional value and health promoting potentials. For the first time, the amino acid profile, protein digestibility, antioxidant, and functional properties of protein concentrate from some local varieties of rice bran from Nigeria were studied for possible food applications. Protein concentrates were prepared from rice bran and analysed using standard methods. Results showed that protein content of Kwandala, Yardass, Jeep, and Jamila were 69.24%, 69.97%, 68.73%, and 71.62%, respectively while total essential amino acid were 52.71, 53.03, 51.86, and 55.75g/100g protein, respectively. In vitro protein digestibility of protein concentrate from Kwandala, Yardass, Jeep and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. DPPH radical inhibition of protein from Kwandala, Yardass, Jeep, and Jamila were 48.15%, 48.90%, 47.56%, and 53.29%, respectively while ferric reducing ability power were 0.52, 0.55, 0.47 and 0.67mmol TE per gram, respectively. Protein concentrate from Jamila had higher onset (92.57oC) and denaturation temperature (102.13oC), and enthalpy (0.72J/g) than Jeep (91.46oC, 101.76oC, and 0.68J/g, respectively), Kwandala (90.32oC, 100.54oC and 0.57J/g, respectively), and Yardass (88.94oC, 99.45oC, and 0.51J/g, respectively). In vitro digestibility of protein from Kwandala, Yardas, Jeep, and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. Oil absorption capacity of Kwandala, Yardass, Jeep, and Jamila were 3.61, 3.73, 3.40, and 4.23g oil/g sample respectively, while water absorption capacity were 4.19, 4.32, 3.55 and 4.48g water/g sample, respectively. Protein concentrates had low bulk density (0.37-0.43g/ml). Protein concentrate from Jamila rice bran had the highest foam capacity (37.25%), followed by Yardass (34.20%), Kwandala (30.14%) and Jeep (28.90%). Protein concentrates showed low emulsifying and gelling capacities. In conclusion, protein concentrate prepared from these local rice bran varieties could serve as functional ingredients in food formulations and for enriching low protein foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20protein" title="rice bran protein">rice bran protein</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile" title=" amino acid profile"> amino acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20digestibility" title=" protein digestibility"> protein digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20and%20functional%20properties" title=" antioxidant and functional properties"> antioxidant and functional properties</a> </p> <a href="https://publications.waset.org/abstracts/17730/amino-acid-profile-protein-digestibility-antioxidant-and-functional-properties-of-protein-concentrate-of-local-varieties-kwandala-yardass-jeep-and-jamila-of-rice-brands-from-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5464</span> Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Kobauri">Sophio Kobauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Torchilin"> Vladimir P. Torchilin</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H<sub>2</sub>N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of α-amino acid – L-phenylalanine. The obtained copolymer formed micelles of 70±4 nm size at 10 mg/mL concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20poly%20%28ester%20amide%29" title=" biodegradable poly (ester amide)"> biodegradable poly (ester amide)</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20triblock-copolymer" title=" amphiphilic triblock-copolymer"> amphiphilic triblock-copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a> </p> <a href="https://publications.waset.org/abstracts/85545/amino-acid-based-biodegradable-amphiphilic-polymers-and-micelles-as-drug-delivery-systems-synthesis-and-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5463</span> Synergetic Effect of Dietary Essential Amino Acids (Lysine and Methionine) on the Growth, Body Composition and Enzymes Activities of Genetically Male Tilapia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Khan">Noor Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Waris"> Hira Waris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted on genetically male tilapia (GMT) fry reared in glass aquarium for three months to examine the synergetic effect of essential amino acids (EAA) supplementation on growth, body composition, and enzyme activities. Fish having average body weight of 16.56 ± 0.42g were fed twice a day on artificial feed (20% crude protein) procured from Oryza Organics (commercial feed) supplemented with EAA; methionine (M) and lysine (L) designated as T1 (0.3%M and 2%L), T2 (0.6%M and 4%L), T3 (0.9%M and 6%L) and control without EAA. Significantly higher growth performance was observed in T1, followed by T2, T3, and control. The results revealed that whole-body dry matter and crude protein were significantly higher (p ≤ 0.05) in T3 (0.9% and 6%) feeding fish, while the crude fat was lower (p ≤ 0.05) in a similar group of fish. Additionally, protease, amylase, and lipase activities were also observed maximum (p ≤ 0.05) in response to T3 than other treatments and control. However, the EAA, especially lysine and methionine, were found significantly higher (p ≤ 0.05) in T1 compared to other treatments. Conclusively, the addition of EAA, methionine, and lysine in the feed not only enhanced the growth performance of GMT fry but also improved body proximate composition and essential amino acid profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetically%20male%20tilapia" title="genetically male tilapia">genetically male tilapia</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=digestive%20enzyme%20activities" title=" digestive enzyme activities"> digestive enzyme activities</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile" title=" amino acid profile"> amino acid profile</a> </p> <a href="https://publications.waset.org/abstracts/114306/synergetic-effect-of-dietary-essential-amino-acids-lysine-and-methionine-on-the-growth-body-composition-and-enzymes-activities-of-genetically-male-tilapia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5462</span> Development and Total Error Concept Validation of Common Analytical Method for Quantification of All Residual Solvents Present in Amino Acids by Gas Chromatography-Head Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramachandra%20Reddy">A. Ramachandra Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Murugan"> V. Murugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Prema%20Kumari"> Prema Kumari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual solvents in Pharmaceutical samples are monitored using gas chromatography with headspace (GC-HS). Based on current regulatory and compendial requirements, measuring the residual solvents are mandatory for all release testing of active pharmaceutical ingredients (API). Generally, isopropyl alcohol is used as the residual solvent in proline and tryptophan; methanol in cysteine monohydrate hydrochloride, glycine, methionine and serine; ethanol in glycine and lysine monohydrate; acetic acid in methionine. In order to have a single method for determining these residual solvents (isopropyl alcohol, ethanol, methanol and acetic acid) in all these 7 amino acids a sensitive and simple method was developed by using gas chromatography headspace technique with flame ionization detection. During development, no reproducibility, retention time variation and bad peak shape of acetic acid peaks were identified due to the reaction of acetic acid with the stationary phase (cyanopropyl dimethyl polysiloxane phase) of column and dissociation of acetic acid with water (if diluent) while applying temperature gradient. Therefore, dimethyl sulfoxide was used as diluent to avoid these issues. But most the methods published for acetic acid quantification by GC-HS uses derivatisation technique to protect acetic acid. As per compendia, risk-based approach was selected as appropriate to determine the degree and extent of the validation process to assure the fitness of the procedure. Therefore, Total error concept was selected to validate the analytical procedure. An accuracy profile of ±40% was selected for lower level (quantitation limit level) and for other levels ±30% with 95% confidence interval (risk profile 5%). The method was developed using DB-Waxetr column manufactured by Agilent contains 530 µm internal diameter, thickness: 2.0 µm, and length: 30 m. A constant flow of 6.0 mL/min. with constant make up mode of Helium gas was selected as a carrier gas. The present method is simple, rapid, and accurate, which is suitable for rapid analysis of isopropyl alcohol, ethanol, methanol and acetic acid in amino acids. The range of the method for isopropyl alcohol is 50ppm to 200ppm, ethanol is 50ppm to 3000ppm, methanol is 50ppm to 400ppm and acetic acid 100ppm to 400ppm, which covers the specification limits provided in European pharmacopeia. The accuracy profile and risk profile generated as part of validation were found to be satisfactory. Therefore, this method can be used for testing of residual solvents in amino acids drug substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title="amino acid">amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20space" title=" head space"> head space</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20error" title=" total error"> total error</a> </p> <a href="https://publications.waset.org/abstracts/98001/development-and-total-error-concept-validation-of-common-analytical-method-for-quantification-of-all-residual-solvents-present-in-amino-acids-by-gas-chromatography-head-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5461</span> Selective Separation of Amino Acids by Reactive Extraction with Di-(2-Ethylhexyl) Phosphoric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20C.%20Blaga">Alexandra C. Blaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Ca%C5%9Fcaval"> Dan Caşcaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Tucaliuc"> Alexandra Tucaliuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20Po%C5%9Ftaru"> Madalina Poştaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Anca%20I.%20Galaction"> Anca I. Galaction</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amino acids are valuable chemical products used in in human foods, in animal feed additives and in the pharmaceutical field. Recently, there has been a noticeable rise of amino acids utilization throughout the world to include their use as raw materials in the production of various industrial chemicals: oil gelating agents (amino acid-based surfactants) to recover effluent oil in seas and rivers and poly(amino acids), which are attracting attention for biodegradable plastics manufacture. The amino acids can be obtained by biosynthesis or from protein hydrolysis, but their separation from the obtained mixtures can be challenging. In the last decades there has been a continuous interest in developing processes that will improve the selectivity and yield of downstream processing steps. The liquid-liquid extraction of amino acids (dissociated at any pH-value of the aqueous solutions) is possible only by using the reactive extraction technique, mainly with extractants of organophosphoric acid derivatives, high molecular weight amines and crown-ethers. The purpose of this study was to analyse the separation of nine amino acids of acidic character (l-aspartic acid, l-glutamic acid), basic character (l-histidine, l-lysine, l-arginine) and neutral character (l-glycine, l-tryptophan, l-cysteine, l-alanine) by reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in butyl acetate. The results showed that the separation yield is controlled by the pH value of the aqueous phase: the reactive extraction of amino acids with D2EHPA is possible only if the amino acids exist in aqueous solution in their cationic forms (pH of aqueous phase below the isoeletric point). The studies for individual amino acids indicated the possibility of selectively separate different groups of amino acids with similar acidic properties as a function of aqueous solution pH-value: the maximum yields are reached for a pH domain of 2–3, then strongly decreasing with the pH increase. Thus, for acidic and neutral amino acids, the extraction becomes impossible at the isolelectric point (pHi) and for basic amino acids at a pH value lower than pHi, as a result of the carboxylic group dissociation. From the results obtained for the separation from the mixture of the nine amino acids, at different pH, it can be observed that all amino acids are extracted with different yields, for a pH domain of 1.5–3. Over this interval, the extract contains only the amino acids with neutral and basic character. For pH 5–6, only the neutral amino acids are extracted and for pH > 6 the extraction becomes impossible. Using this technique, the total separation of the following amino acids groups has been performed: neutral amino acids at pH 5–5.5, basic amino acids and l-cysteine at pH 4–4.5, l-histidine at pH 3–3.5 and acidic amino acids at pH 2–2.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=di-%282-ethylhexyl%29%20phosphoric%20acid" title=" di-(2-ethylhexyl) phosphoric acid"> di-(2-ethylhexyl) phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20extraction" title=" reactive extraction"> reactive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20extraction" title=" selective extraction"> selective extraction</a> </p> <a href="https://publications.waset.org/abstracts/25016/selective-separation-of-amino-acids-by-reactive-extraction-with-di-2-ethylhexyl-phosphoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5460</span> Synthesis, Characterization, and Application of Some Acid Dyes Derived from 1-Amino-4 Bromo-Anthraquine-2-Sulphonic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuradeen%20Abdullahi%20Nadabo">Nuradeen Abdullahi Nadabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Adewale%20Bello"> Kasali Adewale Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Istifanus%20Chindo"> Istifanus Chindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Ayeni"> Nurudeen Ayeni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ten acid dyes were synthesized from 1-amino-4-bromo anthraghinone-2 sulphuric acid by condensation with different substituted amilines. These dyes were characterized by IR Spectroscopy and the results revealed an incorporation of various substituents. Application of these dyes were carried out on Nylon and wool fabrics using standard procedure melting point, percentage yield, molar extinction coefficient, wash, light and staining of adjacent fibre, of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaustion" title=" exhaustion"> exhaustion</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction%20co-efficient" title=" extinction co-efficient "> extinction co-efficient </a> </p> <a href="https://publications.waset.org/abstracts/28845/synthesis-characterization-and-application-of-some-acid-dyes-derived-from-1-amino-4-bromo-anthraquine-2-sulphonic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5459</span> Development of Hit Marks on Clothes Using Amino Acid Reagents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyo-Su%20Lim">Hyo-Su Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye-Eun%20Song"> Ye-Eun Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Bi%20Lee"> Eun-Bi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Yoon%20Lee"> Sang-Yoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Il%20Seo"> Young-Il Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Pyo%20Kim"> Jin-Pyo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam-Kyu%20Park"> Nam-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If we analogize any physical external force given to victims in many crimes including violence, it would be possible not only to presume mutual action between victims and suspects, but to make a deduction of more various facts in cases. Therefore, the aim of this study is to identify criminal tools through secretion on clothes by using amino acid reagents such as Ninhydrin, DFO(1,8-dizafluoren-9-one), 1,2 – IND (1,2-indanedione) which are reacting to skin secretion. For more effective collecting condition, porcine skin which is physiologically similar to human was used. Although there were little differences of shape identification according to sensitivity, amino acid reagents were able to identify the fist, foot, and baseball bat. Furthermore, we conducted the experiments for developmental variations through change over time setting up 5-weeks period including first damage as variation factor, and developing materials in each action through certain reagents. Specimen level of development depending on change over time was identified. As a result, each of initial level of development was seen no changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hit%20marks" title="hit marks">hit marks</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20reagents" title=" amino acid reagents"> amino acid reagents</a>, <a href="https://publications.waset.org/abstracts/search?q=porcine%20skin" title=" porcine skin"> porcine skin</a>, <a href="https://publications.waset.org/abstracts/search?q=criminal%20tool" title=" criminal tool"> criminal tool</a> </p> <a href="https://publications.waset.org/abstracts/65482/development-of-hit-marks-on-clothes-using-amino-acid-reagents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5458</span> Electrocatalytic Amino Acid Synthesis from Biomass-Derivable Keto Acids over Ball-Milled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiying%20Xiao">Yiying Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia%20Wei%20Lim"> Chia Wei Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinquan%20Chang"> Jinquan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qixin%20Yuan"> Qixin Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Yan"> Ning Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocatalytic reductive amination (ERA) offers an attractive way to make organonitrogen chemicals from renewable feedstock. Here, we report carbon nanotube (CNT) as an effective catalyst for the ERA of biomass-derivable α-keto acids into amino acids using NH₃ as the nitrogen source. Through a facile ball milling (BM) treatment, the intrinsic defects in the CNTs were increased while the electrocatalytic activity of CNTs converting 2-ketoglutaric acid into glutamic acid was enhanced by approximately seven times. A high Faradaic efficiency (FE) of ~90% with a corresponding glutamic acid formation rate up to 180.9 mmol•g⁻¹𝒸ₐₜt•h⁻¹ was achieved, and ~60% molar yield of glutamic acid was obtained after 8 h of electrolysis. Electrokinetic analyses indicate that the BM-CNTs catalysed ERA exhibits first-order dependences on the substrate and NH₃, with a rate-determining step (RDS) involving the first electron transfer. Following this protocol, a number of amino acids were prepared with moderate to high FEs and formation rates. Significantly, we synthesised long carbon chain amino acids, which typically face lower yields using the existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reductive%20amination" title=" reductive amination"> reductive amination</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-keto%20acids" title=" α-keto acids"> α-keto acids</a> </p> <a href="https://publications.waset.org/abstracts/164061/electrocatalytic-amino-acid-synthesis-from-biomass-derivable-keto-acids-over-ball-milled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5457</span> Achievement of High L-Cysteine Yield from Enzymatic Conversion Using Eutectic Mixtures of the Substrate ATC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hun%20Youn"> Sung Hun Youn</a>, <a href="https://publications.waset.org/abstracts/search?q=Younggon%20Kim"> Younggon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Soo%20Shin"> Chul Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-Cysteine, a sulfur-containing amino acid, has been often used in the pharmaceutical, cosmetic, food, and feed additive industries. This amino acid has been usually produced by acid-hydrolysis of human hair and poultry feathers. There are many problems, such as avoidance for use of animal hair, low yields, and formation of harmful waste material. As an alternative, the enzymatic conversion of D, L-2-amino-Δ2-thiazoline-4-carboxylic acid (ATC) to L-cysteine has been developed as an environmental-friendly method. However, the substrate solubility was too low to be used in industry. In this study, high concentrations of eutectic substrate solutions were prepared to solve the problem. Eutectic melting occurred at 39°C after mixing ATC and malonic acid at a molar ratio of 1:1. The characteristics of eutectic mixtures were analyzed by FE-SEM, EDS mapping, and XPS. However, since sorbitol, MnSO4, and NaOH should be added as supplements to the substrate mixture for the activation and stabilization of the enzyme, strategies for sequential addition of total five compounds, ATC, malonic acid, sorbitol, MnSO4, and NaOH were established. As a result, eutectic substrate mixtures of 670 mM ATC were successfully formulated. After 6 h of enzymatic reaction, 550 mM L-cysteine was made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D" title="D">D</a>, <a href="https://publications.waset.org/abstracts/search?q=L-2-amino-%CE%942-thiazoline-4-carboxylicacid" title=" L-2-amino-Δ2-thiazoline-4-carboxylicacid"> L-2-amino-Δ2-thiazoline-4-carboxylicacid</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20conversion" title=" enzymatic conversion"> enzymatic conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=eutectic%20solution" title=" eutectic solution"> eutectic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=l-cysteine" title=" l-cysteine"> l-cysteine</a> </p> <a href="https://publications.waset.org/abstracts/4129/achievement-of-high-l-cysteine-yield-from-enzymatic-conversion-using-eutectic-mixtures-of-the-substrate-atc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5456</span> The Characteristcs and Amino Acid Profile of Edible Coating Extracted from Pigskin Gelatin </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meity%20Sompie">Meity Sompie</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes%20Triasih"> Agnes Triasih</a>, <a href="https://publications.waset.org/abstracts/search?q=Wisje%20Ponto"> Wisje Ponto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible coating is thin layers that act as a barrier to the external factors and protect the food products. The addition of the plasticizer to the edible coating is required to overcome film caused by extensive intermolecular forces. The potential development of pigskin with different ages as a raw material for the manufacture of edible films had not been widely publicized. This research was aimed to determine the influence of gelatin concentration and different type of plasticizer on the edible coating characteristics extracted from pigskin gelatin. This study used Completely Randomized Design (CRD) with two factors and three replicates of treatments. The first factor was consisted of pigskin gelatin concentration ( 10, 20, and 30 %) and the second factor was different type of plasticizer (glycerol, sorbitol and PEG). The results show that the interaction between the use of gelatin concentrations and type of plasticizer had significant effect (P< 0.05) on the thickness, tensile strength, elongation, water vapor transmission rate (WVTR), water content and amino acid profile of edible coating. It was concluded that the edible coating from pigskin gelatin with plasticizer gliserol had the best film characteristics, and it can be applied as an edible coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20coating" title="edible coating">edible coating</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=pigskin%20gelatin" title=" pigskin gelatin"> pigskin gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer" title=" plasticizer"> plasticizer</a> </p> <a href="https://publications.waset.org/abstracts/86037/the-characteristcs-and-amino-acid-profile-of-edible-coating-extracted-from-pigskin-gelatin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5455</span> Protein Quality of Game Meat Hunted in Latvia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vita%20Strazdina">Vita Strazdina</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandrs%20Jemeljanovs"> Aleksandrs Jemeljanovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Vita%20Sterna"> Vita Sterna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietic%20product" title="dietic product">dietic product</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20meat" title=" game meat"> game meat</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=scores" title=" scores"> scores</a> </p> <a href="https://publications.waset.org/abstracts/10553/protein-quality-of-game-meat-hunted-in-latvia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5454</span> Proximate and Amino Acid Composition of Amaranthus hybridus (Spinach), Celosia argentea (Cock's Comb) and Solanum nigrum (Black nightshade)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Oladeji">S. O. Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Saleh"> I. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Adamu"> A. U. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Fowotade"> S. A. Fowotade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proximate composition, trace metal level and amino acid composition of Amaranthus hybridus, Celosia argentea and Solanum nigrum were determined. These vegetables were high in their ash contents. Twelve elements were determined: calcium, chromium, copper, iron, lead, magnesium, nickel, phosphorous, potassium, sodium and zinc using flame photometer, atomic absorption and UV-Visible spectrophotometers. Calcium levels were highest ranged between 145.28±0.38 to 235.62±0.41mg/100g in all the samples followed by phosphorus. Quantitative chromatographic analysis of the vegetables hydrolysates revealed seventeen amino acids with concentration of leucine (6.51 to 6.66±0.21g/16gN) doubling that of isoleucine (2.99 to 3.33±0.21g/16gN) in all the samples while the limiting amino acids were cystine and methionine. The result showed that these vegetables were of high nutritive values and could be adequate used as supplement in diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proximate" title="proximate">proximate</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaranthus%20hybridus" title=" Amaranthus hybridus"> Amaranthus hybridus</a>, <a href="https://publications.waset.org/abstracts/search?q=Celosia%20argentea" title=" Celosia argentea"> Celosia argentea</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20nigrum" title=" Solanum nigrum"> Solanum nigrum</a> </p> <a href="https://publications.waset.org/abstracts/22066/proximate-and-amino-acid-composition-of-amaranthus-hybridus-spinach-celosia-argentea-cocks-comb-and-solanum-nigrum-black-nightshade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5453</span> Evaluation of Serine and Branched Chain Amino Acid Levels in Depression and the Beneficial Effects of Exercise in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Doss">V. A. Doss</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sowndarya"> R. Sowndarya</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Juila%20Rose%20Mary"> K. Juila Rose Mary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Amino acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. The objective of the present study was to identify the amino acids as possible metabolite biomarkers for depression using GCMS (Gas Chromatography Mass Spectrometry) before and after exercise regimen in brain samples of depression induced animal models. Methods: Depression-like behaviour was induced by Chronic Unpredictable mild stress (CUMS). Severity of depression was measured by forced swim test (FST) and sucrose consumption test (SCT). Swimming protocol was followed for 4 weeks of exercise treatment. Brain obtained from depressed and exercise treated rats were used for the metabolite analysis by GCMS. Subsequent statistical analysis obtained by ANOVA followed by post hoc test revealed significant metabolic changes. Results: Amino acids such as alanine, glycine, serine, glutamate, homocysteine, proline and branched chain aminoacids (BCAs) Leucine, Isoleucine, Valine were determined in brain samples of control, depressed and exercised groups. Among these amino acids, the levels of D-Serine and branched chain amino acids were found to be decreased in depression induced rats. After four weeks of swimming exercise regimen, there were improvements in the levels of serine and Branched chain amino acids. Conclusion: We suggest that Serine and BCAs may be investigated as potential metabolite markers using GCMS and their beneficial metabolic changes in Exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title="metabolomics">metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20swim%20test" title=" forced swim test"> forced swim test</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20metabolites" title=" amino acid metabolites"> amino acid metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=GCMS" title=" GCMS"> GCMS</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a> </p> <a href="https://publications.waset.org/abstracts/65816/evaluation-of-serine-and-branched-chain-amino-acid-levels-in-depression-and-the-beneficial-effects-of-exercise-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5452</span> Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akimitsu%20Kugimiya">Akimitsu Kugimiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kouhei%20Iwato"> Kouhei Iwato</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Saito"> Toru Saito</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiro%20Kohda"> Jiro Kohda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhisa%20Nakano"> Yasuhisa Nakano</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Takano"> Yu Takano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title="amino acid">amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aminoacyl-tRNA%20synthetase" title=" aminoacyl-tRNA synthetase"> aminoacyl-tRNA synthetase</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensing" title=" biosensing"> biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20reaction" title=" enzyme reaction"> enzyme reaction</a> </p> <a href="https://publications.waset.org/abstracts/70824/spectrophotometric-detection-of-histidine-using-enzyme-reaction-and-examination-of-reaction-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5451</span> Exploration Study of Civet Coffee: Amino Acids Composition and Cup Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murna%20Muzaifa">Murna Muzaifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dian%20Hasni"> Dian Hasni</a>, <a href="https://publications.waset.org/abstracts/search?q=Febriani"> Febriani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshar%20Patria"> Anshar Patria</a>, <a href="https://publications.waset.org/abstracts/search?q=Amhar%20Abubakar"> Amhar Abubakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coffee flavour is influenced by many factors such as processing techniques. Civet coffee is known as one of premium coffee due to its unique processing technique and its superior cupping quality. The desirable aroma of coffee is foremost formed during roasting step at a high temperature from precursors that are present in the green bean. Sugars, proteins, acids and trigonelline are the principal flavor precursors compounds in green coffee bean. It is now widely accepted that amino acids act as precursors of the Maillard reaction during which the colour and aroma are formed. To investigate amino acids on civet coffee, concentration of 20 amino acids (L-Isoleucine, L-Valine, L-Proline, L-Phenylalanine, L-Arginine, L-Asparagine, L-Threonine, L-Tryptophan, L-Leucine, L-Serine, L-Glutamine, L-Methionine, L-Histidine, Aspartic acid, L-Tyrosine, L-Lysine, L-Glutamic acid, and L-Cysteine, L-Alanine and Glycine) were determined in green and roasted bean of civet coffee by LCMS analysis. The cup quality of civet coffee performed using professional Q-grader followed SCAA standard method. The measured parameters were fragrance/aroma, flavor, acidity, body, uniformity, clean up, aftertaste, balance, sweetness and overall. The work has been done by collecting samples of civet coffee from six locations in Gayo Higland, Aceh-Indonesia. The results showed that 18 amino acids were detected in green bean of civet coffee (L-Isoleucine, L-Valine, L-Proline, L-Phenylalanine, L-Arginine, L-Asparagine, L-Threonine, L-Tryptophan, L-Leucine, L-Serine, L-Glutamine, L-Methionine, L-Histidine, Aspartic acid, L-Tyrosine, L-Lysine, L-Glutamic acid, and L-Cysteine) and 2 amino acids were not detected (L-Alanine and Glycine). On the other hand, L-Tyrosine and Glycine were not detected in roasted been of civet coffee. Glutamic acid is the amino acid with highest concentration in both green and roasted bean (21,02 mg/g and 24,60 mg/g), followed by L- Valine (19,98 mg/g and 20,22 mg/g) and Aspartic acid (14,93 mg/g and 18,58 mg/g). Civet coffee has a fairly high cupping value (cup quality), ranging from 83.75 to 84.75, categorized as speciality coffee. Moreover, civet coffee noted to have nutty, chocolaty, fishy, herby and watery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=civet%20coffee" title=" civet coffee"> civet coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=cupping%20quality" title=" cupping quality"> cupping quality</a>, <a href="https://publications.waset.org/abstracts/search?q=luwak" title=" luwak"> luwak</a> </p> <a href="https://publications.waset.org/abstracts/89505/exploration-study-of-civet-coffee-amino-acids-composition-and-cup-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5450</span> The Effect of Gibberellic Acid on Gamma-Aminobutyric Acid (GABA) Metabolism in Phaseolus Vulgaris L. Plant Exposed to Drought and Salt Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazilet%20%C3%96zlem%20%C3%87eki%C3%A7">Fazilet Özlem Çekiç</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyda%20Y%C4%B1lmaz"> Seyda Yılmaz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity and drought are important environmental problems in the world and have negative effects on plant metabolism. Gamma-aminobutyric acid (GABA), four-carbon non-protein amino acid, is a significant component of the free amino acid pool. GABA is widely distributed in prokaryotic and eukaryotic organisms. Environmental stress factors increase GABA accumulation in plants. Our aim was to evaluate the effect of gibberellic acid (GA) on GABA metabolism system during drought and salt stress factors in Phaseolus vulgaris L. plants. GABA, Glutamate dehydrogenase (GDH) activity, chlorophyll, and lipid peroxidation (MDA) analyses were determined. According to our results we can suggest that GA play a role in GABA metabolism during salt and drought stresses in bean plants. Also GABA shunt is an important metabolic pathway and key signaling allowing to adapt to drought and salt stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gibberellic%20acid" title="gibberellic acid">gibberellic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=GABA" title=" GABA"> GABA</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaseolus%20vulgaris%20L." title=" Phaseolus vulgaris L."> Phaseolus vulgaris L.</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought "> drought </a> </p> <a href="https://publications.waset.org/abstracts/16184/the-effect-of-gibberellic-acid-on-gamma-aminobutyric-acid-gaba-metabolism-in-phaseolus-vulgaris-l-plant-exposed-to-drought-and-salt-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5449</span> Chronic Exposure of Mercury on Amino Acid Level in Freshwater Fish Clarias batrachus (Linn.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Josephine%20Rani">Mary Josephine Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Virtually all metals are toxic to aquatic organisms because of the devastating effect of these metals on humans; heavy metals are one of the most toxic forms of aquatic pollution. Metal concentrations in aquatic organisms appear to be of several magnitudes higher than concentrations present in the ecosystem. Mercury is one of the most toxic heavy metals in the environment. The principal sources of contamination in wastewater are chloralkali plants, battery factories, mercury switches, and medical wastes. Elevated levels of mercury in aquatic organisms specially fish represent both an ecological and human concern. Amino acid levels were estimated in five tissues (gills, liver, kidney, brain and muscle) of Clariasbatrachus after 28 days of chronic exposure to mercury. Free amino acids serve as precursor for energy production under stress and for the synthesis of required proteins to face the metal challenge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/23927/chronic-exposure-of-mercury-on-amino-acid-level-in-freshwater-fish-clarias-batrachus-linn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5448</span> Study on the Neurotransmitters and Digestion of Amino Acids Affecting Psychological Chemical Imbalance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoonah%20Lee">Yoonah Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kyung"> Richard Kyung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With technological advances in the computational biomedical field, the ability to measure neurotransmitters’ chemical imbalances that affect depression and anxiety has been established. By comparing the thermodynamics stability of amino acid supplements, such as glutamine, tyrosine, phe-nylalanine, and methionine, this research analyzes mood-regulating neurotransmitters, amino acid supplements, and antipsychotic substances (ie. Reserpine molecule and CRF complexes) in relation to depression and anxiety and suggests alternative complexes that are low in energy to act as more efficient treatments for mood disorders. To determine a molecule’s thermodynamic stability, this research examines the molecular energy using Avogadro, a software for building virtual molecules and calculating optimized geometry using GAFF (General Amber Force Field) and UFF (Universal Force Field). The molecules, built using Avogadro, is analyzed using their theoretical values and atomic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotransmitters" title=" neurotransmitters"> neurotransmitters</a> </p> <a href="https://publications.waset.org/abstracts/71700/study-on-the-neurotransmitters-and-digestion-of-amino-acids-affecting-psychological-chemical-imbalance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5447</span> The Potency of Sandfish (Holothuria scraba) Flesh Powder to Improve Reproduction Quality of Man</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Riani">E. Riani</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Irawadi"> T. T. Irawadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nurjanah"> S. Nurjanah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Syamsu"> K. Syamsu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Said"> E. G. Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Suprihatin"> Suprihatin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Cordova"> M. R. Cordova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Especially coastal, Indonesian and Chinese communities have utilized sandfish to improve reproduction quality of men. This study aimed to examine the nutrition on sandfish flesh that has the potency to improve reproduction quality of men. The materials used were sandfish with weight of 200-500 g, and then analysis of proximate, analysis of amino acid, analysis of fatty acid and analysis of mineral contained in the sandfish were performed. The results showed that protein content (39.96%) was the main component of the flesh; the carbohydrate and fat were 25.43% and 4.18%, respectively. Sandfish powder contains several essential amino acids and nonessential amino acids. Nine of ten amino acids needed by human body are contained in sandfish powder, i.e. arginine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, tryptophan, threonine and valine; only tryptophan that are not contained in sandfish powder. Sandfish powder contains saturated fatty acid kaproat, kaprilat, kaprat, laurat, miristat, stearat, arakhidat and behenat; monosaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). MUFA is composed of fatty acid oleat, while PUFA is composed fatty acid omega 3 (linonenat, eicosapentaenoic acid and docosahexaenoic acid) and omega 6 (linoleat and arakhidonat). The minerals contained in sandfish powder are macrominerals and microminerals. Based on the findings, the nutrition in sandfish powder has a good potency to improve reproduction of men, especially PUFA for the maturation of spermatozoa, zinc for production function and spermatogenesis, motility of spermatozoa, acromoson reaction; Mg for transformation of genetic information and motility of spermatozoa; calcium for spermatogenesis, capacity and fertilization of spermatozoa. Thus, sandfish flesh powder has the potency to improve reproduction quality of men. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandfish%20flesh%20powder" title="sandfish flesh powder">sandfish flesh powder</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction%20quality" title=" reproduction quality"> reproduction quality</a>, <a href="https://publications.waset.org/abstracts/search?q=men" title=" men"> men</a> </p> <a href="https://publications.waset.org/abstracts/11006/the-potency-of-sandfish-holothuria-scraba-flesh-powder-to-improve-reproduction-quality-of-man" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5446</span> Protein Remote Homology Detection by Using Profile-Based Matrix Transformation Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu">Bin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As one of the most important tasks in protein sequence analysis, protein remote homology detection has been studied for decades. Currently, the profile-based methods show state-of-the-art performance. Position-Specific Frequency Matrix (PSFM) is widely used profile. However, there exists noise information in the profiles introduced by the amino acids with low frequencies. In this study, we propose a method to remove the noise information in the PSFM by removing the amino acids with low frequencies called Top frequency profile (TFP). Three new matrix transformation methods, including Autocross covariance (ACC) transformation, Tri-gram, and K-separated bigram (KSB), are performed on these profiles to convert them into fixed length feature vectors. Combined with Support Vector Machines (SVMs), the predictors are constructed. Evaluated on two benchmark datasets, and experimental results show that these proposed methods outperform other state-of-the-art predictors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20remote%20homology%20detection" title="protein remote homology detection">protein remote homology detection</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fold%20recognition" title=" protein fold recognition"> protein fold recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=top%20frequency%20profile" title=" top frequency profile"> top frequency profile</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a> </p> <a href="https://publications.waset.org/abstracts/103989/protein-remote-homology-detection-by-using-profile-based-matrix-transformation-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5445</span> Nutritional Characteristics, Mineral contents, Amino acid Composition and Phytochemical Analysis of Eryngium alpinium Leaf Protein Concentrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Owonikoko%20A.%20D.">Owonikoko A. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Odoje%20O.%20F."> Odoje O. F.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh sample of Eryngium alpinum was purchased and processed for leaf protein concentrates with a view to evaluating its nutritional potential, mineral composition, amino acid characteristics and phytochemical constituents. Using standard analytical methods. The proximate composition of the leaf protein concentrates revealed moisture content;(5.35±0.21)g/100g, ash;(11.37±0.43)g/100g, crude protein;(48.17±0.46)g/100g, crude fat;(15.38±0.07)g/100g, crude fibre (3.05±0.46)g/100g, and Nitrogen free extractive; (16.68±0.30) g/100g. The mineral content was: Na;(51.88±0.23) mg/100g, K;(65.40±0.32)mg/100g, Ca; (86.89±0.46)mg/100g, Mg;(49.27±0.42) mg/100g, Zn;(0.62±0.03)mg/100g, Fe (6.65±0.43)mg/100g, Mn;(0.96±0.54)mg/100g, Cd;(0.28±0.04)mg/100g, P; (8.55±0.97)mg/100g, while selenium, lead and mercury were not detected in the sample indicating that the sample is free of causing risk of metal poisoning. The results of phytochemical constituents showed phytate; (18.34±0.36)mg/100g, flavonoid (0.25±0.41)mg/100g. The sample contain both essential and non-essential amino acid, with the highest value of Glutamic acid (12.26) and the lowest value of Tryptophan 1.05. the content of the leaf protein content shows that the sample is fit for dietary consumption and could as well be processed to be used as food additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title="mineral composition">mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20analysis" title=" phytochemical analysis"> phytochemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20protein%20concentrates" title=" leaf protein concentrates"> leaf protein concentrates</a>, <a href="https://publications.waset.org/abstracts/search?q=eryngium%20alpinum" title=" eryngium alpinum"> eryngium alpinum</a> </p> <a href="https://publications.waset.org/abstracts/166086/nutritional-characteristics-mineral-contents-amino-acid-composition-and-phytochemical-analysis-of-eryngium-alpinium-leaf-protein-concentrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5444</span> Fatty Acid Profile of Meat from Lambs Fed on Diets Containing Mulberry Hay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Silva%20Sobrinho">A. G. Silva Sobrinho</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20G.%20A.%20Cirne"> L. G. A. Cirne</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20T.%20Santana"> V. T. Santana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this trial was to evaluate fatty acid profile of meat from lambs fed on diets containing 0, 12.5 and 25.0% mulberry hay as a substitute for the concentrate. Twenty-four feedlot Ile de France lambs (average weight of 15kg and average age of 60 days) were randomized to receive the different diets and slaughtered at 32kg body weight. Increases were observed in the concentrations of the saturated pentadecanoic, heptadecanoic and arachidic fatty acids; of the monounsaturated nervonic fatty acid and of the polyunsaturated α-linolenic, ɣ-linolenic and eicosapentaenoic fatty acids. Increased conjugated linoleic acid (CLA) was also found in the meat of lambs fed on 12.5% mulberry hay. In addition, the omega-3 composition was augmented, while the omega-3/omega-6 ratio was decreased in mulberry hay-fed animals. In conclusion, a more desirable fatty acid profile was observed in lamb meat following the substitution of mulberry hay in the concentrate of fed, resulting in improved nutritional characteristics of the meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20food" title="alternative food">alternative food</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=feedlot" title=" feedlot"> feedlot</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20meat" title=" sheep meat"> sheep meat</a> </p> <a href="https://publications.waset.org/abstracts/9723/fatty-acid-profile-of-meat-from-lambs-fed-on-diets-containing-mulberry-hay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5443</span> In Vitro Antioxidant Properties of Balanites Aeqyptiaca Del Enzymatic Protein Hydrolysates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friday%20A.%20Ogori">Friday A. Ogori</a>, <a href="https://publications.waset.org/abstracts/search?q=Ojotu%20M.%20Eke"> Ojotu M. Eke</a>, <a href="https://publications.waset.org/abstracts/search?q=Oneh%20J.%20Abu"> Oneh J. Abu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20T.%20Girgih"> Abraham T. Girgih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> B.aeqygtiaca del (Balanites aegyptiaca del) seed protein concentrate (APC) was hydrolyzed using different enzymes such as pepsin+pancreatin (PP), Alcalase (Alca), and Flavourzyme (Flav). The Alca has higher yield (100%) when compared to PP (83.23%) and Flav (62.90%). The hydrophobic amino acid and Sulphur containing amino acid (40.19%, 7.04%) in PP hydrolysate were higher compared to Alcalase (38.92%, 6.69%), Flavourenzyme (37.43%,6.35%), and APC (39.97%, 6.95%) samples. The PP has stronger DPPH, Hydroxyl radical quenching, Ferric reducing activity, and linoleic acid peroxidation activity, followed by the protein concentrate (APC) and Alcalase (Alca), while Flavourenzyme (Flav) derived hydrolysate was least in scavenging and inhibiting radical peroxidation properties. Flavourenzyme derived hydrolysate had stronger Ferric reducing antioxidant potential and metal chelating property. The result showed that the Alcalase hydrolysate has promising peptide yield, and PP hydrolysate had excellent amino acid residues and good in-vitro antioxidant potentials and could be a preferred ingredients in the nutraceutical and functional food emerging industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balanites%20aegyptiaca%20del" title="balanites aegyptiaca del">balanites aegyptiaca del</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20concentrate" title=" protein concentrate"> protein concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20hydrolysates" title=" protein hydrolysates"> protein hydrolysates</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a> </p> <a href="https://publications.waset.org/abstracts/175404/in-vitro-antioxidant-properties-of-balanites-aeqyptiaca-del-enzymatic-protein-hydrolysates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5442</span> Anti-Parasite Targeting with Amino Acid-Capped Nanoparticles Modulates Multiple Cellular Processes in Host</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluyomi%20Stephen%20Adeyemi">Oluyomi Stephen Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kentaro%20Kato"> Kentaro Kato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease capable of infecting a range of hosts, including nearly one-third of the human population. Current treatment options for toxoplasmosis patients are limited. In consequence, toxoplasmosis represents a large global burden that is further enhanced by the shortcomings of the current therapeutic options. These factors underscore the need for better anti-T. gondii agents and/or new treatment approach. In the present study, we sought to find out whether preparing and capping nanoparticles (NPs) in amino acids, would enhance specificity toward the parasite versus the host cell. The selection of amino acids was premised on the fact that T. gondii is auxotrophic for some amino acids. The amino acid-nanoparticles (amino-NPs) were synthesized, purified and characterized following established protocols. Next, we tested to determine the anti-T. gondii activity of the amino-NPs using in vitro experimental model of infection. Overall, our data show evidence that supports enhanced and excellent selective action against the parasite versus the host cells by amino-NPs. The findings are promising and provide additional support that warrants exploring the prospects of NPs as alternative anti-parasite agents. In addition, the anti-parasite action by amino-NPs indicates that nutritional requirement of parasite may represent a viable target in the development of better alternative anti-parasite agents. Furthermore, data suggest the anti-parasite mechanism of the amino-NPs involves multiple cellular processes including the production of reactive oxygen species (ROS), modulation of hypoxia-inducing factor-1 alpha (HIF-1α) as well as the activation of kynurenine pathway. Taken together, findings highlight further, the prospects of NPs as alternative source of anti-parasite agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title="drug discovery">drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=infectious%20diseases" title=" infectious diseases"> infectious diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20of%20action" title=" mode of action"> mode of action</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a> </p> <a href="https://publications.waset.org/abstracts/99325/anti-parasite-targeting-with-amino-acid-capped-nanoparticles-modulates-multiple-cellular-processes-in-host" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5441</span> SARS-CoV-2: Prediction of Critical Charged Amino Acid Mutations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atlal%20El-Assaad">Atlal El-Assaad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Viruses change with time through mutations and result in new variants that may persist or disappear. A Mutation refers to an actual change in the virus genetic sequence, and a variant is a viral genome that may contain one or more mutations. Critical mutations may cause the virus to be more transmissible, with high disease severity, and more vulnerable to diagnostics, therapeutics, and vaccines. Thus, variants carrying such mutations may increase the risk to human health and are considered variants of concern (VOC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the contagious in humans, positive-sense single-stranded RNA virus that caused coronavirus disease 2019 (COVID-19) - has been studied thoroughly, and several variants were revealed across the world with their corresponding mutations. SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, but prior study and vaccines development focused on genetic mutations in the S protein due to its vital role in allowing the virus to attach and fuse with the membrane of a host cell. Specifically, subunit S1 catalyzes attachment, whereas subunit S2 mediates fusion. In this perspective, we studied all charged amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 in a crystal structure and assessed the effect of different mutations. We generated all missense mutants of SARS-CoV-2 protein amino acids (AAs) within the SARS-CoV-2:CC12.1 complex model. To generate the family of mutants in each complex, we mutated every charged amino acid with all other charged amino acids (Lysine (K), Arginine (R), Glutamic Acid (E), and Aspartic Acid (D)) and studied the new binding of the complex after each mutation. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations to determine the effect of each mutation on binding. After analyzing our data, we identified charged amino acids keys for binding. Furthermore, we validated those findings against published experimental genetic data. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants found worldwide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title="SARS-CoV-2">SARS-CoV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=variant" title=" variant"> variant</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20amino%20acid" title=" ionic amino acid"> ionic amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interactions" title=" protein-protein interactions"> protein-protein interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=missense%20mutation" title=" missense mutation"> missense mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=AESOP" title=" AESOP"> AESOP</a> </p> <a href="https://publications.waset.org/abstracts/163753/sars-cov-2-prediction-of-critical-charged-amino-acid-mutations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5440</span> The Increase in Functionalities of King Oyster Mushroom (Pleurotus eryngii) Mycelia Depending on the Increase in Nutritional Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye-Sung%20Park">Hye-Sung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Ji%20Lee"> Eun-Ji Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan-Jung%20Lee"> Chan-Jung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Sik%20Kong"> Won-Sik Kong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to research king oyster mushroom (Pleurotus eryngii) mycelia with reinforced functionalities. 0 to 4% of saccharide components, such as glucose (glu), lactose (lac), mannitol (man), xylose (xyl), and fructose (fru) and 0 to 0.04% of amino acid components, such as aspartic acid (asp). Cysteine (cys), threonine (thr), glutamine (gln), and serine (ser) were added to liquid media, and antioxidant activities, nitrite scavenging activities, and total polyphenol contents of the cultured mycelia were measured. In the saccharide-added group, 4 strains except ASI 2887 had high antioxidant activities when 1% of xyl was added and especially, the antioxidant activity of ASI 2839 was 73.9%, which was the highest value. In the amino acid-added group, the antioxidant activity of ASI 2839 was 66.3% that was the highest value when 0.2% of ser was added. But all the 5 strains had lower antioxidant activities than the saccharide-added group overall. In the saccharide-added group, 4 strains except ASI 2887 had higher nitrite scavenging activities than other group when 1% of xyl was added and especially, the nitrite scavenging activity of ASI 2824 was 57.8% that was the highest value. It was revealed that the saccharide-added group and the amino acid-added group had a similar efficiency of nitrite scavenging activity. Although the same component-added group did not show a certain increase or decrease in total polyphenol contents, ASI 2839 with the highest antioxidant activity had 6.8mg/g, which was the highest content when 1% of xyl was added. In conclusion, this study demonstrated that when 1% of xyl was added, functionalities of Pleurotus eryngii mycelia, including antioxidant activities, nitrite scavenging activities, and total polyphenol contents improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=king%20oyster%20mushroom" title="king oyster mushroom">king oyster mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharide" title=" saccharide"> saccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=mycelia" title=" mycelia"> mycelia</a> </p> <a href="https://publications.waset.org/abstracts/89438/the-increase-in-functionalities-of-king-oyster-mushroom-pleurotus-eryngii-mycelia-depending-on-the-increase-in-nutritional-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=182">182</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=183">183</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>