CINXE.COM
Search results for: electric field integral equation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electric field integral equation</title> <meta name="description" content="Search results for: electric field integral equation"> <meta name="keywords" content="electric field integral equation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electric field integral equation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electric field integral equation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11649</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electric field integral equation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11649</span> Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ahmad">Mohammad Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayalan%20Kasilingam"> Dayalan Kasilingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation" title="electric field integral equation">electric field integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20multipole%20method" title=" fast multipole method"> fast multipole method</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20moments" title=" method of moments"> method of moments</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20scattering" title=" wave scattering"> wave scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20domain" title=" spectral domain"> spectral domain</a> </p> <a href="https://publications.waset.org/abstracts/65787/spectral-domain-fast-multipole-method-for-solving-integral-equations-of-one-and-two-dimensional-wave-scattering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11648</span> Image Transform Based on Integral Equation-Wavelet Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang">Yuan Yan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Yang"> Lina Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li"> Hong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20model" title="harmonic model">harmonic model</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation%20%28PDE%29" title=" partial differential equation (PDE)"> partial differential equation (PDE)</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equation" title=" integral equation"> integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20representation" title=" integral representation"> integral representation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20measure%20formula" title=" boundary measure formula"> boundary measure formula</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20collocation" title=" wavelet collocation"> wavelet collocation</a> </p> <a href="https://publications.waset.org/abstracts/3920/image-transform-based-on-integral-equation-wavelet-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11647</span> Localising Gauss鈥檚 Law and the Electric Charge Induction on a Conducting Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirapat%20Lookrak">Sirapat Lookrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anol%20Paisal"> Anol Paisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space debris has numerous manifestations, including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's Law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane, so the Gaussian surface is a very small cylinder, and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless maneuvering space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-field%20approximation" title="near-field approximation">near-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=far-field%20approximation" title=" far-field approximation"> far-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20Gauss%E2%80%99s%20law" title=" localized Gauss鈥檚 law"> localized Gauss鈥檚 law</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20charge%20density" title=" electric charge density"> electric charge density</a> </p> <a href="https://publications.waset.org/abstracts/150159/localising-gausss-law-and-the-electric-charge-induction-on-a-conducting-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11646</span> MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tohru%20Kawabe">Tohru Kawabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title="sliding mode control">sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20action" title=" integral action"> integral action</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20suppression" title=" slip suppression"> slip suppression</a> </p> <a href="https://publications.waset.org/abstracts/28617/mp-smc-i-method-for-slip-suppression-of-electric-vehicles-under-braking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11645</span> Closed Form Exact Solution for Second Order Linear Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Otarod">Saeed Otarod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schr枚dinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra example <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit" title="explicit">explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=linear" title=" linear"> linear</a>, <a href="https://publications.waset.org/abstracts/search?q=differential" title=" differential"> differential</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form" title=" closed form"> closed form</a> </p> <a href="https://publications.waset.org/abstracts/185365/closed-form-exact-solution-for-second-order-linear-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11644</span> Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fortaki%20Tarek">Fortaki Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bedra"> S. Bedra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green鈥檚 function. The analysis has been based on a full electromagnetic wave model with London鈥檚 equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20Tc%20superconducting%20microstrip%20patch" title="high Tc superconducting microstrip patch">high Tc superconducting microstrip patch</a>, <a href="https://publications.waset.org/abstracts/search?q=electric-magnetic%20anisotropic%20substrate" title=" electric-magnetic anisotropic substrate"> electric-magnetic anisotropic substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20complex%20impedance%20with%20boundary%20conditions" title=" surface complex impedance with boundary conditions"> surface complex impedance with boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20patterns" title=" radiation patterns"> radiation patterns</a> </p> <a href="https://publications.waset.org/abstracts/50630/study-of-superconducting-patch-printed-on-electric-magnetic-substrates-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11643</span> An Autopilot System for Static Zone Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanchun%20Zuo">Yanchun Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingao%20Liu"> Yingao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Yu"> Le Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Run%20Huang"> Run Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Guo"> Lixin Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autopilot%20mini-car%20measurement%20system" title="autopilot mini-car measurement system">autopilot mini-car measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20detection" title=" electric field detection"> electric field detection</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20map" title=" field map"> field map</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20zone%20measurement" title=" static zone measurement"> static zone measurement</a> </p> <a href="https://publications.waset.org/abstracts/153711/an-autopilot-system-for-static-zone-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11642</span> Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderazak%20Guettaf">Abderazak Guettaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20magnetic%20potential%20vector%20and%20electric%20scalar%20potential%20%28A" title=" 3D magnetic potential vector and electric scalar potential (A"> 3D magnetic potential vector and electric scalar potential (A</a>, <a href="https://publications.waset.org/abstracts/search?q=V%29%20formulation" title=" V) formulation"> V) formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finished%20volumes" title=" finished volumes"> finished volumes</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20plasma" title=" annular plasma"> annular plasma</a> </p> <a href="https://publications.waset.org/abstracts/31587/numerical-analysis-of-3d-electromagnetic-fields-in-annular-induction-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11641</span> Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadaniela%20Egidi">Nadaniela Egidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierluigi%20Maponi"> Pierluigi Maponi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fredholm%20integral%20equation" title="Fredholm integral equation">Fredholm integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=preconditioning" title=" preconditioning"> preconditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20problem" title=" scattering problem"> scattering problem</a> </p> <a href="https://publications.waset.org/abstracts/142902/optimal-relaxation-parameters-for-obtaining-efficient-iterative-methods-for-the-solution-of-electromagnetic-scattering-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11640</span> An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Kumru">C. F. Kumru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kocatepe"> C. Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Arikan"> O. Arikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transmission%20line" title=" energy transmission line"> energy transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=pylon" title=" pylon"> pylon</a> </p> <a href="https://publications.waset.org/abstracts/29819/an-investigation-on-electric-field-distribution-around-380-kv-transmission-line-for-various-pylon-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">728</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11639</span> Numerical Approach for Solving the Hyper Singular Integral Equation in the Analysis of a Central Symmetrical Crack within an Infinite Strip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Slamani">Ikram Slamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hicheme%20Ferdjani"> Hicheme Ferdjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on analyzing a Griffith crack situated at the center of an infinite strip. The problem is reformulated as a hyper-singular integral equation and solved numerically using second-order Chebyshev polynomials. The primary objective is to calculate the stress intensity factor in mode 1, denoted as K1. The obtained results reveal the influence of the strip width and crack length on the stress intensity factor, assuming stress-free edges. Additionally, a comparison is made with relevant literature to validate the findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=center%20crack" title="center crack">center crack</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomial" title=" Chebyshev polynomial"> Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20singular%20integral%20equation" title=" hyper singular integral equation"> hyper singular integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Griffith" title=" Griffith"> Griffith</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20strip" title=" infinite strip"> infinite strip</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/167367/numerical-approach-for-solving-the-hyper-singular-integral-equation-in-the-analysis-of-a-central-symmetrical-crack-within-an-infinite-strip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11638</span> Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Teodoro">Carlos Teodoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Bautista"> Oscar Bautista</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-H眉ckel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the P茅clet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20flow" title="electroosmotic flow">electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transport" title=" mass transport"> mass transport</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20flow" title=" oscillatory flow"> oscillatory flow</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20separation" title=" species separation"> species separation</a> </p> <a href="https://publications.waset.org/abstracts/94932/enhancement-of-mass-transport-and-separations-of-species-in-a-electroosmotic-flow-by-distinct-oscillatory-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11637</span> Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takoua%20Soltani">Takoua Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Soltani"> Imen Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Aguili"> Taoufik Aguili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport鈥檚 integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20integrated%20antenna" title="active integrated antenna">active integrated antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20density" title=" current density"> current density</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20impedance" title=" input impedance"> input impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=MESFET%20transistor" title=" MESFET transistor"> MESFET transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=MOM-GEC%20method" title=" MOM-GEC method"> MOM-GEC method</a> </p> <a href="https://publications.waset.org/abstracts/82843/electromagnetic-modeling-of-a-mesfet-transistor-using-the-moments-method-combined-with-generalised-equivalent-circuit-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11636</span> Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egor%20Stadnichuk">Egor Stadnichuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20Gamma-ray%20flashes" title="terrestrial Gamma-ray flashes">terrestrial Gamma-ray flashes</a>, <a href="https://publications.waset.org/abstracts/search?q=thunderstorm%20ground%20enhancement" title=" thunderstorm ground enhancement"> thunderstorm ground enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20runaway%20electron%20avalanches" title=" relativistic runaway electron avalanches"> relativistic runaway electron avalanches</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-rays" title=" gamma-rays"> gamma-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=high-energy%20atmospheric%20physics" title=" high-energy atmospheric physics"> high-energy atmospheric physics</a>, <a href="https://publications.waset.org/abstracts/search?q=TGF" title=" TGF"> TGF</a>, <a href="https://publications.waset.org/abstracts/search?q=TGE" title=" TGE"> TGE</a>, <a href="https://publications.waset.org/abstracts/search?q=thunderstorm" title=" thunderstorm"> thunderstorm</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20feedback" title=" relativistic feedback"> relativistic feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20feedback" title=" reactor feedback"> reactor feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20model" title=" reactor model"> reactor model</a> </p> <a href="https://publications.waset.org/abstracts/142458/feedback-matrix-approach-for-relativistic-runaway-electron-avalanches-dynamics-in-complex-electric-field-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11635</span> Study of the Effect of the Continuous Electric Field on the Rd Cancer Cell Line by Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Mehenni"> Salim Mehenni</a>, <a href="https://publications.waset.org/abstracts/search?q=Dahbia%20Leila%20Anes-boulahbal"> Dahbia Leila Anes-boulahbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kherat"> Mohamed Kherat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of the electric field is considered to be a very promising method in cancer therapy. Indeed, cancer cells are very sensitive to the electric field, although the cellular response is not entirely clear. The tests carried out consisted in subjecting the RD cell line under the effect of the continuous electric field while varying certain parameters (voltage, exposure time, and cell concentration). The response surface methodology (RSM) was used to assess the effect of the chosen parameters, as well as the existence of interactions between them. The results obtained showed that the voltage, the cell concentration as well as the interaction between voltage and exposure time have an influence on the mortality rate of the RD cell line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20electric%20field" title="continuous electric field">continuous electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cancer%20cell%20line" title=" RD cancer cell line"> RD cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage" title=" voltage"> voltage</a> </p> <a href="https://publications.waset.org/abstracts/159144/study-of-the-effect-of-the-continuous-electric-field-on-the-rd-cancer-cell-line-by-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11634</span> A Computational Diagnostics for Dielectric Barrier Discharge Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20D.%20Abd%20Ali">Zainab D. Abd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Thamir%20H.%20Khalaf"> Thamir H. Khalaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20diagnostics" title="computational diagnostics">computational diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20equation" title=" Boltzmann equation"> Boltzmann equation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20discharge" title=" electric discharge"> electric discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title=" electron density"> electron density</a> </p> <a href="https://publications.waset.org/abstracts/12511/a-computational-diagnostics-for-dielectric-barrier-discharge-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">777</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11633</span> Electric Field Investigation in MV PILC Cables with Void Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Alsharif">Mohamed A. Alsharif</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20A.%20Wallace"> Peter A. Wallace</a>, <a href="https://publications.waset.org/abstracts/search?q=Donald%20M.%20Hepburn"> Donald M. Hepburn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengke%20Zhou"> Chengke Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MV%20PILC%20cables" title="MV PILC cables">MV PILC cables</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model%2FCOMSOL%20multiphysics" title=" finite element model/COMSOL multiphysics"> finite element model/COMSOL multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20stress" title=" electric field stress"> electric field stress</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge%20degradation" title=" partial discharge degradation "> partial discharge degradation </a> </p> <a href="https://publications.waset.org/abstracts/18993/electric-field-investigation-in-mv-pilc-cables-with-void-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11632</span> The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melusi%20Khumalo">Melusi Khumalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastacia%20Dlamini"> Anastacia Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20approach" title=" Galerkin approach"> Galerkin approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredholm%20integral%20equations" title=" Fredholm integral equations"> Fredholm integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20integral%20equations" title=" nonlinear integral equations"> nonlinear integral equations</a> </p> <a href="https://publications.waset.org/abstracts/140832/the-finite-element-method-for-nonlinear-fredholm-integral-equation-of-the-second-kind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11631</span> The Hall Coefficient and Magnetoresistance in Rectangular Quantum Wires with Infinitely High Potential under the Influence of a Laser Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thu%20Huong">Nguyen Thu Huong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Bau"> Nguyen Quang Bau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Hall Coefficient (HC) and the Magnetoresistance (MR) have been studied in two-dimensional systems. The HC and the MR in Rectangular Quantum Wire (RQW) subjected to a crossed DC electric field and magnetic field in the presence of a Strong Electromagnetic Wave (EMW) characterized by electric field are studied in this work. Using the quantum kinetic equation for electrons interacting with optical phonons, we obtain the analytic expressions for the HC and the MR with a dependence on magnetic field, EMW frequency, temperatures of systems and the length characteristic parameters of RQW. These expressions are different from those obtained for bulk semiconductors and cylindrical quantum wires. The analytical results are applied to GaAs/GaAs/Al. For this material, MR depends on the ratio of the EMW frequency to the cyclotron frequency. Indeed, MR reaches a minimum at the ratio 5/4, and when this ratio increases, it tends towards a saturation value. The HC can take negative or positive values. Each curve has one maximum and one minimum. When magnetic field increases, the HC is negative, achieves a minimum value and then increases suddenly to a maximum with a positive value. This phenomenon differs from the one observed in cylindrical quantum wire, which does not have maximum and minimum values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hall%20coefficient" title="hall coefficient">hall coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20quantum%20wires" title=" rectangular quantum wires"> rectangular quantum wires</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-optical%20phonon%20interaction" title=" electron-optical phonon interaction"> electron-optical phonon interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20kinetic%20equation" title=" quantum kinetic equation"> quantum kinetic equation</a> </p> <a href="https://publications.waset.org/abstracts/41442/the-hall-coefficient-and-magnetoresistance-in-rectangular-quantum-wires-with-infinitely-high-potential-under-the-influence-of-a-laser-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11630</span> Kerr Electric-Optic Measurement of Electric Field and Space Charge Distribution in High Voltage Pulsed Transformer Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongda%20Guo">Hongda Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxia%20Sima"> Wenxia Sima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerr" title=" Kerr"> Kerr</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge" title=" space charge"> space charge</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20oil" title=" transformer oil"> transformer oil</a> </p> <a href="https://publications.waset.org/abstracts/48379/kerr-electric-optic-measurement-of-electric-field-and-space-charge-distribution-in-high-voltage-pulsed-transformer-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11629</span> The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Santalunai">S. Santalunai</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Thosdeekoraphat"> T. Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Thongsopa"> C. Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitor%20copper%20plates" title="capacitor copper plates">capacitor copper plates</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distribution" title=" electric field distribution"> electric field distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20heating" title=" dielectric heating"> dielectric heating</a>, <a href="https://publications.waset.org/abstracts/search?q=grains" title=" grains"> grains</a> </p> <a href="https://publications.waset.org/abstracts/10956/the-effect-of-electric-field-distributions-on-grains-and-insect-for-dielectric-heating-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11628</span> Mechanic and Thermal Analysis on an 83 kW Electric Motorcycle: A First-Principles Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mart%C3%ADn%20Felipe%20Garc%C3%ADa%20Romero">Mart铆n Felipe Garc铆a Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mondrag%C3%B3n%20Escamilla"> Nancy Mondrag贸n Escamilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismael%20Araujo%20Vargas"> Ismael Araujo Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Basurto%20Rios"> Viviana Basurto Rios</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Cano%20Pulido"> Kevin Cano Pulido</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Enrique%20Vel%C3%A1zquez%20Elisondo"> Pedro Enrique Vel谩zquez Elisondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a preliminary prototype of an 83 kW all-electric motorbike since, nowadays, electric motorbikes have advanced drastically in their technology in such a way that lately, there has been a boom in the field of competition of medium power electric vehicles. The field of electric vehicle racing mainly pursues the aim of obtaining an optimal performance of all the motorbike components in order to obtain a safe racing vehicle fast enough while looking for the stability of all the systems onboard. A general description of the project is given up to date, detailing the parts of the system, integration, numerical estimations, and a rearrangement proposal of the actual prototype with the aim to mechanically and thermally improve the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20motorcycle" title="electric motorcycle">electric motorcycle</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic%20analysis" title=" mechanic analysis"> mechanic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a> </p> <a href="https://publications.waset.org/abstracts/157620/mechanic-and-thermal-analysis-on-an-83-kw-electric-motorcycle-a-first-principles-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11627</span> Basket Option Pricing under Jump Diffusion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Safdari-Vaighani">Ali Safdari-Vaighani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basket%20option" title="basket option">basket option</a>, <a href="https://publications.waset.org/abstracts/search?q=jump%20diffusion" title=" jump diffusion"> jump diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Eradial%20basis%20function" title=" 鈥巖adial basis function"> 鈥巖adial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF-PUM" title=" RBF-PUM"> RBF-PUM</a> </p> <a href="https://publications.waset.org/abstracts/67152/basket-option-pricing-under-jump-diffusion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11626</span> Nonlinear Pollution Modelling for Polymeric Outdoor Insulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahisham%20Abd%20Rahman">Rahisham Abd Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20layer" title=" pollution layer"> pollution layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20outdoor%20insulators" title=" polymeric outdoor insulators"> polymeric outdoor insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/29392/nonlinear-pollution-modelling-for-polymeric-outdoor-insulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11625</span> Existence of positive periodic solutions for certain delay differential equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Nouioua">Farid Nouioua</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouaheb%20Ardjouni"> Abdelouaheb Ardjouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20differential%20equations" title="delay differential equations">delay differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20periodic%20solutions" title=" positive periodic solutions"> positive periodic solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equations" title=" integral equations"> integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasnoselskii%20fixed%20point%20theorem" title=" Krasnoselskii fixed point theorem"> Krasnoselskii fixed point theorem</a> </p> <a href="https://publications.waset.org/abstracts/40904/existence-of-positive-periodic-solutions-for-certain-delay-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11624</span> Weak Electric Fields Enhance Growth and Nutritional Quality of Kale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=So-Ra%20Lee">So-Ra Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Min%20Oh"> Myung-Min Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, plants growing on the earth are under the influence of natural electric fields and may even require exposure of the electric field to survive. Electric signals have been observed within plants and seem to play an important role on various metabolic processes, but their role is not fully understood. In this study, we attempted to explore the response of plants under external electric fields in kale (Brassica oleracea var. acephala). The plants were hydroponically grown for 28 days in a plant factory. Electric currents at 10, 50 and 100 mA were supplied to nutrient solution for 3 weeks. Additionally, some of the plants were cultivated in a Faraday cage to remove the natural electric field. Kale plants exposed to electric fields had higher fresh weight than the control and plants in Faraday cage. Absence of electric field caused a significant decrease in shoot dry weight and root growth. Leaf area also showed a similar response with shoot fresh weight. Supplying weak electric stimulation enhanced nutritional quality including total phenolic content and antioxidant capacity. This work provides basic information on the effects of electric fields on plants and is a meaningful attempt for developing a new economical technology to increase crop productivity and quality by applying an electric field. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agriculture, Food and Rural Affairs Research Center Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (717001-07-02-HD240). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroculture" title="electroculture">electroculture</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20signal" title=" electric signal"> electric signal</a>, <a href="https://publications.waset.org/abstracts/search?q=faraday%20cage" title=" faraday cage"> faraday cage</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a> </p> <a href="https://publications.waset.org/abstracts/93267/weak-electric-fields-enhance-growth-and-nutritional-quality-of-kale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11623</span> Electrohydrodynamic Study of Microwave Plasma PECVD Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Bouherine">Keltoum Bouherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Leroy"> Olivier Leroy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is dedicated to study a three鈥揹imensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell鈥檚 equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson鈥檚 equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three鈥揹imensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell鈥檚 equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson鈥檚 equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title="electron density">electron density</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20plasma%20reactor" title=" microwave plasma reactor"> microwave plasma reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20velocity" title=" gas velocity"> gas velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=non-equilibrium%20plasma" title=" non-equilibrium plasma"> non-equilibrium plasma</a> </p> <a href="https://publications.waset.org/abstracts/87816/electrohydrodynamic-study-of-microwave-plasma-pecvd-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11622</span> Numerical Analyze of Corona Discharge on HVDC Transmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nouri">H. Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tabbel"> A. Tabbel</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Douib"> N. Douib</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aitsaid"> H. Aitsaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zebboudj"> Y. Zebboudj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study and the field test comparisons were carried out on the Algerian Derguna-Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title="corona discharge">corona discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a> </p> <a href="https://publications.waset.org/abstracts/27020/numerical-analyze-of-corona-discharge-on-hvdc-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11621</span> Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang">Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang"> Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title="smart structures">smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=piezolamintes" title=" piezolamintes"> piezolamintes</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20electric%20field" title=" strong electric field"> strong electric field</a> </p> <a href="https://publications.waset.org/abstracts/60778/simulation-of-piezoelectric-laminated-smart-structure-under-strong-electric-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11620</span> A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Boukelkoul">Lahcene Boukelkoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometres from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behaviour and for low frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20engineering" title="power engineering">power engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=radiated%20electromagnetic%20fields" title=" radiated electromagnetic fields"> radiated electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning-induced%20voltages" title=" lightning-induced voltages"> lightning-induced voltages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20electric%20field" title=" lightning electric field"> lightning electric field</a> </p> <a href="https://publications.waset.org/abstracts/7041/a-comprehensive-approach-in-calculating-the-impact-of-the-ground-on-radiated-electromagnetic-fields-due-to-lightning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=388">388</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=389">389</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20field%20integral%20equation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>