CINXE.COM
Search results for: Md. Abu Sufian
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Md. Abu Sufian</title> <meta name="description" content="Search results for: Md. Abu Sufian"> <meta name="keywords" content="Md. Abu Sufian"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Md. Abu Sufian" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Md. Abu Sufian"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Md. Abu Sufian</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Existence of Positive Solutions to a Dirichlet Second Order Boundary Value Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufian%20Jusoh">Muhammad Sufian Jusoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesliza%20Mohamed"> Mesliza Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the existence of positive solutions for a Dirichlet second order boundary value problem by applying the Krasnosel'skii fixed point theorem on compression and expansion of cones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasnosel%27skii%20fixed%20point%20theorem" title="Krasnosel'skii fixed point theorem">Krasnosel'skii fixed point theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20solutions" title=" positive solutions"> positive solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20boundary%20value%20problem" title=" Dirichlet boundary value problem"> Dirichlet boundary value problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20second%20order%20%20boundary%20problem" title=" Dirichlet second order boundary problem"> Dirichlet second order boundary problem</a> </p> <a href="https://publications.waset.org/abstracts/16347/existence-of-positive-solutions-to-a-dirichlet-second-order-boundary-value-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Evaluation of Trapping Efficiency of Slow Released Formulations of Methyl Eugenol with Lanolin Wax against Bactrocera zonata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed">Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammd%20Dildar%20Gogi"> Muhammd Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufian"> Muhammad Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Amjad%20Ali"> Muhammad Amjad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashar%20Iqbal"> Mubashar Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amna%20Jalal"> Amna Jalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Munir"> Faisal Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of Methyl eugenol with Lanolin wax in orchard of the University of Agriculture Faisalabad, Pakistan against fruit flies. Lanolin wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFₗₗ-7 trapped 42.1 flies /day/trap, exhibited an attractancy index (AI) of 51.71%, proved strongly attractive SRFₗₗ for B. zonata and was categorized as Class-III slow-released formulation (AI > 50%). The SRFₗₗ-2, SRFₗₗ-3, SRFₗₗ-4, SRFₗₗ-5, SRFₗₗ-6, SRFₗₗ-8 and SRFₗₗ-9 trapped 17.7, 27.9, 32.3, 23.8, 28.3, 37.8 and 19.9 flies /day/trap, exhibited an attractancy index (AI) of 20.54%, 41.02%, 26.00%, 34.15%, 43.50%, 49.86% and 46.07% AI respectively, proved moderately attractive slow-released formulations for B. zonata and were categorized as Class-II slow-released formulations (AI = 11-50%). However, SRFₗₗ-1 trapped 14.8 flies /day/trap, exhibited 0.71% AI proved little or nonattractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (AI < 11%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20zonata" title="Bactrocera zonata">Bactrocera zonata</a>, <a href="https://publications.waset.org/abstracts/search?q=slow-released%20formulation" title=" slow-released formulation"> slow-released formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lenoline%20wax" title=" lenoline wax"> lenoline wax</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20euginol" title=" methyl euginol"> methyl euginol</a> </p> <a href="https://publications.waset.org/abstracts/97291/evaluation-of-trapping-efficiency-of-slow-released-formulations-of-methyl-eugenol-with-lanolin-wax-against-bactrocera-zonata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Assesment of Trapping Efficiency of Slow Released Formulations of Methyl Euginol with Carnauba Wax against Bactrocera zonata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed">Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammd%20Dildar%20Gogi"> Muhammd Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufian"> Muhammad Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Waqas%20Amjad"> Hafiz Muhammad Waqas Amjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hamza%20Khaliq"> Muhammad Hamza Khaliq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of methyl eugenol with Carnauba wax in orchard of University of Agriculture Faisalabad, Pakistan against fruit flies. Carnauba wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFCN-9 trapped 35.3 flies/day/trap, exhibited an attractancy index (AI) of 50.35%, proved strongly attractive SRFCN for B. zonata and was categorized as Class-III slow-released formulation (Attractive Index > 50%). The SRFCN-1, SRFCN-2, SRFCN-3, SRFCN-4, SRFCN-5, SRFCN-6, SRFCN-7 and SRFCN-8 trapped 2.0, 5.3, 3.3, 4.0, 5.7, 12.0, 9.7 and 14.3 flies/day/trap respectively exhibited an attractancy index (AI) of -70.73%, -37.25%, -55.55%, -48.93%, -34.61%, 1.40%, -9.37% and 10.25% Attractive Index respectively, proved little or non attractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (Attractive Index < 11%). Results revealed that the Slow-Released Formulation containing 10% Carnauba wax with 90% methyl eugenol trapped maximum number of flies of over 30 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slow-released%20formulation" title="slow-released formulation">slow-released formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20zonata" title=" Bactrocera zonata"> Bactrocera zonata</a>, <a href="https://publications.waset.org/abstracts/search?q=Carnauba%20wax" title=" Carnauba wax"> Carnauba wax</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20euginol" title=" methyl euginol"> methyl euginol</a> </p> <a href="https://publications.waset.org/abstracts/97337/assesment-of-trapping-efficiency-of-slow-released-formulations-of-methyl-euginol-with-carnauba-wax-against-bactrocera-zonata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bqoor">Mohammad Bqoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hamdan"> Mohammad Hamdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Isam%20Janajreh"> Isam Janajreh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sufian%20Abedrabbo"> Sufian Abedrabbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20generator" title="thermoelectric generator">thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=ratchet%20potential" title=" ratchet potential"> ratchet potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Brownian%20ratchet" title=" Brownian ratchet"> Brownian ratchet</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a> </p> <a href="https://publications.waset.org/abstracts/160908/sustainable-ionized-gas-thermoelectric-generator-comparative-theoretical-evaluation-and-efficiency-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Factors Affecting Entrepreneurial Behavior and Performance of Youth Entrepreneurs in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Najib%20Mansor">Mohd Najib Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Syamilah%20Md.%20Noor"> Nur Syamilah Md. Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rahim%20Anuar"> Abdul Rahim Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazida%20Jan%20Mohd%20Khan"> Shazida Jan Mohd Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Zubir%20Ibrahim"> Ahmad Zubir Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Badariah%20Hj%20Din"> Badariah Hj Din</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Sufian%20Abu%20Bakar"> Abu Sufian Abu Bakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalsom%20Kayat"> Kalsom Kayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Nurmahfuzah%20Jannah%20Wan%20Mansor"> Wan Nurmahfuzah Jannah Wan Mansor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed and focused on the behavior of youth entrepreneurs’ especially entrepreneurial self-efficacy and the performance in micro SMEs in Malaysia. Entrepreneurship development calls for support from various quarters, and mostly the need exists to initiate a youth entrepreneurship culture and drive amongst the youth in the society. Although backed up by the government and non-government organizations, micro-entrepreneurs are still facing challenges which greatly delay their progress, growth and consequently their input towards economic advancement. Micro-entrepreneurs are confronted with unique difficulties such as uncertainty, innovation, and evolution. Reviews on the development of entrepreneurial characteristics such as need for achievement, internal locus of control, risk-taking and innovation and have been recognized as highly associated with entrepreneurial behavior. The data in this study was obtained from the Department of Statistics, Malaysia. A random sampling of 830 respondents was distributed to 14 states that involve of micro-entrepreneurs. The study adopted a quantitative approach whereby a set of questionnaire was used to gather data. Multiple regression analysis was chosen as a method of analysis testing. The result of this study is expected to provide insight into the factor affecting entrepreneurial behavior and performance of youth entrepreneurs in micro SMEs. The finding showed that the Malaysian youth entrepreneurs do not have the entrepreneurial self-efficacy within themselves in order to accomplish greater success in their business venture. The establishment of entrepreneurial schools to allow our youth to be exposed to entrepreneurship from an early age and the development of special training focuses on the creation of business network so that the continuous entrepreneurial culture is crafted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=youth%20entrepreneurs" title="youth entrepreneurs">youth entrepreneurs</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20entrepreneurs" title=" micro entrepreneurs"> micro entrepreneurs</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurial%20self-efficacy" title=" entrepreneurial self-efficacy"> entrepreneurial self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurial%20performance" title=" entrepreneurial performance"> entrepreneurial performance</a> </p> <a href="https://publications.waset.org/abstracts/75359/factors-affecting-entrepreneurial-behavior-and-performance-of-youth-entrepreneurs-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi">Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ahsan%20Khan"> Muhammad Ahsan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sufian"> M. Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawaz"> Ahmad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed"> Waleed Afzal Naveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy-metals" title="heavy-metals">heavy-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=larval-instars" title=" larval-instars"> larval-instars</a>, <a href="https://publications.waset.org/abstracts/search?q=lethal-concentration" title=" lethal-concentration"> lethal-concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=silkworm" title=" silkworm"> silkworm</a> </p> <a href="https://publications.waset.org/abstracts/97315/assessment-of-toxic-impact-of-metals-on-different-instars-of-silkworm-bombyx-mori" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Current Situation of Veterinary Services and a Reform for Enhancing the Veterinary Services in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sufian%20Abdo%20Jilo">Sufian Abdo Jilo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Veterinary services conserve and maintain animal life and improve the living conditions of human beings through improving rural livelihoods and feeding; veterinary services also address global health crises by preventing risks such as emerging pandemic diseases, antimicrobial resistance, contamination of foods, and environmental health problems at their origin. The purpose of this policy brief is to analyze the way veterinary organizations provide services and to propose an optimal organization for veterinary services in developing countries. The current situation of veterinary institutions in developing countries can't counter the challenge related to animal health and productivity. As a result, reorganization, amalgamation, merging, and consolidation of veterinary health services (veterinary clinics, slaughterhouses, quarantine, and veterinary markets) together with the construction of closer veterinary service facilities and the construction of common areas will help institutions to strengthen cooperation among different veterinarians, which is the first steps for the implementation of a One Health platform and multidisciplinary activities. The improvement and reorganization of the veterinary services institutions will also help the veterinary clinics easily obtain various medical chemicals such as blood and rumen from abattoirs, enhance the surveillance of livestock diseases, enable the community to buy healthy animals from the animal market, and help to reduce economic waste. The services can be performed by a small number of veterinarians through a model of specific areas common to all veterinary services. This model improves the skills and knowledge of veterinarians in all aspects of veterinary medicine and saves students and researchers time. Communities or customers can save time by getting all veterinary services at once. It saves the budget on purchasing medical equipment and medicines at each location and avoids expiration dates on medicines. This model is the latest solution to the global health crisis and should be implemented in the near future to combat the emergence and reemergence of new pathogenic microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abattoir" title="abattoir">abattoir</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20countries" title=" developing countries"> developing countries</a>, <a href="https://publications.waset.org/abstracts/search?q=reform" title=" reform"> reform</a>, <a href="https://publications.waset.org/abstracts/search?q=service" title=" service"> service</a>, <a href="https://publications.waset.org/abstracts/search?q=veterinary" title=" veterinary"> veterinary</a> </p> <a href="https://publications.waset.org/abstracts/169815/the-current-situation-of-veterinary-services-and-a-reform-for-enhancing-the-veterinary-services-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Assessment of Attractency of Bactrocera Zonata and Bactrocera dorsalis (Diptera:Tephritidae) to Different Biolure Phagostimulant-Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi">Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jalal%20Arif"> Muhammad Jalal Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed"> Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ahsan%20Khan"> Muhammad Ahsan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawaz"> Ahmad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufian"> Muhammad Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amna%20Jalal">Amna Jalal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruit flies of Bactrocera genus cause heavy losses in fruits and vegetables globally and insecticide-application for their control creates issues of ecological backlash, environmental pollution, and food safety. There is need to explore alternatives and food-baits application is considered safe for the environment and effective for fruit fly management. Present experiment was carried out to assess the attractancy of five phagostimulant-Mixtures (PHS-Mix) prepared by mixing banana-squash, mulberry, protein-hydrolysate and molasses with some phagostimulant-lure sources including beef extract, fish extract, yeast, starch, rose oil, casein and cedar oil in five different ratios i.e., PHS-Mix-1 (1 part of all ingredients), PHS-Mix-2 (1 part of banana with 0.75 parts of all other ingredients), PHS-Mix-3 (1 part of banana with 0.5 parts of all other ingredients), PHS-Mix-4 (1 part of banana with 0.25 parts of all other ingredients) and PHS-Mix-5 (1 part of banana with 0.125 parts of all other ingredients). These were evaluated in comparison with a standard (GF-120). PHS-Mix-4 demonstrated 40.5±1.3-46.2±1.6% AI for satiated flies (class-II i.e., moderately attractive) and 59.5±2.0-68.6±3.0% AI for starved flies (class-III i.e., highly attractive) for both B. dorsalis and B. zonata in olfactometric study while the same exhibited 51.2±0.53% AI (class-III i.e., highly attractive) for B. zonata and 45.4±0.89% AI (class-II i.e., moderately attractive) for B. dorsalis in field study. PHS-Mix-1 proved non-attractive (class-I) and moderately attractive (class-II) phagostimulant in olfactometer and field studies, respectively. PHS-Mix-2 exhibited moderate attractiveness for starved lots in olfactometer and field-lot in field studies. PHS-Mix-5 proved non-attractive to starved and satiated lots of B. zonata and B. dorsalis females in olfactometer and field studies. Overall PHS-Mix-4 proved better phagostimulant-mixture followed by PHS-Mix-3 which was categorized as class-II (moderately attractive) phagostimulant for starved and satiated lots of female flies of both species in olfactometer and field studies; hence these can be exploited for fruit fly management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attractive%20index" title="attractive index">attractive index</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20conditions" title=" field conditions"> field conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=olfactometer" title=" olfactometer"> olfactometer</a>, <a href="https://publications.waset.org/abstracts/search?q=Tephritid%20flies" title=" Tephritid flies"> Tephritid flies</a> </p> <a href="https://publications.waset.org/abstracts/97306/assessment-of-attractency-of-bactrocera-zonata-and-bactrocera-dorsalis-dipteratephritidae-to-different-biolure-phagostimulant-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad">Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sufian"> M. Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20D.%20Gogi"> Muhammad D. Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aslam"> A. Aslam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bt%20cotton" title="Bt cotton">Bt cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=baseline" title=" baseline"> baseline</a>, <a href="https://publications.waset.org/abstracts/search?q=Cry1Ac%20toxins" title=" Cry1Ac toxins"> Cry1Ac toxins</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20armigera" title=" H. armigera"> H. armigera</a> </p> <a href="https://publications.waset.org/abstracts/99006/geographic-variation-in-the-baseline-susceptibility-of-helicoverpa-armigera-hubner-noctuidae-lepidoptera-field-populations-to-bacillus-thuringiensis-cry-toxins-for-resistance-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Abu%20Sufian">Md. Abu Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Robiqul%20Islam"> Robiqul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Imam%20Hossain%20Shajid"> Imam Hossain Shajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Hanumanthu"> Mahesh Hanumanthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarasree%20Varadarajan"> Jarasree Varadarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Sipon%20Miah"> Md. Sipon Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingbo%20Niu"> Mingbo Niu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coronary%20heart%20disease" title="coronary heart disease">coronary heart disease</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud-based%20ai" title=" cloud-based ai"> cloud-based ai</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20simulation%20techniques" title=" novel simulation techniques"> novel simulation techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20detection" title=" early detection"> early detection</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20healthcare" title=" preventive healthcare"> preventive healthcare</a> </p> <a href="https://publications.waset.org/abstracts/183692/enhancing-early-detection-of-coronary-heart-disease-through-cloud-based-ai-and-novel-simulation-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>