CINXE.COM

higher geometric quantization in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> higher geometric quantization in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> higher geometric quantization </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3942/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <blockquote> <p>under construction, for a more coherent account see (<a href="#FiorenzaSchreiber">hpqg</a>).</p> </blockquote> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="geometric_quantization">Geometric quantization</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a></strong> <strong><a class="existingWikiWord" href="/nlab/show/higher+geometric+quantization">higher geometric quantization</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics">geometry of physics</a>: <em><a href="geometry+of+physics#LagrangiansAndActionFunctionals">Lagrangians and Action functionals</a></em> + <em><a href="geometry+of+physics#GeometricQuantization">Geometric Quantization</a></em></p> <h2 id="prerequisites">Prerequisites</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a>, <a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/n-plectic+geometry">n-plectic geometry</a>, <a class="existingWikiWord" href="/nlab/show/multisymplectic+geometry">multisymplectic geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+infinity-groupoid">symplectic infinity-groupoid</a></p> </li> </ul> </li> </ul> <h2 id="prequantum_field_theory">Prequantum field theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+field+theory">prequantum field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle n-bundle</a> = <a class="existingWikiWord" href="/nlab/show/extended+Lagrangian">extended Lagrangian</a></p> <ul> <li> <p>prequantum 1-bundle = <a class="existingWikiWord" href="/nlab/show/prequantum+circle+bundle">prequantum circle bundle</a>, regular<a class="existingWikiWord" href="/nlab/show/contact+manifold">contact manifold</a>,<a class="existingWikiWord" href="/nlab/show/prequantum+line+bundle">prequantum line bundle</a> = lift of <a class="existingWikiWord" href="/nlab/show/symplectic+form">symplectic form</a> to <a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+0-bundle">prequantum 0-bundle</a> = <a class="existingWikiWord" href="/nlab/show/action+functional">action functional</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantomorphism+group">quantomorphism group</a>, <a class="existingWikiWord" href="/nlab/show/quantomorphism+n-group">quantomorphism n-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectomorphism">symplectomorphism</a>, <a class="existingWikiWord" href="/nlab/show/contactomorphism">contactomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Poisson+algebra">Poisson algebra</a>, <a class="existingWikiWord" href="/nlab/show/Hamiltonian+vector+field">Hamiltonian vector field</a></p> </li> </ul> </li> </ul> <h2 id="geometric_quantization">Geometric quantization</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/polarization">polarization</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/metaplectic+correction">metaplectic correction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bohr-Sommerfeld+leaf">Bohr-Sommerfeld leaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">orientation in generalized cohomology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantization">quantization</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+quantization+by+push-forward">geometric quantization by push-forward</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+quantization+of+symplectic+groupoids">geometric quantization of symplectic groupoids</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+quantization+of+non-integral+forms">geometric quantization of non-integral forms</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/motivic+quantization">motivic quantization</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/space+of+states+%28in+geometric+quantization%29">space of states</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/coherent+state+%28in+geometric+quantization%29">coherent state</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+operator+%28in+geometric+quantization%29">quantum operator</a></p> </li> </ul> <h2 id="applications">Applications</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Borel-Weil+theorem">Borel-Weil theorem</a>, <a class="existingWikiWord" href="/nlab/show/Borel-Weil-Bott+theorem">Borel-Weil-Bott theorem</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/orbit+method">orbit method</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Schubert+calculus">Schubert calculus</a></p> </li> </ul> </li> </ul> <div> <p> <a href="/nlab/edit/geometric+quantization+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="higher_geometry">Higher geometry</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a></strong> / <strong><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></strong></p> <p><strong>Ingredients</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+topos+theory">higher topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></p> </li> </ul> <p><strong>Concepts</strong></p> <ul> <li> <p><strong>geometric <a class="existingWikiWord" href="/nlab/show/big+and+little+toposes">little</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>es</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/structured+%28%E2%88%9E%2C1%29-topos">structured (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+%28for+structured+%28%E2%88%9E%2C1%29-toposes%29">geometry (for structured (∞,1)-toposes)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+scheme">generalized scheme</a></p> </li> </ul> </li> <li> <p><strong>geometric <a class="existingWikiWord" href="/nlab/show/big+and+little+toposes">big</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>es</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/function+algebras+on+%E2%88%9E-stacks">function algebras on ∞-stacks</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/geometric+%E2%88%9E-stacks">geometric ∞-stacks</a></li> </ul> </li> </ul> <p><strong>Constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/loop+space+object">loop space object</a>, <a class="existingWikiWord" href="/nlab/show/free+loop+space+object">free loop space object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a> / <a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+algebraic+geometry">derived algebraic geometry</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%C3%A9tale+%28%E2%88%9E%2C1%29-site">étale (∞,1)-site</a>, <a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Hochschild cohomology</a> of <a class="existingWikiWord" href="/nlab/show/dg-algebra">dg-algebra</a>s</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/dg-geometry">dg-geometry</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/dg-scheme">dg-scheme</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schematic+homotopy+type">schematic homotopy type</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+noncommutative+geometry">derived noncommutative geometry</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/noncommutative+geometry">noncommutative geometry</a></li> </ul> </li> <li> <p>derived smooth geometry</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a>, <a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+smooth+manifold">derived smooth manifold</a>, <a class="existingWikiWord" href="/nlab/show/dg-manifold">dg-manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoid">smooth ∞-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebroid">∞-Lie algebroid</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Klein+geometry">higher Klein geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+Cartan+geometry">higher Cartan geometry</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Jones' theorem</a>, <a class="existingWikiWord" href="/nlab/show/Hochschild+cohomology">Deligne-Kontsevich conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tannaka+duality+for+geometric+stacks">Tannaka duality for geometric stacks</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#Idea'>Idea</a></li> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#ordinary_symplectic_manifolds'>Ordinary symplectic manifolds</a></li> <li><a href='#of_nonintegral_2forms'>Of non-integral 2-forms</a></li> <li><a href='#of_2plectic_groupoids'>Of 2-plectic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groupoids</a></li> <ul> <li><a href='#in_codimension_2'>In codimension 2</a></li> <li><a href='#in_codimension_1'>In codimension 1</a></li> </ul> <li><a href='#chernsimons_theory'><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Chern-Simons theory</a></li> <ul> <li><a href='#extended__abelian_chernsimons_theory'>Extended <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>3</mn><mo stretchy="false">)</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">(4k+3)d</annotation></semantics></math> abelian Chern-Simons theory</a></li> <li><a href='#extended_3d_chernsimons_theory'>Extended 3d <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">Spin</mi></mrow><annotation encoding="application/x-tex">\mathrm{Spin}</annotation></semantics></math>-Chern-Simons theory</a></li> <li><a href='#extended_3d_chernsimons_theory_2'>Extended 3d <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">G \times G</annotation></semantics></math>-Chern-Simons theory</a></li> <li><a href='#extended_7d_chernsimons_theory'>Extended 7d <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">String</mi></mrow><annotation encoding="application/x-tex">\mathrm{String}</annotation></semantics></math>-Chern-Simons theory</a></li> </ul> <li><a href='#_wesszuminowitten_theory'><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math> Wess-Zumino-Witten theory</a></li> <ul> <li><a href='#ordinary_wzw_model'>Ordinary <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-WZW model</a></li> <li><a href='#wzw_model'><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>String</mi></mrow><annotation encoding="application/x-tex">String</annotation></semantics></math>-WZW model</a></li> <li><a href='#wzw_model_2'><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Fivebrane</mi></mrow><annotation encoding="application/x-tex">Fivebrane</annotation></semantics></math>-WZW model</a></li> </ul> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="Idea">Idea</h2> <p>Higher geometric quantization is meant to complete this table:</p> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/classical+mechanics">classical mechanics</a></th><th>–<a class="existingWikiWord" href="/nlab/show/quantization">quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math></th><th><a class="existingWikiWord" href="/nlab/show/quantum+mechanics">quantum mechanics</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/symplectic+geometry">symplectic geometry</a></td><td style="text-align: left;">–<a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quantum+field+theory">quantum field theory</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a></td><td style="text-align: left;">–higher geometric quantization<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/extended+quantum+field+theory">extended quantum field theory</a></td></tr> </tbody></table> <p>Being a concept in <a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a>, higher geometric quantization is formulated naturally in <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos+theory">(∞,1)-topos theory</a>. More precisely, since it involves not just <em><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></em> but <em><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential cohomology</a></em>, it is formulated in <em><a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos theory</a></em> (<a class="existingWikiWord" href="/nlab/show/cohesive+homotopy+type+theory">cohesive homotopy type theory</a>).</p> <p>In this context, write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{B}^n \mathbb{G}_{conn} \in \mathbf{H}</annotation></semantics></math> for the cohesive <a class="existingWikiWord" href="/nlab/show/moduli+%E2%88%9E-stack">moduli ∞-stack</a> of <a class="existingWikiWord" href="/nlab/show/circle+n-bundles+with+connection">circle n-bundles with connection</a>, in the ambient <a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math>. Then for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">X \in \mathbf{H}</annotation></semantics></math> any object to be thought of as the <a class="existingWikiWord" href="/nlab/show/moduli+%E2%88%9E-stack">moduli ∞-stack</a> of fields or as the <a class="existingWikiWord" href="/nlab/show/target+space">target space</a> for a <a class="existingWikiWord" href="/nlab/show/sigma-model">sigma-model</a>, a morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo>:</mo><mi>X</mi><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex"> \mathbf{c}_{conn} : X \to \mathbf{B}^n \mathbb{G}_{conn} </annotation></semantics></math></div> <p>modulates a <a class="existingWikiWord" href="/nlab/show/circle+n-bundle+with+connection">circle n-bundle with connection</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>. We regard this as a <em>extended <a class="existingWikiWord" href="/nlab/show/action+functional">action functional</a></em> in that for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Σ</mi> <mi>k</mi></msub><mo>∈</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\Sigma_{k} \in \mathbf{H}</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/cohomological+dimension">cohomological dimension</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>≤</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">k \leq n</annotation></semantics></math> and sufficiently compact so that <a class="existingWikiWord" href="/nlab/show/fiber+integration+in+ordinary+differential+cohomology">fiber integration in ordinary differential cohomology</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>exp</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>i</mi><msub><mo>∫</mo> <mi>Σ</mi></msub><msub><mo></mo><mi>k</mi></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exp(2 \pi i \int_{\Sigma}_k(-))</annotation></semantics></math> applies, the <a class="existingWikiWord" href="/nlab/show/transgression">transgression</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{c}_{conn}</annotation></semantics></math> to low <a class="existingWikiWord" href="/nlab/show/codimension">codimension</a> reproduces the traditional ingredients</p> <table><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>=</mo></mrow><annotation encoding="application/x-tex">k = </annotation></semantics></math></th><th><a class="existingWikiWord" href="/nlab/show/transgression">transgression</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{c}_{conn}</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msub><mi>Σ</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>X</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\Sigma_{n-1},X]</annotation></semantics></math></th><th>meaning in <a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>exp</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>i</mi><mi>S</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>:</mo><mo stretchy="false">[</mo><msub><mi>Σ</mi> <mi>n</mi></msub><mo>,</mo><mi>X</mi><mo stretchy="false">]</mo><mover><mo>→</mo><mrow><mo stretchy="false">[</mo><msub><mi>Σ</mi> <mi>n</mi></msub><mo>,</mo><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">]</mo></mrow></mover><mo stretchy="false">[</mo><msub><mi>Σ</mi> <mi>n</mi></msub><mo>,</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub><mo stretchy="false">]</mo><mover><mo>→</mo><mrow><mi>exp</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>i</mi><msub><mo>∫</mo> <mrow><msub><mi>Σ</mi> <mi>n</mi></msub></mrow></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mover><mi>𝔾</mi></mrow><annotation encoding="application/x-tex">\exp(2 \pi i S(-)) : [\Sigma_n, X] \stackrel{[\Sigma_n, \mathbf{c}_{conn}]}{\to} [\Sigma_n, \mathbf{B}^n \mathbb{G}_{conn}] \stackrel{\exp(2 \pi i \int_{\Sigma_n}(-))}{\to} \mathbb{G} </annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/action+functional">action functional</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n-1</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>exp</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>i</mi><mi>S</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>:</mo><mo stretchy="false">[</mo><msub><mi>Σ</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>X</mi><mo stretchy="false">]</mo><mover><mo>→</mo><mrow><mo stretchy="false">[</mo><msub><mi>Σ</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">]</mo></mrow></mover><mo stretchy="false">[</mo><msub><mi>Σ</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub><mo stretchy="false">]</mo><mover><mo>→</mo><mrow><mi>exp</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>i</mi><msub><mo>∫</mo> <mrow><msub><mi>Σ</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mover><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>𝔾</mi> <mi>conn</mi></msub><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\exp(2 \pi i S(-)) : [\Sigma_{n-1}, X] \stackrel{[\Sigma_{n-1}, \mathbf{c}_{conn}]}{\to} [\Sigma_{n-1}, \mathbf{B}^n \mathbb{G}_{conn}] \stackrel{\exp(2 \pi i \int_{\Sigma_{n-1}}(-))}{\to} \mathbf{B}\mathbb{G}_{conn} \,</annotation></semantics></math></td><td style="text-align: left;">ordinary (off-shell) <a class="existingWikiWord" href="/nlab/show/prequantum+circle+bundle">prequantum circle bundle</a></td></tr> </tbody></table> <p>The idea is to consider the higher geometric quantization not just of the low codimension transgressions, but of all transgressions of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{c}_{conn}</annotation></semantics></math>. The basic constructions that higher geometric quantization is concerned with are indicated in the following table. All of them have also a fundamental interpretation in <a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted</a> <a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a> (independent of any interpretation in the context of <a class="existingWikiWord" href="/nlab/show/quantization">quantization</a>) this is indicated in the right column of the table:</p> <table><thead><tr><th>higher <a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a></th><th><a class="existingWikiWord" href="/nlab/show/cohesive+homotopy+type+theory">cohesive homotopy type theory</a></th><th><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted cohomology</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/n-plectic+%E2%88%9E-groupoid">n-plectic ∞-groupoid</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mover><mo>→</mo><mi>ω</mi></mover><msubsup><mi>Ω</mi> <mi>cl</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>𝔾</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X \stackrel{\omega}{\to} \Omega^{n+1}_{cl}(-,\mathbb{G})</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisting</a> <a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a> in <a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/symplectomorphism+group">symplectomorphism group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>Aut</mi></mstyle> <mrow><mo stretchy="false">/</mo><msup><mi>Ω</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>𝔾</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">(</mo><mi>ω</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mo>≃</mo></mover></mtd> <mtd></mtd> <mtd><mi>X</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>ω</mi></mpadded></msub><mo>↘</mo></mtd> <mtd></mtd> <mtd><msub><mo>↙</mo> <mpadded width="0"><mi>ω</mi></mpadded></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msubsup><mi>Ω</mi> <mi>cl</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>𝔾</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding="application/x-tex">\mathbf{Aut}_{/\Omega^{n+1}(-,\mathbb{G})}(\omega) = \left\{ \array{ X &amp;&amp;\stackrel{\simeq}{\to}&amp;&amp; X \\ &amp; {}_{\mathllap{\omega}}\searrow &amp;&amp; \swarrow_{\mathrlap{\omega}} \\ &amp;&amp; \Omega^{n+1}_{cl}(-,\mathbb{G}) } \right\}</annotation></semantics></math></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle n-bundle</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mtd></mtr> <mtr><mtd></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub></mrow></mpadded></msup><mo>↗</mo></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mi>curv</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>X</mi></mtd> <mtd><mover><mo>→</mo><mi>ω</mi></mover></mtd> <mtd><msup><mi>Ω</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>𝔾</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ &amp;&amp; \mathbf{B}^n \mathbb{G}_{conn} \\ &amp; {}^{\mathllap{\mathbf{c}_{conn}}}\nearrow &amp; \downarrow^{\mathrlap{curv}} \\ X &amp;\stackrel{\omega}{\to}&amp; \Omega^{n+1}(-,\mathbb{G})}</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisting</a> <a class="existingWikiWord" href="/nlab/show/cocycle">cocycle</a> in <a class="existingWikiWord" href="/nlab/show/ordinary+differential+cohomology">differential cohomology</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Planck%27s+constant">Planck's constant</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℏ</mi></mrow><annotation encoding="application/x-tex">\hbar</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>ℏ</mi></mfrac></mstyle><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo>:</mo><mi>X</mi><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\tfrac{1}{\hbar}\mathbf{c}_{conn} : X \to \mathbf{B}^n \mathbb{G}_{conn}</annotation></semantics></math></td><td style="text-align: left;">divisibility of twisting class</td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/quantomorphism+group">quantomorphism group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⊃</mo></mrow><annotation encoding="application/x-tex">\supset</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Heisenberg+group">Heisenberg group</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>Aut</mi></mstyle> <mrow><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow></msub><mo stretchy="false">(</mo><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mo>≃</mo></mover></mtd> <mtd></mtd> <mtd><mi>X</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub></mrow></mpadded></msub><mo>↘</mo></mtd> <mtd><msub><mo>⇙</mo> <mo>≃</mo></msub></mtd> <mtd><msub><mo>↙</mo> <mpadded width="0"><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub></mrow></mpadded></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding="application/x-tex">\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}) = \left\{ \array{ X &amp;&amp;\stackrel{\simeq}{\to}&amp;&amp; X \\ &amp; {}_{\mathllap{\mathbf{c}_{conn}}}\searrow &amp;\swArrow_\simeq&amp; \swarrow_{\mathrlap{\mathbf{c}_{conn}}} \\ &amp;&amp; \mathbf{B}^n \mathbb{G}_{conn} } \right\}</annotation></semantics></math></td><td style="text-align: left;">twist <a class="existingWikiWord" href="/nlab/show/automorphism+%E2%88%9E-group">automorphism ∞-group</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian">Hamiltonian</a> <a class="existingWikiWord" href="/nlab/show/quantum+operator+%28in+geometric+quantization%29">quantum observables</a> with <a class="existingWikiWord" href="/nlab/show/Poisson+bracket">Poisson bracket</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Lie</mi><mo stretchy="false">(</mo><msub><mstyle mathvariant="bold"><mi>Aut</mi></mstyle> <mrow><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow></msub><mo stretchy="false">(</mo><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Lie(\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}))</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/infinitesimal+cohesion">infinitesimal</a> twist automorphisms</td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+actions">Hamiltonian actions</a> of a <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-group">smooth ∞-group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> / dual <a class="existingWikiWord" href="/nlab/show/moment+maps">moment maps</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>μ</mi><mo>:</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>G</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mstyle mathvariant="bold"><mi>Aut</mi></mstyle> <mrow><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow></msub><mo stretchy="false">(</mo><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \mu : \mathbf{B}G \to \mathbf{B}\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn})</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a> on the twisting</td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/gauge+reduction">gauge reduction</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi><mspace width="thinmathspace"></mspace><mo>:</mo><mspace width="thinmathspace"></mspace><mi>X</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>G</mi><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{c}_{conn}//G \,:\, X//G \to \mathbf{B}^n \mathbb{G}_{conn}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/%E2%88%9E-quotient">∞-quotient</a> of the twisting</td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hamiltonian+symplectomorphisms">Hamiltonian symplectomorphisms</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-image">∞-image</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>Aut</mi></mstyle> <mrow><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow></msub><mo stretchy="false">(</mo><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mstyle mathvariant="bold"><mi>Aut</mi></mstyle> <mrow><mo stretchy="false">/</mo><msubsup><mi>Ω</mi> <mi>cl</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>𝔾</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">(</mo><mi>ω</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}) \to \mathbf{Aut}_{/\Omega^{n+1}_{cl}(-,\mathbb{G})}(\omega)</annotation></semantics></math></td><td style="text-align: left;">twists in de Rham cohomology that lift to differential cohomology</td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a> of <a class="existingWikiWord" href="/nlab/show/n-group">n-group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>𝔾</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}^{n-1}\mathbb{G}</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">V_n</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>V</mi> <mi>n</mi></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>V</mi> <mi>n</mi></msub><mo stretchy="false">/</mo><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>𝔾</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mstyle mathvariant="bold"><mi>p</mi></mstyle></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><mi>𝔾</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ V_n &amp;\to&amp; V_n//\mathbf{B}^{n-1}\mathbb{G} \\ &amp;&amp; \downarrow^{\mathbf{p}} \\ &amp;&amp; \mathbf{B}^n \mathbb{G} }</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/local+coefficient+bundle">local coefficient bundle</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/prequantum+space+of+states">prequantum space of states</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>Γ</mi></mstyle> <mi>X</mi></msub><mo stretchy="false">(</mo><mi>E</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><mo stretchy="false">[</mo><mstyle mathvariant="bold"><mi>c</mi></mstyle><mo>,</mo><mstyle mathvariant="bold"><mi>p</mi></mstyle><msub><mo stretchy="false">]</mo> <mrow><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><mi>𝔾</mi></mrow></msub><mo>=</mo><mrow><mo>{</mo><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>σ</mi></mover></mtd> <mtd></mtd> <mtd><mi>V</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>𝔾</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mrow></mrow> <mpadded width="0" lspace="-100%width"><mstyle mathvariant="bold"><mi>c</mi></mstyle></mpadded></msub><mo>↘</mo></mtd> <mtd><msub><mo>⇙</mo> <mo>≃</mo></msub></mtd> <mtd><msub><mo>↙</mo> <mpadded width="0"><mstyle mathvariant="bold"><mi>p</mi></mstyle></mpadded></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><mi>𝔾</mi></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding="application/x-tex">\mathbf{\Gamma}_X(E) := [\mathbf{c},\mathbf{p}]_{/\mathbf{B}^n \mathbb{G}} = \left\{ \array{ X &amp;&amp;\stackrel{\sigma}{\to}&amp;&amp; V//\mathbf{B}^{n-1}\mathbb{G} \\ &amp; {}_{\mathllap{\mathbf{c}}}\searrow &amp;\swArrow_{\simeq}&amp; \swarrow_{\mathrlap{\mathbf{p}}} \\ &amp;&amp; \mathbf{B}^n \mathbb{G} } \right\} </annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/cocycles">cocycles</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mstyle mathvariant="bold"><mi>c</mi></mstyle><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\mathbf{c}]</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/twisted+cohomology">twisted V-cohomology</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/prequantum+operator">prequantum operator</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><mo>^</mo></mover><mo>:</mo><msub><mstyle mathvariant="bold"><mi>Γ</mi></mstyle> <mi>X</mi></msub><mo stretchy="false">(</mo><mi>E</mi><mo stretchy="false">)</mo><mo>×</mo><msub><mstyle mathvariant="bold"><mi>Aut</mi></mstyle> <mrow><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mrow></msub><mo stretchy="false">(</mo><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo stretchy="false">)</mo><mo>→</mo><msub><mstyle mathvariant="bold"><mi>Γ</mi></mstyle> <mi>X</mi></msub><mo stretchy="false">(</mo><mi>E</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\widehat{(-)} : \mathbf{\Gamma}_X(E) \times \mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}) \to \mathbf{\Gamma}_X(E)</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a> of twist automorphisms on twisted cocycles</td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/trace">trace</a> to higher <a class="existingWikiWord" href="/nlab/show/dimension">dimension</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><msup><mi>S</mi> <mn>1</mn></msup><mo>,</mo><msub><mi>V</mi> <mi>n</mi></msub><mo stretchy="false">/</mo><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub><mo stretchy="false">]</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>tr</mi><mspace width="thinmathspace"></mspace><msub><mi>hol</mi> <mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow></msub></mrow></mover></mtd> <mtd><msub><mi>V</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy="false">/</mo><mo stretchy="false">/</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msubsup><mstyle mathvariant="bold"><mi>p</mi></mstyle> <mi>conn</mi> <mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow></msubsup></mrow></mpadded></msup></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msubsup><mstyle mathvariant="bold"><mi>p</mi></mstyle> <mi>conn</mi> <mrow><msub><mi>V</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msubsup></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mtd> <mtd><mover><mo>→</mo><mrow><mi>exp</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>i</mi><msub><mo>∫</mo> <mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mi>𝔾</mi> <mi>conn</mi></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ [S^1, V_n//\mathbf{B}^{n-1}\mathbb{G}_{conn}] &amp;\stackrel{tr\,hol_{S^1}}{\to}&amp; V_{n-1}//\mathbf{B}^{n-2}\mathbb{G}_{conn} \\ \downarrow^{\mathrlap{\mathbf{p}^{V_n}_{conn}}} &amp;&amp; \downarrow^{\mathrlap{\mathbf{p}^{V_{n-1}}_{conn}}} \\ \mathbf{B}^n \mathbb{G}_{conn} &amp;\stackrel{\exp(2 \pi i \int_{S^1}(-))}{\to}&amp; \mathbf{B}^{n-1} \mathbb{G}_{conn} }</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/fiber+integration+in+ordinary+differential+cohomology">fiber integration in ordinary differential cohomology</a> adjoined with one in nonabelian differential cohomology</td></tr> </tbody></table> <h2 id="examples">Examples</h2> <h3 id="ordinary_symplectic_manifolds">Ordinary symplectic manifolds</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+bundle">prequantum circle bundle</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">X \to \mathbf{B} U(1)_{conn}</annotation></semantics></math></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+coefficient+bundle">local coefficient bundle</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>ℂ</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>ℂ</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathbb{C} &amp;\to&amp; \mathbb{C}//U(1) \\ &amp;&amp; \downarrow \\ &amp;&amp; \mathbf{B} U(1) } </annotation></semantics></math></div></li> </ul> <h3 id="of_nonintegral_2forms">Of non-integral 2-forms</h3> <p>While only integral <a class="existingWikiWord" href="/nlab/show/presymplectic+forms">presymplectic forms</a> have a <a class="existingWikiWord" href="/nlab/show/prequantization">prequantization</a> to a prequantum <a class="existingWikiWord" href="/nlab/show/circle+bundle+with+connection">circle bundle with connection</a>, hence to a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>ℤ</mi><mo>→</mo><mi>ℝ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\mathbb{Z} \to \mathbb{R})</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>, a general 2-form has a higher prequantization given by a <a class="existingWikiWord" href="/nlab/show/connection+on+a+2-bundle">connection on a 2-bundle</a> on a <a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a> with structure-<a class="existingWikiWord" href="/nlab/show/2-group">2-group</a> that coming from the <a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>Γ</mi><mo>↪</mo><mi>ℝ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\Gamma \hookrightarrow \mathbb{R})</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi></mrow><annotation encoding="application/x-tex">\Gamma</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/discrete+group">discrete group</a> of <a class="existingWikiWord" href="/nlab/show/periods">periods</a> of the 2-form.</p> <p>This is discussed further at <em><a class="existingWikiWord" href="/nlab/show/prequantization+of+non-integral+2-forms">prequantization of non-integral 2-forms</a></em>.</p> <h3 id="of_2plectic_groupoids">Of 2-plectic <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groupoids</h3> <h4 id="in_codimension_2">In codimension 2</h4> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle 2-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+coefficient+bundle">local coefficient bundle</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>U</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>PU</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msub><mstyle mathvariant="bold"><mi>dd</mi></mstyle> <mi>n</mi></msub></mrow></mpadded></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>2</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathbf{B}U(n) &amp;\to&amp; \mathbf{B}PU(n) \\ &amp;&amp; \downarrow^{\mathrlap{\mathbf{dd}_n}} \\ &amp;&amp; \mathbf{B}^2 U(1) } </annotation></semantics></math></div></li> <li> <p><a class="existingWikiWord" href="/nlab/show/space+of+states">space of states</a>: <a class="existingWikiWord" href="/nlab/show/twisted+bundles">twisted bundles</a></p> </li> </ul> <h4 id="in_codimension_1">In codimension 1</h4> <p><strong>Proposition</strong> There is a lift of coefficient bundles to <a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">[</mo><msup><mi>S</mi> <mn>1</mn></msup><mo>,</mo><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>U</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub><mo stretchy="false">]</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>tr</mi><msub><mi>hol</mi> <mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow></msub></mrow></mover></mtd> <mtd><mi>ℂ</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msup><mstyle mathvariant="bold"><mi>p</mi></mstyle> <mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>U</mi></mrow></msup></mrow></mpadded></msup></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mpadded width="0"><mrow><msup><mstyle mathvariant="bold"><mi>p</mi></mstyle> <mi>ℂ</mi></msup></mrow></mpadded></msup></mtd></mtr> <mtr><mtd><mo stretchy="false">[</mo><msup><mi>S</mi> <mn>1</mn></msup><mo>,</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>2</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub><mo stretchy="false">]</mo></mtd> <mtd><mover><mo>→</mo><mrow><mi>exp</mi><mo stretchy="false">(</mo><mn>2</mn><mi>π</mi><mi>i</mi><msub><mo>∫</mo> <mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ [S^1,(\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn}] &amp;\stackrel{tr hol_{S^1}}{\to}&amp; \mathbb{C}//U(1)_{conn} \\ \downarrow^{\mathrlap{\mathbf{p}^{\mathbf{B}U}}} &amp;&amp; \downarrow^{\mathrlap{\mathbf{p}^{\mathbb{C}}}} \\ [S^1,\mathbf{B}^2 U(1)_{conn}] &amp;\stackrel{\exp(2 \pi i \int_{S^1}(-))}{\to}&amp; \mathbf{B}U(1)_{conn} } </annotation></semantics></math></div> <p>where on the left we have <a class="existingWikiWord" href="/nlab/show/loop+space+objects">loop space objects</a> formed in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math> and on the bottom we have <a class="existingWikiWord" href="/nlab/show/fiber+integration+in+ordinary+differential+cohomology">fiber integration in ordinary differential cohomology</a>.</p> <p>Forming the pasting composite with this sends 2-states and 2-operators in codimension 2 to ordinary states and operators in codimension 1.</p> <p>In particular it sends <a class="existingWikiWord" href="/nlab/show/twisted+bundles">twisted bundles</a> to sections of a line bundle.</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/D-brane">D-brane</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{c}_{conn}</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/B-field">B-field</a>, this reproduces <a class="existingWikiWord" href="/nlab/show/Freed-Witten+anomaly+cancellation">Freed-Witten anomaly cancellation</a> mechanism.</p> <h3 id="chernsimons_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Chern-Simons theory</h3> <p><a class="existingWikiWord" href="/schreiber/show/%E2%88%9E-Chern-Simons+theory">∞-Chern-Simons theory</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-group">smooth ∞-group</a>,</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi></msub><mo>:</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>G</mi> <mi>conn</mi></msub><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mi>n</mi></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex"> \mathbf{c}_{conn} : \mathbf{B}G_{conn} \to \mathbf{B}^n U(1)_{conn} </annotation></semantics></math></div> <p>a universal differential characteristic map.</p> <p>The following examples are of this form.</p> <h4 id="extended__abelian_chernsimons_theory">Extended <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>3</mn><mo stretchy="false">)</mo><mi>d</mi></mrow><annotation encoding="application/x-tex">(4k+3)d</annotation></semantics></math> abelian Chern-Simons theory</h4> <p><a class="existingWikiWord" href="/nlab/show/higher+dimensional+Chern-Simons+theory">higher dimensional Chern-Simons theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle (4k+3)-bundle</a></p> <p>from <a class="existingWikiWord" href="/nlab/show/Beilinson-Deligne+cup+product">Beilinson-Deligne cup product</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub><mover><mo>→</mo><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>∪</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow></mover><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mn>4</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex"> \mathbf{B}^{2k+1}U(1)_{conn} \stackrel{(-)\cup (-)}{\to} \mathbf{B}^{4k+3}U(1)_{conn} </annotation></semantics></math></div> <p>The quantomorphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-group of this should be</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>ℤ</mi> <mn>2</mn></msub><mo>≃</mo><mi>Aut</mi><mo stretchy="false">(</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \mathbb{Z}_2 \simeq Aut(U(1)) \,. </annotation></semantics></math></div> <p>For there is, up to equivalence, a unique autoequivalence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub><mover><mo>→</mo><mo>≃</mo></mover><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \mathbf{B}^{2k+1}U(1)_{conn} \stackrel{\simeq}{\to} \mathbf{B}^{2k+1}U(1)_{conn} \,, </annotation></semantics></math></div> <p>the one induced by the nontrivial automorphism of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">U(1)</annotation></semantics></math>. Since the cup-product is strictly invariant under this, this extends to</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mo>≃</mo></mover></mtd> <mtd></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>∪</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow></mpadded></msub><mo>↘</mo></mtd> <mtd><msub><mo>⇙</mo> <mo>≃</mo></msub></mtd> <mtd><msub><mo>↙</mo> <mpadded width="0"><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>∪</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow></mpadded></msub></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mn>4</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mo lspace="0em" rspace="thinmathspace">conn</mo></msub></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ \mathbf{B}^{2k+1}U(1)_{conn} &amp;&amp;\stackrel{\simeq}{\to}&amp;&amp; \mathbf{B}^{2k+1}U(1)_{conn} \\ &amp; {}_{\mathllap{(-)\cup(-)}}\searrow &amp;\swArrow_\simeq&amp; \swarrow_{\mathrlap{(-)\cup(-)}} \\ &amp;&amp; \mathbf{B}^{4k+3}U(1)_\conn } \,. </annotation></semantics></math></div> <p>But for any further nontrivial such autoequivalence in the slice we would need in particular a gauge transformation parameterized by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(2k+1)</annotation></semantics></math>-forms over test manifolds from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∧</mo><mi>d</mi><mi>C</mi></mrow><annotation encoding="application/x-tex">C \wedge d C</annotation></semantics></math> to itself. But the only closed <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>k</mi></mrow><annotation encoding="application/x-tex">2k</annotation></semantics></math>-forms that we can produce naturally from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> are multiples of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>∧</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">C \wedge C</annotation></semantics></math>. But these all vanish since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is of odd degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">2k+1</annotation></semantics></math>.</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">k = 1</annotation></semantics></math> the total space of the <a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle 3-bundle</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">U(1)</annotation></semantics></math>-Chern-Simons theory over the point is the <a class="existingWikiWord" href="/nlab/show/smooth+infinity-groupoid">smooth</a> <a class="existingWikiWord" href="/nlab/show/moduli+infinity-stack">moduli 2-stack</a> of <a class="existingWikiWord" href="/nlab/show/T-Duality+and+Differential+K-Theory">differential T-duality structures</a>.</p> <h4 id="extended_3d_chernsimons_theory">Extended 3d <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">Spin</mi></mrow><annotation encoding="application/x-tex">\mathrm{Spin}</annotation></semantics></math>-Chern-Simons theory</h4> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle 3-bundle</a>:</p> <p><a class="existingWikiWord" href="/nlab/show/differential+string+structure">differential first fractional Pontryagin class</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><msub><mover><mstyle mathvariant="bold"><mi>p</mi></mstyle><mo stretchy="false">^</mo></mover> <mn>1</mn></msub><mo>:</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>Spin</mi> <mi>conn</mi></msub><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>3</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\tfrac{1}{2}\hat \mathbf{p}_1 : \mathbf{B}Spin_{conn} \to \mathbf{B}^3 U(1)_{conn}</annotation></semantics></math></p> </li> </ul> <p>So <a class="existingWikiWord" href="/nlab/show/Planck%27s+constant">Planck's constant</a> here is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℏ</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">\hbar = 2</annotation></semantics></math> (relative to the naive multiple).</p> <p>The total space of the prequantum 3-bundle is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>String</mi> <mrow><mi>conn</mi><mo>′</mo></mrow></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><msup><mi>Ω</mi> <mrow><mn>1</mn><mo>≤</mo><mo>•</mo><mo>≤</mo><mn>3</mn></mrow></msup></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>Spin</mi> <mi>conn</mi></msub></mtd> <mtd><mover><mo>→</mo><mrow><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><msub><mover><mstyle mathvariant="bold"><mi>p</mi></mstyle><mo stretchy="false">^</mo></mover> <mn>1</mn></msub></mrow></mover></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>3</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>3</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathbf{B}String_{conn'} &amp;\to&amp; \Omega^{1 \leq \bullet \leq 3} &amp;\to&amp; * \\ \downarrow &amp;&amp; \downarrow &amp;&amp; \downarrow \\ \mathbf{B}Spin_{conn} &amp;\stackrel{\tfrac{1}{2}\hat \mathbf{p}_1}{\to}&amp; \mathbf{B}^3 U(1)_{conn} &amp;\to&amp; \mathbf{B}^3 U(1) } </annotation></semantics></math></div> <p>as it appears in <a class="existingWikiWord" href="/schreiber/show/The+moduli+3-stack+of+the+C-field">The moduli 3-stack of the C-field</a>.</p> <p>But the quantomorphism group of this will be small, as the <a class="existingWikiWord" href="/nlab/show/Chern-Simons+form">Chern-Simons form</a> is far from being gauge invariant.</p> <p>See the discussion at <em><a href="Chern-Simons%20theory#GeometricQuantHigher">Chern-Simons theory – Geometric quantization – In higher codimension</a></em>.</p> <h4 id="extended_3d_chernsimons_theory_2">Extended 3d <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">G \times G</annotation></semantics></math>-Chern-Simons theory</h4> <p>However, when we consider <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">G \times G</annotation></semantics></math> CS theory given by</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub><mover><mo>→</mo><mrow><msubsup><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi> <mn>1</mn></msubsup><mo>−</mo><msubsup><mstyle mathvariant="bold"><mi>c</mi></mstyle> <mi>conn</mi> <mn>2</mn></msubsup></mrow></mover><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>3</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex"> \mathbf{B}(G \times G)_{conn} \stackrel{\mathbf{c}^1_{conn}- \mathbf{c}^2_{conn}}{\to} \mathbf{B}^3 U(1)_{conn} </annotation></semantics></math></div> <p>then diagonal gauge transformations <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub><mo>→</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{B}(G \times G)_{conn} \to \mathbf{B}(G \times G)_{conn}</annotation></semantics></math> have interesting extensions to quantomorphisms, because for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mo>:</mo><mi>U</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">g : U \to G</annotation></semantics></math> the given gauge transformation at stage of definition <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math>, the Chern-Simons form transforms by an exact term</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>CS</mi><mo stretchy="false">(</mo><msubsup><mi>A</mi> <mn>1</mn> <mi>g</mi></msubsup><mo>,</mo><msubsup><mi>A</mi> <mn>2</mn> <mi>g</mi></msubsup><mo stretchy="false">)</mo><mo>=</mo><mi>CS</mi><mo stretchy="false">(</mo><msub><mi>A</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>A</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>d</mi><mo stretchy="false">⟨</mo><msub><mi>A</mi> <mn>1</mn></msub><mo>−</mo><msub><mi>A</mi> <mn>2</mn></msub><mo>,</mo><msup><mi>g</mi> <mo>*</mo></msup><mi>θ</mi><mo stretchy="false">⟩</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> CS(A_1^g,A_2^g) = CS(A_1,A_2) + d \langle A_1 - A_2, g^* \theta\rangle \,. </annotation></semantics></math></div> <h4 id="extended_7d_chernsimons_theory">Extended 7d <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">String</mi></mrow><annotation encoding="application/x-tex">\mathrm{String}</annotation></semantics></math>-Chern-Simons theory</h4> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/prequantum+circle+n-bundle">prequantum circle 7-bundle</a>:</p> <p><a class="existingWikiWord" href="/nlab/show/differential+fivebrane+structure">differential second fractional Pontryagin class</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>6</mn></mfrac></mstyle><msub><mover><mstyle mathvariant="bold"><mi>p</mi></mstyle><mo stretchy="false">^</mo></mover> <mn>2</mn></msub><mo>:</mo><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>String</mi> <mi>conn</mi></msub><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>7</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex">\tfrac{1}{6}\hat \mathbf{p}_2 : \mathbf{B}String_{conn} \to \mathbf{B}^7 U(1)_{conn}</annotation></semantics></math></p> </li> </ul> <p>So <a class="existingWikiWord" href="/nlab/show/Planck%27s+constant">Planck's constant</a> here is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℏ</mi><mo>=</mo><mn>6</mn></mrow><annotation encoding="application/x-tex">\hbar = 6</annotation></semantics></math> (relative to the naive multiple).</p> <p>The total space of the prequantum 7-bundle is</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>Fivebrane</mi> <mrow><mi>conn</mi><mo>′</mo></mrow></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><msup><mi>Ω</mi> <mrow><mn>1</mn><mo>≤</mo><mo>•</mo><mo>≤</mo><mn>7</mn></mrow></msup></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mstyle mathvariant="bold"><mi>B</mi></mstyle><msub><mi>String</mi> <mi>conn</mi></msub></mtd> <mtd><mover><mo>→</mo><mrow><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>6</mn></mfrac></mstyle><msub><mover><mstyle mathvariant="bold"><mi>p</mi></mstyle><mo stretchy="false">^</mo></mover> <mn>2</mn></msub></mrow></mover></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>7</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>7</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathbf{B}Fivebrane_{conn'} &amp;\to&amp; \Omega^{1 \leq \bullet \leq 7} &amp;\to&amp; * \\ \downarrow &amp;&amp; \downarrow &amp;&amp; \downarrow \\ \mathbf{B}String_{conn} &amp;\stackrel{\tfrac{1}{6}\hat \mathbf{p}_2}{\to}&amp; \mathbf{B}^7 U(1)_{conn} &amp;\to&amp; \mathbf{B}^7 U(1) } </annotation></semantics></math></div> <h3 id="_wesszuminowitten_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math> Wess-Zumino-Witten theory</h3> <ul> <li><a class="existingWikiWord" href="/schreiber/show/%E2%88%9E-Wess-Zumino-Witten+theory">∞-Wess-Zumino-Witten theory</a></li> </ul> <p>Differentially twisted looping of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-Chern-Simons theory</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Ω</mi><mstyle mathvariant="bold"><mi>c</mi></mstyle><mo>:</mo><mi>G</mi><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>𝔾</mi></mrow><annotation encoding="application/x-tex"> \Omega \mathbf{c} : G \to \mathbf{B}^{n-1}\mathbb{G} </annotation></semantics></math></div> <h4 id="ordinary_wzw_model">Ordinary <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-WZW model</h4> <ul> <li><a class="existingWikiWord" href="/nlab/show/WZW+model">WZW model</a></li> </ul> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mover><mi>Ω</mi><mo stretchy="false">˜</mo></mover><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><msub><mstyle mathvariant="bold"><mi>p</mi></mstyle> <mn>1</mn></msub><mo>:</mo><mi>G</mi><mo>→</mo><msup><mstyle mathvariant="bold"><mi>B</mi></mstyle> <mn>2</mn></msup><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><msub><mo stretchy="false">)</mo> <mi>conn</mi></msub></mrow><annotation encoding="application/x-tex"> \tilde\Omega \tfrac{1}{2}\mathbf{p}_1 : G \to \mathbf{B}^2 U(1)_{conn} </annotation></semantics></math></div> <p>studied in (<a href="#RogersPhD">Rogers PhD, section 4.2</a>).</p> <h4 id="wzw_model"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>String</mi></mrow><annotation encoding="application/x-tex">String</annotation></semantics></math>-WZW model</h4> <p>(…)</p> <h4 id="wzw_model_2"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Fivebrane</mi></mrow><annotation encoding="application/x-tex">Fivebrane</annotation></semantics></math>-WZW model</h4> <p>(…)</p> <h2 id="related_concepts">Related concepts</h2> <div> <p><strong><a class="existingWikiWord" href="/nlab/show/duality+between+algebra+and+geometry">duality between</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thickmathspace"></mspace></mrow><annotation encoding="application/x-tex">\;</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a> and <a class="existingWikiWord" href="/nlab/show/geometry">geometry</a></strong></p> <table style="margin:auto"><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/category">category</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/dual+category">dual category</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/topology">topology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>NC</mi></mphantom><msub><mi>TopSpaces</mi> <mrow><mi>H</mi><mo>,</mo><mi>cpt</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\phantom{NC}TopSpaces_{H,cpt}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>↪</mo><mtext><a href="https://ncatlab.org/nlab/show/Gelfand-Kolmogorov+theorem">Gelfand-Kolmogorov</a></mtext></mover><msubsup><mi>Alg</mi> <mi>ℝ</mi> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a href="https://ncatlab.org/nlab/show/Gelfand-Kolmogorov+theorem"&gt;Gelfand-Kolmogorov&lt;/a&gt;}}{\hookrightarrow} Alg^{op}_{\mathbb{R}}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/topology">topology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>NC</mi></mphantom><msub><mi>TopSpaces</mi> <mrow><mi>H</mi><mo>,</mo><mi>cpt</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\phantom{NC}TopSpaces_{H,cpt}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≃</mo><mtext><a class="existingWikiWord" href="https://ncatlab.org/nlab/show/Gelfand+duality">Gelfand duality</a></mtext></mover><msubsup><mi>TopAlg</mi> <mrow><msup><mi>C</mi> <mo>*</mo></msup><mo>,</mo><mi>comm</mi></mrow> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a class="existingWikiWord" href="https://ncatlab.org/nlab/show/Gelfand+duality"&gt;Gelfand duality&lt;/a&gt;}}{\simeq} TopAlg^{op}_{C^\ast, comm}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+C%2A-algebra">comm. C-star-algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/noncommutative+topology">noncomm. topology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>NCTopSpaces</mi> <mrow><mi>H</mi><mo>,</mo><mi>cpt</mi></mrow></msub></mrow><annotation encoding="application/x-tex">NCTopSpaces_{H,cpt}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≔</mo><mphantom><mtext>Gelfand duality</mtext></mphantom></mover><msubsup><mi>TopAlg</mi> <mrow><msup><mi>C</mi> <mo>*</mo></msup></mrow> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\phantom{\text{Gelfand duality}}}{\coloneqq} TopAlg^{op}_{C^\ast}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math>general <a class="existingWikiWord" href="/nlab/show/C-star-algebra">C-star-algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebraic+geometry">algebraic geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>NC</mi></mphantom><msub><mi>Schemes</mi> <mi>Aff</mi></msub></mrow><annotation encoding="application/x-tex">\phantom{NC}Schemes_{Aff}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≃</mo><mtext><a href="https://ncatlab.org/nlab/show/affine+scheme#AffineSchemesFullSubcategoryOfOppositeOfRings">almost by def.</a></mtext></mover><mphantom><mi>Top</mi></mphantom><msup><mi>Alg</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a href="https://ncatlab.org/nlab/show/affine+scheme#AffineSchemesFullSubcategoryOfOppositeOfRings"&gt;almost by def.&lt;/a&gt;}}{\simeq} \phantom{Top}Alg^{op} </annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A} \phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/noncommutative+algebraic+geometry">noncomm. algebraic</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/noncommutative+algebraic+geometry">geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>NCSchemes</mi> <mi>Aff</mi></msub></mrow><annotation encoding="application/x-tex">NCSchemes_{Aff}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>≔</mo><mphantom><mtext>Gelfand duality</mtext></mphantom></mover><mphantom><mi>Top</mi></mphantom><msubsup><mi>Alg</mi> <mrow><mi>fin</mi><mo>,</mo><mi>red</mi></mrow> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\phantom{\text{Gelfand duality}}}{\coloneqq} \phantom{Top}Alg^{op}_{fin, red}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/finitely+generated+algebra">fin. gen.</a> <br /><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/associative+algebra">associative algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SmoothManifolds</mi></mrow><annotation encoding="application/x-tex">SmoothManifolds</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>↪</mo><mtext><a href="https://ncatlab.org/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras">Milnor's exercise</a></mtext></mover><mphantom><mi>Top</mi></mphantom><msubsup><mi>Alg</mi> <mi>comm</mi> <mi>op</mi></msubsup></mrow><annotation encoding="application/x-tex">\overset{\text{&lt;a href="https://ncatlab.org/nlab/show/embedding+of+smooth+manifolds+into+formal+duals+of+R-algebras"&gt;Milnor's exercise&lt;/a&gt;}}{\hookrightarrow} \phantom{Top}Alg^{op}_{comm}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/supergeometry">supergeometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>SuperSpaces</mi> <mi>Cart</mi></msub></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><msup><mi>ℝ</mi> <mrow><mi>n</mi><mo stretchy="false">|</mo><mi>q</mi></mrow></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{SuperSpaces_{Cart} \\ \\ \mathbb{R}^{n\vert q}}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mover><mo>↪</mo><mphantom><mtext>Milnor's exercise</mtext></mphantom></mover></mtd> <mtd><msubsup><mi>Alg</mi> <mrow><msub><mi>ℤ</mi> <mn>2</mn></msub><mphantom><mi>AAAA</mi></mphantom></mrow> <mi>op</mi></msubsup></mtd></mtr> <mtr><mtd><mo>↦</mo></mtd> <mtd><msup><mi>C</mi> <mn>∞</mn></msup><mo stretchy="false">(</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo stretchy="false">)</mo><mo>⊗</mo><msup><mo>∧</mo> <mo>•</mo></msup><msup><mi>ℝ</mi> <mi>q</mi></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ \overset{\phantom{\text{Milnor's exercise}}}{\hookrightarrow} &amp; Alg^{op}_{\mathbb{Z}_2 \phantom{AAAA}} \\ \mapsto &amp; C^\infty(\mathbb{R}^n) \otimes \wedge^\bullet \mathbb{R}^q }</annotation></semantics></math><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/supercommutative+superalgebra">supercommutative</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><br /><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/superalgebra">superalgebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/formal+moduli+problem">formal</a> <a class="existingWikiWord" href="/nlab/show/higher+differential+geometry">higher</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/supergeometry">supergeometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math>(<a class="existingWikiWord" href="/nlab/show/super+L-%E2%88%9E+algebra">super Lie theory</a>)<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom><mrow><mtable><mtr><mtd><mi>Super</mi><msub><mi>L</mi> <mn>∞</mn></msub><msub><mi>Alg</mi> <mi>fin</mi></msub></mtd></mtr> <mtr><mtd><mi>𝔤</mi></mtd></mtr></mtable></mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}\array{ Super L_\infty Alg_{fin} \\ \mathfrak{g} }\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom><mrow><mtable><mtr><mtd><mover><mo>↪</mo><mrow><mphantom><mi>A</mi></mphantom><mtext><a href="https://ncatlab.org/nlab/show/L-infinity-algebra#ReformulationInTermsOfSemifreeDGAlgebra">Lada-Markl</a></mtext><mphantom><mi>A</mi></mphantom></mrow></mover></mtd> <mtd><msup><mi>sdgcAlg</mi> <mi>op</mi></msup></mtd></mtr> <mtr><mtd><mo>↦</mo></mtd> <mtd><mi>CE</mi><mo stretchy="false">(</mo><mi>𝔤</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}\array{ \overset{ \phantom{A}\text{&lt;a href="https://ncatlab.org/nlab/show/L-infinity-algebra#ReformulationInTermsOfSemifreeDGAlgebra"&gt;Lada-Markl&lt;/a&gt;}\phantom{A} }{\hookrightarrow} &amp; sdgcAlg^{op} \\ \mapsto &amp; CE(\mathfrak{g}) }\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/differential+graded-commutative+superalgebra">differential graded-commutative</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/superalgebra">superalgebra</a> <br /> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math> (“<a class="existingWikiWord" href="/nlab/show/D%27Auria-Fre+formulation+of+supergravity">FDAs</a>”)</td></tr> </tbody></table> <p><strong>in <a class="existingWikiWord" href="/nlab/show/physics">physics</a></strong>:</p> <table style="margin:auto"><thead><tr><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra">algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th><th><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Poisson+algebra">Poisson algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Poisson+manifold">Poisson manifold</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/deformation+quantization">deformation quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/geometric+quantization">geometric quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/algebra+of+observables">algebra of observables</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/space+of+states">space of states</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Heisenberg+picture">Heisenberg picture</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Schr%C3%B6dinger+picture">Schrödinger picture</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/AQFT">AQFT</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/FQFT">FQFT</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><strong><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><strong><a class="existingWikiWord" href="/nlab/show/higher+geometry">higher geometry</a></strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Poisson+n-algebra">Poisson n-algebra</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/n-plectic+manifold">n-plectic manifold</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/En-algebras">En-algebras</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/higher+symplectic+geometry">higher symplectic geometry</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Beilinson-Drinfeld+algebra">BD</a>-<a class="existingWikiWord" href="/nlab/show/BV+quantization">BV quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/higher+geometric+quantization">higher geometric quantization</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/factorization+algebra+of+observables">factorization algebra of observables</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/extended+quantum+field+theory">extended quantum field theory</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/factorization+homology">factorization homology</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/cobordism+hypothesis">cobordism representation</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mi>A</mi></mphantom></mrow><annotation encoding="application/x-tex">\phantom{A}</annotation></semantics></math></td></tr> </tbody></table> </div> <h2 id="references">References</h2> <p>2-geometric quantization over <a class="existingWikiWord" href="/nlab/show/smooth+manifolds">smooth manifolds</a> is discussed in section 6 and section 7 of</p> <ul> <li id="RogersPhD"><a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <em>Higher symplectic geometry</em> PhD thesis (2011) (<a href="http://arxiv.org/abs/1106.4068">arXiv:1106.4068</a>)</li> </ul> <p>with further indications in</p> <ul> <li id="Rogers"><a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <em>Higher geometric quantization</em>, at <em>Higher Structures 2011</em> (<a class="existingWikiWord" href="/nlab/files/RogersGottingen11.pdf" title="pdf">pdf</a>)</li> </ul> <p>The special case of geometric quantization over infinitesimal <a class="existingWikiWord" href="/nlab/show/action+groupoids">action groupoids</a> can be described in terms of <a class="existingWikiWord" href="/nlab/show/BRST+complexes">BRST complexes</a>. For references on this see <em><a href="http://ncatlab.org/nlab/show/geometric+quantization#ReferencesBRST">Geometric quantization – References – Geometric BRST quantization</a></em>.</p> <p>Higher geometric quantization in a <a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a> over <a class="existingWikiWord" href="/nlab/show/smooth+%E2%88%9E-groupoids">smooth ∞-groupoids</a> is discussed in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Domenico+Fiorenza">Domenico Fiorenza</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a>, <a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <em><a class="existingWikiWord" href="/schreiber/show/infinity-geometric+prequantization">infinity-geometric prequantization</a></em></li> </ul> <p>and the examples of higher Chern-Simons theories in</p> <ul> <li id="FiorenzaSchreiber"><a class="existingWikiWord" href="/nlab/show/Domenico+Fiorenza">Domenico Fiorenza</a>, <a class="existingWikiWord" href="/nlab/show/Chris+Rogers">Chris Rogers</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a> <em><a class="existingWikiWord" href="/schreiber/show/Higher+geometric+prequantum+theory">Higher geometric prequantum theory</a></em></li> </ul> <p>Review:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Luigi+Alfonsi">Luigi Alfonsi</a>, §3 in: <em>Higher geometry in physics</em>, in: <em><a class="existingWikiWord" href="/nlab/show/Encyclopedia+of+Mathematical+Physics+2nd+ed">Encyclopedia of Mathematical Physics 2nd ed</a></em>, Elsevier (2024) &lbrack;<a href="https://arxiv.org/abs/2312.07308">arXiv:2312.07308</a>&rbrack;</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on January 4, 2024 at 12:44:56. See the <a href="/nlab/history/higher+geometric+quantization" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/higher+geometric+quantization" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3942/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/higher+geometric+quantization/28" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/higher+geometric+quantization" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/higher+geometric+quantization" accesskey="S" class="navlink" id="history" rel="nofollow">History (28 revisions)</a> <a href="/nlab/show/higher+geometric+quantization/cite" style="color: black">Cite</a> <a href="/nlab/print/higher+geometric+quantization" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/higher+geometric+quantization" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10