CINXE.COM

Search results for: room temperature superconductor

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: room temperature superconductor</title> <meta name="description" content="Search results for: room temperature superconductor"> <meta name="keywords" content="room temperature superconductor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="room temperature superconductor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="room temperature superconductor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7582</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: room temperature superconductor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7582</span> The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Zhao">Dong Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-existence%20of%20high%20electrical%20conductivity%20and%20diamagnetism" title="co-existence of high electrical conductivity and diamagnetism">co-existence of high electrical conductivity and diamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20lone%20pair" title=" electron lone pair"> electron lone pair</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor" title=" room temperature superconductor"> room temperature superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20molecular%20configuration%20of%20thorium%20di-iodide%20ThI%E2%82%82" title=" special molecular configuration of thorium di-iodide ThI₂"> special molecular configuration of thorium di-iodide ThI₂</a> </p> <a href="https://publications.waset.org/abstracts/181504/the-unique-electrical-and-magnetic-properties-of-thorium-di-iodide-indicate-the-arrival-of-its-superconducting-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7581</span> A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sadegzadeh">S. Sadegzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavi"> A. Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub> as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF<sub>2</sub> as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF<sub>2</sub>)<sup>N</sup>InSb(Si/MgF<sub>2</sub>)<sup>N</sup> named S.I, and (Si/MgF<sub>2</sub>)<sup>N</sup>HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O<sub>10</sub>(Si/MgF<sub>2</sub>)<sup>N</sup> named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20modes" title="defect modes">defect modes</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystals" title=" photonic crystals"> photonic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductor" title=" superconductor"> superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/67733/a-comparative-study-of-a-defective-superconductor-semiconductor-dielectric-photonic-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7580</span> Deregulation of Thorium for Room Temperature Superconductivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Zhao">Dong Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—Extensive research on obtaining applicable room temperature superconductors meets the major barrier, and the record Tc of 135 K achieved via cuprate has been idling for decades. Even though, the accomplishment of higher Tc than the cuprate was made through pressurizing certain compounds composed of light elements, such as for the LaH10 and for the metallic hydrogen. Room temperature superconductivity under ambient pressure is still the preferred approach and is believed to be the ultimate solution for many applications. While racing to find the breakthrough method to achieve this room temperature Tc milestone in superconducting research, a report stated a discovery of a possible high-temperature superconductor, i.e., the thorium sulfide ThS. Apparently, ThS’s Tc can be at room temperature or even higher. This is because ThS revealed an unusual property of the ‘coexistence of high electrical conductivity and diamagnetism’. Noticed that this property of coexistence of high electrical conductivity and diamagnetism is in line with superconductors, meaning ThS is also at its superconducting state. Surprisingly, ThS owns the property of superconductivity at least at room temperature and under atmosphere pressure. Further study of the ThS’s electrical and magnetic properties in comparison with thorium di-iodide ThI2 concluded its molecular configuration as [Th4+(e-)2]S. This means the ThS’s cation is composed of a [Th4+(e-)2]2+ cation core. It is noticed that this cation core is built by an oxidation state +4 of thorium atom plus an electron pair on this thorium atom that resulted in an oxidation state +2 of this [Th4+(e-)2]2+ cation core. This special construction of [Th4+(e-)2]2+ cation core may lead to the ThS’s room temperature superconductivity because of this characteristic electron lone pair residing on the thorium atom. Since the study of thorium chemistry was carried out in the period of before 1970s. the exploration about ThS’s possible room temperature superconductivity would require resynthesizing ThS. This re-preparation of ThS will provide the sample and enable professionals to verify the ThS’s room temperature superconductivity. Regrettably, the current regulation prevents almost everyone from getting access to thorium metal or thorium compounds due to the radioactive nature of thorium-232 (Th-232), even though the radioactive level of Th-232 is extremely low with its half-life of 14.05 billion years. Consequently, further confirmation of ThS’s high-temperature superconductivity through experiments will be impossible unless the use of corresponding thorium metal and related thorium compounds can be deregulated. This deregulation would allow researchers to obtain the necessary starting materials for the study of ThS. Hopefully, the confirmation of ThS’s room temperature superconductivity can not only establish a method to obtain applicable superconductors but also to pave the way for fully understanding the mechanism of superconductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-existence%20of%20high%20electrical%20conductivity%20and%20diamagnetism" title="co-existence of high electrical conductivity and diamagnetism">co-existence of high electrical conductivity and diamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20pairing%20and%20electron%20lone%20pair" title=" electron pairing and electron lone pair"> electron pairing and electron lone pair</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductivity" title=" room temperature superconductivity"> room temperature superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20special%20molecular%20configuration%20of%20thorium%20sulfide%20ThS" title=" the special molecular configuration of thorium sulfide ThS"> the special molecular configuration of thorium sulfide ThS</a> </p> <a href="https://publications.waset.org/abstracts/181506/deregulation-of-thorium-for-room-temperature-superconductivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7579</span> Enhancement of Critical Temperature and Improvement of Mechanical Properties of Yttrium Barium Copper Oxide Superconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Rahmati">Hamed Rahmati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, increasing demand for electric energy makes applying high-temperature superconductors inevitable. However, the most important problem of the superconductors is their critical temperature, which necessitates using a cryogenic system for keeping these substances’ temperatures lower than the critical level. Cryogenic systems used for this reason are not efficient enough, and keeping these large systems maintained is costly. Moreover, the low critical temperature of superconductors has delayed using them in electrical equipment. In this article, at first, characteristics of three superconductors, magnesium diboride (MgB2), yttrium barium copper oxide (YBCO), and iron-based superconductors (FeSC), have been analyzed and a new structure of YBCO superconductors is presented. Generally, YBCO (YBa2Cu7O2) has a weak mechanical structure. By introducing some changes in its configuration and adding one silver atom (Ag) to it, its mechanical characteristics improved significantly. Moreover, for each added atom, a star-form structure was introduced in which changing the location of Ag atom led to considerable changes in temperature. In this study, Ag has been added by applying two accurate methods named random and substitute ones. The results of both methods have been examined. It has been shown that adding Ag by applying the substitute method can improve the mechanical properties of the superconductor in addition to increasing its critical temperature. In the mentioned strategy (using the substitute method), the critical temperature of the superconductor was measured up to 99 Kelvin. This new structure is usable in designing superconductors’ rings to be applied in superconducting magnetic energy storage (SMES). It can also lead to a reduction in the cryogenic system size, a decline in conductor wastes, and a decrease in costs of the whole system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20temperature" title="critical temperature">critical temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20system" title=" cryogenic system"> cryogenic system</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20superconductors" title=" high-temperature superconductors"> high-temperature superconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=YBCO" title=" YBCO"> YBCO</a> </p> <a href="https://publications.waset.org/abstracts/110182/enhancement-of-critical-temperature-and-improvement-of-mechanical-properties-of-yttrium-barium-copper-oxide-superconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7578</span> Magnetic Study on Ybₐ₂Cu₃O₇₋δ Nanoparticles Doped by Ferromagnetic Nanoparticles of Y₃Fe₅O₁₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Khene">Samir Khene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBₐ₂Cu₃O₇₋δ and La₁.₈₅ Sr₀.₁₅CuO will be presented. It will be given special attention to the study of the YBₐ₂Cu₃O₇₋δ nanoparticles doped by ferromagnetic nanoparticles of Y₃Fe₅O₁₂. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBₐ₂Cu₃O7₇₋δ nanoparticles as a function of applied field H and temperature T will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superconductors" title="superconductors">superconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20critical%20temperature" title=" high critical temperature"> high critical temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=vortices%20pinning" title=" vortices pinning"> vortices pinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetism" title=" ferromagnetism"> ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=coexistence" title=" coexistence"> coexistence</a> </p> <a href="https://publications.waset.org/abstracts/161747/magnetic-study-on-yb2cu3o7d-nanoparticles-doped-by-ferromagnetic-nanoparticles-of-y3fe5o12" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7577</span> Microbiological Assessment of Fish Sausages Coated with Smoked-Edible Film, and Stored in Room and Refrigerator Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henny%20A.%20Dien">Henny A. Dien</a>, <a href="https://publications.waset.org/abstracts/search?q=Roike%20I.%20Montolalu"> Roike I. Montolalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feny%20Mentang"> Feny Mentang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jupni%20Keno"> Jupni Keno</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynerd%20S.%20Burdam"> Reynerd S. Burdam</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegfried%20Berhimpon"> Siegfried Berhimpon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish Sausages became popular nowadays, because of high nutritious and low in cholesterol. However, this food is also highly perishable and often contaminated by pathogen bacteria. Edible film was made from myofibril of Black Marlin (Makaira indica) waste, with addition of liquid smoke 0.8%. The aim of this study were to determine the TPC, total coliform and Escherichia coli in fish sausages coated with smoked edible film, and stored in room temperature (26-29oC), and refrigerator (5-10oC). Results shown that TPC in fish sausages coated with smoked edible film were lower than that of without coated, both for storage in room temperature and in refrigerator. Total coliform in coated with smoked edible film and stored in room temperature ranged between 7-120 MPN/g (1-4 days), while stored in refrigerator ranged between 7-93 MPN/g (1-6 days); while fish sausages coated with edible film without liquid smoke were 7-240 MPN/g (1-4 days) in room temperature, and 7-150 MPN/g in refrigerator. Total E. coli of fish sausages coated with smoked edible film and stored in room temperature ranged between 3-4 MPN/g (1-4 days), while stored in refrigerator ranged were 3 MPN/g (1-6 days); while fish sausages coated with edible film without smoked both stored in room temperature and in refrigerator, shown total E. coli 3 MPN/g during 4 days in room temperature, and 6 days in refrigerator. Total E. coli of sausages without coated stored in room temperature ranged between 7-24 MPN/g, and that of stored in refrigerator ranged between 3-4 MPN/g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoke%20liquid" title="smoke liquid">smoke liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=sausages" title=" sausages"> sausages</a> </p> <a href="https://publications.waset.org/abstracts/33011/microbiological-assessment-of-fish-sausages-coated-with-smoked-edible-film-and-stored-in-room-and-refrigerator-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7576</span> YBa2Cu3O7-d Nanoparticles Doped by Ferromagnetic Nanoparticles of Y3Fe5O12</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Khene">Samir Khene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of the scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBa2Cu3O7- and La1.85 Sr0.15CuO will be presented. It will be given special attention to the study of the YBa2Cu3O7- nanoparticles doped by ferromagnetic nanoparticles of Y3Fe5O12. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBa2Cu3O7- nanoparticles as a function of applied field H and temperature T will be studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferromagnetism" title="ferromagnetism">ferromagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title=" superconductivity"> superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=coexistence" title=" coexistence"> coexistence</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20material" title=" magnetic material"> magnetic material</a> </p> <a href="https://publications.waset.org/abstracts/167274/yba2cu3o7-d-nanoparticles-doped-by-ferromagnetic-nanoparticles-of-y3fe5o12" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7575</span> Dependence of the Structural, Electrical and Magnetic Properties of YBa2Cu3O7−δ Bulk Superconductor on the Sm Doping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raheleh%20Hajilou">Raheleh Hajilou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report the synthesis and characterization of YBa2Cu3O7-δ (YBCO) high-temperature superconductor prepared by solid-state method and doped with Sm in different weight percentages, 0, 0.01, 0.02 and 0.05 wt. The result of X-ray diffraction (XRD) analysis conforms to the formation of an orthorhombic phase of superconductivity in our samples. This is an important finding and indicates that the samples may exhibit superconductivity properties at certain conditions. Our results unequivocally point to a different structural order or disorder in SM/Y samples as compared to Sm based samples. We suggest that different site preferences of oxygen vacancies, predominantly created in CuO2 planes (CuO chains) of Y and Sm-based samples, might be responsible for the observed difference in the behavior. This contention is supported by a host of other considerations and experimental observations. The study investigated the effects of Sm doping on the YBCO system on various properties such as structural, critical temperature (Tc), scanning electron microscope (SEM), irresistibility line(IL), critical current density, jc, and flux line pinning force. It Seems the sample x=0.05 undergoes an insulator transition, which suppresses its superconducting transition temperature (Tc). Additionally, magnetization was measured as a function of temperature (M-T) and magnetic loops (M-H) at constant temperatures of 10. 20, 30, 40, 50 and 60K up to 10KG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-Tc%20superconductors" title="high-Tc superconductors">high-Tc superconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=Scanning%20electron%20microscopy" title=" Scanning electron microscopy"> Scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20scattering" title=" X-ray scattering"> X-ray scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=Irreversibility%20line" title=" Irreversibility line"> Irreversibility line</a> </p> <a href="https://publications.waset.org/abstracts/189384/dependence-of-the-structural-electrical-and-magnetic-properties-of-yba2cu3o7d-bulk-superconductor-on-the-sm-doping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7574</span> Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habtamu%20Anagaw%20Muluneh">Habtamu Anagaw Muluneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebregziabher%20Kahsay"> Gebregziabher Kahsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamiru%20Negussie"> Tamiru Negussie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin%20triplet%20superconductivity" title="spin triplet superconductivity">spin triplet superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title=" Green’s function"> Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20energy" title=" condensation energy"> condensation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20of%20state" title=" density of state"> density of state</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat" title=" specific heat"> specific heat</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a> </p> <a href="https://publications.waset.org/abstracts/193014/thermodynamic-and-magnetic-properties-of-heavy-fermion-ute2-superconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7573</span> 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zina%20Ghiloufi">Zina Ghiloufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Khir"> Tahar Khir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-&omega; Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20room" title=" cold room"> cold room</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dDates" title=" dDates"> dDates</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CF%89%20%28SST%29" title=" k-ω (SST)"> k-ω (SST)</a> </p> <a href="https://publications.waset.org/abstracts/90986/3d-cfd-modelling-of-the-airflow-and-heat-transfer-in-cold-room-filled-with-dates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7572</span> The Microstructure Development Behavior of Mg-Ag Alloy during High-Temperature Plane Strain Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimin%20Yun">Jimin Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yebeen%20Ji"> Yebeen Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwonhoo%20Kim"> Kwonhoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium and Mg-Ag system alloys are known to be promising biomaterials due to their high specific strengths and biocompatibility. Because the limited numbers of slip systems were activated in the HCP structure at room temperature, their formability was low. To solve these problems, much research about the improvement of room-temperature formability has been studied, but the microstructure development behaviors of Mg-Ag alloys were still limited. Therefore, this study was conducted to investigate the texture development behaviors of Mg-Ag alloy during high-temperature plane strain deformation. The Ag content of the Mg-Ag alloy used in this study was 3.0, 5.0, and 9.0 wt%. Hot rolling was performed at a temperature of 673K with a reduction ratio of 25%, and these specimens were annealed for 1H at 773K, followed by water quenching at room temperature. High-temperature plane strain deformation was performed under temperatures of 623K and 723K, with strain rates from 0.1/s to 0.05/s and strain from -0.4 to –1.0. As a result, it showed a microstructure and texture similar to the AZ61 alloy, which had been studied previously. It was confirmed that the basal texture became stronger with increasing strains at high-temperature plane strain deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg-Ag" title="Mg-Ag">Mg-Ag</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20development%20behavior" title=" microstructure development behavior"> microstructure development behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ61" title=" AZ61"> AZ61</a> </p> <a href="https://publications.waset.org/abstracts/181510/the-microstructure-development-behavior-of-mg-ag-alloy-during-high-temperature-plane-strain-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7571</span> Hydrogen Storage in Carbonized Coconut Meat (Kernel)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viney%20Dixit">Viney Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20R.%20Shahi"> Rohit R. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Bhatnagar"> Ashish Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jain"> P. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yadav"> T. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Srivastava"> O. N. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20kernel" title="coconut kernel">coconut kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=KCl" title=" KCl"> KCl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca" title=" Ca"> Ca</a> </p> <a href="https://publications.waset.org/abstracts/12194/hydrogen-storage-in-carbonized-coconut-meat-kernel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7570</span> An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Youssef%20El%20Hafidi">Moulay Youssef El Hafidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20cooling" title="magnetic cooling">magnetic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange" title=" heat exchange"> heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/164794/an-enhanced-room-temperature-magnetic-refrigerator-based-on-nanofluid-from-theoretical-study-to-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7569</span> Electron Spin Resonance of Conduction and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Ekbote">S. N. Ekbote</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Padam"> G. K. Padam</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Arora"> Manju Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)₂Sr₂Ca₂Cu₃O₁₀₋ₓ (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bi-2223%20superconductor" title="Bi-2223 superconductor">Bi-2223 superconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=CESR" title=" CESR"> CESR</a>, <a href="https://publications.waset.org/abstracts/search?q=ESR" title=" ESR"> ESR</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20interactions" title=" exchange interactions"> exchange interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20waves" title=" spin waves"> spin waves</a> </p> <a href="https://publications.waset.org/abstracts/157103/electron-spin-resonance-of-conduction-and-spin-waves-dynamics-investigations-in-bi-2223-superconductor-for-decoding-pairing-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7568</span> Temperature Dependent Tribological Properties of Graphite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar%20Das">Pankaj Kumar Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Niranjan%20Kumar"> Niranjan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasun%20Chakraborti"> Prasun Chakraborti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20tribology" title="high temperature tribology">high temperature tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbostratic%20graphite" title=" turbostratic graphite"> turbostratic graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear "> wear </a> </p> <a href="https://publications.waset.org/abstracts/26767/temperature-dependent-tribological-properties-of-graphite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7567</span> Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20Zaraq">Asmaa Zaraq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20perovskites" title="double perovskites">double perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=caracterisation%20DRX" title=" caracterisation DRX"> caracterisation DRX</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20de%20phase" title=" transition de phase"> transition de phase</a> </p> <a href="https://publications.waset.org/abstracts/27673/crystal-structures-and-high-temperature-phase-transitions-of-the-new-ordered-double-perovskites-srcacoteo6-and-srcaniteo6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7566</span> Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kook%20Lee">Jong Kook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangcheol%20Eum"> Sangcheol Eum</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehong%20Kim"> Jaehong Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wollastonite" title="wollastonite">wollastonite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite%20%20composite%20coatings" title=" hydroxyapatite composite coatings"> hydroxyapatite composite coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20temperature%20spay%20process" title=" room temperature spay process"> room temperature spay process</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconia" title=" zirconia "> zirconia </a> </p> <a href="https://publications.waset.org/abstracts/25551/fabrication-of-wollastonitehydroxyapatite-coatings-on-zirconia-by-room-temperature-spray-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7565</span> Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chongtham%20Jiten">Chongtham Jiten</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhapiyari%20Laishram"> Radhapiyari Laishram</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chandramani%20Singh"> K. Chandramani Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkaline niobate (Na<sub>0.5</sub>K<sub>0.5</sub>)NbO<sub>3</sub> ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K<sub>0.485</sub>Na<sub>0.5</sub>Li<sub>0.015</sub>)(Nb<sub>0.98</sub>V<sub>0.02</sub>)O<sub>3</sub>. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn<sup>4+</sup>. So, (K<sub>0.485</sub>Na<sub>0.5</sub>Li<sub>0.015</sub>)(Nb<sub>0.98</sub>V<sub>0.02</sub>)O<sub>3 </sub>+ <em>x</em> MnO<sub>2</sub> (<em>x</em> = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that&nbsp;both the undoped and Mn<sup>4+</sup>-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn<sup>4+</sup>&nbsp;doping has little effect on both the Curie temperature&nbsp;(<em>T</em><sub>c</sub>)&nbsp;and tetragonal-orthorhombic phase transition temperature&nbsp;(<em>T</em><sub>ot</sub>). The bulk density, room-temperature dielectric constant (<em>&epsilon;</em><sub>RT</sub>), and room-c The room-temperature coercive field (<em>E</em><sub>c</sub>) is observed to be lower in Mn<sup>4+</sup> doped sample. The detailed analysis of the <em>P-E</em> hysteresis loops over the range of temperature from about room temperature to <em>T</em><sub>ot</sub> points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn<sup>4+</sup> doped ceramic. The study reveals that small traces of Mn<sup>4+</sup> can modify (K<sub>0.485</sub>Na<sub>0.5</sub>Li<sub>0.015</sub>)(Nb<sub>0.98</sub>V<sub>0.02</sub>)O<sub>3 </sub>system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramics" title="ceramics">ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroelectric%20properties" title=" ferroelectric properties"> ferroelectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-free" title=" lead-free"> lead-free</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/59726/effect-of-manganese-doping-on-ferrroelectric-properties-of-k0485na05li0015nb098v002o3-lead-free-piezoceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7564</span> Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramovatar">Ramovatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Panwar"> Neeraj Panwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20properties" title=" energy storage properties"> energy storage properties</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20free%20ceramics" title=" lead free ceramics"> lead free ceramics</a> </p> <a href="https://publications.waset.org/abstracts/99492/dielectric-energy-storage-and-impedance-spectroscopic-studies-of-tin-doped-ba098ca002tio3-lead-free-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7563</span> Performance of an Absorption Refrigerator Using a Solar Thermal Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Hmida">Abir Hmida</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihel%20Chekir"> Nihel Chekir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ben%20Brahim"> Ammar Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m<sup>3</sup> is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m&sup2; of solar collectors are necessary to accomplish the work of the solar cold room. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption" title="absorption">absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20room" title=" cold room"> cold room</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20tube" title=" vacuum tube"> vacuum tube</a> </p> <a href="https://publications.waset.org/abstracts/99221/performance-of-an-absorption-refrigerator-using-a-solar-thermal-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7562</span> Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moyzykh">M. Moyzykh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Klichuk"> I. Klichuk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sabirov"> L. Sabirov</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kolomentseva"> D. Kolomentseva</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Magommedov"> E. Magommedov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title="superconductivity">superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20limiter" title=" current limiter"> current limiter</a>, <a href="https://publications.waset.org/abstracts/search?q=SFCL" title=" SFCL"> SFCL</a>, <a href="https://publications.waset.org/abstracts/search?q=HTS" title=" HTS"> HTS</a>, <a href="https://publications.waset.org/abstracts/search?q=utilities" title=" utilities"> utilities</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenics" title=" cryogenics"> cryogenics</a> </p> <a href="https://publications.waset.org/abstracts/162057/results-of-three-year-operation-of-220kv-pilot-superconducting-fault-current-limiter-in-moscow-power-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7561</span> Investigating and Comparing the Performance of Baseboard and Panel Radiators by Calculating the Thermal Comfort Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Erfan%20Doraki">Mohammad Erfan Doraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salehi"> Mohammad Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to evaluate the performance of Baseboard and Panel radiators with thermal comfort coefficient, A room with specific dimensions was modeled with Ansys fluent and DesignBuilder, then calculated the speed and temperature parameters in different parts of the room in two modes of using Panel and Baseboard radiators and it turned out that use of Baseboard radiators has a more uniform temperature and speed distribution, but in a Panel radiator, the room is warmer. Then, by calculating the thermal comfort indices, It was shown that using a Panel radiator is a more favorable environment and using a Baseboard radiator is a more uniform environment in terms of thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radiator" title="Radiator">Radiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Baseboard" title=" Baseboard"> Baseboard</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal" title=" optimal"> optimal</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20coefficient" title=" comfort coefficient"> comfort coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat "> heat </a> </p> <a href="https://publications.waset.org/abstracts/134114/investigating-and-comparing-the-performance-of-baseboard-and-panel-radiators-by-calculating-the-thermal-comfort-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7560</span> Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Anbu%20Raj">A. Anbu Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mugendiren"> V. Mugendiren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incremental%20forming" title="incremental forming">incremental forming</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20thickness" title=" wall thickness"> wall thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/66474/evaluation-of-forming-properties-on-aa-5052-aluminium-alloy-by-incremental-forming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7559</span> Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homin%20Kim">Homin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungjo%20Byun"> Hyungjo Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Do"> Jinyoung Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongil%20Lee"> Yongil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin"> Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungbae%20Lee"> Seungbae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20room%20design" title=" engine room design"> engine room design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20hydraulics" title=" mobile hydraulics"> mobile hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/61957/thermal-and-acoustic-design-of-mobile-hydraulic-vehicle-engine-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7558</span> Structural and Optical Study of Cu doped ZnS Thin Films Nanocrystalline by Chemical Bath Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Merzouk">Hamid Merzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20T.%20Talantikite"> D. T. Talantikite</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haddad"> H. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Tounsi"> Amel Tounsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnS is an important II-VI binary compound with large band-gap energy at room temperature. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. The depositions are performed by a simple chemical bath deposition route. Structural properties are carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical transmittance is investigated by the UV-visible spectroscopy at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical" title="chemical">chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=bath" title=" bath"> bath</a>, <a href="https://publications.waset.org/abstracts/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu" title=" Cu"> Cu</a>, <a href="https://publications.waset.org/abstracts/search?q=doped" title=" doped"> doped</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnS" title=" ZnS"> ZnS</a>, <a href="https://publications.waset.org/abstracts/search?q=thin" title=" thin"> thin</a>, <a href="https://publications.waset.org/abstracts/search?q=films" title=" films"> films</a> </p> <a href="https://publications.waset.org/abstracts/28841/structural-and-optical-study-of-cu-doped-zns-thin-films-nanocrystalline-by-chemical-bath-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7557</span> Asymmetrically Contacted Tellurium Short-Wave Infrared Photodetector with Low Dark Current and High Sensitivity at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huang%20Haoxin">Huang Haoxin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large dark current at room temperature has long been the major bottleneck that impedes the development of high-performance infrared photodetectors towards miniaturization and integration. Although infrared photodetectors based on layered 2D narrow bandgap semiconductors have shown admirable advantages compared with those based on conventional compounds, which typically suffer from expensive cryogenic operations, it is still urgent to develop a simple but effective strategy to further reduce the dark current. Herein, a tellurium (Te) based infrared photodetector is reported with a specifically designed asymmetric electrical contact area. The deliberately introduced asymmetric electrical contact raises the electric field intensity difference in the Te channel near the drain and the source electrodes, resulting in spontaneous asymmetric carrier diffusion under global infrared light illumination under zero bias. Specifically, the Te-based photodetector presents promising detector performance at room temperature, including a low dark current of≈1 nA, an ultrahigh photocurrent/dark current ratio of 1.57×10⁴, a high specific detectivity (D*) of 3.24×10⁹ Jones, and relatively fast response speed of ≈720 μs at zero bias. The results prove that the simple design of asymmetric electrical contact areas can provide a promising solution to high-performance 2D semiconductor-based infrared photodetectors working at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetrical%20contact" title="asymmetrical contact">asymmetrical contact</a>, <a href="https://publications.waset.org/abstracts/search?q=tellurium" title=" tellurium"> tellurium</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20current" title=" dark current"> dark current</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20photodetector" title=" infrared photodetector"> infrared photodetector</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/185792/asymmetrically-contacted-tellurium-short-wave-infrared-photodetector-with-low-dark-current-and-high-sensitivity-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7556</span> Effect of Machining Induced Microstructure Changes on the Edge Formability of Titanium Alloys at Room Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20S.%20Kwame">James S. Kwame</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Yakushina"> E. Yakushina</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Blackwell"> P. Blackwell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The challenges in forming titanium alloys at room temperature are well researched and are linked both to the limitations imposed by the basic crystal structure and their ability to form texture during plastic deformation. One major issue of concern for the sheet forming of titanium alloys is their high sensitivity to surface inhomogeneity. Various machining processes are utilised in preparing sheet hole edges for edge flanging applications. However, the response of edge forming tendencies of titanium to different edge surface finishes is not well investigated. The hole expansion test is used in this project to elucidate the impact of abrasive water jet (AWJ) and electro-discharge machining (EDM) cutting techniques on the edge formability of CP-Ti (Grade 2) and Ti-3Al-2.5V alloys at room temperature. The results show that the quality of the edge surface finish has a major effect on the edge formability of the materials. The work also found that the variations in the edge forming performance are mainly the result of the influence of machining induced edge surface defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=hole%20expansion%20test" title=" hole expansion test"> hole expansion test</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20formability" title=" edge formability"> edge formability</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conventional%20machining" title=" non-conventional machining"> non-conventional machining</a> </p> <a href="https://publications.waset.org/abstracts/110917/effect-of-machining-induced-microstructure-changes-on-the-edge-formability-of-titanium-alloys-at-room-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7555</span> Calculation of Effective Masses and Curie Temperature of (Ga, Mn) as Diluted Magnetic Semiconductor from the Eight-band k.p Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khawlh%20A.%20Alzubaidi">Khawlh A. Alzubaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadijah%20B.%20Alziyadi"> Khadijah B. Alziyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amor%20M.%20Alsayari"> Amor M. Alsayari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a major step toward the implementation of spintronic devices for processing, transferring, and storing of information. Among the many types of DMS materials which have been investigated, Mn-doped GaAs has become one of the best candidates for technological application. However, despite major developments over the last few decades, the maximum Curie temperature (~200 K) remains well below room temperature. In this work, we have studied the effect of Mn content and strain on the GaMnAs effective masses of electron, heavy and light holes calculated in the different crystallographic direction. Also, the Curie temperature in the DMS GaMnAs alloy is determined. Compilation of GaMnAs band parameters have been carried out using the 8-band k.p model based on Lowdin perturbation theory where spin orbit, sp-d exchange interaction, and biaxial strain are taken into account. Our results show that effective masses, calculated along the different crystallographic directions, have a strong dependence on strain, ranging from -2% (tensile strain) to 2% (compressive strain), and Mn content increased from 1 to 5%. The Curie temperature is determined within the mean-field approach based on the Zener model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductors" title="diluted magnetic semiconductors">diluted magnetic semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=k.p%20method" title=" k.p method"> k.p method</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20masses" title=" effective masses"> effective masses</a>, <a href="https://publications.waset.org/abstracts/search?q=curie%20temperature" title=" curie temperature"> curie temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/162897/calculation-of-effective-masses-and-curie-temperature-of-ga-mn-as-diluted-magnetic-semiconductor-from-the-eight-band-kp-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7554</span> Synthesis and Charaterization of Nanocomposite Poly (4,4&#039; Methylenedianiline) Catalyzed by Maghnite-H+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Belmokhtar">A. Belmokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yahiaoui"> A. Yahiaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyoucef"> A. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belbachir"> M. Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We reported the synthesis and characterization of nanocomposite poly (4,4’ methylenedianiline) via chemical polymerization of monomers 4,4’ methylenedianiline by ammonium persulfate (APS) at room temperature catalyzed by Maghnite-H+. A facile method was demonstrated to grow poly (4,4’ methylenedianiline) nanocomposite, which was carried out by mixing Ammonium Persulfate (APS) aqueous and 4,4’ methylenedianiline solution in the presence of Maghnite-H+ at room temperature The effect of amount of catalyst and time on the polymerization yield of the polymers was studied. Structure was confirmed by elemental analysis, UV vis, RMN-1H, and voltammetry cyclique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charaterization" title="charaterization">charaterization</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite-h%2B" title=" maghnite-h+"> maghnite-h+</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerization" title=" polymerization"> polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%284" title=" poly (4"> poly (4</a>, <a href="https://publications.waset.org/abstracts/search?q=4%E2%80%99%20methylenedianiline%29" title="4’ methylenedianiline)">4’ methylenedianiline)</a> </p> <a href="https://publications.waset.org/abstracts/30737/synthesis-and-charaterization-of-nanocomposite-poly-44-methylenedianiline-catalyzed-by-maghnite-h" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7553</span> Effect of Temperature and Deformation Mode on Texture Evolution of AA6061</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghosh">M. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Miroux"> A. Miroux</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20A.%20I.%20Kestens"> L. A. I. Kestens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA%206061" title="AA 6061">AA 6061</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile" title=" tensile"> tensile</a>, <a href="https://publications.waset.org/abstracts/search?q=PSC" title=" PSC"> PSC</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/5951/effect-of-temperature-and-deformation-mode-on-texture-evolution-of-aa6061" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=252">252</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=253">253</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=room%20temperature%20superconductor&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10