CINXE.COM

Search results for: crop monitoring

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: crop monitoring</title> <meta name="description" content="Search results for: crop monitoring"> <meta name="keywords" content="crop monitoring"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="crop monitoring" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="crop monitoring"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4209</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: crop monitoring</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4209</span> Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olena%20Kavats">Olena Kavats</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Khramov"> Dmitry Khramov</a>, <a href="https://publications.waset.org/abstracts/search?q=Kateryna%20Sergieieva"> Kateryna Sergieieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Vasyliev"> Vladimir Vasyliev</a>, <a href="https://publications.waset.org/abstracts/search?q=Iurii%20Kavats"> Iurii Kavats</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geoinformation%20technology" title="geoinformation technology">geoinformation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20classification" title=" crop classification"> crop classification</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20yield%20prediction" title=" crop yield prediction"> crop yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20monitoring" title=" agricultural monitoring"> agricultural monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=EOS%20Crop%20Monitoring%20Platform" title=" EOS Crop Monitoring Platform"> EOS Crop Monitoring Platform</a> </p> <a href="https://publications.waset.org/abstracts/89623/geoinformation-technology-of-agricultural-monitoring-using-multi-temporal-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4208</span> Comparative Study of Conventional and Satellite Based Agriculture Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafia%20Hassan">Rafia Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rizwan"> Ali Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Farhan"> Sadaf Farhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bushra%20Sabir"> Bushra Sabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane&rsquo;s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20frame" title="area frame">area frame</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20reporting%20service" title=" crop reporting service"> crop reporting service</a>, <a href="https://publications.waset.org/abstracts/search?q=CRS" title=" CRS"> CRS</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20frame" title=" sample frame"> sample frame</a>, <a href="https://publications.waset.org/abstracts/search?q=SRS%2FGIS" title=" SRS/GIS"> SRS/GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20remote%20sensing%2F%20geographic%20information%20system" title=" satellite remote sensing/ geographic information system"> satellite remote sensing/ geographic information system</a> </p> <a href="https://publications.waset.org/abstracts/67079/comparative-study-of-conventional-and-satellite-based-agriculture-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4207</span> Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catalina%20Albornoz">Catalina Albornoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Barbieri"> Giacomo Barbieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coffee" title="coffee">coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20crop" title=" mixed crop"> mixed crop</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20signature" title=" spectral signature"> spectral signature</a> </p> <a href="https://publications.waset.org/abstracts/76629/calculation-of-the-normalized-difference-vegetation-index-and-the-spectral-signature-of-coffee-crops-benefits-of-image-filtering-on-mixed-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4206</span> Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing-Bing%20E.%20Goh">Bing-Bing E. Goh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=winter%20wheat" title="winter wheat">winter wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20monitoring" title=" crop monitoring"> crop monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20analysis" title=" multivariate analysis"> multivariate analysis</a> </p> <a href="https://publications.waset.org/abstracts/143541/use-of-sentiel-2-data-to-monitor-plant-density-and-establishment-rate-of-winter-wheat-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4205</span> A Method to Estimate Wheat Yield Using Landsat Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zama%20Mahmood">Zama Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand of food management, monitoring of the crop growth and forecasting its yield well before harvest is very important. These days, yield assessment together with monitoring of crop development and its growth are being identified with the help of satellite and remote sensing images. Studies using remote sensing data along with field survey validation reported high correlation between vegetation indices and yield. With the development of remote sensing technique, the detection of crop and its mechanism using remote sensing data on regional or global scales have become popular topics in remote sensing applications. Punjab, specially the southern Punjab region is extremely favourable for wheat production. But measuring the exact amount of wheat production is a tedious job for the farmers and workers using traditional ground based measurements. However, remote sensing can provide the most real time information. In this study, using the Normalized Differentiate Vegetation Index (NDVI) indicator developed from Landsat satellite images, the yield of wheat has been estimated during the season of 2013-2014 for the agricultural area around Bahawalpur. The average yield of the wheat was found 35 kg/acre by analysing field survey data. The field survey data is in fair agreement with the NDVI values extracted from Landsat images. A correlation between wheat production (ton) and number of wheat pixels has also been calculated which is in proportional pattern with each other. Also a strong correlation between the NDVI and wheat area was found (R2=0.71) which represents the effectiveness of the remote sensing tools for crop monitoring and production estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landsat" title="landsat">landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title=" satellite images"> satellite images</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/31728/a-method-to-estimate-wheat-yield-using-landsat-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4204</span> Agile Real-Time Field Programmable Gate Array-Based Image Processing System for Drone Imagery in Digital Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Shahid%20Antora">Sabiha Shahid Antora</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Ki%20Chang"> Young Ki Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with various farm management technologies, imagery is an important tool that facilitates crop assessment, monitoring, and management. As a consequence, drone imaging technology is playing a vital role to capture the state of the entire field for yield mapping, crop scouting, weed detection, and so on. Although it is essential to inspect the cultivable lands in real-time for making rapid decisions regarding field variable inputs to combat stresses and diseases, drone imagery is still evolving in this area of interest. Cost margin and post-processing complexions of the image stream are the main challenges of imaging technology. Therefore, this proposed project involves the cost-effective field programmable gate array (FPGA) based image processing device that would process the image stream in real-time as well as providing the processed output to support on-the-spot decisions in the crop field. As a result, the real-time FPGA-based image processing system would reduce operating costs while minimizing a few intermediate steps to deliver scalable field decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time" title="real-time">real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20imagery" title=" drone imagery"> drone imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20monitoring" title=" crop monitoring"> crop monitoring</a> </p> <a href="https://publications.waset.org/abstracts/132611/agile-real-time-field-programmable-gate-array-based-image-processing-system-for-drone-imagery-in-digital-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4203</span> Estimation of Evapotranspiration and Crop Coefficient of Eggplant with Lysimeter in Al-Hasa Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mishari%20AlNaim">Mishari AlNaim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted for two seasons of 2011 and 2012 in The Agricultural Experiment Research Station in King Faisal University at Al-Hasa region, Saudi Arabia to estimate evapotranspiration (ETC) of Eggplant crop using Drainage Lysimeter with surface area of 2 x 2 m and depth of 1.5 m. The irrigation was applied daily. The amount of drainage was measured before each irrigation event. The results showed that there was almost no difference in the seasonal evapotranspiration of eggplant crop in the two seasons. The average evapotranspiration values for eggplant crop for the summer and winter seasons were 823.4 mm and 479.7 mm respectively. The highest and the lowest weekly measured values of (ETC) of eggplant crop during the two summer seasons were 8.6 mm/day and 3.9 mm/day respectively, while the highest and lowest weekly measured values of (ETC) of eggplant crop during the two winter seasons were 3.9 mm/day and 2.0 mm/day respectively. The measured values of ETc, in conjunction with the results of Penmen-Monteith equation for reference Evapotranspiration (ETR), were used to determine the crop coefficient (KC ini, KC mid and KC end) for eggplant crop. The average values were 0.50, 84 and 0.60 for KC ini, KC mid and KC end in Al-Hasa region, respectively. These estimated values for KC were used to approximate (ETc) for eggplant crop. High positive correlation coefficient (0.959) was detected between the approximated and measured values of eggplant crop evapotranspiration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=eggpant" title=" eggpant"> eggpant</a>, <a href="https://publications.waset.org/abstracts/search?q=ETC" title=" ETC"> ETC</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Hasa" title=" Al-Hasa"> Al-Hasa</a> </p> <a href="https://publications.waset.org/abstracts/11245/estimation-of-evapotranspiration-and-crop-coefficient-of-eggplant-with-lysimeter-in-al-hasa-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4202</span> Evaluating the Effects of Weather and Climate Change to Risks in Crop Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Bellett-Travers">Marcus Bellett-Travers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different modelling approaches have been used to determine or predict yield of crops in different geographies. Central to the methodologies are the presumption that it is the absolute yield of the crop in a given location that is of the highest priority to those requiring information on crop productivity. Most individuals, companies and organisations within the agri-food sector need to be able to balance the supply of crops with the demand for them. Different modelling approaches have been used to determine and predict crop yield. The growing need to ensure certainty of supply and stability of prices requires an approach that describes the risk in producing a crop. A review of current methodologies to evaluate the risk to food production from changes in the weather and climate is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20production" title="crop production">crop production</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/68054/evaluating-the-effects-of-weather-and-climate-change-to-risks-in-crop-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4201</span> Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhartha%20Khare">Siddhartha Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitish%20Kr%20Boro"> Nitish Kr Boro</a>, <a href="https://publications.waset.org/abstracts/search?q=Omm%20Animesh%20Mishra"> Omm Animesh Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20remote%20sensing" title=" satellite remote sensing"> satellite remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20monitoring" title=" crop monitoring"> crop monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=android%20and%20web%20application" title=" android and web application"> android and web application</a> </p> <a href="https://publications.waset.org/abstracts/159510/web-and-smart-phone-based-platform-combining-artificial-intelligence-and-satellite-remote-sensing-data-to-geoenable-villages-for-crop-health-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4200</span> Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreedevi%20Moharana">Shreedevi Moharana</a>, <a href="https://publications.waset.org/abstracts/search?q=Subashisa%20Dutta"> Subashisa Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20parameters" title="crop parameters">crop parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=index%20model" title=" index model"> index model</a>, <a href="https://publications.waset.org/abstracts/search?q=LISS%20IV%20imagery" title=" LISS IV imagery"> LISS IV imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=plot%20scale" title=" plot scale"> plot scale</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20function" title=" shape function"> shape function</a> </p> <a href="https://publications.waset.org/abstracts/89499/plot-scale-estimation-of-crop-biophysical-parameters-from-high-resolution-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4199</span> Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Katsoulas">Nikolaos Katsoulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Naounoulis"> Ioannis Naounoulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Faliagka"> Sofia Faliagka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title="hydroponics">hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiencu" title=" water use efficiencu"> water use efficiencu</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients%20use%20efficiency" title=" nutrients use efficiency"> nutrients use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/175832/drainage-management-in-a-cascade-hydroponic-system-combination-of-cucumber-and-melon-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4198</span> Modern Trends in Pest Management Agroindustry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarjit%20S%20Tanda">Amarjit S Tanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrated Pest Management Technology (IPMT) offers a crop protection model with sustainable agriculture production with minimum damage to the environment and human health. A concept of agro-ecological crop protection seems unsuitable under dynamic environmental systems. To remedy this, we are proposing Genetically Engineered Crop Protection System (GECPS), as an alternate concept in IPMT that suggests how GE cultivars can be optimally put to the service of crop protection. Genetically engineered cultivars which are developed by gene editing biotechnology may provide a preventive defense against the insect pests and plant diseases, a suitable alternative crop system for blending in IPMT program, in the future agro-industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated" title="integrated">integrated</a>, <a href="https://publications.waset.org/abstracts/search?q=pest" title=" pest"> pest</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/179721/modern-trends-in-pest-management-agroindustry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4197</span> Determination of the Seed Vigor of Soybean Cultivated as Main and Second Crop in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Demir%20Kaya">Mehmet Demir Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Engin%20G%C3%B6khan%20Kulan"> Engin Gökhan Kulan</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20%C4%B0leri"> Onur İleri</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%BCleyman%20Avc%C4%B1"> Süleyman Avcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to determine the difference in seed vigor between the seed lots cultivated in main and second crop of soybean in Turkey. Seeds from soybean cv. Cinsoy and Umut-2002 were evaluated in the laboratory for germination, emergence, cool test at 18°C for 10 days, and cold test at 10°C for 4 days and 25°C for 6 days. Result showed that the initial oil contents of Cinsoy and Umut-2002 and seeds were determined to be 19.8 and 20.1% in main crop, and 18.7 and 22.1% in second crop, respectively. It was determined that a clear difference between main and second crop soybean seed lots for seed vigor was found. Germination and emergence percentage were higher in the seed from second crop cultivation of the cultivars. There was no significant difference in germination percentage in cool and cold test while seedling growth was better in the seeds of second crop soybean. The highest seed vigor index (477.6) was found in the seeds of the cultivars grown at second crop. Standard germination percentage did not give a sensitive separation for determining seed vigor of soybean lots. It was concluded that second crop soybean seeds were found the most suitable for seed production while main crop soybean gave higher protein lower oil content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glycine%20max%20L." title="Glycine max L.">Glycine max L.</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=emergence" title=" emergence"> emergence</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a>, <a href="https://publications.waset.org/abstracts/search?q=vigor%20test" title=" vigor test "> vigor test </a> </p> <a href="https://publications.waset.org/abstracts/14158/determination-of-the-seed-vigor-of-soybean-cultivated-as-main-and-second-crop-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4196</span> Crop Recommendation System Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prathik%20Ranka">Prathik Ranka</a>, <a href="https://publications.waset.org/abstracts/search?q=Sridhar%20K"> Sridhar K</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasanth%20Daniel"> Vasanth Daniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithun%20Shankar"> Mithun Shankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20recommendation" title="crop recommendation">crop recommendation</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=crop" title=" crop"> crop</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/193115/crop-recommendation-system-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4195</span> Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idowu%20Olugbenga%20Adewumi">Idowu Olugbenga Adewumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Foluke%20Iyabo%20Oluwatoyinbo"> Foluke Iyabo Oluwatoyinbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pervasive%20computing" title="pervasive computing">pervasive computing</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title=" intrusion detection"> intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=arable%20crop" title=" arable crop"> arable crop</a> </p> <a href="https://publications.waset.org/abstracts/15786/pervasive-computing-model-to-increase-arable-crop-yield-through-detection-intrusion-system-ids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4194</span> Event Monitoring Based On Web Services for Heterogeneous Event Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arne%20Koschel">Arne Koschel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20monitoring" title="event monitoring">event monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=ECA" title=" ECA"> ECA</a>, <a href="https://publications.waset.org/abstracts/search?q=CEP" title=" CEP"> CEP</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20services" title=" web services"> web services</a> </p> <a href="https://publications.waset.org/abstracts/28805/event-monitoring-based-on-web-services-for-heterogeneous-event-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">744</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4193</span> Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Courault">D. Courault</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Hossard"> L. Hossard</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Demarez"> V. Demarez</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ndikumana"> E. Ndikumana</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ho%20Tong%20Minh"> D. Ho Tong Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Baghdadi"> N. Baghdadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ruget"> F. Ruget</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20practices" title="agricultural practices">agricultural practices</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/87757/monitoring-of-rice-phenology-and-agricultural-practices-from-sentinel-2-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4192</span> RNA Interference Technology as a Veritable Tool for Crop Improvement and Breeding for Biotic Stress Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf">M. Yusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent discovery of the phenomenon of RNA interference has led to its application in various aspects of plant improvement. Crops can be modified by engineering novel RNA interference pathways that create small RNA molecules to alter gene expression in crops or plant pests. RNA interference can generate new crop quality traits or provide protection against insects, nematodes and pathogens without introducing new proteins into food and feed products. This is an advantage in contrast with conventional procedures of gene transfer. RNA interference has been used to develop crop varieties resistant to diseases, pathogens and insects. Male sterility has been engineered in plants using RNA interference. Better quality crops have been developed through the application of RNA interference etc. The objective of this paper is to highlight the application of RNA interference in crop improvement and to project its potential future use to solve problems of agricultural production in relation to plant breeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RNA%20interference" title="RNA interference">RNA interference</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20Improvement" title=" crop Improvement"> crop Improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20production" title=" agricultural production"> agricultural production</a> </p> <a href="https://publications.waset.org/abstracts/10963/rna-interference-technology-as-a-veritable-tool-for-crop-improvement-and-breeding-for-biotic-stress-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4191</span> A Crop Growth Subroutine for Watershed Resources Management (WRM) Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Nnaemeka%20Ogbu">Kingsley Nnaemeka Ogbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Mbajiorgu"> Constantine Mbajiorgu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20yield" title="crop yield">crop yield</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20coefficient" title=" roughness coefficient"> roughness coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=PAR" title=" PAR"> PAR</a>, <a href="https://publications.waset.org/abstracts/search?q=WRM%20model" title=" WRM model"> WRM model</a> </p> <a href="https://publications.waset.org/abstracts/68452/a-crop-growth-subroutine-for-watershed-resources-management-wrm-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4190</span> Perceived Impact of Climate Change on the Livelihood of Arable Crop Farmers in Ipokia Local Government Area of Ogun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Olugbenga%20Fakoya">Emmanuel Olugbenga Fakoya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the perceived impact of climate change on the livelihood of arable crop farmers in Ipokia Local Government Area of Ogun State, Nigeria. Multistage sampling technique was used to select 80 arable crop farmers in the study area. Data collected were analyzed using percentages, frequencies and Chi square analysis. The result showed that 63.8 percent of the respondents were male while 55.0 percent were married. Less than half (30.0 percent) of the respondents were between the age bracket of 41-50 years and 50.0 percent had 6-10 household size. Furthermore, majority (40.0 percent) of the arable crop farmers farmed on an inherited land and 51.3 percent had 2-3 hectares of land. Majority (38.8 percent) of the farmers intercrop maize with cassava and maize with yam. Various strategies adapted to reduce the effect of climate change on their crop and livelihood include: crop rotation (53.8 percent), planting of leguminous crop (35.0 percent), application of organic fertilizers (45.0 percent), mulching (56.3 percent) and by planting drought resistance crops (46.5 percent). Reported among the effects of climate change on crop and farmers’ livelihood were: discoloration of crop leave (63.8 percent), increase infestation of pests and diseases (58.8 percent) and reduction of crop yield (60.0 percent). Chi- square analysis showed significant relationship between impact of climate change on arable crop production and thus famers’ livelihood. It was concluded from the study that climate change is an impinging factor that seriously affect arable crop production and hence farmers’ livelihood despite coping strategies to minimize its effect. It was however recommended that Agricultural policies and practices that could minimize or eliminate its effect should be seriously enacted to boost production and increase farmers’ livelihood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20extension" title="agricultural extension">agricultural extension</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20agent" title=" extension agent"> extension agent</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20sector" title=" private sector"> private sector</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a> </p> <a href="https://publications.waset.org/abstracts/12502/perceived-impact-of-climate-change-on-the-livelihood-of-arable-crop-farmers-in-ipokia-local-government-area-of-ogun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4189</span> Condition Monitoring System of Mine Air Compressors Based on Wireless Sensor Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng%20Fu">Sheng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinbo%20Gao"> Yinbo Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Lin"> Hao Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current mine air compressors monitoring system, there are some difficulties in the installation and maintenance because of the wired connection. To solve the problem, this paper introduces a new air compressors monitoring system based on ZigBee in which the monitoring parameters are transmitted wirelessly. The collecting devices are designed to form a cluster network to collect vibration, temperature, and pressure of air cylinders and other parameters. All these devices are battery-powered. Besides, the monitoring software in PC is developed using MFC. Experiments show that the designed wireless sensor network works well in the site environmental condition and the system is very convenient to be installed since the wireless connection. This monitoring system will have a wide application prospect in the upgrade of the old monitoring system of the air compressors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title=" wireless sensor network"> wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20compressor" title=" air compressor"> air compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=zigbee" title=" zigbee"> zigbee</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20collecting" title=" data collecting"> data collecting</a> </p> <a href="https://publications.waset.org/abstracts/41776/condition-monitoring-system-of-mine-air-compressors-based-on-wireless-sensor-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4188</span> A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifa%20Benahmed">Khelifa Benahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Benahmed"> Tarek Benahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure%20monitoring" title="critical infrastructure monitoring">critical infrastructure monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20monitoring" title=" environment monitoring"> environment monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20region%20detection" title=" event region detection"> event region detection</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/75352/a-survey-on-a-critical-infrastructure-monitoring-using-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4187</span> Evaluation of Potential of Crop Residues for Energy Generation in Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Prasad%20Adhikari">Narayan Prasad Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Nepal, the crop residues have often been considered as one of the potential sources of energy to cope with prevailing energy crisis. However, the lack of systematic studies about production and various other competent uses of crop production is the main obstacle to evaluate net potential of the residues for energy production. Under this background, this study aims to assess the net annual availability of crop residues for energy production by undertaking three different districts with the representation of country’s three major regions of lowland, hill, and mountain. The five major cereal crops of paddy, wheat, maize, millet, and barley are considered for the analysis. The analysis is based upon two modes of household surveys. The first mode of survey is conducted to total of 240 households to obtain key information about crop harvesting and livestock management throughout a year. Similarly, the quantification of main crops along with the respective residues on fixed land is carried out to 45 households during second mode. The range of area of such fixed land is varied from 50 to 100 m2. The measurements have been done in air dry basis. The quantity for competitive uses of respective crop residues is measured on the basis of respondents’ feedback. There are four major competitive uses of crop residues at household which are building material, burning, selling, and livestock fodder. The results reveal that the net annual available crop residues per household are 4663 kg, 2513 kg, and 1731 kg in lowland, hill, and mountain respectively. Of total production of crop residues, the shares of dedicated fodder crop residues (except maize stalk and maize cob) are 94 %, 62 %, and 89 % in lowland, hill, and mountain respectively and of which the corresponding shares of fodder are 87 %, 91 %, and 82 %. The annual percapita energy equivalent from net available crop residues in lowland, hill, and mountain are 2.49 GJ, 3.42 GJ, and 0.44 GJ which represent 30 %, 33 %, and 3 % of total annual energy consumption respectively whereas the corresponding current shares of crop residues are only 23 %, 8 %, and 1 %. Hence, even utmost exploitation of available crop residues can hardly contribute to one third of energy consumption at household level in lowland, and hill whereas this is limited to particularly negligible in mountain. Moreover, further analysis has also been done to evaluate district wise supply-demand context of dedicated fodder crop residues on the basis of presence of livestock. The high deficit of fodder crop residues in hill and mountain is observed where the issue of energy generation from these residues will be ludicrous. As a contrary, the annual production of such residues for livestock fodder in lowland meets annual demand with modest surplus even if entire fodder to be derived from the residues throughout a year and thus there seems to be further potential to utilize the surplus residues for energy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20residues" title="crop residues">crop residues</a>, <a href="https://publications.waset.org/abstracts/search?q=hill" title=" hill"> hill</a>, <a href="https://publications.waset.org/abstracts/search?q=lowland" title=" lowland"> lowland</a>, <a href="https://publications.waset.org/abstracts/search?q=mountain" title=" mountain"> mountain</a> </p> <a href="https://publications.waset.org/abstracts/31936/evaluation-of-potential-of-crop-residues-for-energy-generation-in-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4186</span> Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luleka%20Dlamini">Luleka Dlamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Crespo"> Olivier Crespo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%20van%20Dam"> Jos van Dam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20models" title="crop models">crop models</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20assimilation" title=" data assimilation"> data assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20yield%20estimation" title=" crop yield estimation"> crop yield estimation</a> </p> <a href="https://publications.waset.org/abstracts/152890/assimilating-remote-sensing-data-into-crop-models-a-global-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4185</span> Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luleka%20Dlamini">Luleka Dlamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Crespo"> Olivier Crespo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%20van%20Dam"> Jos van Dam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20models" title="crop models">crop models</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20assimilation" title=" data assimilation"> data assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20yield%20estimation" title=" crop yield estimation"> crop yield estimation</a> </p> <a href="https://publications.waset.org/abstracts/149067/assimilating-remote-sensing-data-into-crop-models-a-global-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4184</span> Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Qureshi">A. L. Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mahessar"> A. A. Mahessar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Dashti"> R. K. Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yasin"> S. M. Yasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were use of canal water, use of marginal quality groundwater from tube well, and conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water. Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped from last week of July, 2011 due to monsoon rainfall. Maximum crop yield (seed cotton) was observed under T1 which was 1,516.8 kg/ha followed by T3 (mixed canal and tube well water) having 1009 kg/ha and 709 kg/ha for T2 i.e. marginal quality groundwater. This concludes that crop yield in T2 and T3 with in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjunctive%20use" title="conjunctive use">conjunctive use</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20crop" title=" cotton crop"> cotton crop</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity%20status" title=" soil salinity status"> soil salinity status</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency "> water use efficiency </a> </p> <a href="https://publications.waset.org/abstracts/17342/effect-of-marginal-quality-groundwater-on-yield-of-cotton-crop-and-soil-salinity-status" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4183</span> Monitoring and Analysis of Bridge Crossing Ground Fissures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiqing%20Zhang">Zhiqing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangong%20Zhou"> Xiangong Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihan%20Zhou"> Zihan Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20monitoring" title="bridge monitoring">bridge monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20fissures" title=" ground fissures"> ground fissures</a>, <a href="https://publications.waset.org/abstracts/search?q=typical%20disease" title=" typical disease"> typical disease</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20displacement" title=" structural displacement"> structural displacement</a> </p> <a href="https://publications.waset.org/abstracts/150133/monitoring-and-analysis-of-bridge-crossing-ground-fissures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4182</span> A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kingsley%20Nnaemeka%20Ogbu">Kingsley Nnaemeka Ogbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Mbajiorgu"> Constantine Mbajiorgu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=runoff" title="runoff">runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness%20coefficient" title=" roughness coefficient"> roughness coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=PAR" title=" PAR"> PAR</a>, <a href="https://publications.waset.org/abstracts/search?q=WRM%20model" title=" WRM model"> WRM model</a> </p> <a href="https://publications.waset.org/abstracts/56608/a-crop-growth-subroutine-for-watershed-resources-management-wrm-model-1-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4181</span> Assessing the Effects of Climate Change on Wheat Production, Ensuring Food Security and Loss Compensation under Crop Insurance Program in Punjab-Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Waseem%20Abbas">Mirza Waseem Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qayyum"> Abdul Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Islam"> Muhammad Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change has emerged as a significant threat to global food security, affecting crop production systems worldwide. This research paper aims to examine the specific impacts of climate change on wheat production in Pakistan, Punjab in particular, a country highly dependent on wheat as a staple food crop. Through a comprehensive review of scientific literature, field observations, and data analysis, this study assesses the key climatic factors influencing wheat cultivation and the subsequent implications for food security in the region. A comparison of two subsequent Wheat seasons in Punjab was examined through climatic conditions, area, yield, and production data. From the analysis, it is observed that despite a decrease in the area under cultivation in the Punjab during the Wheat 2023 season, the production and average yield increased due to favorable weather conditions. These uncertain climatic conditions have a direct impact on crop yields. Last year due to heat waves, Wheat crop in Punjab suffered a significant loss. Through crop insurance, Wheat growers were provided with yield loss protection keeping in view the devastating heat wave and floods last year. Under crop insurance by the Government of the Punjab, 534,587 Wheat growers were insured with a $1.6 million premium subsidy. However, due to better climatic conditions, no loss in the yield was recorded in the insured areas. Crop Insurance is one of the suitable options for policymakers to protect farmers against climatic losses in the future as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20insurance" title=" crop insurance"> crop insurance</a>, <a href="https://publications.waset.org/abstracts/search?q=heatwave" title=" heatwave"> heatwave</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20yield%20punjab" title=" wheat yield punjab"> wheat yield punjab</a> </p> <a href="https://publications.waset.org/abstracts/174146/assessing-the-effects-of-climate-change-on-wheat-production-ensuring-food-security-and-loss-compensation-under-crop-insurance-program-in-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4180</span> Studies on the Effect of Bio-Methanated Distillery Spentwash on Soil Properties and Crop Yields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Gali">S. K. Gali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spentwash, An effluent of distillery is an environmental pollutant because of its high load of pollutants (pH: 2-4; BOD>40,000 mg/l, COD>100,000mg/l and TDS >70,000mg/l). But However, after subjecting it to primary treatment (bio-methanation), Its pollutant load gets drastically reduced (pH: 7.5-8.5, BOD<10,000 mg/l) and could be disposed off safely as a source of organic matter and plant nutrients for crop production. With the consent of State Pollution Control Board, the distilleries in Karnataka are taking up ‘one time controlled land application’ of bio-methanated spentwash in farmers’ fields. A monitoring study was undertaken in Belgaum district of Karnataka State with an objective of studying the effect of land application of bio-methanated spent wash of a distillery on soil properties and crop growth. The treated spentwash was applied uniformly to the fallow dry lands in different farmers’ fields during summer, 2012 at recommended rate (based on nitrogen requirement of crops). The application was made at least a fortnight before sowing/planting operations. The analysis of soils collected before land application of spentwash and after harvest of crops revealed that there was no adverse effect of applied spentwash on soil characteristics. A slight build up in soluble salts was observed but, however all the soils recorded EC of less than 2.0 dSm-1. An increase in soil organic carbon (SOC) and available nitrogen (N) by about 10 to 30 % was observed in the spentwash applied soils. The presence of good amount of biodegradable organics in the treated spentwash (BOD of 6550 mg/l) contributed for increase in SOC and N. A substantial build up in available potassium (K) status (50 to 200%) was observed due to spentwash application. This was attributed to the high K content in spentwash (6950 mg/l). The growth of crops in the spentwash applied fields was higher and farmers could get nearly 10 to 20 per cent higher yields, especially in sugarcane and corn. The analysis of ground water samples showed that the quality of water was not affected due to land application of treated spentwash. Apart from realizing higher crop yields, the farmers were able to save money on N and K fertilisers as the applied spentwash met the crop requirement. Hence, it could be concluded that the bio-methanated distillery spentwash can be gainfully utilized in crop production without polluting the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-methanation" title="bio-methanation">bio-methanation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant" title=" pollutant"> pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20status" title=" potassium status"> potassium status</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20organic%20carbon" title=" soil organic carbon"> soil organic carbon</a> </p> <a href="https://publications.waset.org/abstracts/25308/studies-on-the-effect-of-bio-methanated-distillery-spentwash-on-soil-properties-and-crop-yields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=140">140</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=141">141</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=crop%20monitoring&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10