CINXE.COM
Search results for: wind blowing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wind blowing</title> <meta name="description" content="Search results for: wind blowing"> <meta name="keywords" content="wind blowing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wind blowing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wind blowing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1258</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wind blowing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1258</span> The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Heydariazad">Mohammadreza Heydariazad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20inductor" title=" superconducting inductor"> superconducting inductor</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20power" title=" wind turbine power"> wind turbine power</a> </p> <a href="https://publications.waset.org/abstracts/10467/the-mechanism-of-design-and-analysis-modeling-of-performance-of-variable-speed-wind-turbine-and-dynamical-control-of-wind-turbine-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1257</span> Directional Dust Deposition Measurements: The Influence of Seasonal Changes and the Meteorological Conditions Influencing in Witbank Area and Carletonville Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maphuti%20Georgina%20Kwata">Maphuti Georgina Kwata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal mining in Mpumalanga Province is known of contributing to the atmospheric pollution from various activities. Gold mining in North-West Province is known of also contributing to the atmospheric pollution especially with the production of radon gas. In this research directional dust deposition gauge was used to measure source of direction and meteorological data was used to determine the wind rose blowing and the influence of the seasonal changes. Fourteen months of dust collection was undertaken in Witbank Area and Carletonville Area. The results shows that the sources of direction for Ericson Dam its East in February 2010 and Tip Area shows that the source of direction its West in October 2010. In the East direction there were mining operations, power stations which contributed to the East to be the sources of direction. In the West direction there were smelters, power stations and agricultural activities which contributed for the source of direction to be the West direction for Driefontein Mine: East Recreational Village Club. The East of Leslie Williams hospital is the source of direction which also indicated that there dust generating activities such as mining operation, agricultural activities. The meteorological results for Emalahleni Area in summer and winter the wind rose blow with wind speed of 5-10 ms-1 from the East sector. Annual average for the wind rose blow its East South eastern sector with 20 ms-1 and day time the wind rose from northwestern sector with excess of 20 ms-1. The night time wind direction East-eastern direction with a maximum wind speed of 20 ms-1. The meteorogical results for Driefontein Mine show that North-western sector and north-eastern sector wind rose is blowing with 5-10 ms-1 win speed. Day time wind blows from the West sector and night time wind blows from the north sector. In summer the wind blows North-east sector with 5-10 ms-1 and winter wind blows from North-west and it’s also predominant. In spring wind blows from north-east. The conclusion is that not only mining operation where the directional dust deposit gauge were installed contributed to the source of direction also the power stations, smelters, and other activities nearby the mining operation contributed. The recommendations are the dust suppressant for unpaved roads should be used on a regular basis and there should be monitoring of the weather conditions (the wind speed and direction prior to blasting to ensure minimal emissions). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directional%20dust%20deposition%20gauge" title="directional dust deposition gauge">directional dust deposition gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=BS%20part%205%201747%20dust%20deposit%20gauge" title=" BS part 5 1747 dust deposit gauge"> BS part 5 1747 dust deposit gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20rose" title=" wind rose"> wind rose</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20blowing" title=" wind blowing"> wind blowing</a> </p> <a href="https://publications.waset.org/abstracts/23436/directional-dust-deposition-measurements-the-influence-of-seasonal-changes-and-the-meteorological-conditions-influencing-in-witbank-area-and-carletonville-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1256</span> Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rida%20Kanwal">Rida Kanwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Yuhui"> Wang Yuhui</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Weiguo"> Song Weiguo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wildfires" title="wildfires">wildfires</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20speed" title=" wind speed"> wind speed</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=wildfire%20behavior" title=" wildfire behavior"> wildfire behavior</a> </p> <a href="https://publications.waset.org/abstracts/192554/exploring-the-influence-of-wind-on-wildfire-behavior-in-china-a-data-driven-study-using-machine-learning-and-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1255</span> Properties of Rigid Polyurethane Foam for Imitation Wood Blown by Distilled Water and Cyclopentane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratchanon%20Boonachathong">Ratchanon Boonachathong</a>, <a href="https://publications.waset.org/abstracts/search?q=Bordin%20Kaewnok"> Bordin Kaewnok</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Amornraksa"> Suksun Amornraksa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rigid polyurethane foam (RPUF) used for imitation wood is typically prepared by using 1-Dichloro-1-fluoroethane (HCFC-141b) as a blowing agent. However, this chemical is a hydrofluorocarbon which severely causes ozone depletion to the atmosphere. In this work, a more environmental-friendly RPUF was prepared by using distilled water and cyclopentane (CP) as alternative blowing agent. Several properties of the prepared RPUF were investigated and measured such as density (kg/m³), surface hardness (shore D), and glass transition temperature (°C). It was found that when the amount of the blowing agents decreased, the foam density is increased as well as the surface hardness and glass transition temperature. The results showed that the proper amount of water and cylopentane blowing agent is around 0.3–1.2% and 0.5-1.3% respectively. And the new RPUF produced has a good potential to substitute for a conventional RPUF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowing%20agent" title="blowing agent">blowing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclopentane%20co-blown" title=" cyclopentane co-blown"> cyclopentane co-blown</a>, <a href="https://publications.waset.org/abstracts/search?q=imitation%20wood" title=" imitation wood"> imitation wood</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title=" rigid polyurethane foam"> rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hardness" title=" surface hardness"> surface hardness</a> </p> <a href="https://publications.waset.org/abstracts/85853/properties-of-rigid-polyurethane-foam-for-imitation-wood-blown-by-distilled-water-and-cyclopentane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1254</span> Potentiality of the Wind Energy in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Benoudjafer">C. Benoudjafer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Tandjaoui"> M. N. Tandjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Benachaiba"> C. Benachaiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of kinetic energy of the wind is in full rise in the world and it starts to be known in our country but timidly. One or more aero generators can be installed to produce for example electricity on isolated places or not connected to the electrical supply network. To use the wind as energy source, it is necessary to know first the energy needs for the population and study the wind intensity, speed, frequency and direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energies" title=" renewable energies"> renewable energies</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title=" wind power"> wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=aero-generators" title=" aero-generators"> aero-generators</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energetic%20potential" title=" wind energetic potential"> wind energetic potential</a> </p> <a href="https://publications.waset.org/abstracts/19479/potentiality-of-the-wind-energy-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1253</span> Anti-Corruption Effect on Whistle Blowing Act</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%20Young%20Kim">Na Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a study on the relation between the introduction bill of the Whistle Blowing Act and the CPI (Corruption Perception Index) from 1998 to 2019. It shows that the degree of corruption can be relatively lowered when WBA is introduced, and the system is matured. And when WBA was introduced at the national level and matured, it was found that it could have a greater impact on corruption. Secondly, it shows that OECD countries may have relatively low levels of corruption. In addition to the two variables representing democracy, when additional control variables (GDP (economic power), population size, HDI (education level), etc.) are controlled under the same conditions, the degree of corruption in countries with high political rights can be low (it means clean), while those with high civil freedom can be serious (it means not clean). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Whistle%20Blowing%20Act" title="Whistle Blowing Act">Whistle Blowing Act</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corruption" title=" anti-corruption"> anti-corruption</a>, <a href="https://publications.waset.org/abstracts/search?q=CPI" title=" CPI"> CPI</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP" title=" GDP"> GDP</a> </p> <a href="https://publications.waset.org/abstracts/164727/anti-corruption-effect-on-whistle-blowing-act" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1252</span> Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratch%20Kittipongpattana">Pratch Kittipongpattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Thongchai%20Fongsamootr"> Thongchai Fongsamootr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiler%20water%20wall%20tube" title="boiler water wall tube">boiler water wall tube</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gage%20rosette" title=" strain gage rosette"> strain gage rosette</a> </p> <a href="https://publications.waset.org/abstracts/45920/stress-analysis-of-water-wall-tubes-of-a-coal-fired-boiler-during-soot-blowing-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1251</span> Experimental Study of Particle Deposition on Leading Edge of Turbine Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiao-Jun">Yang Xiao-Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Tian-Hao"> Yu Tian-Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Ying-Qi"> Hu Ying-Qi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deposition" title="deposition">deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20cooling" title=" film cooling"> film cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge" title=" leading edge"> leading edge</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20particles" title=" paraffin particles"> paraffin particles</a> </p> <a href="https://publications.waset.org/abstracts/100690/experimental-study-of-particle-deposition-on-leading-edge-of-turbine-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1250</span> Experimental Investigation of Tip-Speed-Ratio Effects on Wake Dynamics of Horizontal-Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Bayron">Paul Bayron</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kelso"> Richard Kelso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rey%20Chin"> Rey Chin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind tunnel experiments were performed in the KC closed-circuit wind tunnel in the University of Adelaide to study the influence of tip-speed-ratio ( <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hotwire%20anemometry" title="hotwire anemometry">hotwire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20dynamics" title=" wake dynamics"> wake dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a> </p> <a href="https://publications.waset.org/abstracts/137158/experimental-investigation-of-tip-speed-ratio-effects-on-wake-dynamics-of-horizontal-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1249</span> A Study on Method for Identifying Capacity Factor Declination of Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongheon%20Shin">Dongheon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyungnam%20Ko"> Kyungnam Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongchul%20Huh"> Jongchul Huh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20curve" title=" power curve"> power curve</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20factor" title=" capacity factor"> capacity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20energy%20production" title=" annual energy production"> annual energy production</a> </p> <a href="https://publications.waset.org/abstracts/21424/a-study-on-method-for-identifying-capacity-factor-declination-of-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1248</span> Site Suitability of Offshore Wind Energy: A Combination of Geographic Referenced Information and Analytic Hierarchy Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayat-Allah%20Bouramdane">Ayat-Allah Bouramdane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power generation from offshore wind energy does not emit carbon dioxide or other air pollutants and therefore play a role in reducing greenhouse gas emissions from the energy sector. In addition, these systems are considered more efficient than onshore wind farms, as they generate electricity from the wind blowing across the sea, thanks to the higher wind speed and greater consistency in direction due to the lack of physical interference that the land or human-made objects can present. This means offshore installations require fewer turbines to produce the same amount of energy as onshore wind farms. However, offshore wind farms require more complex infrastructure to support them and, as a result, are more expensive to construct. In addition, higher wind speeds, strong seas, and accessibility issues makes offshore wind farms more challenging to maintain. This study uses a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP) to identify the most suitable sites for offshore wind farm development in Morocco, with a particular focus on the Dakhla city. A range of environmental, socio-economic, and technical criteria are taken into account to solve this complex Multi-Criteria Decision-Making (MCDM) problem. Based on experts' knowledge, a pairwise comparison matrix at each level of the hierarchy is performed, and fourteen sub-criteria belong to the main criteria have been weighted to generate the site suitability of offshore wind plants and obtain an in-depth knowledge on unsuitable areas, and areas with low-, moderate-, high- and very high suitability. We find that wind speed is the most decisive criteria in offshore wind farm development, followed by bathymetry, while proximity to facilities, the sediment thickness, and the remaining parameters show much lower weightings rendering technical parameters most decisive in offshore wind farm development projects. We also discuss the potential of other marine renewable energy potential, in Morocco, such as wave and tidal energy. The proposed approach and analysis can help decision-makers and can be applied to other countries in order to support the site selection process of offshore wind farms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title="analytic hierarchy process">analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=dakhla" title=" dakhla"> dakhla</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20referenced%20information" title=" geographic referenced information"> geographic referenced information</a>, <a href="https://publications.waset.org/abstracts/search?q=morocco" title=" morocco"> morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20decision-making" title=" multi-criteria decision-making"> multi-criteria decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind" title=" offshore wind"> offshore wind</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20suitability" title=" site suitability"> site suitability</a> </p> <a href="https://publications.waset.org/abstracts/157240/site-suitability-of-offshore-wind-energy-a-combination-of-geographic-referenced-information-and-analytic-hierarchy-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1247</span> Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Bartashevich">M. V. Bartashevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heat%20Flux" title="Heat Flux">Heat Flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer%20Enhancement" title=" Heat Transfer Enhancement"> Heat Transfer Enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=External%20Blowing" title=" External Blowing"> External Blowing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thin%20Liquid%20Film" title=" Thin Liquid Film"> Thin Liquid Film</a> </p> <a href="https://publications.waset.org/abstracts/121069/numerical-modeling-of-film-cooling-of-the-surface-at-non-uniform-heat-flux-distributions-on-the-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1246</span> Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himani%20Ratna%20Dahiya">Himani Ratna Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wind%20Turbine%20Emulator" title="Wind Turbine Emulator">Wind Turbine Emulator</a>, <a href="https://publications.waset.org/abstracts/search?q=LABVIEW" title=" LABVIEW"> LABVIEW</a>, <a href="https://publications.waset.org/abstracts/search?q=matlab" title=" matlab"> matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20generator" title=" induction generator"> induction generator</a> </p> <a href="https://publications.waset.org/abstracts/16620/design-and-development-of-wind-turbine-emulator-to-operate-with-15-kw-induction-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1245</span> Development and Characterization of Expandable TPEs Compounds for Footwear Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Elisa%20Ribeiro%20Costa">Ana Elisa Ribeiro Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B3nia%20Daniela%20Ferreira%20Miranda"> Sónia Daniela Ferreira Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Pedro%20De%20Carvalho%20Pereira"> João Pedro De Carvalho Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Carlos%20Sim%C3%B5es%20Bernardo"> João Carlos Simões Bernardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowing%20agents" title="blowing agents">blowing agents</a>, <a href="https://publications.waset.org/abstracts/search?q=expandable%20thermoplastic%20elastomeric%20compounds" title=" expandable thermoplastic elastomeric compounds"> expandable thermoplastic elastomeric compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20density" title=" low density"> low density</a>, <a href="https://publications.waset.org/abstracts/search?q=footwear%20applications" title=" footwear applications"> footwear applications</a> </p> <a href="https://publications.waset.org/abstracts/142442/development-and-characterization-of-expandable-tpes-compounds-for-footwear-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1244</span> Assessment of the Effect of Wind Turbulence on the Aero-Hydrodynamic Behavior of Offshore Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Dezvareh">Reza Dezvareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the amount of wind turbulence on the aero hydrodynamic behavior of offshore wind turbines with a monopile holder platform. Since in the sea, the wind turbine structures are under water and structures interactions, the dynamic analysis has been conducted under combined wind and wave loading. The offshore wind turbines have been investigated undertow models of normal and severe wind turbulence, and the results of this study show that the amplitude of fluctuation of dynamic response of structures including thrust force and base shear force of structures is increased with increasing the amount of wind turbulence, and this increase is not necessarily observed in the mean values of responses. Therefore, conducting the dynamic analysis is inevitable in order to observe the effect of wind turbulence on the structures' response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20turbine" title="offshore wind turbine">offshore wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbulence" title=" wind turbulence"> wind turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20vibration" title=" structural vibration"> structural vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=aero-hydro%20dynamic" title=" aero-hydro dynamic"> aero-hydro dynamic</a> </p> <a href="https://publications.waset.org/abstracts/82641/assessment-of-the-effect-of-wind-turbulence-on-the-aero-hydrodynamic-behavior-of-offshore-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1243</span> Wind Energy Potential of Southern Sindh, Pakistan for Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Akhlaque%20Ahmed">M. Akhlaque Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Maliha%20Afshan%20Siddiqui"> Maliha Afshan Siddiqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20generation" title="wind energy generation">wind energy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=Southern%20Sindh" title=" Southern Sindh"> Southern Sindh</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20change" title=" seasonal change"> seasonal change</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20parameter" title=" Weibull parameter"> Weibull parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20machines" title=" wind machines"> wind machines</a> </p> <a href="https://publications.waset.org/abstracts/100211/wind-energy-potential-of-southern-sindh-pakistan-for-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1242</span> An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsanolah%20Assareh">Ehsanolah Assareh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Biglari"> Mojtaba Biglari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Nedaei"> Mojtaba Nedaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title="wind energy">wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=weibull" title=" weibull"> weibull</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanar%20village" title=" Sanar village"> Sanar village</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/16648/an-assessment-of-wind-energy-in-sanar-village-in-north-of-iran-using-weibull-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1241</span> Experimental and CFD of Desgined Small Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20A.%20Mekail">Tarek A. Mekail</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20M.%20A.%20Elmagid"> Walid M. A. Elmagid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20wind%20turbine" title="small wind turbine">small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20of%20wind%20turbine" title=" CFD of wind turbine"> CFD of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20wind%20turbine" title=" performance of wind turbine"> performance of wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20of%20small%20wind%20turbine" title=" test of small wind turbine"> test of small wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20aerodynamic" title=" wind turbine aerodynamic"> wind turbine aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/18446/experimental-and-cfd-of-desgined-small-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1240</span> Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Abedi">M. H. Abedi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jalilvand"> A. Jalilvand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farm" title=" wind farm"> wind farm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=planning" title=" planning"> planning</a> </p> <a href="https://publications.waset.org/abstracts/36510/optimal-type-and-installation-time-of-wind-farm-in-a-power-system-considering-service-providers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1239</span> Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20Byong%20Bae">Doo Byong Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Jun%20Yoo"> Jae Jun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Gyu%20Park"> Il Gyu Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Seowon"> Choi Seowon</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Chang%20Kook"> Oh Chang Kook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20load" title="wind load">wind load</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20bifurcation%20analysis" title=" linear bifurcation analysis"> linear bifurcation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrically%20nonlinear%20analysis" title=" geometrically nonlinear analysis"> geometrically nonlinear analysis</a> </p> <a href="https://publications.waset.org/abstracts/45923/effects-of-wind-load-on-the-tank-structures-with-various-shapes-and-aspect-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1238</span> Expanding the Evaluation Criteria for a Wind Turbine Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Balachin">Ivan Balachin</a>, <a href="https://publications.waset.org/abstracts/search?q=Geanette%20Polanco"> Geanette Polanco</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20%20Xingliang"> Jiang Xingliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Qin"> Hu Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of global warming raised up interest towards renewable energy sources. To reduce cost of wind energy is a challenge. Before building of wind park conditions such as: average wind speed, direction, time for each wind, probability of icing, must be considered in the design phase. Operation values used on the setting of control systems also will depend on mentioned variables. Here it is proposed a procedure to be include in the evaluation of the performance of a wind turbine, based on the amplitude of wind changes, the number of changes and their duration. A generic study case based on actual data is presented. Data analysing techniques were applied to model the power required for yaw system based on amplitude and data amount of wind changes. A theoretical model between time, amplitude of wind changes and angular speed of nacelle rotation was identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20data%20processing" title="field data processing">field data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20determination" title=" regression determination"> regression determination</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20performance" title=" wind turbine performance"> wind turbine performance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20placing" title=" wind turbine placing"> wind turbine placing</a>, <a href="https://publications.waset.org/abstracts/search?q=yaw%20system%20losses" title=" yaw system losses"> yaw system losses</a> </p> <a href="https://publications.waset.org/abstracts/81619/expanding-the-evaluation-criteria-for-a-wind-turbine-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farag%20Ahwide">Farag Ahwide</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhel%20Bousheha"> Souhel Bousheha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term "wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20yield" title="energy yield">energy yield</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20speed" title=" wind speed"> wind speed</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20density" title=" wind power density"> wind power density</a> </p> <a href="https://publications.waset.org/abstracts/70620/estimation-of-wind-characteristics-and-energy-yield-at-different-towns-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Jet-Stream Airsail: Study of the Shape and the Behavior of the Connecting Cable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Frank">Christopher Frank</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiki%20Miyairi"> Yoshiki Miyairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A jet-stream airsail concept takes advantage of aerology in order to fly without propulsion. Weather phenomena, especially jet streams, are relatively permanent high winds blowing from west to east, located at average altitudes and latitudes in both hemispheres. To continuously extract energy from the jet-stream, the system is composed of a propelled plane and a wind turbine interconnected by a cable. This work presents the aerodynamic characteristics and the behavior of the cable that links the two subsystems and transmits energy from the turbine to the aircraft. Two ways of solving this problem are explored: numerically and analytically. After obtaining the optimal shape of the cross-section of the cable, its behavior is analyzed as a 2D problem solved numerically and analytically. Finally, a 3D extension could be considered by adding lateral forces. The results of this work can be further used in the design process of the overall system: aircraft-turbine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet-stream" title="jet-stream">jet-stream</a>, <a href="https://publications.waset.org/abstracts/search?q=cable" title=" cable"> cable</a>, <a href="https://publications.waset.org/abstracts/search?q=tether" title=" tether"> tether</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=airsail" title=" airsail"> airsail</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/11611/jet-stream-airsail-study-of-the-shape-and-the-behavior-of-the-connecting-cable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getnet%20Ayele%20%20Kebede">Getnet Ayele Kebede</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasew%20Tadiwose%20%20Zewdie"> Tasew Tadiwose Zewdie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savonius%20wind%20turbine" title="Savonius wind turbine">Savonius wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Small-scale%20irrigation" title=" Small-scale irrigation"> Small-scale irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Vertical%20Axis%20Wind%20Turbine" title=" Vertical Axis Wind Turbine"> Vertical Axis Wind Turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20pump" title=" Water pump"> Water pump</a> </p> <a href="https://publications.waset.org/abstracts/121075/design-a-small-scale-irrigation-wind-powered-water-pump-using-a-savonius-type-vawt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> Prediction of Wind Speed by Artificial Neural Networks for Energy Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Adjiri-Bailiche">S. Adjiri-Bailiche</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Boudia"> S. M. Boudia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Daaou"> H. Daaou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hadouche"> S. Hadouche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benzaoui"> A. Benzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20low" title=" power low"> power low</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20extrapolation" title=" vertical extrapolation"> vertical extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20speed" title=" wind speed "> wind speed </a> </p> <a href="https://publications.waset.org/abstracts/17635/prediction-of-wind-speed-by-artificial-neural-networks-for-energy-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">692</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> A Comparative Study between Ionic Wind and Conventional Fan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Lee">J. R. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Lau"> E. V. Lau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic wind is developed when high voltage is supplied to an anode and a grounded cathode in a gaseous medium. This paper studies the ionic wind profile with different anode configurations, the relationship between electrode gap against the voltage supplied and finally a comparison of the heat transfer coefficient of ionic wind over a horizontal flat plate against a conventional fan experimentally. It is observed that increase in the distance between electrodes decreases at a rate of 1-e-0.0206x as the voltage supply is increased until a distance of 3.1536cm. It is also observed that the wind speed produced by ionic wind is stronger, 2.7ms-1 at 2W compared to conventional fan, 2.5ms-1 at 2W but the wind produced decays at a fast exponential rate and is more localized as compared to conventional fan wind that decays at a slower exponential rate and is less localized. Next, it is found out that the ionic wind profile is the same regardless of the position of the anode relative to the cathode. Lastly, it is discovered that ionic wind produced a heat transfer coefficient that is almost 1.6 times higher compared to a conventional fan with Nusselt number reaching 164 compared to 102 for conventional fan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20fan" title="conventional fan">conventional fan</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20wind" title=" ionic wind"> ionic wind</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20profile" title=" wind profile "> wind profile </a> </p> <a href="https://publications.waset.org/abstracts/21860/a-comparative-study-between-ionic-wind-and-conventional-fan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> Wind Power Forecast Error Simulation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josip%20Vasilj">Josip Vasilj</a>, <a href="https://publications.waset.org/abstracts/search?q=Petar%20Sarajcev"> Petar Sarajcev</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Jakus"> Damir Jakus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title="wind power">wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20process" title=" stochastic process"> stochastic process</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/17977/wind-power-forecast-error-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> Development of Low Noise Savonius Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghyeon%20Kim">Sanghyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheolung%20Cheong"> Cheolung Cheong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20noise" title="aerodynamic noise">aerodynamic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Savonius%20wind%20turbine" title=" Savonius wind turbine"> Savonius wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical-axis%20wind%20turbine" title=" vertical-axis wind turbine"> vertical-axis wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/2482/development-of-low-noise-savonius-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> Wind Power Potential in Selected Algerian Sahara Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dahbi">M. Dahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sellam"> M. Sellam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benatiallah"> A. Benatiallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harrouz"> A. Harrouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution" title="Weibull distribution">Weibull distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters%20of%20Wiebull" title=" parameters of Wiebull"> parameters of Wiebull</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20hours" title=" operating hours"> operating hours</a> </p> <a href="https://publications.waset.org/abstracts/19968/wind-power-potential-in-selected-algerian-sahara-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bawadi%20M.%20A.">Bawadi M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbad%20J.%20A."> Abbad J. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Baras%20E.%20A."> Baras E. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20speed%20analysis" title="wind speed analysis">wind speed analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Yemen%20wind%20energy" title=" Yemen wind energy"> Yemen wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20density" title=" wind power density"> wind power density</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution%20model" title=" Weibull distribution model"> Weibull distribution model</a> </p> <a href="https://publications.waset.org/abstracts/165480/wind-power-density-and-energy-conversion-in-al-adwas-ras-huwirah-area-hadhramout-yemen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wind%20blowing&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>