CINXE.COM
Search results for: drone risk assessment
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: drone risk assessment</title> <meta name="description" content="Search results for: drone risk assessment"> <meta name="keywords" content="drone risk assessment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="drone risk assessment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="drone risk assessment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10789</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: drone risk assessment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10789</span> Risk Assessment for Aerial Package Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haluk%20Eren">Haluk Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Cmit%20%C3%87elik"> Ümit Çelik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent developments in unmanned aerial vehicles (UAVs) have begun to attract intense interest. UAVs started to use for many different applications from military to civilian use. Some online retailer and logistics companies are testing the UAV delivery. UAVs have great potentials to reduce cost and time of deliveries and responding to emergencies in a short time. Despite these great positive sides, just a few works have been done for routing of UAVs for package deliveries. As known, transportation of goods from one place to another may have many hazards on delivery route due to falling hazards that can be exemplified as ground objects or air obstacles. This situation refers to wide-range insurance concept. For this reason, deliveries that are made with drones get into the scope of shipping insurance. On the other hand, air traffic was taken into account in the absence of unmanned aerial vehicle. But now, it has been a reality for aerial fields. In this study, the main goal is to conduct risk analysis of package delivery services using drone, based on delivery routes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20package%20delivery" title="aerial package delivery">aerial package delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=insurance%20estimation" title=" insurance estimation"> insurance estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=territory%20risk%20map" title=" territory risk map"> territory risk map</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=route%20risk%20estimation" title=" route risk estimation"> route risk estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment" title=" drone risk assessment"> drone risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20package%20delivery" title=" drone package delivery"> drone package delivery</a> </p> <a href="https://publications.waset.org/abstracts/75960/risk-assessment-for-aerial-package-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10788</span> Stakeholder Analysis of Agricultural Drone Policy: A Case Study of the Agricultural Drone Ecosystem of Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanomsin%20Chakreeves">Thanomsin Chakreeves</a>, <a href="https://publications.waset.org/abstracts/search?q=Atichat%20Preittigun"> Atichat Preittigun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajchara%20Phu-ang"> Ajchara Phu-ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a stakeholder analysis of agricultural drone policies that meet the government's goal of building an agricultural drone ecosystem in Thailand. Firstly, case studies from other countries are reviewed. The stakeholder analysis method and qualitative data from the interviews are then presented including data from the Institute of Innovation and Management, the Office of National Higher Education Science Research and Innovation Policy Council, agricultural entrepreneurs and farmers. Study and interview data are then employed to describe the current ecosystem and to guide the implementation of agricultural drone policies that are suitable for the ecosystem of Thailand. Finally, policy recommendations are then made that the Thai government should adopt in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone%20public%20policy" title="drone public policy">drone public policy</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20ecosystem" title=" drone ecosystem"> drone ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20development" title=" policy development"> policy development</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20drone" title=" agricultural drone"> agricultural drone</a> </p> <a href="https://publications.waset.org/abstracts/132133/stakeholder-analysis-of-agricultural-drone-policy-a-case-study-of-the-agricultural-drone-ecosystem-of-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10787</span> Toward a Risk Assessment Model Based on Multi-Agent System for Cloud Consumer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saadia%20Drissi">Saadia Drissi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cloud computing is an innovative paradigm that introduces several changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers mainly in term of security risk assessment, thus, adapting a current risk assessment tools to cloud computing is a very difficult task due to its several characteristics that challenge the effectiveness of risk assessment approaches. As consequence, there is a need of risk assessment model adapted to cloud computing. This paper requires a new risk assessment model based on multi-agent system and AHP model as fundamental steps towards the development of flexible risk assessment approach regarding cloud consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment%20model" title=" risk assessment model"> risk assessment model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP%20model" title=" AHP model"> AHP model</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20consumer" title=" cloud consumer"> cloud consumer</a> </p> <a href="https://publications.waset.org/abstracts/10205/toward-a-risk-assessment-model-based-on-multi-agent-system-for-cloud-consumer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10786</span> 3D Stereoscopic Measurements from AR Drone Squadron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Schurig">R. Schurig</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D%C3%A9sesquelles"> T. Désesquelles</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dumont"> A. Dumont</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Lefranc"> E. Lefranc</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lux"> A. Lux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cost-efficient alternative is proposed to the use of a single drone carrying multiple cameras in order to take stereoscopic images and videos during its flight. Such drone has to be particularly large enough to take off with its equipment, and stable enough in order to make valid measurements. Corresponding performance for a single aircraft usually comes with a large cost. Proposed solution consists in using multiple smaller and cheaper aircrafts carrying one camera each instead of a single expensive one. To give a proof of concept, AR drones, quad-rotor UAVs from Parrot Inc., are experimentally used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone%20squadron" title="drone squadron">drone squadron</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20control" title=" flight control"> flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=rotorcraft" title=" rotorcraft"> rotorcraft</a>, <a href="https://publications.waset.org/abstracts/search?q=Unmanned%20Aerial%20Vehicle%20%28UAV%29" title=" Unmanned Aerial Vehicle (UAV)"> Unmanned Aerial Vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=AR%20drone" title=" AR drone"> AR drone</a>, <a href="https://publications.waset.org/abstracts/search?q=stereoscopic%20vision" title=" stereoscopic vision"> stereoscopic vision</a> </p> <a href="https://publications.waset.org/abstracts/17205/3d-stereoscopic-measurements-from-ar-drone-squadron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10785</span> Design of a Surveillance Drone with Computer Aided Durability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maram%20Shahad%20Dana%20Anfal">Maram Shahad Dana Anfal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone" title="drone">drone</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=solidwork" title=" solidwork"> solidwork</a>, <a href="https://publications.waset.org/abstracts/search?q=hypermesh" title=" hypermesh"> hypermesh</a> </p> <a href="https://publications.waset.org/abstracts/167463/design-of-a-surveillance-drone-with-computer-aided-durability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10784</span> Comprehensive Risk Assessment Model in Agile Construction Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Tamo%C5%A1aitien%C4%97">Jolanta Tamošaitienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=agile" title=" agile"> agile</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/84304/comprehensive-risk-assessment-model-in-agile-construction-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10783</span> Risk Reassessment Using GIS Technologies for the Development of Emergency Response Management Plans for Water Treatment Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Gul%20Lee">Han Gul Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When water treatments utilities are designed, an initial construction site risk assessment is conducted. This helps us to understand general safety risks that each utility needs to be complemented in the designing stage. Once it’s built, an additional risk reassessment process secures and supplements its disaster management and response plan. Because of its constantly changing surroundings with city renovation and developments, the degree of various risks that each facility has to face changes. Therefore, to improve the preparedness for spill incidents or disasters, emergency managers should run spill simulations with the available scientific technologies. This research used a two-dimensional flow routing model to simulate its spill disaster scenario based on its digital elevation model (DEM) collected with drone technologies. The results of the simulations can help emergency managers to supplement their response plan with concrete situational awareness in advance. Planning based on this simulation model minimizes its potential loss and damage when an incident like earthquakes man-made disaster happens, which could eventually be a threat in a public health context. This pilot research provides an additional paradigm to increase the preparedness to spill disasters. Acknowledgment: This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program funded by Korea Ministry of Environment (MOE) (No.202002860001). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title="risk assessment">risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20utilities" title=" water treatment utilities"> water treatment utilities</a>, <a href="https://publications.waset.org/abstracts/search?q=situational%20awareness" title=" situational awareness"> situational awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20technologies" title=" drone technologies"> drone technologies</a> </p> <a href="https://publications.waset.org/abstracts/146648/risk-reassessment-using-gis-technologies-for-the-development-of-emergency-response-management-plans-for-water-treatment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10782</span> A Research on the Benefits of Drone Usage in Industry by Determining Companies Using Drone in the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Akdemir">Ahmet Akdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCzide%20Karaku%C5%9F"> Güzide Karakuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Leyla%20Polat"> Leyla Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aviation that has been arisen in accordance with flying request that is existing inside of people, has not only made life easier by making a great contribution to humanity; it has also accelerated globalization by reducing distances between countries. It is seen that the growth rate of aviation industry has reached the undreamed level when it is looked back on. Today, the last point in aviation is unmanned aerial vehicles that are self-ventilating and move in desired coordinates without any onboard pilot. For those vehicles, there are two different control systems are developed. In the first type of control, an unmanned aerial vehicle (UAV) moves according to instructions of a remote control. UAV that moves with a remote control is named as drone; it can be used personally. In the second one, there is a flight plan that is programmed and placed inside of UAV before flight. Recently, drones have started to be used in unimagined areas and utilize specific, important benefits for any industry. Within this framework, this study answers the question that is drone usage would be beneficial for businesses or not. To answer this question, applied basic methodologies are determining businesses using drone in the world, their purposes to use drone, and then, comparing their economy as before drone and after drone. In the end of this study, it is seen that many companies in different business areas use drone in logistics support, and it makes their work easier than before. This paper has contributed to academic literature about this subject, and it has introduced the benefits of drone usage for businesses. In addition, it has encouraged businesses that they keep pace with this technological age by following the developments about drones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=drone" title=" drone"> drone</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20in%20business" title=" drone in business"> drone in business</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a> </p> <a href="https://publications.waset.org/abstracts/77049/a-research-on-the-benefits-of-drone-usage-in-industry-by-determining-companies-using-drone-in-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10781</span> Model of MSD Risk Assessment at Workplace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sekulov%C3%A1">K. Sekulová</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%A0imon"> M. Šimon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title="ergonomics">ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20disorders" title=" musculoskeletal disorders"> musculoskeletal disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20diseases" title=" occupational diseases"> occupational diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a> </p> <a href="https://publications.waset.org/abstracts/13024/model-of-msd-risk-assessment-at-workplace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10780</span> Holistic Risk Assessment Based on Continuous Data from the User’s Behavior and Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cinzia%20Carrodano">Cinzia Carrodano</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitri%20Konstantas"> Dimitri Konstantas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Risk is part of our lives. In today’s society risk is connected to our safety and safety has become a major priority in our life. Each person lives his/her life based on the evaluation of the risk he/she is ready to accept and sustain, and the level of safety he/she wishes to reach, based on highly personal criteria. The assessment of risk a person takes in a complex environment and the impact of actions of other people’actions and events on our perception of risk are alements to be considered. The concept of Holistic Risk Assessment (HRA) aims in developing a methodology and a model that will allow us to take into account elements outside the direct influence of the individual, and provide a personalized risk assessment. The concept is based on the fact that in the near future, we will be able to gather and process extremely large amounts of data about an individual and his/her environment in real time. The interaction and correlation of these data is the key element of the holistic risk assessment. In this paper, we present the HRA concept and describe the most important elements and considerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20data" title="continuous data">continuous data</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20risk" title=" dynamic risk"> dynamic risk</a>, <a href="https://publications.waset.org/abstracts/search?q=holistic%20risk%20assessment" title=" holistic risk assessment"> holistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20concept" title=" risk concept"> risk concept</a> </p> <a href="https://publications.waset.org/abstracts/145051/holistic-risk-assessment-based-on-continuous-data-from-the-users-behavior-and-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10779</span> Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hrishi%20Rakshit">Hrishi Rakshit</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooneh%20Bagheri%20Zadeh"> Pooneh Bagheri Zadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone%20classifications" title="drone classifications">drone classifications</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20convolutional%20neural%20network" title=" deep convolutional neural network"> deep convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters" title=" hyperparameters"> hyperparameters</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20audio%20signal" title=" drone audio signal"> drone audio signal</a> </p> <a href="https://publications.waset.org/abstracts/172929/drone-classification-using-classification-methods-using-conventional-model-with-embedded-audio-visual-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10778</span> Health Risk Assessment of Trihalogenmethanes in Drinking Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Jesonkova">Lenka Jesonkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Frantisek%20Bozek"> Frantisek Bozek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trihalogenmethanes (THMs) are disinfection byproducts with non-carcinogenic and genotoxic effects. The contamination of 6 sites close to the water treatment plant has been monitored in second largest city of the Czech Republic. Health risk assessment including both non-carcinogenic and genotoxic risk for long term exposition was realized using the critical concentrations. Concentrations of trihalogenmethanes met national standards in all samples. Risk assessment proved that health risks from trihalogenmethanes are acceptable on each site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title="drinking water">drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20assessment" title=" health risk assessment"> health risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=trihalogenmethanes" title=" trihalogenmethanes"> trihalogenmethanes</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a> </p> <a href="https://publications.waset.org/abstracts/2153/health-risk-assessment-of-trihalogenmethanes-in-drinking-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10777</span> Risk Assessment for International Investment: A Standardized Approach to Identify Risk, Risk Appetite, Risk Rating, Risk Treatment and Mitigation Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pui%20Yong%20Leo">Pui Yong Leo</a>, <a href="https://publications.waset.org/abstracts/search?q=Normy%20Maziah%20Mohd%20Said"> Normy Maziah Mohd Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change of global economy landscape and business environment has led to companies’ decision to go global and enter international markets. As the companies go beyond the comfort zone (i.e. investing in the home country), it is important to ensure a comprehensive risk assessment is carried out. This paper describes a standardized approach for international investment, ensuring identification of risk, risk appetite, risk rating, risk treatment and mitigation plans for respective international investment proposal. The standardized approach is divided into three (3) stages as follows: Stage 1 – Preliminary Risk profiling; with the objective to gauge exposure to countries and high level risk factors as first level assessment. Stage 2 – Risk Parameters; with the objective to define risk appetite for the international investment from the perspective of likelihood and impact. Stage 3 – Detailed Risk Assessments; with the objectives to assess in detail any triggered elements from Stage 1, and project specific risks. The final output will include the mitigation plans for the identified risks for the total investment. Example will be given in this paper to show how comprehensive risk assessment is carried out for an international investment in power energy sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=international%20investment" title="international investment">international investment</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20plans" title=" mitigation plans"> mitigation plans</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20appetite" title=" risk appetite"> risk appetite</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/61464/risk-assessment-for-international-investment-a-standardized-approach-to-identify-risk-risk-appetite-risk-rating-risk-treatment-and-mitigation-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10776</span> Safety of Ports, Harbours, Marine Terminals: Application of Quantitative Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipak%20Sonawane">Dipak Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Daga"> Sudarshan Daga</a>, <a href="https://publications.waset.org/abstracts/search?q=Somesh%20Gupta"> Somesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantitative risk assessment (QRA) is a very precise and consistent approach to defining the likelihood, consequence and severity of a major incident/accident. A variety of hazardous cargoes in bulk, such as hydrocarbons and flammable/toxic chemicals, are handled at various ports. It is well known that most of the operations are hazardous, having the potential of damaging property, causing injury/loss of life and, in some cases, the threat of environmental damage. In order to ensure adequate safety towards life, environment and property, the application of scientific methods such as QRA is inevitable. By means of these methods, comprehensive hazard identification, risk assessment and appropriate implementation of Risk Control measures can be carried out. In this paper, the authors, based on their extensive experience in Risk Analysis for ports and harbors, have exhibited how QRA can be used in practice to minimize and contain risk to tolerable levels. A specific case involving the operation for unloading of hydrocarbon at a port is presented. The exercise provides confidence that the method of QRA, as proposed by the authors, can be used appropriately for the identification of hazards and risk assessment of Ports and Terminals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantitative%20risk%20assessment" title="quantitative risk assessment">quantitative risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20assessment" title=" hazard assessment"> hazard assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=consequence%20analysis" title=" consequence analysis"> consequence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=individual%20risk" title=" individual risk"> individual risk</a>, <a href="https://publications.waset.org/abstracts/search?q=societal%20risk" title=" societal risk"> societal risk</a> </p> <a href="https://publications.waset.org/abstracts/151443/safety-of-ports-harbours-marine-terminals-application-of-quantitative-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10775</span> Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeda%20Sansakorn">Preeda Sansakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20An"> Min An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20risk%20assessment" title="safety risk assessment">safety risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20safety" title=" building construction safety"> building construction safety</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20reasoning" title=" fuzzy reasoning"> fuzzy reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20risk%20assessment%20model" title=" construction risk assessment model"> construction risk assessment model</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20projects" title=" building construction projects"> building construction projects</a> </p> <a href="https://publications.waset.org/abstracts/28627/development-of-risk-assessment-and-occupational-safety-management-model-for-building-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10774</span> Combined Safety and Cybersecurity Risk Assessment for Intelligent Distributed Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anders%20Thors%C3%A9n">Anders Thorsén</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Sangchoolie"> Behrooz Sangchoolie</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Folkesson"> Peter Folkesson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ted%20Strandberg"> Ted Strandberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As more parts of the power grid become connected to the internet, the risk of cyberattacks increases. To identify the cybersecurity threats and subsequently reduce vulnerabilities, the common practice is to carry out a cybersecurity risk assessment. For safety classified systems and products, there is also a need for safety risk assessments in addition to the cybersecurity risk assessment in order to identify and reduce safety risks. These two risk assessments are usually done separately, but since cybersecurity and functional safety are often related, a more comprehensive method covering both aspects is needed. Some work addressing this has been done for specific domains like the automotive domain, but more general methods suitable for, e.g., intelligent distributed grids, are still missing. One such method from the automotive domain is the Security-Aware Hazard Analysis and Risk Assessment (SAHARA) method that combines safety and cybersecurity risk assessments. This paper presents an approach where the SAHARA method has been modified in order to be more suitable for larger distributed systems. The adapted SAHARA method has a more general risk assessment approach than the original SAHARA. The proposed method has been successfully applied on two use cases of an intelligent distributed grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20distribution%20grids" title="intelligent distribution grids">intelligent distribution grids</a>, <a href="https://publications.waset.org/abstracts/search?q=threat%20analysis" title=" threat analysis"> threat analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a> </p> <a href="https://publications.waset.org/abstracts/143611/combined-safety-and-cybersecurity-risk-assessment-for-intelligent-distributed-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10773</span> Environmental Safety and Occupational Health Risk Assessment for Rocket Static Test </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phontip%20Kanlahasuth">Phontip Kanlahasuth </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the environmental safety and occupational health risk assessment of rocket static test by assessing risk level from probability and severity and then appropriately applying the risk control measures. Before the environmental safety and occupational health measures are applied, the serious hazards level is 31%, medium level is 24% and low level is 45%. Once risk control measures are practically implemented, the serious hazard level can be diminished, medium level is 38%, low level is 45% and eliminated level is 17%. It is clearly shown that the environmental safety and occupational health measures can significantly reduce the risk level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rocket%20static%20test" title="rocket static test">rocket static test</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20health" title=" occupational health"> occupational health</a>, <a href="https://publications.waset.org/abstracts/search?q=acceptable%20risk" title=" acceptable risk"> acceptable risk</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=severity" title=" severity"> severity</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20level" title=" risk level"> risk level</a> </p> <a href="https://publications.waset.org/abstracts/4165/environmental-safety-and-occupational-health-risk-assessment-for-rocket-static-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10772</span> Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Lee">Jiwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong-Ju%20Go"> Yeong-Ju Go</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Soo%20Choi"> Jong-Soo Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensing" title="acoustic sensing">acoustic sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20arrival" title=" direction of arrival"> direction of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20detection" title=" drone detection"> drone detection</a>, <a href="https://publications.waset.org/abstracts/search?q=microphone%20array" title=" microphone array"> microphone array</a> </p> <a href="https://publications.waset.org/abstracts/94230/comparison-of-direction-of-arrival-estimation-method-for-drone-based-on-phased-microphone-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10771</span> Risk Assessment Results in Biogas Production from Agriculture Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandija%20Zeverte-Rivza">Sandija Zeverte-Rivza</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Pilvere"> Irina Pilvere</a>, <a href="https://publications.waset.org/abstracts/search?q=Baiba%20Rivza"> Baiba Rivza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available. As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level. The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title="biogas production">biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=risks" title=" risks"> risks</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/6649/risk-assessment-results-in-biogas-production-from-agriculture-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10770</span> Safe Zone: A Framework for Detecting and Preventing Drones Misuse </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlHanoof%20A.%20Alharbi">AlHanoof A. Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20M.%20Alamoudi"> Fatima M. Alamoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Razan%20A.%20Albrahim"> Razan A. Albrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20F.%20Alharbi"> Sarah F. Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20M%20Almuhaideb"> Abdullah M Almuhaideb</a>, <a href="https://publications.waset.org/abstracts/search?q=Norah%20A.%20Almubairik"> Norah A. Almubairik</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Alharby"> Abdulrahman Alharby</a>, <a href="https://publications.waset.org/abstracts/search?q=Naya%20M.%20Nagy"> Naya M. Nagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, drones received a rapid interest in different industries worldwide due to its powerful impact. However, limitations still exist in this emerging technology, especially privacy violation. These aircrafts consistently threaten the security of entities by entering restricted areas accidentally or deliberately. Therefore, this research project aims to develop drone detection and prevention mechanism to protect the restricted area. Until now, none of the solutions have met the optimal requirements of detection which are cost-effectiveness, high accuracy, long range, convenience, unaffected by noise and generalization. In terms of prevention, the existing methods are focusing on impractical solutions such as catching a drone by a larger drone, training an eagle or a gun. In addition, the practical solutions have limitations, such as the No-Fly Zone and PITBULL jammers. According to our study and analysis of previous related works, none of the solutions includes detection and prevention at the same time. The proposed solution is a combination of detection and prevention methods. To implement the detection system, a passive radar will be used to properly identify the drone against any possible flying objects. As for the prevention, jamming signals and forceful safe landing of the drone integrated together to stop the drone’s operation. We believe that applying this mechanism will limit the drone’s invasion of privacy incidents against highly restricted properties. Consequently, it effectively accelerates drones‘ usages at personal and governmental levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection" title="detection">detection</a>, <a href="https://publications.waset.org/abstracts/search?q=drone" title=" drone"> drone</a>, <a href="https://publications.waset.org/abstracts/search?q=jamming" title=" jamming"> jamming</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=RF" title=" RF"> RF</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/106189/safe-zone-a-framework-for-detecting-and-preventing-drones-misuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10769</span> Occupational Safety and Health in the Wake of Drones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Rahmani">Hoda Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Weckman"> Gary Weckman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The body of research examining the integration of drones into various industries is expanding rapidly. Despite progress made in addressing the cybersecurity concerns for commercial drones, knowledge deficits remain in determining potential occupational hazards and risks of drone use to employees’ well-being and health in the workplace. This creates difficulty in identifying key approaches to risk mitigation strategies and thus reflects the need for raising awareness among employers, safety professionals, and policymakers about workplace drone-related accidents. The purpose of this study is to investigate the prevalence of and possible risk factors for drone-related mishaps by comparing the application of drones in construction with manufacturing industries. The chief reason for considering these specific sectors is to ascertain whether there exists any significant difference between indoor and outdoor flights since most construction sites use drones outside and vice versa. Therefore, the current research seeks to examine the causes and patterns of workplace drone-related mishaps and suggest possible ergonomic interventions through data collection. Potential ergonomic practices to mitigate hazards associated with flying drones could include providing operators with professional pieces of training, conducting a risk analysis, and promoting the use of personal protective equipment. For the purpose of data analysis, two data mining techniques, the random forest and association rule mining algorithms, will be performed to find meaningful associations and trends in data as well as influential features that have an impact on the occurrence of drone-related accidents in construction and manufacturing sectors. In addition, Spearman’s correlation and chi-square tests will be used to measure the possible correlation between different variables. Indeed, by recognizing risks and hazards, occupational safety stakeholders will be able to pursue data-driven and evidence-based policy change with the aim of reducing drone mishaps, increasing productivity, creating a safer work environment, and extending human performance in safe and fulfilling ways. This research study was supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42OH008432. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial%20drones" title="commercial drones">commercial drones</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomic%20interventions" title=" ergonomic interventions"> ergonomic interventions</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20safety" title=" occupational safety"> occupational safety</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/142998/occupational-safety-and-health-in-the-wake-of-drones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10768</span> Intellectual Property Risk Assessment in Planning Market Entry to China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qing%20Cao">Qing Cao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally speaking, China has a relatively high level of intellectual property (IP) infringement. Risk assessment is indispensable in the strategic planning process. To complement the current literature in international business, the paper sheds the light on how to assess IP risk for foreign companies in planning market entry to China. Evaluating internal and external IP environment, proposed in the paper, consists of external analysis, internal analysis and further internal analysis. Through position the company’s IP environment, the risk assessment approach enables the foreign companies to either build the corresponding IP strategies or abort the entry plan beforehand to minimize the IP risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intellectual%20property" title="intellectual property">intellectual property</a>, <a href="https://publications.waset.org/abstracts/search?q=IP%20environment" title=" IP environment"> IP environment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/11926/intellectual-property-risk-assessment-in-planning-market-entry-to-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10767</span> A Power Management System for Indoor Micro-Drones in GPS-Denied Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yendo%20Hu">Yendo Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu-Yu%20Wu"> Xu-Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dylan%20Oh"> Dylan Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPS-Denied drones open the possibility of indoor applications, including dynamic arial surveillance, inspection, safety enforcement, and discovery. Indoor swarming further enhances these applications in accuracy, robustness, operational time, and coverage. For micro-drones, power management becomes a critical issue, given the battery payload restriction. This paper proposes an application enabling battery replacement solution that extends the micro-drone active phase without human intervention. First, a framework to quantify the effectiveness of a power management solution for a drone fleet is proposed. The operation-to-non-operation ratio, ONR, gives one a quantitative benchmark to measure the effectiveness of a power management solution. Second, a survey was carried out to evaluate the ONR performance for the various solutions. Third, through analysis, this paper proposes a solution tailored to the indoor micro-drone, suitable for swarming applications. The proposed automated battery replacement solution, along with a modified micro-drone architecture, was implemented along with the associated micro-drone. Fourth, the system was tested and compared with the various solutions within the industry. Results show that the proposed solution achieves an ONR value of 31, which is a 1-fold improvement of the best alternative option. The cost analysis shows a manufacturing cost of $25, which makes this approach viable for cost-sensitive markets (e.g., consumer). Further challenges remain in the area of drone design for automated battery replacement, landing pad/drone production, high-precision landing control, and ONR improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-drone" title="micro-drone">micro-drone</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20swap" title=" battery swap"> battery swap</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20replacement" title=" battery replacement"> battery replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20recharge" title=" battery recharge"> battery recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20pad" title=" landing pad"> landing pad</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20management" title=" power management"> power management</a> </p> <a href="https://publications.waset.org/abstracts/171391/a-power-management-system-for-indoor-micro-drones-in-gps-denied-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10766</span> Project Risk Assessment of the Mining Industry of Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Amoatey">Charles Amoatey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The issue of risk in the mining industry is a global phenomenon and the Ghanaian mining industry is not exempted. The main purpose of this study is to identify the critical risk factors affecting the mining industry. The study takes an integrated view of the mining industry by examining the contribution of various risk factors to mining project failure in Ghana. A questionnaire survey was conducted to solicit the critical risk factors from key mining practitioners. About 80 respondents from 11 mining firms participated in the survey. The study identified 22 risk factors contributing to mining project failure in Ghana. The five most critical risk factors based on both probability of occurrence and impact were: (1) unstable commodity prices, (2) inflation/exchange rate, (3) land degradation, (4) high cost of living and (5) government bureaucracy for obtaining licenses. Furthermore, the study found that risk assessment in the mining sector has a direct link with mining project sustainability. Mitigation measures for addressing the identified risk factors were discussed. The key findings emphasize the need for a comprehensive risk management culture in the entire mining industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk" title="risk">risk</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a> </p> <a href="https://publications.waset.org/abstracts/48909/project-risk-assessment-of-the-mining-industry-of-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10765</span> Agile Real-Time Field Programmable Gate Array-Based Image Processing System for Drone Imagery in Digital Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Shahid%20Antora">Sabiha Shahid Antora</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Ki%20Chang"> Young Ki Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with various farm management technologies, imagery is an important tool that facilitates crop assessment, monitoring, and management. As a consequence, drone imaging technology is playing a vital role to capture the state of the entire field for yield mapping, crop scouting, weed detection, and so on. Although it is essential to inspect the cultivable lands in real-time for making rapid decisions regarding field variable inputs to combat stresses and diseases, drone imagery is still evolving in this area of interest. Cost margin and post-processing complexions of the image stream are the main challenges of imaging technology. Therefore, this proposed project involves the cost-effective field programmable gate array (FPGA) based image processing device that would process the image stream in real-time as well as providing the processed output to support on-the-spot decisions in the crop field. As a result, the real-time FPGA-based image processing system would reduce operating costs while minimizing a few intermediate steps to deliver scalable field decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time" title="real-time">real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20imagery" title=" drone imagery"> drone imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20monitoring" title=" crop monitoring"> crop monitoring</a> </p> <a href="https://publications.waset.org/abstracts/132611/agile-real-time-field-programmable-gate-array-based-image-processing-system-for-drone-imagery-in-digital-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10764</span> The Study of Rapid Entire Body Assessment and Quick Exposure Check Correlation in an Engine Oil Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Ashouria">Mohammadreza Ashouria</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Motamedzadeb"> Majid Motamedzadeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid Entire Body Assessment (REBA) and Quick Exposure Check (QEC) are two general methods to assess the risk factors of work-related musculoskeletal disorders (WMSDs). This study aimed to compare ergonomic risk assessment outputs from QEC and REBA in terms of agreement in distribution of postural loading scores based on analysis of working postures. This cross-sectional study was conducted in an engine oil company in which 40 jobs were studied. A trained occupational health practitioner observed all jobs. Job information was collected to ensure the completion of ergonomic risk assessment tools, including QEC, and REBA. The result revealed that there was a significant correlation between final scores (r=0.731) and the action levels (r =0.893) of two applied methods. Comparison between the action levels and final scores of two methods showed that there was no significant difference among working departments. Most of the studied postures acquired low and moderate risk level in QEC assessment (low risk=20%, moderate risk=50% and High risk=30%) and in REBA assessment (low risk=15%, moderate risk=60% and high risk=25%).There is a significant correlation between two methods. They have a strong correlation in identifying risky jobs and determining the potential risk for incidence of WMSDs. Therefore, there is a possibility for researchers to apply interchangeably both methods, for postural risk assessment in appropriate working environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=observational%20method" title="observational method">observational method</a>, <a href="https://publications.waset.org/abstracts/search?q=QEC" title=" QEC"> QEC</a>, <a href="https://publications.waset.org/abstracts/search?q=REBA" title=" REBA"> REBA</a>, <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20disorders" title=" musculoskeletal disorders"> musculoskeletal disorders</a> </p> <a href="https://publications.waset.org/abstracts/46223/the-study-of-rapid-entire-body-assessment-and-quick-exposure-check-correlation-in-an-engine-oil-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10763</span> Design for Safety: Safety Consideration in Planning and Design of Airport Airsides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maithem%20Al-Saadi">Maithem Al-Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20An"> Min An </a> </p> <p class="card-text"><strong>Abstract:</strong></p> During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airport%20airside%20planning%20and%20design" title="airport airside planning and design">airport airside planning and design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20safety" title=" design for safety"> design for safety</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20reasoning%20approach" title=" fuzzy reasoning approach"> fuzzy reasoning approach</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20AHP" title=" fuzzy AHP"> fuzzy AHP</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/40321/design-for-safety-safety-consideration-in-planning-and-design-of-airport-airsides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10762</span> Cognitive Characteristics of Industrial Workers in Fuzzy Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeon-Kyo%20Lim">Hyeon-Kyo Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hun%20Byun"> Sang-Hun Byun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Risk assessment is carried out in most industrial plants for accident prevention, but there exists insufficient data for statistical decision making. It is commonly said that risk can be expressed as a product of consequence and likelihood of a corresponding hazard factor. Eventually, therefore, risk assessment involves human decision making which cannot be objective per se. This study was carried out to comprehend perceptive characteristics of human beings in industrial plants. Subjects were shown a set of illustrations describing scenes of industrial plants, and were asked to assess the risk of each scene with not only linguistic variables but also numeric scores in the aspect of consequence and likelihood. After that, their responses were formulated as fuzzy membership functions, and compared with those of university students who had no experience of industrial works. The results showed that risk level of industrial workers were lower than those of any other groups, which implied that the workers might generally have a tendency to neglect more hazard factors in their work fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title="fuzzy">fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistic%20variable" title=" linguistic variable"> linguistic variable</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/90930/cognitive-characteristics-of-industrial-workers-in-fuzzy-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10761</span> Screening Methodology for Seismic Risk Assessment of Aging Structures in Oil and Gas Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nazri%20Mustafa">Mohammad Nazri Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedram%20Hatami%20Abdullah"> Pedram Hatami Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fakhrur%20Razi%20Ahmad%20Faizul"> M. Fakhrur Razi Ahmad Faizul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the issuance of Malaysian National Annex 2017 as a part of MS EN 1998-1:2015, the seismic mapping of Malaysian Peninsular including Sabah and Sarawak has undergone some changes in terms of the Peak Ground Acceleration (PGA) value. The revision to the PGA has raised a concern on the safety of oil and gas onshore structures as these structures were not designed to accommodate the new PGA values which are much higher than the previous values used in the original design. In view of the high numbers of structures and buildings to be re-assessed, a risk assessment methodology has been developed to prioritize and rank the assets in terms of their criticality against the new seismic loading. To-date such risk assessment method for oil and gas onshore structures is lacking, and it is the main intention of this technical paper to share the risk assessment methodology and risk elements scoring finalized via Delphi Method. The finalized methodology and the values used to rank the risk elements have been established based on years of relevant experience on the subject matter and based on a series of rigorous discussions with professionals in the industry. The risk scoring is mapped against the risk matrix (i.e., the LOF versus COF) and hence, the overall risk for the assets can be obtained. The overall risk can be used to prioritize and optimize integrity assessment, repair and strengthening work against the new seismic mapping of the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methodology" title="methodology">methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=PGA" title=" PGA"> PGA</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a> </p> <a href="https://publications.waset.org/abstracts/108062/screening-methodology-for-seismic-risk-assessment-of-aging-structures-in-oil-and-gas-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10760</span> Weighted Risk Scores Method Proposal for Occupational Safety Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ulas%20Cinar">Ulas Cinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Faruk%20Ugurlu"> Omer Faruk Ugurlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Selcuk%20Cebi"> Selcuk Cebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Occupational safety risk management is the most important element of a safe working environment. Effective risk management can only be possible with accurate analysis and evaluations. Scoring-based risk assessment methods offer considerable ease of application as they convert linguistic expressions into numerical results. It can also be easily adapted to any field. Contrary to all these advantages, important problems in scoring-based methods are frequently discussed. Effective measurability is one of the most critical problems. Existing methods allow experts to choose a score equivalent to each parameter. Therefore, experts prefer the score of the most likely outcome for risk. However, all other possible consequences are neglected. Assessments of the existing methods express the most probable level of risk, not the real risk of the enterprises. In this study, it is aimed to develop a method that will present a more comprehensive evaluation compared to the existing methods by evaluating the probability and severity scores, all sub-parameters, and potential results, and a new scoring-based method is proposed in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occupational%20health%20and%20safety" title="occupational health and safety">occupational health and safety</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=scoring%20based%20risk%20assessment%20method" title=" scoring based risk assessment method"> scoring based risk assessment method</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mining" title=" underground mining"> underground mining</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20risk%20scores" title=" weighted risk scores"> weighted risk scores</a> </p> <a href="https://publications.waset.org/abstracts/126062/weighted-risk-scores-method-proposal-for-occupational-safety-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=359">359</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=360">360</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=drone%20risk%20assessment&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>