CINXE.COM

Search results for: mitochondrial uncoupling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mitochondrial uncoupling</title> <meta name="description" content="Search results for: mitochondrial uncoupling"> <meta name="keywords" content="mitochondrial uncoupling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mitochondrial uncoupling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mitochondrial uncoupling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 205</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mitochondrial uncoupling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> ANXA1 Plays A Nephroprotective Role By Maintaining Mitochondrial Homeostasis Via Upregulating Uncoupling Protein 1 In Diabetic Nephropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Han%20Li">Zi-Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Fang"> Lu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wu"> Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yuan%20Chang"> Dong-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Manyuan%20Dong"> Manyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ji"> Liang Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hui%20Zhao"> Ming-Hui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sydney%20C.W.%20Tang"> Sydney C.W. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemin%20Zheng"> Lemin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia, which were risk factors for diabetic nephropathy (DN). Recently, it was found that annexin A1(ANXA1) could improve mitochondrial function to mitigate DN progression. However, the underlying mechanism is not fully clear yet. Here, it was identified that uncoupling protein 1 (UCP1), an inner membrane protein of mitochondria, as a key to mitochondrial homeostasis improved by ANXA1. Specifically, ANXA1 attenuated mitochondrial dysfunction via appropriately upregulating UCP1 by stabilizing its transcription factor GATA binding protein 3 (GATA3) through combining with thioredoxin. Moreover, specific overexpression of UCP1 in renal cortex rescued renal injuries in diabetic Anxa1-KO mice. UCP1 deletion aggravated renal injuries in HFD/STZ-induced diabetic mice. Mechanistically, UCP1 reduced mitochondrial fission through the aristaless-related homeobox (ARX)/cardiolipin synthase 1 (CRLS1) pathway. Therapeutically, CL316243, a UCP1 agonist, could attenuate established DN in db/db mice. This work established a novel principle to harness the power of uncouplers for the treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupling%20protein%201" title=" uncoupling protein 1"> uncoupling protein 1</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20homeostasis" title=" mitochondrial homeostasis"> mitochondrial homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiolipin%20metabolism" title=" cardiolipin metabolism"> cardiolipin metabolism</a> </p> <a href="https://publications.waset.org/abstracts/178984/anxa1-plays-a-nephroprotective-role-by-maintaining-mitochondrial-homeostasis-via-upregulating-uncoupling-protein-1-in-diabetic-nephropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> UCP1 Regulates Cardiolipin Metabolism and Mediates Mitochondrial Homeostasis Maintenance of ANXA1 in Diabetic Nephropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Han%20Li">Zi-Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Fang"> Lu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wu"> Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yuan%20Chang"> Dong-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Manyuan%20Dong"> Manyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ji"> Liang Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hui%20Zhao"> Ming-Hui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sydney%20C.%20W.%20Tang"> Sydney C. W. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemin%20Zheng"> Lemin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia, which were risk factors for diabetic nephropathy (DN). Recently, we found that ANXA1 could improve mitochondrial function to mitigate DN progression. However, the underlying mechanism is not fully clear yet. Here, we identified uncoupling protein 1 (UCP1), an inner membrane protein of mitochondria, as a key to mitochondrial homeostasis improved by ANXA1. Specifically, ANXA1 attenuated mitochondrial dysfunction via appropriately upregulating UCP1 by stabilizing its transcription factor GATA binding protein 3 (GATA3) by combining it with thioredoxin. Moreover, specific overexpression of UCP1 in the renal cortex rescued renal injuries in diabetic Anxa1-KO mice. UCP1 deletion aggravated renal injuries in HFD/STZ-induced diabetic mice. Mechanistically, UCP1 reduced mitochondrial fission through the aristaless-related homeobox (ARX)/cardiolipin synthase 1 (CRLS1) pathway. Therapeutically, CL316243, a UCP1 agonist, could attenuate established DN in db/db mice. This work established an alternative principle to harness the power of uncouplers for the treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupling%20protein%201" title=" uncoupling protein 1"> uncoupling protein 1</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20homeostasis" title=" mitochondrial homeostasis"> mitochondrial homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiolipin%20metabolism" title=" cardiolipin metabolism"> cardiolipin metabolism</a> </p> <a href="https://publications.waset.org/abstracts/178981/ucp1-regulates-cardiolipin-metabolism-and-mediates-mitochondrial-homeostasis-maintenance-of-anxa1-in-diabetic-nephropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Elhamouly">Moustafa Elhamouly</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Shimada"> Masayuki Shimada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granulosa%20cells" title="granulosa cells">granulosa cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling" title=" mitochondrial uncoupling"> mitochondrial uncoupling</a>, <a href="https://publications.waset.org/abstracts/search?q=mitophagy" title=" mitophagy"> mitophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrroloquinoline%20quinone%20%28PQQ%29" title=" pyrroloquinoline quinone (PQQ)"> pyrroloquinoline quinone (PQQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species%20%28ROS%29." title=" reactive oxygen species (ROS)."> reactive oxygen species (ROS).</a> </p> <a href="https://publications.waset.org/abstracts/156680/pyrroloquinoline-quinone-enhances-the-mitochondrial-function-by-increasing-beta-oxidation-and-a-balanced-mitochondrial-recycling-in-mice-granulosa-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Human LACE1 Functions Pro-Apoptotic and Interacts with Mitochondrial YME1L Protease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Stiburek">Lukas Stiburek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Cesnekova"> Jana Cesnekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Houstek"> Josef Houstek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Zeman"> Jiri Zeman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular function depends on mitochondrial function and integrity that is therefore maintained by several classes of proteins possessing chaperone and/or proteolytic activities. In this work, we focused on characterization of LACE1 (lactation elevated 1) function in mitochondrial protein homeostasis maintenance. LACE1 is the human homologue of yeast mitochondrial Afg1 ATPase, a member of SEC18-NSF, PAS1, CDC48-VCP, TBP family. Yeast Afg1 was shown to be involved in mitochondrial complex IV biogenesis, and based on its similarity with CDC48 (p97/VCP) it was suggested to facilitate extraction of polytopic membrane proteins. Here we show that LACE1, which is a mitochondrial integral membrane protein, exists as part of three complexes of approx. 140, 400 and 500 kDa and is essential for maintenance of fused mitochondrial reticulum and lamellar cristae morphology. Using affinity purification of LACE1-FLAG expressed in LACE1 knockdown background we show that the protein physically interacts with mitochondrial inner membrane protease YME1L. We further show that human LACE1 exhibits significant pro-apoptotic activity and that the protein is required for normal function of the mitochondrial respiratory chain. Thus, our work establishes LACE1 as a novel factor with the crucial role in mitochondrial homeostasis maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LACE1" title="LACE1">LACE1</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=protease" title=" protease"> protease</a> </p> <a href="https://publications.waset.org/abstracts/46195/human-lace1-functions-pro-apoptotic-and-interacts-with-mitochondrial-yme1l-protease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Mitochondrial Energy Utilization is Unchanged with Age in the Trophocytes and Oenocytes of Queen Honeybees (Apis mellifera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ying%20Yen">Chia-Ying Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Yuan%20Hsu"> Chin-Yuan Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lifespans of queen honeybees (Apis mellifera) are much longer than those of worker bees. The expression, concentration, and activity of mitochondrial energy-utilized molecules decreased with age in the trophocytes and oenocytes of worker bees, but they are unknown in queen bees. In this study, the expression, concentration, and activity of mitochondrial energy-utilized molecules were evaluated in the trophocytes and oenocytes of young and old queen bees by biochemical techniques. The results showed that mitochondrial density and mitochondrial membrane potential; nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide reduced form (NADH), and adenosine triphosphate (ATP) levels; the NAD+/NADH ratio; and relative expression of NADH dehydrogenase 1 and ATP synthase normalized against mitochondrial density were not significantly different between young and old queen bees. These findings reveal that mitochondrial energy utilization maintains a young status in the trophocytes and oenocytes of old queen bees and that trophocytes and oenocytes have aging-delaying mechanisms and can be used to study cellular longevity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging" title="aging">aging</a>, <a href="https://publications.waset.org/abstracts/search?q=longevity" title=" longevity"> longevity</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20energy" title=" mitochondrial energy"> mitochondrial energy</a>, <a href="https://publications.waset.org/abstracts/search?q=queen%20bees" title=" queen bees"> queen bees</a> </p> <a href="https://publications.waset.org/abstracts/23212/mitochondrial-energy-utilization-is-unchanged-with-age-in-the-trophocytes-and-oenocytes-of-queen-honeybees-apis-mellifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Compensatory Increased Activities of Mitochondrial Respiratory Chain Complexes from Eyes of Glucose-Immersed Zebrafish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisun%20Jun">Jisun Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ko"> Eun Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooim%20Shin"> Sooim Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kitae%20Kim"> Kitae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonsung%20Choi"> Moonsung Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a metabolic disease characterized by hyperglycemia, insulin resistant, mitochondrial dysfunction. Diabetes is associated with the development of diabetic retinopathy resulting in worsening vision and eventual blindness. In this study, eyes were enucleated from glucose-immersed zebrafish which is a good animal model to generate diabetes, and then mitochondria were isolated to evaluate activities of mitochondrial electron transfer complexes. Surprisingly, the amount of isolated mitochondria was increased in eyes from glucose-immersed zebrafish compared to those from non-glucose-immerged zebrafish. Spectrophotometric analysis for measuring activities of mitochondrial complex I, II, III, and IV revealed that mitochondria functions was even enhanced in eyes from glucose-immersed zebrafish. These results indicated that 3 days or 7 days glucose-immersion on zebrafish to induce diabetes might contribute metabolic compensatory mechanism to restore their mitochondrial homeostasis on the early stage of diabetes in eyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20immersion" title=" glucose immersion"> glucose immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20complexes" title=" mitochondrial complexes"> mitochondrial complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish"> zebrafish</a> </p> <a href="https://publications.waset.org/abstracts/77334/compensatory-increased-activities-of-mitochondrial-respiratory-chain-complexes-from-eyes-of-glucose-immersed-zebrafish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaimaa%20Eltanani">Shaimaa Eltanani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thangal%20Yumnamcha"> Thangal Yumnamcha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Ibrahim"> Ahmed S. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20retinal%20endothelial%20cells%20%28hrecs%29" title="human retinal endothelial cells (hrecs)">human retinal endothelial cells (hrecs)</a>, <a href="https://publications.waset.org/abstracts/search?q=rotenone" title=" rotenone"> rotenone</a>, <a href="https://publications.waset.org/abstracts/search?q=oligomycin" title=" oligomycin"> oligomycin</a>, <a href="https://publications.waset.org/abstracts/search?q=fccp" title=" fccp"> fccp</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20phosphorylation" title=" oxidative phosphorylation"> oxidative phosphorylation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxphos" title=" oxphos"> oxphos</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitance" title=" capacitance"> capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=ecis%20modeling" title=" ecis modeling"> ecis modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=rb%20resistance" title=" rb resistance"> rb resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1%20resistance" title=" α resistance"> α resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20barrier%20integrity" title=" and barrier integrity"> and barrier integrity</a> </p> <a href="https://publications.waset.org/abstracts/158792/relative-importance-of-different-mitochondrial-components-in-maintaining-the-barrier-integrity-of-retinal-endothelial-cells-implications-for-vascular-associated-retinal-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Sustaining the Mitochondrial Transcription Factor A in Sperm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betty%20Anson">Betty Anson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers have found that mature sperm cells are not only devoid of mature MTDNA (mitochondrial DNA) but also lack a particular protein essential for DNA maintenance, known as mitochondrial transcription factor A, or TFAM (transcription factor A mitochondria). As a result, children get the DNA of certain important body functions only from their mothers. More experiments show that TFAM appears to burn out when it is used as a source of energy for sperm movement. This study investigates alternative sources of energy for sperm movement that could sustain the existence of TFAM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mItochondria" title="mItochondria">mItochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=TFAM" title=" TFAM"> TFAM</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm" title=" sperm"> sperm</a> </p> <a href="https://publications.waset.org/abstracts/173267/sustaining-the-mitochondrial-transcription-factor-a-in-sperm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> The Effect of Particulate Matter on Cardiomyocyte Apoptosis Through Mitochondrial Fission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsai-chun%20Lai">Tsai-chun Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Szu-ju%20Fu"> Szu-ju Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-lin%20Lee"> Tzu-lin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuh-Lien%20Chen"> Yuh-Lien Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is much evidence that exposure to fine particulate matter (PM) from air pollution increases the risk of cardiovascular morbidity and mortality. According to previous reports, PM in the air enters the respiratory tract, contacts the alveoli, and enters the blood circulation, leading to the progression of cardiovascular disease. PM pollution may also lead to cardiometabolic disturbances, increasing the risk of cardiovascular disease. The effects of PM on cardiac function and mitochondrial damage are currently unknown. We used mice and rat cardiomyocytes (H9c2) as animal and in vitro cell models, respectively, to simulate an air pollution environment using PM. These results indicate that the apoptosis-related factor PUMA, a regulator of apoptosis upregulated by p53, is increased in mice treated with PM. Apoptosis was aggravated in cardiomyocytes treated with PM, as measured by TUNEL assay and Annexin V/PI. Western blot results showed that CASPASE3 was significantly increased and BCL2 (B-cell lymphoid 2) was significantly decreased under PM treatment. Concurrent exposure to PM increases mitochondrial reactive oxygen species (ROS) production by MitoSOX Red staining. Furthermore, using Mitotracker staining, PM treatment significantly shortened mitochondrial length, indicating mitochondrial fission. The expression of mitochondrial fission-related proteins p-DRP1 (phosphodynamics-related protein 1) and FIS1 (mitochondrial fission 1 protein) was significantly increased. Based on these results, the exposure to PM worsens mitochondrial function and leads to cardiomyocyte apoptosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title="particulate matter">particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiomyocyte" title=" cardiomyocyte"> cardiomyocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a> </p> <a href="https://publications.waset.org/abstracts/158367/the-effect-of-particulate-matter-on-cardiomyocyte-apoptosis-through-mitochondrial-fission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Mitochondrial Apolipoprotein A-1 Binding Protein Promotes Repolarization of Inflammatory Macrophage by Repairing Mitochondrial Respiration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hainan%20Chen">Hainan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jina%20Qing"> Jina Qing</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Zhu"> Xiao Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Gao"> Ling Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ampadu%20O.%20Jackson"> Ampadu O. Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Zhang"> Min Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Yin"> Kai Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is highly associated with mitochondrial respiration. Recent studies have suggested that mitochondrial apolipoprotein A-1 binding protein (APOA1BP) was essential for the cellular metabolite NADHX repair to NADH, which is necessary for the mitochondrial function. The exact role of APOA1BP in the repolarization of M1 to M2, however, is uncertain. Material and method: THP-1-derived macrophages were incubated with LPS (10 ng/ml) or/and IL-4 (100 U/ml) for 24 hours. Biochemical parameters of oxidative phosphorylation and M1/M2 markers were analyzed after overexpression of APOA1BP in cells. Results: Compared with control and IL-4-exposed M2 cells, APOA1BP was downregulated in M1 macrophages. APOA1BP restored the decline in mitochondrial function to improve metabolic and phenotypic reprogramming of M1 to M2 macrophages. Blocking oxidative phosphorylation by oligomycin blunts the effects of APOA1BP on M1 to M2 repolarization. Mechanistically, LPS triggered the hydration of NADH and increased its hydrate NADHX which inhibit cellular NADH dehydrogenases, a key component of electron transport chain for oxidative phosphorylation. APOA1BP decreased the level of NADHX via converting R-NADHX to biologically useful S-NADHX. The mutant of APOA1BP aspartate188, the binding site of NADHX, fail to repair oxidative phosphorylation, thereby preventing repolarization. Conclusions: Restoring mitochondrial function by increasing mitochondrial APOA1BP might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control inflammatory diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20diseases" title="inflammatory diseases">inflammatory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage%20repolarization" title=" macrophage repolarization"> macrophage repolarization</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20respiration" title=" mitochondrial respiration"> mitochondrial respiration</a>, <a href="https://publications.waset.org/abstracts/search?q=apolipoprotein%20A-1%20binding%20protein" title=" apolipoprotein A-1 binding protein"> apolipoprotein A-1 binding protein</a>, <a href="https://publications.waset.org/abstracts/search?q=NADHX" title=" NADHX"> NADHX</a>, <a href="https://publications.waset.org/abstracts/search?q=NADH" title=" NADH"> NADH</a> </p> <a href="https://publications.waset.org/abstracts/88237/mitochondrial-apolipoprotein-a-1-binding-protein-promotes-repolarization-of-inflammatory-macrophage-by-repairing-mitochondrial-respiration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> The Role of Txnrd2 Deficiency in Epithelial-to-Mesenchymal-Transition (EMT) and Tumor Formation in Pancreatic Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Wu">Chao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thioredoxin reductase 2 is a mitochondrial enzyme that belongs to the cellular defense against oxidative stress. We deleted mitochondrial Txnrd2 in a KrasG12D-driven pancreatic tumor model. Despite an initial increase in precursor lesions, tumor incidence decreased significantly. We isolated cancer cell lines from these genetically engineered mice and observed an impaired proliferation and colony formation. Reactive Oxygen Species, as determined by DCF fluorescence, were increased. We detected a higher mitochondrial copy number in Txnrd2-deficient cells (KTP). However, measurement of mitochondrial bioenergetics showed no impairment of mitochondrial function and comparable O₂-consumption and extracellular acidification rates. In addition, the mitochondrial complex composition was affected in Txnrd2 deleted cell lines. To gain better insight into the role of Txnrd2, we deleted Txnrd2 in clones from parental KrasG12D cell lines using Crispr/Cas9 technology. The deletion was confirmed by western blot and activity assay. Interestingly, and in line with previous RNA expression analysis, we saw changes in EMT markers in Txnrd2 deleted cell lines and control cell lines. This might help us explain the reduced tumor incidence in KrasG12D; Txnrd2∆panc mice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PDAC" title="PDAC">PDAC</a>, <a href="https://publications.waset.org/abstracts/search?q=TXNRD2" title=" TXNRD2"> TXNRD2</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelial-to-mesenchymal-transition" title=" epithelial-to-mesenchymal-transition"> epithelial-to-mesenchymal-transition</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a> </p> <a href="https://publications.waset.org/abstracts/154620/the-role-of-txnrd2-deficiency-in-epithelial-to-mesenchymal-transition-emt-and-tumor-formation-in-pancreatic-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Short-Term Exposing Effects of 4,4&#039;-DDT on Mitochondrial Electron Transport Complexes in Eyes of Zebrafish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ko">Eun Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonsung%20Choi"> Moonsung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooim%20Shin"> Sooim Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 4,4’-Dichlorodiphenyltrichloroethane (4,4’-DDT) is colorless, odorless organochlorine and known as persistent toxic organic pollutant accumulated in organs. In this study, effects of 4,4’-DDT on activities of mitochondrial electron transport chain system was analyzed. 4,4’-DDT is directly treated to isolated mitochondria from eyes of zebrafish and then activities of mitochondrial complex I, II, III, IV were measured spectrophotometrically. The reaction was proceeded immediately after adding 4,4’-DDT to examine the short-term exposing effects of persistent organic pollutant. As a result, high concentration of 4,4’-DDT treated mitochondria exhibited slightly enhanced activity in all complexes than non-treated one except complex III in male. Particularly, 4,4’-DDT was more effective on enzymatic activity in mitochondria isolated from eyes of male zebrafish. These results represented that 4,4’-DDT might temporarily induce to open up ion channel on isolated mitochondria resulting in increasing the functional activity of mitochondrial electron transport chain system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20transport%20chain" title="electron transport chain">electron transport chain</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20function" title=" mitochondrial function"> mitochondrial function</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20organic%20pollutant" title=" persistent organic pollutant"> persistent organic pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20assay" title=" spectrophotometric assay"> spectrophotometric assay</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish "> zebrafish </a> </p> <a href="https://publications.waset.org/abstracts/77446/short-term-exposing-effects-of-44-ddt-on-mitochondrial-electron-transport-complexes-in-eyes-of-zebrafish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souad%20Mouzaoui">Souad Mouzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahia%20Djerdjouri"> Bahia Djerdjouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colitis" title="colitis">colitis</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=TNBS" title=" TNBS"> TNBS</a> </p> <a href="https://publications.waset.org/abstracts/1767/beneficial-effects-of-curcumin-against-stress-oxidative-and-mitochondrial-dysfunction-induced-by-trinitrobenzene-sulphonic-acid-in-colon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Enhancing Mitochondrial Activity and Metabolism in Aging Female Germ Cells: Synergistic Effects of Dual ROCK and ROS Inhibition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuan-Hao%20Tsui">Kuan-Hao Tsui</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Te%20Lin"> Li-Te Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jung%20Li"> Chia-Jung Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combination of Y-27632 and Vitamin C significantly enhances the quality of aging germ cells by reducing reactive oxygen species (ROS) production, restoring mitochondrial membrane potential balance, and promoting mitochondrial fusion. The age-related decline in oocyte quality contributes to reduced fertility, increased aneuploidy, and diminished embryo quality, with mitochondrial dysfunction in both oocytes and granulosa cells being a key factor in this decline. Experiments on aging germ cells investigated the effects of the Y-27632 and Vitamin C combination. In vivo studies involved aged mice to assess oocyte maturation and ROS accumulation during culture. The assessment included mitochondrial activity, ROS levels, mitochondrial membrane potential, and mitochondrial dynamics. Cellular energy metabolism and ATP production were also measured. The combination treatment effectively addressed mitochondrial dysfunction and regulated cellular energy metabolism, promoting oxygen respiration and increasing ATP production. In aged mice, this supplement treatment enhanced in vitro oocyte maturation and prevented ROS accumulation in aging oocytes during culture. While these findings are promising, further research is needed to explore the long-term effects and potential side effects of the Y-27632 and Vitamin C combination. Additionally, translating these findings to human subjects requires careful consideration. Overall, the study suggests that the Y-27632 and Vitamin C combination could be a promising intervention to mitigate aging-related dysfunction in germ cells, potentially enhancing oocyte quality, particularly in the context of in vitro fertilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ovarian%20aging" title="ovarian aging">ovarian aging</a>, <a href="https://publications.waset.org/abstracts/search?q=supplements" title=" supplements"> supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a> </p> <a href="https://publications.waset.org/abstracts/186480/enhancing-mitochondrial-activity-and-metabolism-in-aging-female-germ-cells-synergistic-effects-of-dual-rock-and-ros-inhibition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Mitochondrial DNA Defect and Mitochondrial Dysfunction in Diabetic Nephropathy: The Role of Hyperglycemia-Induced Reactive Oxygen Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Al-Kafaji">Ghada Al-Kafaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sabry"> Mohamed Sabry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitochondria are the site of cellular respiration and produce energy in the form of adenosine triphosphate (ATP) via oxidative phosphorylation. They are the major source of intracellular reactive oxygen species (ROS) and are also direct target to ROS attack. Oxidative stress and ROS-mediated disruptions of mitochondrial function are major components involved in the pathogenicity of diabetic complications. In this work, the changes in mitochondrial DNA (mtDNA) copy number, biogenesis, gene expression of mtDNA-encoded subunits of electron transport chain (ETC) complexes, and mitochondrial function in response to hyperglycemia-induced ROS and the effect of direct inhibition of ROS on mitochondria were investigated in an in vitro model of diabetic nephropathy using human renal mesangial cells. The cells were exposed to normoglycemic and hyperglycemic conditions in the presence and absence of Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or catalase for 1, 4 and 7 days. ROS production was assessed by the confocal microscope and flow cytometry. mtDNA copy number and PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 transcripts, were all analyzed by real-time PCR. PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 proteins, were analyzed by Western blotting. Mitochondrial function was determined by assessing mitochondrial membrane potential and adenosine triphosphate (ATP) levels. Hyperglycemia-induced a significant increase in the production of mitochondrial superoxide and hydrogen peroxide at day 1 (P < 0.05), and this increase remained significantly elevated at days 4 and 7 (P < 0.05). The copy number of mtDNA and expression of PGC-1a, NRF-1, and TFAM as well as ND2, CYTB, CO1 and ATPase 6 increased after one day of hyperglycemia (P < 0.05), with a significant reduction in all those parameters at 4 and 7 days (P < 0.05). The mitochondrial membrane potential decreased progressively at 1 to 7 days of hyperglycemia with the parallel progressive reduction in ATP levels over time (P < 0.05). MnTBAP and catalase treatment of cells cultured under hyperglycemic conditions attenuated ROS production reversed renal mitochondrial oxidative stress and improved mtDNA, mitochondrial biogenesis, and function. These results show that hyperglycemia-induced ROS caused an early increase in mtDNA copy number, mitochondrial biogenesis and mtDNA-encoded gene expression of the ETC subunits in human mesangial cells as a compensatory response to the decline in mitochondrial function, which precede the mtDNA defect and mitochondrial dysfunction with a progressive oxidative response. Protection from ROS-mediated damage to renal mitochondria induced by hyperglycemia may be a novel therapeutic approach for the prevention/treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mtDNA" title=" mtDNA"> mtDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20dysfunction" title=" mitochondrial dysfunction"> mitochondrial dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20superoxide%20dismutase" title=" manganese superoxide dismutase"> manganese superoxide dismutase</a>, <a href="https://publications.waset.org/abstracts/search?q=catalase" title=" catalase"> catalase</a> </p> <a href="https://publications.waset.org/abstracts/65128/mitochondrial-dna-defect-and-mitochondrial-dysfunction-in-diabetic-nephropathy-the-role-of-hyperglycemia-induced-reactive-oxygen-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Effects of Cassia tora Seeds Extract on Type 2 Diabetes Induced Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Ju%20Jo">Min-Ju Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Young%20Um"> Min-Young Um</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonsung%20Choi"> Moonsung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooim%20Shin"> Sooim Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 diabetes (T2D) is characterized by insulin resistance, the inability of β-cell and the dysfunction of mitochondria. To characterize effects of Cassia tora extract on mitochondrial dysfunction related T2D, the reduced glutathione level, amount of mitochondrial complexes and activities of mitochondrial complexes were measured. Three groups of mice were modeled; a control group was fed a normal diet, a diabetic group was fed a diabetic diet high in fat and carbohydrates, and a third group was fed a diabetic diet + 70% ethanol extracted Cassia tora seeds for 12 weeks. The amount of mitochondria was determined by Bradford assay after isolation of mitochondria in liver from each group. During isolation of mitochondria, cytosolic fractions of the tissue were collected to measure the reduced glutathione level. Interestingly, high level of the reduced glutathione was observed in Cassia tora treated group and decreased activities of mitochondrial complexes in Cassia tora treated group compared to the diabetic diet group. It indicates that Cassia tora has the potential to increase the reduced form of glutathione functioned as an important antioxidant in cells, and to reduce mitochondrial metabolic compensatory mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20tora" title=" Cassia tora"> Cassia tora</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20transport%20chain" title=" electron transport chain"> electron transport chain</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione" title=" glutathione"> glutathione</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometry" title=" spectrophotometry"> spectrophotometry</a> </p> <a href="https://publications.waset.org/abstracts/77447/effects-of-cassia-tora-seeds-extract-on-type-2-diabetes-induced-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Various Sources of N-3 Polyunsaturated Fatty Acid Supplementation Modulate Mitochondria Membrane Composition and Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Ting%20Wang">Wen-Ting Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-An%20Tsai"> Wei-An Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong-Hong%20Hsieh"> Rong-Hong Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long term taking high fat diet can lead to over production of energy, result in accumulation of body fat, dyslipidemia and increased lipid metabolism in the body. Over metabolism of lipid results in excessive reactive oxygen species and oxidative stress, may also cause mitochondrial dysfunction and cell death. Krill oil, fish oil and linseed oil are good sources of n-3 polyunsaturated fatty acids (PUFA). The present study investigated the effect of high fat diet and various oil rich of n-3 fatty acids on mitochondrial function and cell membrane composition. Six-weeks old male Spraque-Dawley rats were randomly divided into 8 groups including: control group, high fat diet group, low dosage and high dosage krill oil group, low dosage and high dosage fish oil group, and low dosage and high dosage linseed oil group. After 12 weeks of experimental period, the low dosage krill oil, fish oil group and linseed oil group with different dosage prevented mitochondrial dysfunction caused by high fat diet. The supplementation of different oils increased plasma, erythrocyte and mitochondrial n-3/n-6 ratio and further increased the proportion of PUFA in erythrocyte and mitochondrial membrane. It also decreased serum triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) concentration. However, there was no significant change in serum total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), biomarker of liver function, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR) and plasma malonadialdehyde (MDA) concentration when compared with high fat diet group. The supplementation of different sources of n-3 PUFA can maintain mitochondrial function and modulate cell membrane fatty acid composition in high fat diet conditions, and there is a positive relationship between mitochondrial function and mitochondrial membrane composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20oil" title="fish oil">fish oil</a>, <a href="https://publications.waset.org/abstracts/search?q=linseed%20oil" title=" linseed oil"> linseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=n-3%20PUFA" title=" n-3 PUFA"> n-3 PUFA</a> </p> <a href="https://publications.waset.org/abstracts/23821/various-sources-of-n-3-polyunsaturated-fatty-acid-supplementation-modulate-mitochondria-membrane-composition-and-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Molecular Evidence for Three Species of Giraffa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alice%20Petzold">Alice Petzold</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Hassanin"> Alexandre Hassanin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of giraffe species has been in focus of interest since the exploration of sub-Saharan Africa by European naturalists during the 18th and 19th centuries, as previous taxonomists, like Geoffroy Saint-Hilaire, Richard Owen or William Edward de Winton, recognized two or three species of Giraffa. For the last decades, giraffes were commonly considered as a single species subdivided into nine subspecies. In this study, we have re-examined available nuclear and mitochondrial data. Our genetic admixture analyses of seven introns support three species: G. camelopardalis (i.e., northern giraffes including reticulated giraffes), G. giraffa (southern giraffe) and G. tippelskirchi (Masai giraffe). However, the nuclear alignments show small variation and our phylogenetic analyses provide high support only for the monophyly of G. camelopardalis. Comparisons with the mitochondrial tree revealed a robust conflict for the position and monophyly of G. giraffa and G. tippelskirchi, which is explained firstly by a mitochondrial introgression from Masai giraffe to southeastern giraffe, and secondly, by gene flow mediated by male dispersal between southern populations (subspecies angolensis and giraffa). We conclude that current data gives only moderate support for three giraffe species and point out that additional nuclear data need to be studied to revise giraffe taxonomy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autosomal%20markers" title="autosomal markers">autosomal markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Giraffidae" title=" Giraffidae"> Giraffidae</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20introgression" title=" mitochondrial introgression"> mitochondrial introgression</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/91406/molecular-evidence-for-three-species-of-giraffa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Clinical Manifestations, Pathogenesis and Medical Treatment of Stroke Caused by Basic Mitochondrial Abnormalities (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes, MELAS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Liching">Wu Liching</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim This case aims to discuss the pathogenesis, clinical manifestations and medical treatment of strokes caused by mitochondrial gene mutations. Methods Diagnosis of ischemic stroke caused by mitochondrial gene defect by means of "next-generation sequencing mitochondrial DNA gene variation detection", imaging examination, neurological examination, and medical history; this study took samples from the neurology ward of a medical center in northern Taiwan cases diagnosed with acute cerebral infarction as the research objects. Result This case is a 49-year-old married woman with a rare disease, mitochondrial gene mutation inducing ischemic stroke. She has severe hearing impairment and needs to use hearing aids, and has a history of diabetes. During the patient’s hospitalization, the blood test showed that serum Lactate: 7.72 mmol/L, Lactate (CSF) 5.9 mmol/L. Through the collection of relevant medical history, neurological evaluation showed changes in consciousness and cognition, slow response in language expression, and brain magnetic resonance imaging examination showed subacute bilateral temporal lobe infarction, which was an atypical type of stroke. The lineage DNA gene has m.3243A>G known pathogenic mutation point, and its heteroplasmic level is 24.6%. This pathogenic point is located in MITOMAP and recorded as Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) , Leigh Syndrome and other disease-related pathogenic loci, this mutation is located in ClinVar and recorded as Pathogenic (dbSNP: rs199474657), so it is diagnosed as a case of stroke caused by a rare disease mitochondrial gene mutation. After medical treatment, there was no more seizure during hospitalization. After interventional rehabilitation, the patient's limb weakness, poor language function, and cognitive impairment have all improved significantly. Conclusion Mitochondrial disorders can also be associated with abnormalities in psychological, neurological, cerebral cortical function, and autonomic functions, as well as problems with internal medical diseases. Therefore, the differential diagnoses cover a wide range and are not easy to be diagnosed. After neurological evaluation, medical history collection, imaging and rare disease serological examination, atypical ischemic stroke caused by rare mitochondrial gene mutation was diagnosed. We hope that through this case, the diagnosis of rare disease mitochondrial gene variation leading to cerebral infarction will be more familiar to clinical medical staff, and this case report may help to improve the clinical diagnosis and treatment for patients with similar clinical symptoms in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20stroke" title="acute stroke">acute stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=MELAS" title=" MELAS"> MELAS</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acidosis" title=" lactic acidosis"> lactic acidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20disorders" title=" mitochondrial disorders"> mitochondrial disorders</a> </p> <a href="https://publications.waset.org/abstracts/169802/clinical-manifestations-pathogenesis-and-medical-treatment-of-stroke-caused-by-basic-mitochondrial-abnormalities-mitochondrial-encephalopathy-lactic-acidosis-and-stroke-like-episodes-melas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Dynamic Cardiac Mitochondrial Proteome Alterations after Ischemic Preconditioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelbary%20Prince">Abdelbary Prince</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Moussa"> Said Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungkyu%20Kim"> Hyungkyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Gouda"> Eman Gouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Han"> Jin Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We compared the dynamic alterations of mitochondrial proteome of control, ischemia-reperfusion (IR) and ischemic preconditioned (IPC) rabbit hearts. Using 2-DE, we identified 29 mitochondrial proteins that were differentially expressed in the IR heart compared with the control and IPC hearts. For two of the spots, the expression patterns were confirmed by Western blotting analysis. These proteins included succinate dehydrogenase complex, Acyl-CoA dehydrogenase, carnitine acetyltransferase, dihydrolipoamide dehydrogenase, Atpase, ATP synthase, dihydrolipoamide succinyltransferase, ubiquinol-cytochrome c reductase, translation elongation factor, acyl-CoA dehydrogenase, actin alpha, succinyl-CoA Ligase, dihydrolipoamide S-succinyltransferase, citrate synthase, acetyl-Coenzyme A dehydrogenase, creatine kinase, isocitrate dehydrogenase, pyruvate dehydrogenase, prohibitin, NADH dehydrogenase (ubiquinone) Fe-S protein, enoyl Coenzyme A hydratase, superoxide dismutase [Mn], and 24-kDa subunit of complex I. Interestingly, most of these proteins are associated with the mitochondrial respiratory chain, antioxidant enzyme system, and energy metabolism. The results provide clues as to the cardioprotective mechanism of ischemic preconditioning at the protein level and may serve as potential biomarkers for detection of ischemia-induced cardiac injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ischemic%20preconditioning" title="ischemic preconditioning">ischemic preconditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=proteome" title=" proteome"> proteome</a>, <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title=" cardioprotection"> cardioprotection</a> </p> <a href="https://publications.waset.org/abstracts/19291/dynamic-cardiac-mitochondrial-proteome-alterations-after-ischemic-preconditioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Effect of Cardio-Specific Overexpression of MUL1, a Mitochondrial Protein on Myocardial Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ximena%20Calle">Ximena Calle</a>, <a href="https://publications.waset.org/abstracts/search?q=Plinio%20Cantero-L%C3%B3pez"> Plinio Cantero-López</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Mu%C3%B1oz-C%C3%B3rdova"> Felipe Muñoz-Córdova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayarling-Francisca%20Troncoso"> Mayarling-Francisca Troncoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Lavandero"> Sergio Lavandero</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Parra"> Valentina Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MUL1, a mitochondrial E3 ubiquitin ligase anchored to the outer mitochondrial membrane, is highly expressed in the heart. MUL1 is involved in multiple biological pathways associated with mitochondrial dynamics. Increased MUL1 affects the balance between fission and fusion, affecting mitochondrial function, which plays a crucial role in myocardial function. Therefore, it is interesting to evaluate the effect of cardiac-specific overexpression of MUL1 on myocardial function. Aim: To determine heart functionality in a mouse model with cardio-specific overexpression MUL1 protein. Methods and Results: Male C57BL/Tg transgenic mice with cardiomyocyte-specific overexpression of MUL1 (n=10) and control (n=4) were evaluated at 12, 27, and 35 weeks of age. Glucose tolerance curve determination was performed after a 6-hours fast to assess metabolic capacity, treadmill test, and systolic, and diastolic pressure was evaluated by the mouse tail-cuff blood pressure system equipment. The result showed no glucose tolerance curve, and the treadmill test demonstrated no significant changes between groups. However, substantial changes in diastolic function were observed by ultrasound and determination of cardiac hypertrophy proteins by western blot. Conclusions: Cardio-specific overexpression of MUL1 in mice without any treatment affects diastolic cardiac function, thus showing the important role contributed by MUL1 in the heart. Future research should evaluate the effect of cardiomyocyte-specific overexpression of MUL1 in pathological conditions such as a high-fat diet is one of the main risk factors for cardiovascular disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diastolic%20dysfunction" title="diastolic dysfunction">diastolic dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertrophy%20cardiac" title=" hypertrophy cardiac"> hypertrophy cardiac</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20E3%20ubiquitin%20ligase%201" title=" mitochondrial E3 ubiquitin ligase 1"> mitochondrial E3 ubiquitin ligase 1</a>, <a href="https://publications.waset.org/abstracts/search?q=MUL1" title=" MUL1"> MUL1</a> </p> <a href="https://publications.waset.org/abstracts/156095/effect-of-cardio-specific-overexpression-of-mul1-a-mitochondrial-protein-on-myocardial-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> LYRM7-Associated Mitochondrial Complex III Deficiency with Non-Cavitating Leukoencephalopathy and Stroke-Like Episodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Alfattal">Rita Alfattal</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Alfarhan"> Maryam Alfarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeeb%20M.%20Algaith"> Adeeb M. Algaith</a>, <a href="https://publications.waset.org/abstracts/search?q=Buthaina%20Albash"> Buthaina Albash</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20M.%20Elshafie"> Reem M. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Alshammari"> Asma Alshammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alahmad"> Ahmad Alahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Dashti"> Fatima Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Alsafi"> Rasha Alsafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hind%20Alsharhan"> Hind Alsharhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Defects of respiratory chain complex III (CIII) result in characteristic but rare mitochondrial disorders associated with distinct neuroradiological findings. The underlying molecular defects affecting mitochondrial CIII assembly factors are few and yet to be identified. LYRM7 assembly factor is required for proper CIII assembly where it acts as a chaperone for the Rieske iron‐sulfur (UQCRFS1) protein in the mitochondrial matrix and stabilizing it. We present here the seventeenth individual with LYRM7-associated mitochondrial leukoencephalopathy harboring a previously reported rare pathogenic homozygous LYRM 7 variant, c.2T>C, (p.Met1?). Like previously reported individuals, our 4-year-old male proband presented with recurrent metabolic and lactic acidosis, encephalopathy, and myopathy. Further, he has additional, previously unreported features, including an acute stroke like episode with bilateral central blindness and optic neuropathy, recurrent hyperglycemia and hypertension associated with metabolic crisis. However, he has no signs of psychomotor regression. He has been stable clinically with residual left-sided reduced visual acuity and amblyopia, and no more metabolic crises for 2-year-period while on the mitochondrial cocktail. Although the reported brain MRI findings in other affected individuals are homogenous, it is slightly different in our index, revealing evidence of bilateral almost symmetric multifocal periventricular T2 hyperintensities with hyperintensities of the optic nerves, optic chiasm, and corona radiata but with no cavitation or cystic changes. This report describes new clinical and radiological findings of LYRM7-associated disease. The report also summarizes the clinical and molecular data of previously reported individuals describing the full phenotypic spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LYRM7%20gene%20defect" title="LYRM7 gene defect">LYRM7 gene defect</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20disease" title=" mitochondrial disease"> mitochondrial disease</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acidosis" title="lactic acidosis">lactic acidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20disorder" title="genetic disorder">genetic disorder</a> </p> <a href="https://publications.waset.org/abstracts/160478/lyrm7-associated-mitochondrial-complex-iii-deficiency-with-non-cavitating-leukoencephalopathy-and-stroke-like-episodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> The UbiB Family Member Cqd1 Forms a Membrane Contact Site in Mitochondria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Khosravi">S. Khosravi</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Chelius"> X. Chelius</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Unger"> A. Unger</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rieger"> D. Rieger</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Frickel"> J. Frickel</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sachsenheimer"> T. Sachsenheimer</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Luechtenborg"> C. Luechtenborg</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Schieweck"> R. Schieweck</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bruegger"> B. Bruegger</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Westermann"> B. Westermann</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Klecker"> T. Klecker</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Neupert"> W. Neupert</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Harner"> M. E. Harner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Saccharomyces cerevisiae as a model organism to study eukaryotic cell functions has been used successfully for decades. Like virtually all eukaryotic cells, they contain mitochondria as essential organelles performing various functions, including participation in lipid metabolism. They are separated from the cytosol by a double membrane system consisting of the mitochondrial inner membrane (MIM) and the mitochondrial outer membrane (MOM). This physical separation of the mitochondria requires an exchange of metabolites, proteins, and lipids. Proteinaceous contact sites are thought to be important for this communication. Recently, it was found that Cqd1, in cooperation with Cqd2, controls the distribution of Coenzyme Q within the cell. In this study, a contact site is described, formed by the MOM protein complex Por1-Om14 and the UbiB protein kinase-like MIM protein Cqd1. The present results suggest the additional involvement of Cqd1 in the homeostasis of phospholipids. Moreover, we show that overexpression of the UbiB family proteins also causes tethering of the mitochondria to the endoplasmatic reticulum. Due to the conservation of the subunits of this contact site to higher eukaryotes, its identification in S. cerevisiae might provide promising avenues for further research in other organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20sites" title="contact sites">contact sites</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20architecture" title=" mitochondrial architecture"> mitochondrial architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20proteins" title=" mitochondrial proteins"> mitochondrial proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast%20mitochondria" title=" yeast mitochondria"> yeast mitochondria</a> </p> <a href="https://publications.waset.org/abstracts/163034/the-ubib-family-member-cqd1-forms-a-membrane-contact-site-in-mitochondria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orsolya%20Horvath">Orsolya Horvath</a>, <a href="https://publications.waset.org/abstracts/search?q=Laszlo%20Deres"> Laszlo Deres</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisztian%20Eros"> Krisztian Eros</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Ordog"> Katalin Ordog</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamas%20Habon"> Tamas Habon</a>, <a href="https://publications.waset.org/abstracts/search?q=Balazs%20Sumegi"> Balazs Sumegi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20Toth"> Kalman Toth</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Halmosi"> Robert Halmosi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H9c2" title="H9c2">H9c2</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20dynamics" title=" mitochondrial dynamics"> mitochondrial dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=neonatal%20rat%20cardiomyocytes" title=" neonatal rat cardiomyocytes"> neonatal rat cardiomyocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/89437/oxidative-stress-related-alteration-of-mitochondrial-dynamics-in-cellular-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Association of Nuclear – Mitochondrial Epistasis with BMI in Type 1 Diabetes Mellitus Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20H.%20Ludwig-Slomczynska">Agnieszka H. Ludwig-Slomczynska</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20T.%20Seweryn"> Michal T. Seweryn</a>, <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Kapusta"> Przemyslaw Kapusta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewelina%20Pitera"> Ewelina Pitera</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Cyganek"> Katarzyna Cyganek</a>, <a href="https://publications.waset.org/abstracts/search?q=Urszula%20Mantaj"> Urszula Mantaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucja%20Dobrucka"> Lucja Dobrucka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Wender-Ozegowska"> Ewa Wender-Ozegowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20T.%20Malecki"> Maciej T. Malecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Wolkow"> Pawel Wolkow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity results from an imbalance between energy intake and its expenditure. Genome-Wide Association Study (GWAS) analyses have led to discovery of only about 100 variants influencing body mass index (BMI), which explain only a small portion of genetic variability. Analysis of gene epistasis gives a chance to discover another part. Since it was shown that interaction and communication between nuclear and mitochondrial genome are indispensable for normal cell function, we have looked for epistatic interactions between the two genomes to find their correlation with BMI. Methods: The analysis was performed on 366 T1DM patients using Illumina Infinium OmniExpressExome-8 chip and followed by imputation on Michigan Imputation Server. Only genes which influence mitochondrial functioning (listed in Human MitoCarta 2.0) were included in the analysis – variants of nuclear origin (MAF > 5%) in 1140 genes and 42 mitochondrial variants (MAF > 1%). Gene expression analysis was performed on GTex data. Association analysis between genetic variants and BMI was performed with the use of Linear Mixed Models as implemented in the package 'GENESIS' in R. Analysis of association between mRNA expression and BMI was performed with the use of linear models and standard significance tests in R. Results: Among variants involved in epistasis between mitochondria and nucleus we have identified one in mitochondrial transcription factor, TFB2M (rs6701836). It interacted with mitochondrial variants localized to MT-RNR1 (p=0.0004, MAF=15%), MT-ND2 (p=0.07, MAF=5%) and MT-ND4 (p=0.01, MAF=1.1%). Analysis of the interaction between nuclear variant rs6701836 (nuc) and rs3021088 localized to MT-ND2 mitochondrial gene (mito) has shown that the combination of the two led to BMI decrease (p=0.024). Each of the variants on its own does not correlate with higher BMI [p(nuc)=0.856, p(mito)=0.116)]. Although rs6701836 is intronic, it influences gene expression in the thyroid (p=0.000037). rs3021088 is a missense variant that leads to alanine to threonine substitution in the MT-ND2 gene which belongs to complex I of the electron transport chain. The analysis of the influence of genetic variants on gene expression has confirmed the trend explained above – the interaction of the two genes leads to BMI decrease (p=0.0308). Each of the mRNAs on its own is associated with higher BMI (p(mito)=0.0244 and p(nuc)=0.0269). Conclusıons: Our results show that nuclear-mitochondrial epistasis can influence BMI in T1DM patients. The correlation between transcription factor expression and mitochondrial genetic variants will be subject to further analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title="body mass index">body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=epistasis" title=" epistasis"> epistasis</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=type%201%20diabetes" title=" type 1 diabetes"> type 1 diabetes</a> </p> <a href="https://publications.waset.org/abstracts/90791/association-of-nuclear-mitochondrial-epistasis-with-bmi-in-type-1-diabetes-mellitus-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Annona muricata Leaves Induced Mitochondrial-Mediated Apoptosis in A549 Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheil%20Zorofchian%20Moghadamtousi">Soheil Zorofchian Moghadamtousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Habsah%20Abdul%20Kadir"> Habsah Abdul Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Paydar"> Mohammadjavad Paydar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rouhollahi"> Elham Rouhollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Karimian"> Hamed Karimian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to evaluate the molecular mechanisms of Annona muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells. Cell viability analysis revealed the selective cytotoxic effect of AMEAE towards A549 cells. Treatment of A549 cells with AMEAE significantly elevated the reactive oxygen species formation, followed by attenuation of mitochondrial membrane potential via upregulation of Bax and downregulation of Bcl-2, accompanied by cytochrome c release to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by caspase-3. In addition, AMEAE-induced apoptosis was accompanied by cell cycle arrest at G1 phase. Our data showed for the first time that AMEAE inhibited the proliferation of A549 cells, leading to cell cycle arrest and programmed cell death through activation of the mitochondrial-mediated signaling pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annona%20muricata" title="Annona muricata">Annona muricata</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a> </p> <a href="https://publications.waset.org/abstracts/12594/annona-muricata-leaves-induced-mitochondrial-mediated-apoptosis-in-a549-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Nuclear Mitochondrial Pseudogenes in Anastrepha fraterculus Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Srivastava">Pratibha Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayyamperumal%20Jeyaprakash"> Ayyamperumal Jeyaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Steck"> Gary Steck</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Stanley"> Jason Stanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Leroy%20Whilby"> Leroy Whilby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major threat to fruit and vegetable industries in the United States. The establishment of pest fruit fly in the agricultural industries and produce severe ecological and economic impacts on agricultural diversification and trade. Detection and identification of these agricultural pests in a timely manner will facilitate the possibility of eradication from newly invaded areas. Identification of larval stages to species level is difficult, but is required to determine pest loads and their pathways into the United States. The aim of this study is the New World genus, Anastrepha which includes pests of major economic importance. Mitochondrial cytochrome c oxidase I (COI) gene sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level. During phylogenetics analysis numerous nuclear mitochondrial pseudogenes (numts) were discovered in different specimens. The numts are nonfunctional copies of the mtDNA present in the nucleus and are easily coamplified with the mitochondrial COI gene copy by using conserved universal primers. This is problematic for DNA Barcoding, which attempts to characterize all living organisms by using the COI gene. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tephritid" title="tephritid">tephritid</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastrepha%20fraterculus" title=" Anastrepha fraterculus"> Anastrepha fraterculus</a>, <a href="https://publications.waset.org/abstracts/search?q=COI" title=" COI"> COI</a>, <a href="https://publications.waset.org/abstracts/search?q=numts" title=" numts"> numts</a> </p> <a href="https://publications.waset.org/abstracts/66131/nuclear-mitochondrial-pseudogenes-in-anastrepha-fraterculus-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateen%20A.%20Khan">Mateen A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20J.%20Theil"> Elizabeth J. Theil</a>, <a href="https://publications.waset.org/abstracts/search?q=Dixie%20J.%20Goss"> Dixie J. Goss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IRE-mRNA" title="IRE-mRNA">IRE-mRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=IRP1" title=" IRP1"> IRP1</a>, <a href="https://publications.waset.org/abstracts/search?q=binding" title=" binding"> binding</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20strength" title=" ionic strength"> ionic strength</a> </p> <a href="https://publications.waset.org/abstracts/101783/iron-response-element-mrna-binding-to-iron-response-protein-metal-ion-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blessing%20Ojeme">Blessing Ojeme</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederick%20Quinn"> Frederick Quinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%20Karls"> Russell Karls</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20Quinn"> Shannon Quinn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D" title="2D">2D</a>, <a href="https://publications.waset.org/abstracts/search?q=binarization" title=" binarization"> binarization</a>, <a href="https://publications.waset.org/abstracts/search?q=CLAHE" title=" CLAHE"> CLAHE</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20microscopy" title=" fluorescence microscopy"> fluorescence microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/153306/fully-automated-methods-for-the-detection-and-segmentation-of-mitochondria-in-microscopy-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Forensic Analysis of MTDNA Hypervariable Region HVII by Sanger Sequence Method in Iraq Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Imad">H. Imad</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Cheah"> Y. Cheah</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Aamera"> O. Aamera </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of this research are to study the mitochondrial non-coding region by using the Sanger sequencing technique and establish the degree of variation characteristics of a fragment. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. A portion of a non-coding region encompassing positions 37 to 340 amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column then sequenced and detected by using the ABI 3730xL DNA Analyzer. New polymorphic positions 57, 63, and 101 are described may in future be suitable sources for identification purpose. The data obtained can be used to identify variable nucleotide positions characterized by frequent occurrence most promising for identification variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encompassing%20nucleotide%20positions%2037%20to%20340" title="encompassing nucleotide positions 37 to 340">encompassing nucleotide positions 37 to 340</a>, <a href="https://publications.waset.org/abstracts/search?q=HVII" title=" HVII"> HVII</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq" title=" Iraq"> Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title=" mitochondrial DNA"> mitochondrial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a> </p> <a href="https://publications.waset.org/abstracts/2121/forensic-analysis-of-mtdna-hypervariable-region-hvii-by-sanger-sequence-method-in-iraq-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">761</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitochondrial%20uncoupling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10