CINXE.COM

Search results for: liquid mixing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: liquid mixing</title> <meta name="description" content="Search results for: liquid mixing"> <meta name="keywords" content="liquid mixing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="liquid mixing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="liquid mixing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2663</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: liquid mixing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2663</span> Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chai%20Mingming">Chai Mingming</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lei"> Li Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Xiaoxia"> Lu Xiaoxia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the mechanism of stratified liquids&rsquo; mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interface%20instability" title="interface instability">interface instability</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20mixing" title=" liquid mixing"> liquid mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-Taylor%20Instability" title=" Rayleigh-Taylor Instability"> Rayleigh-Taylor Instability</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-down%20process" title=" spin-down process"> spin-down process</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-up%20process" title=" spin-up process"> spin-up process</a> </p> <a href="https://publications.waset.org/abstracts/51374/experimental-investigations-on-the-mechanism-of-stratified-liquid-mixing-in-a-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2662</span> Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li">Lei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20M.%20Chai"> Ming M. Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20X.%20Lu"> Xiao X. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20W.%20Wang"> Jia W. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interfacial%20instability%20and%20mixing" title="interfacial instability and mixing">interfacial instability and mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20liquid%20layers" title=" two liquid layers"> two liquid layers</a>, <a href="https://publications.waset.org/abstracts/search?q=Planar%20Laser%20Induced%20Fluorescence%20%28PLIF%29" title=" Planar Laser Induced Fluorescence (PLIF)"> Planar Laser Induced Fluorescence (PLIF)</a>, <a href="https://publications.waset.org/abstracts/search?q=High%20Speed%20Camera%20%28HSC%29" title=" High Speed Camera (HSC)"> High Speed Camera (HSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20energy%20and%20tension" title=" interfacial energy and tension"> interfacial energy and tension</a>, <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20Navier-Stokes%20%28CHNS%29%20equations" title=" Cahn-Hilliard Navier-Stokes (CHNS) equations"> Cahn-Hilliard Navier-Stokes (CHNS) equations</a> </p> <a href="https://publications.waset.org/abstracts/68285/interfacial-instability-and-mixing-behavior-between-two-liquid-layers-bounded-in-finite-volumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2661</span> CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Mohammadi">Faezeh Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Ebrahimi"> Ebrahim Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Azimi"> Neda Azimi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/102598/cfd-modeling-of-mixing-enhancement-in-a-pitted-micromixer-by-high-frequency-ultrasound-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2660</span> Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=He%20Chao">He Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Ran"> Liu Ran</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Ang"> Li Ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environmental%20simulator" title="space environmental simulator">space environmental simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen%20spray" title=" liquid nitrogen spray"> liquid nitrogen spray</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20type%20jet%20atomizer" title=" Y type jet atomizer"> Y type jet atomizer</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20mixing%20atomizer" title=" internal mixing atomizer"> internal mixing atomizer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a> </p> <a href="https://publications.waset.org/abstracts/32103/numerical-simulation-of-liquid-nitrogen-spray-equipment-for-space-environmental-simulation-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2659</span> Characteristics of Nanosilica-Geopolymer Nanocomposites and Mixing Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Assaedi">H. Assaedi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20U.%20A.%20Shaikh"> F. U. A. Shaikh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Low"> I. M. Low</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effects of mixing procedures on mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by wt.. Comparison is made with conventional mechanical dry-mixing of NS with flyash and wet-mixing of NS in alkaline solutions. Physical and mechanical properties are investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that generally the addition of NS particles enhanced the microstructure and improved flexural and compressive strengths of geopolymer nanocomposites. However, samples prepared using dry-mixing approach demonstrate better physical and mechanical properties than wet-mixing of NS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-silica" title=" nano-silica"> nano-silica</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20mixing" title=" dry mixing"> dry mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20mixing" title=" wet mixing"> wet mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/40281/characteristics-of-nanosilica-geopolymer-nanocomposites-and-mixing-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2658</span> Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Jui%20Li">Cheng-Jui Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chou%20Tseng"> Chien-Chou Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics%20%28CFD%29" title="Computational Fluid Dynamics (CFD)">Computational Fluid Dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian-Eulerian%20Model" title=" Eulerian-Eulerian Model"> Eulerian-Eulerian Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Flue%20Gas%20Desulfurization%20%28FGD%29" title=" Flue Gas Desulfurization (FGD)"> Flue Gas Desulfurization (FGD)</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sieve%20tray" title=" perforated sieve tray"> perforated sieve tray</a> </p> <a href="https://publications.waset.org/abstracts/70051/numerical-investigation-of-multiphase-flow-structure-for-the-flue-gas-desulfurization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2657</span> Gas-Liquid Flow Regimes in Vertical Venturi Downstream of Horizontal Blind-Tee</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Alif%20Bin%20Razali">Muhammad Alif Bin Razali</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Gang%20Xie"> Cheng-Gang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Wai%20Lam%20Loh"> Wai Lam Loh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. For an accurate determination of individual phase fraction and flowrate, a gas-liquid flow ideally needs to be well mixed in the venturi measurement section. Partial flow mixing is achieved by installing a venturi vertically downstream of the blind-tee pipework that ‘homogenizes’ the incoming horizontal gas-liquid flow. In order to study in-depth the flow-mixing effect of the blind-tee, gas-liquid flows are captured at blind-tee and venturi sections by using a high-speed video camera and a purpose-built transparent test rig, over a wide range of superficial liquid velocities (0.3 to 2.4m/s) and gas volume fractions (10 to 95%). Electrical capacitance sensors are built to measure the instantaneous holdup (of oil-gas flows) at the venturi inlet and throat. Flow regimes and flow (a)symmetry are investigated based on analyzing the statistical features of capacitance sensors’ holdup time-series data and of the high-speed video time-stacked images. The perceived homogenization effect of the blind-tee on the incoming intermittent horizontal flow regimes is found to be relatively small across the tested flow conditions. A horizontal (blind-tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind-tee" title="blind-tee">blind-tee</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20visualization" title=" flow visualization"> flow visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20two-phase%20flow" title=" gas-liquid two-phase flow"> gas-liquid two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=MPFM" title=" MPFM"> MPFM</a> </p> <a href="https://publications.waset.org/abstracts/129335/gas-liquid-flow-regimes-in-vertical-venturi-downstream-of-horizontal-blind-tee" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2656</span> Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyungmo%20Kim">Hyungmo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwang%20Bae"> Hwang Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok-Kyu%20Chang"> Seok-Kyu Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Won%20Lee"> Dong Won Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung%20Joo%20Ko"> Yung Joo Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Rock%20Choi"> Sun Rock Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hae%20Seob%20Choi"> Hae Seob Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Seok%20Woo"> Hyeon Seok Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Euh"> Dong-Jin Euh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeong-Yeon%20Lee"> Hyeong-Yeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20thermal%20design" title="core thermal design">core thermal design</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20mixing" title=" flow mixing"> flow mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20wire-mesh%20sensor" title=" a wire-mesh sensor"> a wire-mesh sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20wire-wrap%20effect" title=" a wire-wrap effect"> a wire-wrap effect</a> </p> <a href="https://publications.waset.org/abstracts/23655/measurements-of-flow-mixing-behaviors-using-a-wire-mesh-sensor-in-a-wire-wrapped-37-pin-rod-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">629</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2655</span> Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Azimi">Neda Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rahimi"> Masoud Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Mohammadi"> Faezeh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic" title=" hydrodynamic"> hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a> </p> <a href="https://publications.waset.org/abstracts/102582/computational-fluid-dynamic-modeling-of-mixing-enhancement-by-stimulation-of-ferrofluid-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2654</span> Phase Segregating and Complex Forming Pb Based (=X-Pb) Liquid Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indra%20Bahadur%20Bhandari">Indra Bahadur Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Panthi"> Narayan Panthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishwar%20Koirala"> Ishwar Koirala</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Adhikari"> Devendra Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have used a theoretical model based on the assumption of compound formation in binary alloys to study the thermodynamic, microscopic, and surface properties of Bi-Pb and In-Pb liquid alloys. A review of the phase diagrams for these alloys shows that one of the stable complexes for Bi-Pb liquid alloy is BiPb3; also, that InPb is a stable phase in liquid In-Pb alloys. Using the same interaction parameters that are fitted for the free energy of mixing, we have been able to compute the bulk and thermodynamic properties of the alloys. From our observations, we are able to show that the Bi-Pb liquid alloy exhibits compound formation over the whole concentration range and the In-Pb alloys undergo phase separation. With regards to surface properties, Pb segregates more to the surface in In-Pb alloys than in Bi-Pb alloys. The viscosity isotherms have a positive deviation from ideality for both Bi-Pb and In-Pb alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetry" title="asymmetry">asymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-Pb" title=" Bi-Pb"> Bi-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=deviation" title=" deviation"> deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Pb" title=" In-Pb"> In-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20parameters" title=" interaction parameters"> interaction parameters</a> </p> <a href="https://publications.waset.org/abstracts/136406/phase-segregating-and-complex-forming-pb-based-x-pb-liquid-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2653</span> Code-Switching and Code Mixing among Ogba-English Bilingual Conversations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben-Fred%20Ohia">Ben-Fred Ohia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Code-switching and code-mixing are linguistic behaviours that arise in a bilingual situation. They limit speakers in a conversation to decide which code they should use to utter particular phrases or words in the course of carrying out their utterance. Every human society is characterized by the existence of diverse linguistic varieties. The speakers of these varieties at some points have various degrees of contact with the non-speakers of their variety, which one of the outcomes of the linguistic contact is code-switching or code-mixing. The work discusses the nature of code-switching and code-mixing in Ogba-English bilinguals’ speeches. It provides a detailed explanation of the concept of code-switching and code-mixing and explains the typology of code-switching and code-mixing and their manifestation in Ogba-English bilingual speakers’ speeches. The findings reveal that code-switching and code-mixing are functionally motivated and being triggered by various conversational contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilinguals" title="bilinguals">bilinguals</a>, <a href="https://publications.waset.org/abstracts/search?q=code-mixing" title=" code-mixing"> code-mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=code-switching" title=" code-switching"> code-switching</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogba" title=" Ogba"> Ogba</a> </p> <a href="https://publications.waset.org/abstracts/122982/code-switching-and-code-mixing-among-ogba-english-bilingual-conversations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2652</span> Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Lanzerstorfer">C. Lanzerstorfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20flow%20nozzles" title=" dual flow nozzles"> dual flow nozzles</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20equation" title=" flow equation"> flow equation</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20data" title=" operation data"> operation data</a> </p> <a href="https://publications.waset.org/abstracts/60820/condition-monitoring-for-twin-fluid-nozzles-with-internal-mixing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2651</span> Research on the Optical Properties and Polymerization Environment of Broadband Reflective Films in the Visible Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Miao">Z. Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chu"> Y. Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unique cholesteric phase liquid crystals obtained by mixing nematic liquid crystals with chiral dopants have gained valuable applications in the display field for their selective reflection and circular dichroism properties. The periodic arrangement of the helical structure of cholesteric liquid crystals makes it possible to produce Bragg reflection of circularly polarized light irradiated perpendicularly to the liquid crystals and, therefore, to acquire semi- or fully reflective surfaces or films. If the polymer-liquid crystal composites are combined with polymeric monomers, commercialized reflective broadband films can be fabricated. In this study, the polymer-liquid crystal composites reflecting visible light region (wavelength centered at 550 nm) were studied to analyze the effects of AC electric field at different voltages and frequencies on the optical texture of the composites, as well as the effects of polymerization temperature and ultraviolet (UV) intensity on the polymerization reaction and reflection bandwidth. The optimal sample was finally obtained at 100Hz, 120V, 30℃, 1.00 mW/cm², which provides a research suggestion to solve the influencing factors of visible light reflection bandwidths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholesteric%20liquid%20crystal" title="cholesteric liquid crystal">cholesteric liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20bandwidths" title=" reflection bandwidths"> reflection bandwidths</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20dielectric%20anisotropy" title=" negative dielectric anisotropy"> negative dielectric anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20texture" title=" planar texture"> planar texture</a> </p> <a href="https://publications.waset.org/abstracts/157429/research-on-the-optical-properties-and-polymerization-environment-of-broadband-reflective-films-in-the-visible-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2650</span> Simulation of Ammonia-Water Two Phase Flow in Bubble Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jemai%20Rabeb">Jemai Rabeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Benhmidene%20Ali"> Benhmidene Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidouri%20Khaoula"> Hidouri Khaoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaouachi%20Bechir"> Chaouachi Bechir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m&sup2; to 5 kW/m&sup2; and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20pump" title="bubble pump">bubble pump</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20flow%20model" title=" drift flow model"> drift flow model</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/66839/simulation-of-ammonia-water-two-phase-flow-in-bubble-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2649</span> Gas-Liquid Flow Void Fraction Identification Using Slippage Number Froud Mixture Number Relation in Bubbly Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaber%20Masoud%20Alyami">Jaber Masoud Alyami</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20H.%20Alsrkhi"> Abdelsalam H. Alsrkhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing and modeling multi-phase flow is a complicated scientific and technical phenomenon represented by a variety of interrelated elements. Yet, the introduction of dimensionless numbers used to grasp gas-liquid flow is a significant step in controlling and improving the multi-phase flow area. SL (Slippage number), for instance is a strong dimensionless number defined as a the ratio of the difference in gravitational forces between slip and no-slip conditions to the inertial force of the gas. The fact that plotting SL versus Frm provides a single acceptable curve for all of the data provided proves that SL may be used to realize the behavior of gas-liquid flow. This paper creates a numerical link between SL and Froud mixing number using vertical gas-liquid flow and then utilizes that relationship to validate its reliability in practice. An improved correlation in drift flux model generated from the experimental data and its rationality has been verified. The method in this paper is to approach for predicting the void fraction in bubbly flow through SL/Frm relation and the limitations of this method, as well as areas for development, are stated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title="multiphase flow">multiphase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-liquid%20flow" title=" gas-liquid flow"> gas-liquid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=slippage" title=" slippage"> slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20farction" title=" void farction"> void farction</a> </p> <a href="https://publications.waset.org/abstracts/164960/gas-liquid-flow-void-fraction-identification-using-slippage-number-froud-mixture-number-relation-in-bubbly-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2648</span> A Corpus-Based Analysis on Code-Mixing Features in Mandarin-English Bilingual Children in Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xunan%20Huang">Xunan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Caicai%20Zhang"> Caicai Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigated the code-mixing features in Mandarin-English bilingual children in Singapore. First, it examined whether the code-mixing rate was different in Mandarin Chinese and English contexts. Second, it explored the syntactic categories of code-mixing in Singapore bilingual children. Moreover, this study investigated whether morphological information was preserved when inserting syntactic components into the matrix language. Data are derived from the Singapore Bilingual Corpus, in which the recordings and transcriptions of sixty English-Mandarin 5-to-6-year-old children were preserved for analysis. Results indicated that the rate of code-mixing was asymmetrical in the two language contexts, with the rate being significantly higher in the Mandarin context than that in the English context. The asymmetry is related to language dominance in that children are more likely to code-mix when using their nondominant language. Concerning the syntactic categories of code-mixing words in the Singaporean bilingual children, we found that noun-mixing, verb-mixing, and adjective-mixing are the three most frequently used categories in code-mixing in the Mandarin context. This pattern mirrors the syntactic categories of code-mixing in the Cantonese context in Cantonese-English bilingual children, and the general trend observed in lexical borrowing. Third, our results also indicated that English vocabularies that carry morphological information are embedded in bare forms in the Mandarin context. These findings shed light upon how bilingual children take advantage of the two languages in mixed utterances in a bilingual environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingual%20children" title="bilingual children">bilingual children</a>, <a href="https://publications.waset.org/abstracts/search?q=code-mixing" title=" code-mixing"> code-mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=English" title=" English"> English</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandarin%20Chinese" title=" Mandarin Chinese"> Mandarin Chinese</a> </p> <a href="https://publications.waset.org/abstracts/89366/a-corpus-based-analysis-on-code-mixing-features-in-mandarin-english-bilingual-children-in-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2647</span> Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Tun%20Huang">Yi-Tun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Wei%20Huang"> Shu-Wei Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20vortex%20generators" title=" longitudinal vortex generators"> longitudinal vortex generators</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20stream%20interfaces" title=" two stream interfaces"> two stream interfaces</a> </p> <a href="https://publications.waset.org/abstracts/7216/longitudinal-vortices-mixing-in-three-stream-micromixers-with-two-inlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2646</span> Ionic Liquid Effects on Metal Ion-Based Extractions of Olefin/Paraffin Hydrocarbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellen%20M.%20Lukasik">Ellen M. Lukasik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In coordination and support of the Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR) Research Experience for Teachers (RET) at the University of Texas at Austin and under the guidance and direction of Professor Joan Brennecke, this study examined the addition of silver in an ionic liquid used to separate cyclohexane from cyclohexene. We recreated the liquid-liquid separation experimental results from the literature on cyclohexene, cyclohexane, and [allylmim][Tf2N] to verify our method, then evaluated the separation performance of silver - ionic liquid (IL) mixtures by various characterization techniques. To introduce the concepts of this research in high school education, a lesson plan was developed to instruct students on the principles of liquid-liquid separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20separation" title=" liquid-liquid separation"> liquid-liquid separation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20experience%20for%20teachers" title=" research experience for teachers"> research experience for teachers</a> </p> <a href="https://publications.waset.org/abstracts/153896/ionic-liquid-effects-on-metal-ion-based-extractions-of-olefinparaffin-hydrocarbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2645</span> A Technical Solution for Micro Mixture with Micro Fluidic Oscillator in Chemistry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Dennai">Brahim Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Bentaleb"> Abdelhak Bentaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Khelfaoui"> Rachid Khelfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Abdenbi"> Asma Abdenbi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of 0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem for application in chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20oscillator" title="micro oscillator">micro oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20mixture" title=" micro mixture"> micro mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20effect" title=" size effect"> size effect</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20equation" title=" chemical equation"> chemical equation</a> </p> <a href="https://publications.waset.org/abstracts/19864/a-technical-solution-for-micro-mixture-with-micro-fluidic-oscillator-in-chemistry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2644</span> Bi-Liquid Free Surface Flow Simulation of Liquid Atomization for Bi-Propellant Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junya%20Kouwa">Junya Kouwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinsuke%20Matsuno"> Shinsuke Matsuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Inoue"> Chihiro Inoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Takehiro%20Himeno"> Takehiro Himeno</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshinori%20Watanabe"> Toshinori Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bi-propellant thrusters use impinging jet atomization to atomize liquid fuel and oxidizer. Atomized propellants are mixed and combusted due to auto-ignitions. Therefore, it is important for a prediction of thruster’s performance to simulate the primary atomization phenomenon; especially, the local mixture ratio can be used as indicator of thrust performance, so it is useful to evaluate it from numerical simulations. In this research, we propose a numerical method for considering bi-liquid and the mixture and install it to CIP-LSM which is a two-phase flow simulation solver with level-set and MARS method as an interfacial tracking method and can predict local mixture ratio distribution downstream from an impingement point. A new parameter, beta, which is defined as the volume fraction of one liquid in the mixed liquid within a cell is introduced and the solver calculates the advection of beta, inflow and outflow flux of beta to a cell. By validating this solver, we conducted a simple experiment and the same simulation by using the solver. From the result, the solver can predict the penetrating length of a liquid jet correctly and it is confirmed that the solver can simulate the mixing of liquids. Then we apply this solver to the numerical simulation of impinging jet atomization. From the result, the inclination angle of fan after the impingement in the bi-liquid condition reasonably agrees with the theoretical value. Also, it is seen that the mixture of liquids can be simulated in this result. Furthermore, simulation results clarify that the injecting condition affects the atomization process and local mixture ratio distribution downstream drastically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-propellant%20thrusters" title="bi-propellant thrusters">bi-propellant thrusters</a>, <a href="https://publications.waset.org/abstracts/search?q=CIP-LSM" title=" CIP-LSM"> CIP-LSM</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow%20simulation" title=" free-surface flow simulation"> free-surface flow simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet%20atomization" title=" impinging jet atomization"> impinging jet atomization</a> </p> <a href="https://publications.waset.org/abstracts/43135/bi-liquid-free-surface-flow-simulation-of-liquid-atomization-for-bi-propellant-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2643</span> Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjing%20Ding">Wenjing Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Shan"> Weiwei Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zijuan"> Zijuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang"> Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20He"> Chao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is &plusmn;1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen%20spray" title="liquid nitrogen spray">liquid nitrogen spray</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20regulating%20system" title=" temperature regulating system"> temperature regulating system</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/73604/numerical-simulation-and-analysis-on-liquid-nitrogen-spray-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2642</span> Development of a Process Method to Manufacture Spreads from Powder Hardstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phakamani%20Xaba">Phakamani Xaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Huberts"> Robert Huberts</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilainu%20Oboirien"> Bilainu Oboirien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been over 200 years since margarine was discovered and manufactured using liquid oil, liquified hardstock oils and other oil phase & aqueous phase ingredients. Henry W. Bradley first used vegetable oils in liquid state and around 1871, since then; spreads have been traditionally manufactured using liquified oils. The main objective of this study was to develop a process method to produce spreads using spray dried hardstock fat powders as a structing fats in place of current liquid structuring fats. A high shear mixing system was used to condition the fat phase and the aqueous phase was prepared separately. Using a single scraped surface heat exchanger and pin stirrer, margarine was produced. The process method was developed for to produce spreads with 40%, 50% and 60% fat . The developed method was divided into three steps. In the first step, fat powders were conditioned by melting and dissolving them into liquid oils. The liquified portion of the oils were at 65 °C, whilst the spray dried fat powder was at 25 °C. The two were mixed using a mixing vessel at 900 rpm for 4 minutes. The rest of the ingredients i.e., lecithin, colorant, vitamins & flavours were added at ambient conditions to complete the fat/ oil phase. The water phase was prepared separately by mixing salt, water, preservative, acidifier in the mixing tank. Milk was also separately prepared by pasteurizing it at 79°C prior to feeding it into the aqueous phase. All the water phase contents were chilled to 8 °C. The oil phase and water phase were mixed in a tank, then fed into a single scraped surface heat exchanger. After the scraped surface heat exchanger, the emulsion was fed in a pin stirrer to work the formed crystals and produce margarine. The margarine produced using the developed process had fat levels of 40%, 50% and 60%. The margarine passed all the qualitative, stability, and taste assessments. The scores were 6/10, 7/10 & 7.5/10 for the 40%, 50% & 60% fat spreads, respectively. The success of the trials brought about differentiated knowledge on how to manufacture spreads using non micronized spray dried fat powders as hardstock. Manufacturers do not need to store structuring fats at 80-90°C and even high in winter, instead, they can adapt their processes to use fat powders which need to be stored at 25 °C. The developed process method used one scrape surface heat exchanger instead of the four to five currently used in votator based plants. The use of a single scraped surface heat exchanger translated to about 61% energy savings i.e., 23 kW per ton of product. Furthermore, it was found that the energy saved by implementing separate pasteurization was calculated to be 6.5 kW per ton of product produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=margarine%20emulsion" title="margarine emulsion">margarine emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=votator%20technology" title=" votator technology"> votator technology</a>, <a href="https://publications.waset.org/abstracts/search?q=margarine%20processing" title=" margarine processing"> margarine processing</a>, <a href="https://publications.waset.org/abstracts/search?q=scraped%20sur" title=" scraped sur"> scraped sur</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20powders" title=" fat powders"> fat powders</a> </p> <a href="https://publications.waset.org/abstracts/154797/development-of-a-process-method-to-manufacture-spreads-from-powder-hardstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2641</span> The Effect of Ingredients Mixing Sequence in Rubber Compounding on the Formation of Bound Rubber and Cross-Link Density of Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Hasan">Abu Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rochmadi"> Rochmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hary%20Sulistyo"> Hary Sulistyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharto%20Honggokusumo"> Suharto Honggokusumo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research purpose is to study the effect of Ingredients mixing sequence in rubber compounding onto the formation of bound rubber and cross link density of natural rubber and also the relationship of bound rubber and cross link density. Analysis of bound rubber formation of rubber compound and cross link density of rubber vulcanizates were carried out on a natural rubber formula having masticated and mixing, followed by curing. There were four methods of mixing and each mixing process was followed by four mixing sequence methods of carbon black into the rubber. In the first method of mixing sequence, rubber was masticated for 5 min and then rubber chemicals and carbon black N 330 were added simultaneously. In the second one, rubber was masticated for 1 min and followed by addition of rubber chemicals and carbon black N 330 simultaneously using the different method of mixing then the first one. In the third one, carbon black N 660 was used for the same mixing procedure of the second one, and in the last one, rubber was masticated for 3 min, carbon black N 330 and rubber chemicals were added subsequently. The addition of rubber chemicals and carbon black into masticated rubber was distinguished by the sequence and time allocated for each mixing process. Carbon black was added into two stages. In the first stage, 10 phr was added first and the remaining 40 phr was added later along with oil. In the second one to the fourth one, the addition of carbon black in the first and the second stage was added in the phr ratio 20:30, 30:20, and 40:10. The results showed that the ingredients mixing process influenced bound rubber formation and cross link density. In the three methods of mixing, the bound rubber formation was proportional with crosslink density. In contrast in the fourth one, bound rubber formation and cross link density had contradictive relation. Regardless of the mixing method operated, bound rubber had non linear relationship with cross link density. The high cross link density was formed when low bound rubber formation. The cross link density became constant at high bound rubber content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bound-rubber" title="bound-rubber">bound-rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-link%20density" title=" cross-link density"> cross-link density</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20mixing%20process" title=" rubber mixing process"> rubber mixing process</a> </p> <a href="https://publications.waset.org/abstracts/12954/the-effect-of-ingredients-mixing-sequence-in-rubber-compounding-on-the-formation-of-bound-rubber-and-cross-link-density-of-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2640</span> Numerical Analysis of Fluid Mixing in Three Split and Recombine Micromixers at Different Inlets Volume Ratio </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Viktorov">Vladimir Viktorov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Readul%20Mahmud"> M. Readul Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Visconte"> Carmen Visconte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulation were carried out to study the mixing of miscible liquid at different inlets volume ratio (1 to 3) within two existing mixers namely Chain, Tear-drop and one new “C-H” mixer. The new passive C-H micromixer is developed based on split and recombine principles, combining the operation concepts of known Chain mixer and H mixer. The mixing performances of the three micromixers were predicted by a preliminary numerical analysis of the flow patterns inside the channel in terms of the segregation or distribution of path lines. Afterward, the efficiency and the pressure drop were investigated numerically, taking into account species transport. All numerical calculations were computed at a wide range of Reynolds number from 1 to 100. Among the presented three micromixers, tear-drop provides fairly good efficiency except in the middle range of Re numbers but has high-pressure drop. In addition, inlets flow ratio has a significant influence on efficiency, especially at the Re number range of 10 to 50, Moreover maximum increase of efficiency is almost 10% when inlets flow ratio is increased by 1. Chain mixer presents relatively low mixing efficiency at low and middle range of Re numbers (5≤Re≤50) but has reasonable pressure drop. Furthermore, Chain mixer shows almost no dependence on inlets flow ratio. Whereas, C-H mixer poses excellent mixing efficiency (more than 93%) for all range of Re numbers and causes the lowest pressure drop, On top of that efficiency has slight dependency on inlets flow ratio. In addition, C-H mixer shows respectively about three and two times lower pressure drop than Tear-drop and Chain mixers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixing" title=" micromixing"> micromixing</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20micromixer" title=" passive micromixer"> passive micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=SAR" title=" SAR"> SAR</a> </p> <a href="https://publications.waset.org/abstracts/25288/numerical-analysis-of-fluid-mixing-in-three-split-and-recombine-micromixers-at-different-inlets-volume-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2639</span> Mechanistic Modelling to De-risk Process Scale-up</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Cartledge">Edwin Cartledge</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Clark"> Jack Clark</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazaher%20Molaei-Chalchooghi"> Mazaher Molaei-Chalchooghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixing in the crystallization step of active pharmaceutical ingredient manufacturers was studied via advanced modeling tools to enable a successful scale-up. A virtual representation of the vessel was created, and computational fluid dynamics were used to simulate multiphase flow and, thus, the mixing environment within this vessel. The study identified a significant dead zone in the vessel underneath the impeller and found that increasing the impeller speed and power did not improve the mixing. A series of sensitivity analyses found that to improve mixing, the vessel had to be redesigned, and found that optimal mixing could be obtained by adding two extra cylindrical baffles. The same two baffles from the simulated environment were then constructed and added to the process vessel. By identifying these potential issues before starting the manufacture and modifying the vessel to ensure good mixing, this study mitigated a failed crystallization and potential batch disposal, which could have resulted in a significant loss of high-value material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20pharmaceutical%20ingredient" title="active pharmaceutical ingredient">active pharmaceutical ingredient</a>, <a href="https://publications.waset.org/abstracts/search?q=baffles" title=" baffles"> baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/165825/mechanistic-modelling-to-de-risk-process-scale-up" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2638</span> Energy Potential of Salinity Gradient Mixing: Case Study of Mixing Energies of Rivers of Goa with the Arabian Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Chakraborty">Arijit Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirban%20Roy"> Anirban Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Indian peninsula is strategically located in the Asian subcontinent with the Himalayas to the North and Oceans surrounding the other three directions with annual monsoons which takes care of water supply to the rivers. The total river water discharge into the Bay of Bengal and the Arabian Sea is 628 km³/year and 274 km³/year, respectively. Thus huge volumes of fresh water meet saline water, and this mixing of two streams of dissimilar salinity gives rise to tremendous mixing energies which can be harvested for various purposes like energy generation using pressure retarded osmosis or reverse electrodialysis. The present paper concentrates on analyzing the energy of mixing for the rivers in Goa. Goa has 10 rivers of various sizes all which meet the Arabian Sea. In the present work, the 8 rivers and their salinity (NaCl concentrations) have been analyzed along with their seasonal fluctuations. Next, a Gibbs free energy formulation has been implemented to analyze the energy of mixing of the selected rivers. The highest and lowest energies according to the seasonal fluctuations have been evaluated, and this provides two important insights into (i) amount of energy that can be harvested and (ii) decision on the location of such systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20energy" title="Gibbs energy">Gibbs energy</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20energy" title=" mixing energy"> mixing energy</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20gradient%20energy" title=" salinity gradient energy"> salinity gradient energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/86505/energy-potential-of-salinity-gradient-mixing-case-study-of-mixing-energies-of-rivers-of-goa-with-the-arabian-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2637</span> Effect of Deep Mixing Columns and Geogrid on Embankment Settlement on the Soft Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Mohammadi"> Saeideh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Embankment settlement on soft clays has always been problematic due to the high compaction and low shear strength of the soil. Deep soil mixing and geosynthetics are two soil improvement methods in such fields. Here, a numerical study is conducted on the embankment performance on the soft ground improved by deep soil mixing columns and geosynthetics based on the data of a real project. For this purpose, the finite element method is used in the Plaxis 2D software. The Soft Soil Creep model considers the creep phenomenon in the soft clay layer while the Mohr-Columb model simulates other soil layers. Results are verified using the data of an experimental embankment built on deep mixing columns. The effect of depth and diameter of deep mixing columns and the stiffness of geogrid on the vertical and horizontal movements of embankment on clay subsoil will be investigated in the following. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%202D" title="PLAXIS 2D">PLAXIS 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment%20settlement" title=" embankment settlement"> embankment settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20movement" title=" horizontal movement"> horizontal movement</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20soil%20mixing%20column" title=" deep soil mixing column"> deep soil mixing column</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a> </p> <a href="https://publications.waset.org/abstracts/129452/effect-of-deep-mixing-columns-and-geogrid-on-embankment-settlement-on-the-soft-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2636</span> Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rei-Tang%20Tsai">Rei-Tang Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yuan%20Chang"> Chia-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ying%20Kuo"> Ming-Ying Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with serpentine channel of the same overall channel length. From the results, we can find the following trends. When fluid mixing is dominated by convection, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller center-line radius is better than that of a micromixer consisting of major-segment repeating units with a larger center-line radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20channel" title="curved channel">curved channel</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=non-newtonian%20fluids" title=" non-newtonian fluids"> non-newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/25985/mixing-behaviors-of-shear-thinning-fluids-in-serpentine-channel-micromixers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2635</span> Robust Design of Electroosmosis Driven Self-Circulating Micromixer for Biological Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Talebjedi">Bahram Talebjedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20Earl"> Emily Earl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Hoorfar"> Mina Hoorfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the issues that arises with microscale lab-on-a-chip technology is that the laminar flow within the microchannels limits the mixing of fluids. To combat this, micromixers have been introduced as a means to try and incorporate turbulence into the flow to better aid the mixing process. This study presents an electroosmotic micromixer that balances vortex generation and degeneration with the inlet flow velocity to greatly increase the mixing efficiency. A comprehensive parametric study was performed to evaluate the role of the relevant parameters on the mixing efficiency. It was observed that the suggested micromixer is perfectly suited for biological applications due to its low pressure drop (below 10 Pa) and low shear rate. The proposed micromixer with optimized working parameters is able to attain a mixing efficiency of 95% in a span of 0.5 seconds using a frequency of 10 Hz, a voltage of 0.7 V, and an inlet velocity of 0.366 mm/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20mixer" title=" active mixer"> active mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20AC%20electroosmosis%20flow" title=" pulsed AC electroosmosis flow"> pulsed AC electroosmosis flow</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a> </p> <a href="https://publications.waset.org/abstracts/133531/robust-design-of-electroosmosis-driven-self-circulating-micromixer-for-biological-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2634</span> The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20E.%20Awadallah"> Ahmed E. Awadallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a> </p> <a href="https://publications.waset.org/abstracts/143045/the-impact-of-an-ionic-liquid-on-hydrogen-generation-from-a-redox-process-involving-magnesium-and-acidic-oilfield-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=88">88</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=89">89</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=liquid%20mixing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10