CINXE.COM
View source for Cauchy–Schwarz inequality - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-disabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>View source for Cauchy–Schwarz inequality - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-disabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":true,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat": "dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9c80724f-e8f3-4c8e-b56a-a870d3909479","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Cauchy–Schwarz_inequality","wgTitle":"Cauchy–Schwarz inequality","wgCurRevisionId":1258438639,"wgRevisionId":0,"wgArticleId":38128,"wgIsArticle":false,"wgIsRedirect":false,"wgAction":"edit","wgUserName":null,"wgUserGroups":["*"],"wgCategories":[],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Cauchy–Schwarz_inequality","wgRelevantArticleId":38128,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault": true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading", "skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.charinsert.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.edit.collapsibleFooter","site","mediawiki.page.ready","jquery.makeCollapsible","skins.vector.js","ext.centralNotice.geoIP","ext.charinsert","ext.gadget.ReferenceTooltips","ext.gadget.charinsert","ext.gadget.extra-toolbar-buttons","ext.gadget.refToolbar","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.charinsert.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="View source for Cauchy–Schwarz inequality - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Cauchy%E2%80%93Schwarz_inequality&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Cauchy–Schwarz_inequality rootpage-Cauchy–Schwarz_inequality skin-vector-2022 action-edit"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Cauchy%E2%80%93Schwarz+inequality&returntoquery=action%3Dedit" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Cauchy%E2%80%93Schwarz+inequality&returntoquery=action%3Dedit" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Cauchy%E2%80%93Schwarz+inequality&returntoquery=action%3Dedit" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Cauchy%E2%80%93Schwarz+inequality&returntoquery=action%3Dedit" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <h1 id="firstHeading" class="firstHeading mw-first-heading">View source for Cauchy–Schwarz inequality</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Cauchy%E2%80%93Schwarz_inequality" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="vector-tab-noicon mw-list-item"><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality"><span>Read</span></a></li><li id="ca-edit" class="selected vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Schwarz_inequality&action=edit" title="Edit this page"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Schwarz_inequality&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="vector-more-collapsible-item mw-list-item"><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality"><span>Read</span></a></li><li id="ca-more-edit" class="selected vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Schwarz_inequality&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Schwarz_inequality&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Cauchy%E2%80%93Schwarz_inequality" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Cauchy%E2%80%93Schwarz_inequality" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Schwarz_inequality&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DCauchy%25E2%2580%2593Schwarz_inequality%26action%3Dedit"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DCauchy%25E2%2580%2593Schwarz_inequality%26action%3Dedit"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190546" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> </div> <div id="contentSub"><div id="mw-content-subtitle">← <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a></div></div> <div id="mw-content-text" class="mw-body-content"><p>You do not have permission to edit this page, for the following reasons: </p> <ul class="permissions-errors"><li class="mw-permissionerror-blockedtext"> <div id="mw-blocked-text" style="border: 1px solid #AAA; background-color: var(--background-color-warning-subtle, ivory); color: inherit; padding: 1.5em; width: 100%; box-sizing: border-box;"> <div style="text-align: center;"><span style="font-size: 26px;"><span typeof="mw:File"><a href="/wiki/File:Stop_hand_nuvola.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/50px-Stop_hand_nuvola.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/75px-Stop_hand_nuvola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/100px-Stop_hand_nuvola.svg.png 2x" data-file-width="240" data-file-height="240" /></a></span><b> This IP address has been <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">blocked</a> from <i>editing</i> Wikipedia.</b></span><br /><span style="font-size: 18px;">This does not affect your ability to <i>read</i> Wikipedia pages.</span></div><div class="paragraphbreak" style="margin-top:0.5em"></div><b>Most people who see this message have done nothing wrong.</b> Some kinds of blocks restrict editing from specific service providers or telecom companies in response to recent abuse or vandalism, and can sometimes affect other users who are unrelated to that abuse. Review the information below for assistance if you do not believe that you have done anything wrong.<div class="paragraphbreak" style="margin-top:0.5em"></div> <p>The IP address or range 8.222.128.0/17 has been <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">blocked</a> by <a href="/wiki/User:L235" title="User:L235">L235</a> for the following reason(s): </p> <div style="padding:10px; background:var(--background-color-base, white); color:inherit; border:1px #666 solid;"> <div class="user-block colocation-webhost" style="margin-bottom: 0.5em; background-color: #ffefd5; border: 1px solid #AAA; padding: 0.7em;"> <figure class="mw-halign-left" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Server-multiple.svg/40px-Server-multiple.svg.png" decoding="async" width="40" height="57" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Server-multiple.svg/60px-Server-multiple.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Server-multiple.svg/80px-Server-multiple.svg.png 2x" data-file-width="744" data-file-height="1052" /></span><figcaption></figcaption></figure><b>The <a href="/wiki/IP_address" title="IP address">IP address</a> that you are currently using has been blocked because it is believed to be a <a href="/wiki/Web_hosting_service" title="Web hosting service">web host provider</a> or <a href="/wiki/Colocation_centre" title="Colocation centre">colocation provider</a>.</b> To prevent abuse, <a href="/wiki/Wikipedia:Open_proxies" title="Wikipedia:Open proxies">web hosts and colocation providers may be blocked</a> from editing Wikipedia. <div style="border-top: 1px solid #AAA; clear: both">You will not be able to edit Wikipedia using a web host or colocation provider because it hides your IP address, much like a <a href="/wiki/Wikipedia:Open_proxies" title="Wikipedia:Open proxies">proxy</a> or <a href="/wiki/Virtual_private_network" title="Virtual private network">VPN</a>. <p><b>We recommend that you attempt to use another connection to edit.</b> For example, if you use a proxy or VPN to connect to the internet, turn it off when editing Wikipedia. If you edit using a mobile connection, try using a Wi-Fi connection, and vice versa. If you are using a corporate internet connection, switch to a different Wi-Fi network. If you have a Wikipedia account, please log in. </p><p>If you do not have any other way to edit Wikipedia, you will need to <a href="/wiki/Wikipedia:IP_block_exemption#Requesting_and_granting_exemption" title="Wikipedia:IP block exemption">request an IP block exemption</a>. </p> <style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">How to appeal if you are confident that your connection does not use a colocation provider's IP address:</div><div class="hidden-content mw-collapsible-content" style=""> If you are confident that you are not using a web host, you may <a href="/wiki/Wikipedia:Appealing_a_block" title="Wikipedia:Appealing a block">appeal this block</a> by adding the following text on your <a href="/wiki/Help:Talk_pages" title="Help:Talk pages">talk page</a>: <code>{{<a href="/wiki/Template:Unblock" title="Template:Unblock">unblock</a>|reason=Caught by a colocation web host block but this host or IP is not a web host. My IP address is _______. <i>Place any further information here.</i> ~~~~}}</code>. <b>You must fill in the blank with your IP address for this block to be investigated.</b> Your IP address can be determined <span class="plainlinks"><b><a class="external text" href="https://en.wikipedia.org/wiki/Wikipedia:Get_my_IP_address?withJS=MediaWiki:Get-my-ip.js">here</a></b></span>. Alternatively, if you wish to keep your IP address private you can use the <a href="/wiki/Wikipedia:Unblock_Ticket_Request_System" title="Wikipedia:Unblock Ticket Request System">unblock ticket request system</a>. There are several reasons you might be editing using the IP address of a web host or colocation provider (such as if you are using VPN software or a business network); please use this method of appeal only if you think your IP address is in fact not a web host or colocation provider.</div></div> <p><span class="sysop-show" style="font-size: 85%;"><span style="border:#707070 solid 1px;background-color:#ffe0e0;padding:2px"><b>Administrators:</b></span> The <a href="/wiki/Wikipedia:IP_block_exemption" title="Wikipedia:IP block exemption">IP block exemption</a> user right should only be applied to allow users to edit using web host in exceptional circumstances, and requests should usually be directed to the functionaries team via email. If you intend to give the IPBE user right, a <a href="/wiki/Wikipedia:CheckUser" title="Wikipedia:CheckUser">CheckUser</a> needs to take a look at the account. This can be requested most easily at <a href="/wiki/Wikipedia:SPI#Quick_CheckUser_requests" class="mw-redirect" title="Wikipedia:SPI">SPI Quick Checkuser Requests</a>. <b>Unblocking</b> an IP or IP range with this template <b>is highly discouraged</b> without at least contacting the blocking administrator.</span> </p> </div></div> </div> <p>This block will expire on 18:23, 24 August 2026. Your current IP address is 8.222.208.146. </p> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>Even when blocked, you will <i>usually</i> still be able to edit your <a href="/wiki/Special:MyTalk" title="Special:MyTalk">user talk page</a>, as well as <a href="/wiki/Wikipedia:Emailing_users" title="Wikipedia:Emailing users">email</a> administrators and other editors. </p> </div> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>For information on how to proceed, please read the <b><a href="/wiki/Wikipedia:Appealing_a_block#Common_questions" title="Wikipedia:Appealing a block">FAQ for blocked users</a></b> and the <a href="/wiki/Wikipedia:Appealing_a_block" title="Wikipedia:Appealing a block">guideline on block appeals</a>. The <a href="/wiki/Wikipedia:Guide_to_appealing_blocks" title="Wikipedia:Guide to appealing blocks">guide to appealing blocks</a> may also be helpful. </p> </div> <p>Other useful links: <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">Blocking policy</a> · <a href="/wiki/Help:I_have_been_blocked" title="Help:I have been blocked">Help:I have been blocked</a> </p> </div></li><li class="mw-permissionerror-globalblocking-blockedtext-range"> <div id="mw-blocked-text" style="border: 1px solid #AAA; background-color: var(--background-color-warning-subtle, ivory); color: inherit; padding: 1.5em; width: 100%; box-sizing: border-box;"> <div style="text-align: center;"><span style="font-size: 26px;"><span typeof="mw:File"><a href="/wiki/File:Stop_hand_nuvola.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/50px-Stop_hand_nuvola.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/75px-Stop_hand_nuvola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/100px-Stop_hand_nuvola.svg.png 2x" data-file-width="240" data-file-height="240" /></a></span><b> This IP address range has been <a href="https://meta.wikimedia.org/wiki/Global_blocks" class="extiw" title="m:Global blocks">globally blocked</a>.</b></span><br /><span style="font-size: 18px;">This does not affect your ability to <i>read</i> Wikipedia pages.</span></div><div class="paragraphbreak" style="margin-top:0.5em"></div><b>Most people who see this message have done nothing wrong.</b> Some kinds of blocks restrict editing from specific service providers or telecom companies in response to recent abuse or vandalism, and can sometimes affect other users who are unrelated to that abuse. Review the information below for assistance if you do not believe that you have done anything wrong.<div class="paragraphbreak" style="margin-top:0.5em"></div><div class="paragraphbreak" style="margin-top:0.5em"></div> <p>This block affects editing on all Wikimedia wikis. </p><p>The IP address or range 8.222.128.0/17 has been globally <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">blocked</a> by <a href="/wiki/User:Jon_Kolbert" title="User:Jon Kolbert">Jon Kolbert</a> for the following reason(s): </p> <div style="padding:10px; background:var(--background-color-base, white); color:inherit; border:1px #666 solid;"> <p><a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/NOP" class="extiw" title="m:Special:MyLanguage/NOP">Open proxy/Webhost</a>: See the <a href="https://meta.wikimedia.org/wiki/WM:OP/H" class="extiw" title="m:WM:OP/H">help page</a> if you are affected </p> </div> <p>This block will expire on 15:12, 27 August 2028. Your current IP address is 8.222.208.146. </p> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>Even while globally blocked, you will <i>usually</i> still be able to edit pages on <a href="https://meta.wikimedia.org/wiki/" class="extiw" title="m:">Meta-Wiki</a>. </p> </div> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>If you believe you were blocked by mistake, you can find additional information and instructions in the <a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/No_open_proxies" class="extiw" title="m:Special:MyLanguage/No open proxies">No open proxies</a> global policy. Otherwise, to discuss the block please <a href="https://meta.wikimedia.org/wiki/Steward_requests/Global" class="extiw" title="m:Steward requests/Global">post a request for review on Meta-Wiki</a>. You could also send an email to the <a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/Stewards" class="extiw" title="m:Special:MyLanguage/Stewards">stewards</a> <a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/VRT" class="extiw" title="m:Special:MyLanguage/VRT">VRT</a> queue at <kbd>stewards@wikimedia.org</kbd> including all above details. </p> </div> <p>Other useful links: <a href="https://meta.wikimedia.org/wiki/Global_blocks" class="extiw" title="m:Global blocks">Global blocks</a> · <a href="/wiki/Help:I_have_been_blocked" title="Help:I have been blocked">Help:I have been blocked</a> </p> </div></li></ul><hr /> <div id="viewsourcetext">You can view and copy the source of this page:</div><textarea readonly="" accesskey="," id="wpTextbox1" cols="80" rows="25" style="" class="mw-editfont-monospace" lang="en" dir="ltr" name="wpTextbox1">{{short description|Mathematical inequality relating inner products and norms}} The '''Cauchy–Schwarz inequality''' (also called '''Cauchy–Bunyakovsky–Schwarz inequality''')<ref>{{cite web|url=https://mathshistory.st-andrews.ac.uk/Biographies/Schwarz/|title=Hermann Amandus Schwarz|first1=J.J.|last1=O'Connor|first2=E.F.|last2=Robertson|website=[[University of St Andrews]], Scotland }}</ref><ref name="EncyclopediaOfMath">{{springer|id=b/b017770|title=Bunyakovskii inequality|first=V. I.|last=Bityutskov}}</ref><ref>{{cite web|url=http://www.wwu.edu/faculty/curgus/Courses/Math_pages/Math_504/Cauchy-Schwarz-Bunyakovsky.html|title=Cauchy-Bunyakovsky-Schwarz inequality|first=Branko|last=Ćurgus|website=Western Washington University|department=Department of Mathematics }}</ref><ref>{{cite web|url=https://mathcs.clarku.edu/~djoyce/ma130/cauchy.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://mathcs.clarku.edu/~djoyce/ma130/cauchy.pdf |archive-date=2022-10-09 |url-status=live|title=Cauchy's inequality|first=David E.|last=Joyce|website=Clark University|department=Department of Mathematics and Computer Science }}</ref> is an upper bound on the [[Inner product space|inner product]] between two [[Vector (mathematics and physics)|vectors]] in an inner product space in terms of the product of the vector [[Norm (mathematics)|norms]]. It is considered one of the most important and widely used [[Inequality (mathematics)|inequalities]] in mathematics.<ref name="Steele">{{cite book|last=Steele|first=J. Michael|year=2004|title=The Cauchy–Schwarz Master Class: an Introduction to the Art of Mathematical Inequalities|publisher=The Mathematical Association of America|isbn=978-0521546775|page=1|url=http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/CSMC_index.html|quote=...there is no doubt that this is one of the most widely used and most important inequalities in all of mathematics.}}</ref> Inner products of vectors can describe [[finite sum]]s (via finite-dimensional vector spaces), [[infinite series]] (via vectors in [[sequence space]]s), and [[integral]]s (via vectors in [[Hilbert space]]s). The inequality for sums was published by {{harvs|first=Augustin-Louis|last=Cauchy|authorlink=Augustin-Louis Cauchy|year=1821|txt=yes}}. The corresponding inequality for integrals was published by {{harvs|first=Viktor|last=Bunyakovsky|author-link=Viktor Yakovlevich Bunyakovsky|txt=yes|year=1859}}<ref name="EncyclopediaOfMath"/> and {{harvs|txt=yes|authorlink=Hermann Schwarz|first=Hermann|last=Schwarz|year=1888}}. Schwarz gave the modern proof of the integral version.<ref name="Steele" /> == Statement of the inequality == The Cauchy–Schwarz inequality states that for all vectors <math>\mathbf{u}</math> and <math>\mathbf{v}</math> of an [[inner product space]] {{NumBlk|:|<math>\left |\langle \mathbf{u}, \mathbf{v} \rangle\right |^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \cdot \langle \mathbf{v}, \mathbf{v} \rangle,</math>|{{EquationRef|Cauchy–Schwarz inequality [written using only the inner product]|1}}}} where <math>\langle \cdot, \cdot \rangle</math> is the [[inner product]]. Examples of inner products include the real and complex [[dot product]]; see the [[Inner product space#Examples|examples in inner product]]. Every inner product gives rise to a Euclidean <math>\ell_2</math> [[Norm (mathematics)|norm]], called the {{em|canonical}} or [[inner product space#Norm|{{em|induced}} {{em|norm}}]], where the norm of a vector <math>\mathbf{u}</math> is denoted and defined by <math display="block">\|\mathbf{u}\| := \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle},</math> where <math>\langle \mathbf{u}, \mathbf{u} \rangle</math> is always a non-negative real number (even if the inner product is complex-valued). By taking the square root of both sides of the above inequality, the Cauchy–Schwarz inequality can be written in its more familiar form in terms of the norm:<ref name="Strang5">{{cite book|last=Strang|first=Gilbert|date=19 July 2005|title=Linear Algebra and its Applications|edition=4th|chapter=3.2|publisher=Cengage Learning|location=Stamford, CT|isbn=978-0030105678|pages=154–155}}</ref><ref name=":0">{{cite book|last1=Hunter|first1=John K.|last2=Nachtergaele|first2=Bruno|year=2001|title=Applied Analysis|publisher=World Scientific|isbn=981-02-4191-7|url=https://books.google.com/books?id=oOYQVeHmNk4C}}</ref> {{NumBlk|:|<math>|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|.</math>|{{EquationRef|Cauchy–Schwarz inequality - written using norm and inner product|2}}}} Moreover, the two sides are equal if and only if <math>\mathbf{u}</math> and <math>\mathbf{v}</math> are [[linear independence|linearly dependent]].<ref>{{cite book|last1=Bachmann|first1=George|last2=Narici|first2=Lawrence|last3=Beckenstein|first3=Edward|date=2012-12-06|title=Fourier and Wavelet Analysis|publisher=Springer Science & Business Media|isbn=9781461205050|page=14|url=https://books.google.com/books?id=PkHhBwAAQBAJ}}</ref><ref>{{cite book|last=Hassani|first=Sadri|year=1999|title=Mathematical Physics: A Modern Introduction to Its Foundations|publisher=Springer|isbn=0-387-98579-4|page=29|quote=Equality holds iff <c{{pipe}}c>&nbsp;=&nbsp;0 or {{pipe}}c>&nbsp;=&nbsp;0. From the definition of {{pipe}}c>, we conclude that {{pipe}}a> and {{pipe}}b> must be proportional.}}</ref><ref>{{cite book|last1=Axler|first1=Sheldon|date=2015|title=Linear Algebra Done Right, 3rd Ed.|publisher=Springer International Publishing|isbn=978-3-319-11079-0|page=172|url=https://books.google.com/books?id=CQWwoQEACAAJ|quote=This inequality is an equality if and only if one of ''u'', ''v'' is a scalar multiple of the other.}}</ref> == Special cases == === Sedrakyan's lemma – positive real numbers === [[Sedrakyan's inequality]], also known as [[Harald Bergström|Bergström]]'s inequality, [[Arthur Engel (mathematician)|Engel]]'s form, [[Titu Andreescu|Titu]]'s lemma (or the T2 lemma), states that for real numbers <math>u_1, u_2, \dots, u_n</math> and positive real numbers <math>v_1, v_2, \dots, v_n</math>: <math display=block>\frac{\left(u_1 + u_2 + \cdots + u_n\right)^2}{v_1 + v_2 + \cdots + v_n} \leq \frac{u^2_1}{v_1} + \frac{u^2_2}{v_2} + \cdots + \frac{u^2_n}{v_n},</math> or, using summation notation, <math display=block>\biggl(\sum_{i=1}^n u_i\biggr)^2 \bigg/ \sum_{i=1}^n v_i \,\leq\, \sum_{i=1}^n \frac{u_i^2}{v_i}.</math> It is a direct consequence of the Cauchy–Schwarz inequality, obtained by using the [[dot product]] on <math>\R^n</math> upon substituting <math>u_i' = \frac{u_i}{\sqrt{v_i\vphantom{t}}}</math> and <math>v_i' = {\textstyle \sqrt{v_i\vphantom{t}}}</math>. This form is especially helpful when the inequality involves fractions where the numerator is a [[Square number|perfect square]]. === {{math|R<sup>2</sup>}} - The plane === [[File:Cauchy-Schwarz inequation in Euclidean plane.gif|thumb|300px|Cauchy–Schwarz inequality in a unit circle of the Euclidean plane]] The real vector space <math>\R^2</math> denotes the 2-dimensional plane. It is also the 2-dimensional [[Euclidean space]] where the inner product is the [[dot product]]. If <math>\mathbf{u} = (u_1, u_2)</math> and <math>\mathbf{v} = (v_1, v_2)</math> then the Cauchy–Schwarz inequality becomes: <math display=block>\langle \mathbf{u}, \mathbf{v} \rangle^2 = \bigl(\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta\bigr)^2 \leq \|\mathbf{u}\|^2 \|\mathbf{v}\|^2,</math> where <math>\theta</math> is the [[angle]] between <math>\mathbf{u}</math> and <math>\mathbf{v}</math>. The form above is perhaps the easiest in which to understand the inequality, since the square of the cosine can be at most 1, which occurs when the vectors are in the same or opposite directions. It can also be restated in terms of the vector coordinates <math>u_1</math>, <math>u_2</math>, <math>v_1</math>, and <math>v_2</math> as <math display=block>\left(u_1 v_1 + u_2 v_2\right)^2 \leq \left(u_1^2 + u_2^2\right) \left(v_1^2 + v_2^2\right),</math> where equality holds if and only if the vector <math>\left(u_1, u_2\right)</math> is in the same or opposite direction as the vector <math>\left(v_1, v_2\right)</math>, or if one of them is the zero vector. === {{anchor|Real Euclidean space}}{{math|'''R'''<sup>''n''</sup>}}: ''n''-dimensional Euclidean space === {{anchor|real number proof}}In [[Euclidean space]] <math>\R^n</math> with the standard inner product, which is the [[dot product]], the Cauchy–Schwarz inequality becomes: <math display=block>\biggl(\sum_{i=1}^n u_i v_i\biggr)^2 \leq \biggl(\sum_{i=1}^n u_i^2\biggr) \biggl(\sum_{i=1}^n v_i^2\biggr).</math> The Cauchy–Schwarz inequality can be proved using only elementary algebra in this case by observing that the difference of the right and the left hand side is <math display=block> \tfrac{1}{2} \sum_{i=1}^n\sum_{j=1}^n (u_i v_j - u_j v_i)^2 \ge 0</math> or by considering the following [[quadratic polynomial]] in <math>x</math> <math display=block> (u_1 x + v_1)^2 + \cdots + (u_n x + v_n)^2 = \biggl(\sum_i u_i^2\biggr) x^2 + 2 \biggl(\sum_i u_i v_i\biggr) x + \sum_i v_i^2.</math> Since the latter polynomial is nonnegative, it has at most one real root, hence its [[discriminant]] is less than or equal to zero. That is, <math display=block>\biggl(\sum_i u_i v_i\biggr)^2 - \biggl(\sum_i {u_i^2}\biggr) \biggl(\sum_i {v_i^2}\biggr) \leq 0.</math> === {{math|'''C'''<sup>''n''</sup>}}: ''n''-dimensional complex space=== If <math>\mathbf{u}, \mathbf{v} \in \Complex^n</math> with <math>\mathbf{u} = (u_1, \ldots, u_n)</math> and <math>\mathbf{v} = (v_1, \ldots, v_n)</math> (where <math>u_1, \ldots, u_n \in \Complex</math> and <math>v_1, \ldots, v_n \in \Complex</math>) and if the inner product on the vector space <math>\Complex^n</math> is the canonical complex inner product (defined by <math>\langle \mathbf{u}, \mathbf{v} \rangle := u_1 \overline{v_1} + \cdots + u_{n} \overline{v_n},</math> where the bar notation is used for [[Complex conjugate|complex conjugation]]), then the inequality may be restated more explicitly as follows: <math display=block>\bigl|\langle \mathbf{u}, \mathbf{v} \rangle\bigr|^2 = \Biggl|\sum_{k=1}^n u_k\bar{v}_k\Biggr|^2 \leq \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle = \biggl(\sum_{k=1}^n u_k \bar{u}_k\biggr) \biggl(\sum_{k=1}^n v_k \bar{v}_k\biggr) = \sum_{j=1}^n |u_j|^2 \sum_{k=1}^n |v_k|^2.</math> That is, <math display=block>\bigl|u_1 \bar{v}_1 + \cdots + u_n \bar{v}_n\bigr|^2 \leq \bigl(|u_1|{}^2 + \cdots + |u_n|{}^2\bigr) \bigl(|v_1|{}^2 + \cdots + |v_n|{}^2\bigr).</math> === {{math|''L''<sup>2</sup>}} === For the inner product space of [[square-integrable]] complex-valued [[function (mathematics)|functions]], the following inequality holds. <math display=block>\left|\int_{\R^n} f(x) \overline{g(x)}\,dx\right|^2 \leq \int_{\R^n} \bigl|f(x)\bigr|^2\,dx \int_{\R^n} \bigl|g(x)\bigr|^2 \,dx.</math> The [[Hölder inequality]] is a generalization of this. == Applications == === Analysis === In any [[inner product space]], the [[triangle inequality]] is a consequence of the Cauchy–Schwarz inequality, as is now shown: <math display="block">\begin{alignat}{4} \|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle && \\ &= \|\mathbf{u}\|^2 + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \|\mathbf{v}\|^2 ~ && ~ \text{ where } \langle \mathbf{v}, \mathbf{u} \rangle = \overline{\langle \mathbf{u}, \mathbf{v} \rangle} \\ &= \|\mathbf{u}\|^2 + 2 \operatorname{Re} \langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 && \\ &\leq \|\mathbf{u}\|^2 + 2|\langle \mathbf{u}, \mathbf{v} \rangle| + \|\mathbf{v}\|^2 && \\ &\leq \|\mathbf{u}\|^2 + 2\|\mathbf{u}\|\|\mathbf{v}\| + \|\mathbf{v}\|^2 ~ && ~ \text{ using CS}\\ &=\bigl(\|\mathbf{u}\| + \|\mathbf{v}\|\bigr)^2. && \end{alignat}</math> Taking square roots gives the triangle inequality: <math display=block>\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|.</math> The Cauchy–Schwarz inequality is used to prove that the inner product is a [[continuous function]] with respect to the [[topology]] induced by the inner product itself.<ref>{{cite book|last1=Bachman|first1=George|last2=Narici|first2=Lawrence|date=2012-09-26|title=Functional Analysis|publisher=Courier Corporation|isbn=9780486136554|pages=141|url=https://books.google.com/books?id=_lTDAgAAQBAJ}}</ref><ref>{{cite book|last=Swartz|first=Charles|date=1994-02-21|title=Measure, Integration and Function Spaces|publisher=World Scientific|isbn=9789814502511|pages=236|url=https://books.google.com/books?id=SsbsCgAAQBAJ}}</ref> === Geometry === The Cauchy–Schwarz inequality allows one to extend the notion of "angle between two vectors" to any [[real numbers|real]] inner-product space by defining:<ref>{{cite book|last=Ricardo|first=Henry|date=2009-10-21|title=A Modern Introduction to Linear Algebra|publisher=CRC Press|isbn=9781439894613|pages=18|url=https://books.google.com/books?id=s7bMBQAAQBAJ}}</ref><ref>{{cite book|last1=Banerjee|first1=Sudipto|last2=Roy|first2=Anindya|date=2014-06-06|title=Linear Algebra and Matrix Analysis for Statistics|publisher=CRC Press|isbn=9781482248241|pages=181|url=https://books.google.com/books?id=WDTcBQAAQBAJ}}</ref> <math display=block>\cos\theta_{\mathbf{u} \mathbf{v}} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}.</math> The Cauchy–Schwarz inequality proves that this definition is sensible, by showing that the right-hand side lies in the interval {{math|[&minus;1,&nbsp;1]}} and justifies the notion that (real) [[Hilbert space]]s are simply generalizations of the [[Euclidean space]]. It can also be used to define an angle in [[complex numbers|complex]] [[inner-product space]]s, by taking the absolute value or the real part of the right-hand side,<ref>{{cite book|last=Valenza|first=Robert J.|date=2012-12-06|title=Linear Algebra: An Introduction to Abstract Mathematics|publisher=Springer Science & Business Media|isbn=9781461209010|pages=146|url=https://books.google.com/books?id=7x8MCAAAQBAJ}}</ref><ref>{{cite book|last=Constantin|first=Adrian|date=2016-05-21|title=Fourier Analysis with Applications|publisher=Cambridge University Press|isbn=9781107044104|pages=74|url=https://books.google.com/books?id=JnMZDAAAQBAJ}}</ref> as is done when extracting a metric from [[Fidelity of quantum states|quantum fidelity]]. === Probability theory === <!-- For the multivariate case,{{clarify|reason=define GE operator here|date=July 2011}}<ref>{{cite journal| last=Gautam|first=Tripathi|title=A matrix extension of the Cauchy–Schwarz inequality|journal=Economics Letters|date=4 December 1998|url=http://web2.uconn.edu/tripathi/published-papers/cs.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://web2.uconn.edu/tripathi/published-papers/cs.pdf |archive-date=2022-10-09 |url-status=live|doi=10.1016/s0165-1765(99)00014-2}}</ref> <math display=block>\operatorname{Var}(Y) \geq \operatorname{Cov} (Y, X) \operatorname{Var}^{-1}(X) \operatorname{Cov}(X, Y)</math> This inequality means that the difference is semidefinite positive. --> Let <math>X</math> and <math>Y</math> be [[random variable]]s. Then the covariance inequality<ref>{{cite book|last=Mukhopadhyay|first=Nitis|date=2000-03-22|title=Probability and Statistical Inference|publisher=CRC Press|isbn=9780824703790|pages=150|url=https://books.google.com/books?id=TMSnGkr_DxwC}}</ref><ref>{{cite book|last=Keener|first=Robert W.|date=2010-09-08|title=Theoretical Statistics: Topics for a Core Course|publisher=Springer Science & Business Media|isbn=9780387938394|pages=71|url=https://books.google.com/books?id=aVJmcega44cC}}</ref> is given by: <math display=block>\operatorname{Var}(X) \geq \frac{\operatorname{Cov}(X, Y)^2}{\operatorname{Var}(Y)}.</math> After defining an inner product on the set of random variables using the expectation of their product, <math display=block>\langle X, Y \rangle := \operatorname{E}(X Y),</math> the Cauchy–Schwarz inequality becomes <math display=block>\bigl|\operatorname{E}(XY)\bigr|^2 \leq \operatorname{E}(X^2) \operatorname{E}(Y^2).</math> To prove the covariance inequality using the Cauchy–Schwarz inequality, let <math>\mu = \operatorname{E}(X)</math> and <math>\nu = \operatorname{E}(Y),</math> then <math display=block>\begin{align} \bigl|\operatorname{Cov}(X, Y)\bigr|^2 &= \bigl|\operatorname{E}((X - \mu)(Y - \nu))\bigr|^2 \\ &= \bigl|\langle X - \mu, Y - \nu \rangle \bigr|^2\\ &\leq \langle X - \mu, X - \mu \rangle \langle Y - \nu, Y - \nu \rangle \\ & = \operatorname{E}\left((X - \mu)^2\right) \operatorname{E}\left((Y - \nu)^2\right) \\ & = \operatorname{Var}(X) \operatorname{Var}(Y), \end{align}</math> where <math>\operatorname{Var}</math> denotes [[variance]] and <math>\operatorname{Cov}</math> denotes [[covariance]]. ==Proofs== There are many different proofs<ref>{{cite journal|last1=Wu|first1=Hui-Hua|last2=Wu|first2=Shanhe|date=April 2009|title=Various proofs of the Cauchy–Schwarz inequality|journal=Octogon Mathematical Magazine|issn=1222-5657|isbn=978-973-88255-5-0|volume=17|issue=1|pages=221–229|url=http://www.uni-miskolc.hu/~matsefi/Octogon/volumes/volume1/article1_19.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.uni-miskolc.hu/~matsefi/Octogon/volumes/volume1/article1_19.pdf |archive-date=2022-10-09 |url-status=live|access-date=18 May 2016}}</ref> of the Cauchy–Schwarz inequality other than those given below.<ref name="Steele" /><ref name=":0" /> When consulting other sources, there are often two sources of confusion. First, some authors define {{math|⟨⋅,⋅⟩}} to be linear in the [[Inner product space#Alternative definitions, notations and remarks|second argument]] rather than the first. Second, some proofs are only valid when the field is <math>\mathbb R</math> and not <math>\mathbb C.</math><ref>{{cite book|last1=Aliprantis|first1=Charalambos D.|last2=Border|first2=Kim C.|date=2007-05-02|title=Infinite Dimensional Analysis: A Hitchhiker's Guide|publisher=Springer Science & Business Media|isbn=9783540326960|url=https://books.google.com/books?id=4hIq6ExH7NoC}}</ref> This section gives two proofs of the following theorem: {{math theorem|name=Cauchy–Schwarz inequality|note=|style=|math_statement= Let <math>\mathbf{u}</math> and <math>\mathbf{v}</math> be arbitrary vectors in an [[inner product space]] over the scalar field <math>\mathbb{F},</math> where <math>\mathbb F</math> is the field of real numbers <math>\R</math> or complex numbers <math>\Complex.</math> Then {{NumBlk|:|<math>\bigl|\langle \mathbf{u}, \mathbf{v} \rangle\bigr| \leq \|\mathbf{u}\| \|\mathbf{v}\|</math>|{{EquationRef|Cauchy–Schwarz Inequality}}}} with {{visible anchor|Characterization of Equality in Cauchy–Schwarz|text=equality holding}} in the {{EquationNote|Cauchy–Schwarz Inequality}} [[if and only if]] <math>\mathbf{u}</math> and <math>\mathbf{v}</math> are [[Linear independence|linearly dependent]]. Moreover, if <math> \left| \langle \mathbf{u}, \mathbf{v} \rangle\right| = \|\mathbf{u}\| \|\mathbf{v}\|</math> and <math>\mathbf{v} \neq \mathbf{0}</math> then <math>\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \mathbf{v}.</math> }} In both of the proofs given below, the proof in the trivial case where at least one of the vectors is zero (or equivalently, in the case where <math>\|\mathbf{u}\|\|\mathbf{v}\|= 0</math>) is the same. It is presented immediately below only once to reduce repetition. It also includes the easy part of the proof of the [[#Characterization of Equality in Cauchy–Schwarz|Equality Characterization]] given above; that is, it proves that if <math>\mathbf{u}</math> and <math>\mathbf{v}</math> are linearly dependent then <math>\bigl|\langle \mathbf{u}, \mathbf{v} \rangle\bigr| = \|\mathbf{u}\| \|\mathbf{v}\|.</math> {{collapse top|title=Proof of the trivial parts: Case where a vector is <math>\mathbf{0}</math> and also one direction of the [[#Characterization of Equality in Cauchy–Schwarz|Equality Characterization]]|left=true}} <!-- Note to Editors: Anyone reading this part of the proof is very likely to be new to this subject, which is why this proof is much more detailed than the proofs given elsewhere in this article. --> By definition, <math>\mathbf{u}</math> and <math>\mathbf{v}</math> are linearly dependent if and only if one is a scalar multiple of the other. If <math>\mathbf{u} = c \mathbf{v}</math> where <math>c</math> is some scalar then <math display=block>|\langle \mathbf{u}, \mathbf{v} \rangle| = |\langle c \mathbf{v}, \mathbf{v} \rangle| = |c \langle \mathbf{v}, \mathbf{v} \rangle| = |c|\|\mathbf{v}\| \|\mathbf{v}\| =\|c \mathbf{v}\| \|\mathbf{v}\| =\|\mathbf{u}\| \|\mathbf{v}\|</math> which shows that equality holds in the {{EquationNote|Cauchy–Schwarz Inequality}}. The case where <math>\mathbf{v} = c \mathbf{u}</math> for some scalar <math>c</math> follows from the previous case: <math display=block>|\langle \mathbf{u}, \mathbf{v} \rangle| = |\langle \mathbf{v}, \mathbf{u} \rangle| =\|\mathbf{v}\| \|\mathbf{u}\|.</math> In particular, if at least one of <math>\mathbf{u}</math> and <math>\mathbf{v}</math> is the zero vector then <math>\mathbf{u}</math> and <math>\mathbf{v}</math> are necessarily linearly dependent (for example, if <math>\mathbf{u} = \mathbf{0}</math> then <math>\mathbf{u} = c \mathbf{v}</math> where <math>c = 0</math>), so the above computation shows that the Cauchy–Schwarz inequality holds in this case. {{collapse bottom}} Consequently, the Cauchy–Schwarz inequality only needs to be proven only for non-zero vectors and also only the non-trivial direction of the [[#Characterization of Equality in Cauchy–Schwarz|Equality Characterization]] must be shown. ===Proof via the Pythagorean theorem=== The special case of <math>\mathbf{v} = \mathbf{0}</math> was proven above so it is henceforth assumed that <math>\mathbf{v} \neq \mathbf{0}.</math> Let <math display=block>\mathbf{z} := \mathbf{u} - \frac {\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}.</math> It follows from the linearity of the inner product in its first argument that: <math display=block>\langle \mathbf{z}, \mathbf{v} \rangle = \left\langle \mathbf{u} - \frac{\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}, \mathbf{v} \right\rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \frac{\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \langle \mathbf{v}, \mathbf{v} \rangle = 0.</math> Therefore, <math>\mathbf{z}</math> is a vector orthogonal to the vector <math>\mathbf{v}</math> (Indeed, <math>\mathbf{z}</math> is the [[vector projection|projection]] of <math>\mathbf{u}</math> onto the plane orthogonal to <math>\mathbf{v}.</math>) We can thus apply the [[Pythagorean theorem#Inner product spaces|Pythagorean theorem]] to <math display=block>\mathbf{u}= \frac{\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} + \mathbf{z}</math> which gives <math display=block>\|\mathbf{u}\|^2 = \left|\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}\right|^2 \|\mathbf{v}\|^2 + \|\mathbf{z}\|^2 = \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{(\|\mathbf{v}\|^2 )^2} \,\|\mathbf{v}\|^2 + \|\mathbf{z}\|^2 = \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} + \|\mathbf{z}\|^2 \geq \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2}.</math> The Cauchy–Schwarz inequality follows by multiplying by <math>\|\mathbf{v}\|^2</math> and then taking the square root. Moreover, if the relation <math>\geq</math> in the above expression is actually an equality, then <math>\|\mathbf{z}\|^2 = 0</math> and hence <math>\mathbf{z} = \mathbf{0};</math> the definition of <math>\mathbf{z}</math> then establishes a relation of linear dependence between <math>\mathbf{u}</math> and <math>\mathbf{v}.</math> The converse was proved at the beginning of this section, so the proof is complete. <math>\blacksquare</math> ===Proof by analyzing a quadratic=== Consider an arbitrary pair of vectors <math>\mathbf{u}, \mathbf{v}</math>. Define the function <math>p : \R \to \R</math> defined by <math>p(t) = \langle t\alpha\mathbf{u} + \mathbf{v}, t\alpha\mathbf{u} + \mathbf{v}\rangle</math>, where <math>\alpha</math> is a complex number satisfying <math>|\alpha| = 1</math> and <math>\alpha\langle\mathbf{u}, \mathbf{v}\rangle = |\langle\mathbf{u}, \mathbf{v}\rangle|</math>. Such an <math>\alpha</math> exists since if <math>\langle\mathbf{u}, \mathbf{v}\rangle = 0</math> then <math>\alpha</math> can be taken to be 1. Since the inner product is positive-definite, <math>p(t)</math> only takes non-negative real values. On the other hand, <math>p(t)</math> can be expanded using the bilinearity of the inner product: <math display=block>\begin{align} p(t) &= \langle t\alpha\mathbf{u}, t\alpha\mathbf{u}\rangle + \langle t\alpha\mathbf{u}, \mathbf{v}\rangle + \langle\mathbf{v}, t\alpha\mathbf{u}\rangle + \langle\mathbf{v}, \mathbf{v}\rangle \\ &= t\alpha t\overline{\alpha}\langle\mathbf{u}, \mathbf{u}\rangle + t\alpha\langle\mathbf{u}, \mathbf{v}\rangle + t\overline{\alpha}\langle \mathbf{v}, \mathbf{u}\rangle + \langle\mathbf{v}, \mathbf{v}\rangle \\ &= \lVert \mathbf{u} \rVert^2 t^2 + 2|\langle\mathbf{u}, \mathbf{v}\rangle|t + \lVert \mathbf{v} \rVert^2 \end{align}</math> Thus, <math>p</math> is a polynomial of degree <math>2</math> (unless <math>\mathbf{u} = 0,</math> which is a case that was checked earlier). Since the sign of <math>p</math> does not change, the discriminant of this polynomial must be non-positive: <math display=block>\Delta = 4 \bigl(\,|\langle \mathbf{u}, \mathbf{v} \rangle|^2 - \Vert \mathbf{u} \Vert^2 \Vert \mathbf{v} \Vert^2\bigr) \leq 0.</math> The conclusion follows.<ref>{{Cite book|title=Real and Complex Analysis|last=Rudin|first=Walter|publisher=McGraw-Hill|year=1987|isbn=0070542341|edition=3rd|location=New York|orig-year=1966}}</ref> For the equality case, notice that <math>\Delta = 0</math> happens if and only if <math>p(t) = \bigl(t\Vert \mathbf{u} \Vert + \Vert \mathbf{v} \Vert\bigr)^2.</math> If <math>t_0 = -\Vert \mathbf{v} \Vert / \Vert \mathbf{u} \Vert,</math> then <math>p(t_0) = \langle t_0\alpha\mathbf{u} + \mathbf{v},t_0\alpha\mathbf{u} + \mathbf{v}\rangle = 0,</math> and hence <math>\mathbf{v} = -t_0\alpha\mathbf{u}.</math> == Generalizations == Various generalizations of the Cauchy–Schwarz inequality exist. [[Hölder's inequality]] generalizes it to <math>L^p</math> norms. More generally, it can be interpreted as a special case of the definition of the norm of a linear operator on a [[Banach space]] (Namely, when the space is a [[Hilbert space]]). Further generalizations are in the context of [[operator theory]], e.g. for operator-convex functions and [[operator algebra]]s, where the domain and/or range are replaced by a [[C*-algebra]] or [[W*-algebra]]. An inner product can be used to define a [[positive linear functional]]. For example, given a Hilbert space <math>L^2(m), m</math> being a finite measure, the standard inner product gives rise to a positive functional <math>\varphi</math> by <math>\varphi (g) = \langle g, 1 \rangle.</math> Conversely, every positive linear functional <math>\varphi</math> on <math>L^2(m)</math> can be used to define an inner product <math>\langle f, g \rangle _\varphi := \varphi\left(g^* f\right),</math> where <math>g^*</math> is the [[Pointwise product|pointwise]] [[complex conjugate]] of <math>g.</math> In this language, the Cauchy–Schwarz inequality becomes<ref>{{cite book|last1=Faria|first1=Edson de|last2=Melo|first2=Welington de|date=2010-08-12|title=Mathematical Aspects of Quantum Field Theory|publisher=Cambridge University Press|isbn=9781139489805|pages=273|url=https://books.google.com/books?id=u9M9PFLNpMMC}}</ref> <math display=block>\bigl|\varphi(g^* f)\bigr|^2 \leq \varphi\left(f^* f\right) \varphi\left(g^* g\right),</math> which extends verbatim to positive functionals on C*-algebras: {{math theorem|name=Cauchy–Schwarz inequality for positive functionals on C*-algebras<ref>{{cite book|last=Lin|first=Huaxin|date=2001-01-01|title=An Introduction to the Classification of Amenable C*-algebras|publisher=World Scientific|isbn=9789812799883|pages=27|url=https://books.google.com/books?id=2qru8d7BCAAC}}</ref><ref>{{cite book|last=Arveson|first=W.|date=2012-12-06|title=An Invitation to C*-Algebras|publisher=Springer Science & Business Media|isbn=9781461263715|pages=28|url=https://books.google.com/books?id=d5TqBwAAQBAJ}}</ref>|note=|style=|math_statement= If <math>\varphi</math> is a positive linear functional on a C*-algebra <math>A,</math> then for all <math>a, b \in A,</math> <math>\left|\varphi\left(b^*a\right)\right|^2 \leq \varphi\left(b^*b\right) \varphi\left(a^*a\right).</math> }} The next two theorems are further examples in operator algebra. {{math theorem|name=Kadison–Schwarz inequality<ref>{{cite book|last=Størmer|first=Erling|date=2012-12-13|title=Positive Linear Maps of Operator Algebras|series=Springer Monographs in Mathematics|publisher=Springer Science & Business Media|isbn=9783642343698|url=https://books.google.com/books?id=lQtKAIONqwIC}}</ref><ref>{{cite journal|last=Kadison|first=Richard V.|date=1952-01-01|title=A Generalized Schwarz Inequality and Algebraic Invariants for Operator Algebras|jstor=1969657|journal=Annals of Mathematics|doi=10.2307/1969657|volume=56|number=3|pages=494–503}}</ref>|note=Named after [[Richard Kadison]]|style=|math_statement= If <math>\varphi</math> is a unital positive map, then for every [[normal operator|normal element]] <math>a</math> in its domain, we have <math>\varphi(a^*a) \geq \varphi\left(a^*\right) \varphi(a)</math> and <math>\varphi\left(a^*a\right) \geq \varphi(a) \varphi\left(a^*\right).</math> }} This extends the fact <math>\varphi\left(a^*a\right) \cdot 1 \geq \varphi(a)^* \varphi(a) = |\varphi(a)|^2,</math> when <math>\varphi</math> is a linear functional. The case when <math>a</math> is self-adjoint, that is, <math>a = a^*,</math> is sometimes known as '''Kadison's inequality'''. {{math theorem|name=Cauchy–Schwarz inequality|note=Modified Schwarz inequality for 2-positive maps<ref>{{cite book|last=Paulsen|first=Vern|year=2002|title=Completely Bounded Maps and Operator Algebras|series=Cambridge Studies in Advanced Mathematics|volume=78|publisher=Cambridge University Press|isbn=9780521816694|page=40|url=https://books.google.com/books?id=VtSFHDABxMIC&pg=PA40}}</ref>|style=|math_statement= For a 2-positive map <math>\varphi</math> between C*-algebras, for all <math>a, b</math> in its domain, <math display=block>\begin{align} \varphi(a)^*\varphi(a) &\leq \Vert\varphi(1)\Vert \varphi\left(a^*a\right), \text{ and } \\[5mu] \Vert\varphi\left(a^* b\right)\Vert^2 &\leq \Vert\varphi\left(a^*a\right)\Vert \cdot \Vert\varphi\left(b^*b\right)\Vert. \end{align}</math> }} Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality: {{math theorem|name=Callebaut's Inequality<ref>{{cite journal|last1=Callebaut|first1=D.K.|date=1965|title=Generalization of the Cauchy–Schwarz inequality|journal=J. Math. Anal. Appl.|volume=12|issue=3|pages=491–494|doi=10.1016/0022-247X(65)90016-8|doi-access=free}}</ref>|note=|style=|math_statement= For reals <math>0 \leq s \leq t \leq 1,</math> <math display=block>\begin{align} \biggl(\sum_{i=1}^n a_i b_i\biggr)^2 ~&\leq~ \biggl(\sum_{i=1}^n a_i^{1+s} b_i^{1-s}\biggr) \biggl(\sum_{i=1}^n a_i^{1-s} b_i^{1+s}\biggr) \\ &\leq~ \biggl(\sum_{i=1}^n a_i^{1+t} b_i^{1-t}\biggr) \biggl(\sum_{i=1}^n a_i^{1-t} b_i^{1+t}\biggr) ~\leq~ \biggl(\sum_{i=1}^n a_i^2\biggr) \biggl(\sum_{i=1}^n b_i^2\biggr). \end{align}</math> }} This theorem can be deduced from [[Hölder's inequality]].<ref>{{cite book|title=Callebaut's inequality|publisher=Entry in the AoPS Wiki|url=https://artofproblemsolving.com/wiki/index.php?title=Callebaut%27s_Inequality}}</ref> There are also non-commutative versions for operators and tensor products of matrices.<ref>{{cite journal|last1=Moslehian|first1=M.S.|last2=Matharu|first2=J.S.|last3=Aujla|first3=J.S.|date=2011|title=Non-commutative Callebaut inequality|journal=Linear Algebra and Its Applications|volume=436|issue=9|pages=3347–3353|doi=10.1016/j.laa.2011.11.024|arxiv=1112.3003|s2cid=119592971}}</ref> Several matrix versions of the Cauchy–Schwarz inequality and [[Kantorovich inequality]] are applied to linear regression models.<ref> {{cite journal |author1=Liu, Shuangzhe|author2=Neudecker, Heinz |year=1999 |title= A survey of Cauchy–Schwarz and Kantorovich-type matrix inequalities |journal= Statistical Papers |volume=40 |pages=55–73 |doi=10.1007/BF02927110 |s2cid=122719088 }} </ref> <ref>{{Cite journal| last1=Liu|first1=Shuangzhe| last2= Trenkler|first2=Götz| last3=Kollo|first3=Tõnu| last4=von Rosen|first4=Dietrich| last5=Baksalary|first5=Oskar Maria| date= 2023| title= Professor Heinz Neudecker and matrix differential calculus| journal= Statistical Papers|volume=65 |issue=4 |pages=2605–2639 | language=en| doi= 10.1007/s00362-023-01499-w|s2cid=263661094 }}</ref> == See also == * {{annotated link|Bessel's inequality}} * {{annotated link|Hölder's inequality}} * {{annotated link|Jensen's inequality}} * {{annotated link|Kantorovich inequality}} * {{annotated link|Kunita–Watanabe inequality}} * {{annotated link|Minkowski inequality}} * {{annotated link|Paley–Zygmund inequality}} == Notes == {{reflist|group=note}} {{reflist|group=proof}} == Citations == {{reflist|30em}} == References == {{refbegin}} * {{citation|first1=J. M.|last1=Aldaz|first2=S.|last2=Barza|first3=M.|last3=Fujii|first4=M. S.|last4=Moslehian|title=Advances in Operator Cauchy—Schwarz inequalities and their reverses|journal=Annals of Functional Analysis|volume=6|year=2015|issue=3|pages=275–295|doi=10.15352/afa/06-3-20|s2cid=122631202 |url=http://projecteuclid.org/euclid.afa/1429286046}} * {{citation|first=Viktor|last=Bunyakovsky|author-link=Viktor Yakovlevich Bunyakovsky|title=Sur quelques inegalités concernant les intégrales aux différences finies|journal=Mem. Acad. Sci. St. Petersbourg|volume=7|issue=1|year=1859|pages=6|url=http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/bunyakovsky.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/bunyakovsky.pdf |archive-date=2022-10-09 |url-status=live}} * {{citation|first=A.-L.|last=Cauchy|title=Sur les formules qui résultent de l'emploie du signe et sur > ou <, et sur les moyennes entre plusieurs quantités|journal=Cours d'Analyse, 1er Partie: Analyse Algébrique 1821; OEuvres Ser.2 III 373-377|year=1821}} * {{citation|first=S. S.|last=Dragomir|title=A survey on Cauchy–Bunyakovsky–Schwarz type discrete inequalities|journal=Journal of Inequalities in Pure and Applied Mathematics|volume=4|issue=3|year=2003|pages=142 pp|url=http://jipam.vu.edu.au/article.php?sid=301|url-status=dead|archive-url=https://web.archive.org/web/20080720034744/http://jipam.vu.edu.au/article.php?sid=301|archive-date=2008-07-20}} *{{Citation|last1=Grinshpan|first1=A. Z.|title=General inequalities, consequences, and applications|doi=10.1016/j.aam.2004.05.001|year=2005|journal=Advances in Applied Mathematics|volume=34|issue=1|pages=71–100|doi-access=free }} * {{Halmos A Hilbert Space Problem Book 1982}} <!-- {{sfn|Halmos|1982|pp=}} --> * {{citation|first=R. V.|last=Kadison|author-link=Richard V. Kadison|title=A generalized Schwarz inequality and algebraic invariants for operator algebras|journal=Annals of Mathematics|volume=56|year=1952|doi=10.2307/1969657|pages=494–503|jstor=1969657|issue=3}}. * {{Citation|last=Lohwater|first=Arthur|title=Introduction to Inequalities|publisher=Online e-book in PDF format|url=http://www.mediafire.com/file/1mw1tkgozzu|year=1982}} * {{citation|first=V.|last=Paulsen|title=Completely Bounded Maps and Operator Algebras|publisher=Cambridge University Press|year=2003}}. * {{citation|first=H. A.|last=Schwarz|year=1888|pages=318|journal=Acta Societatis Scientiarum Fennicae|volume=XV|title=Über ein Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung|url=http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/Schwarz.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/Schwarz.pdf |archive-date=2022-10-09 |url-status=live}} * {{springer|title=Cauchy inequality|id=C/c020880|first=E. D.|last=Solomentsev}} * {{citation|url=http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/CSMC_index.html|first=J. M.|last=Steele|title=The Cauchy–Schwarz Master Class|publisher=Cambridge University Press|year=2004|isbn=0-521-54677-X}} {{refend}} == External links == * [http://jeff560.tripod.com/c.html Earliest Uses: The entry on the Cauchy–Schwarz inequality has some historical information.] * [http://people.revoledu.com/kardi/tutorial/LinearAlgebra/LinearlyIndependent.html#LinearlyIndependentVectors Example of application of Cauchy–Schwarz inequality to determine Linearly Independent Vectors] Tutorial and Interactive program. {{Lp spaces}} {{Functional Analysis}} {{HilbertSpace}} {{DEFAULTSORT:Cauchy-Schwarz inequality}} [[Category:Augustin-Louis Cauchy]] [[Category:Inequalities]] [[Category:Linear algebra]] [[Category:Operator theory]] [[Category:Articles containing proofs]] [[Category:Mathematical analysis]] [[Category:Probabilistic inequalities]] </textarea><div class="templatesUsed"><div class="mw-templatesUsedExplanation"><p><span id="templatesused">Pages transcluded onto the current version of this page<span class="posteditwindowhelplinks"> (<a href="/wiki/Help:Transclusion" title="Help:Transclusion">help</a>)</span>:</span> </p></div><ul> <li><a href="/wiki/Bessel%27s_inequality" title="Bessel's inequality">Bessel's inequality</a> (<a href="/w/index.php?title=Bessel%27s_inequality&action=edit" title="Bessel's inequality">edit</a>) </li><li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder's inequality">Hölder's inequality</a> (<a href="/w/index.php?title=H%C3%B6lder%27s_inequality&action=edit" title="Hölder's inequality">edit</a>) </li><li><a href="/wiki/Jensen%27s_inequality" title="Jensen's inequality">Jensen's inequality</a> (<a href="/w/index.php?title=Jensen%27s_inequality&action=edit" title="Jensen's inequality">edit</a>) </li><li><a href="/wiki/Kantorovich_inequality" title="Kantorovich inequality">Kantorovich inequality</a> (<a href="/w/index.php?title=Kantorovich_inequality&action=edit" title="Kantorovich inequality">edit</a>) </li><li><a href="/wiki/Kunita%E2%80%93Watanabe_inequality" title="Kunita–Watanabe inequality">Kunita–Watanabe inequality</a> (<a href="/w/index.php?title=Kunita%E2%80%93Watanabe_inequality&action=edit" title="Kunita–Watanabe inequality">edit</a>) </li><li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a> (<a href="/w/index.php?title=Minkowski_inequality&action=edit" title="Minkowski inequality">edit</a>) </li><li><a href="/wiki/Paley%E2%80%93Zygmund_inequality" title="Paley–Zygmund inequality">Paley–Zygmund inequality</a> (<a href="/w/index.php?title=Paley%E2%80%93Zygmund_inequality&action=edit" title="Paley–Zygmund inequality">edit</a>) </li><li><a href="/wiki/Template:Anchor" title="Template:Anchor">Template:Anchor</a> (<a href="/w/index.php?title=Template:Anchor&action=edit" title="Template:Anchor">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Annotated_link" title="Template:Annotated link">Template:Annotated link</a> (<a href="/w/index.php?title=Template:Annotated_link&action=edit" title="Template:Annotated link">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Citation" title="Template:Citation">Template:Citation</a> (<a href="/w/index.php?title=Template:Citation&action=edit" title="Template:Citation">view source</a>) (protected)</li><li><a href="/wiki/Template:Cite_book" title="Template:Cite book">Template:Cite book</a> (<a href="/w/index.php?title=Template:Cite_book&action=edit" title="Template:Cite book">view source</a>) (protected)</li><li><a href="/wiki/Template:Cite_journal" title="Template:Cite journal">Template:Cite journal</a> (<a href="/w/index.php?title=Template:Cite_journal&action=edit" title="Template:Cite journal">view source</a>) (protected)</li><li><a href="/wiki/Template:Cite_web" title="Template:Cite web">Template:Cite web</a> (<a href="/w/index.php?title=Template:Cite_web&action=edit" title="Template:Cite web">view source</a>) (protected)</li><li><a href="/wiki/Template:Collapse_bottom" title="Template:Collapse bottom">Template:Collapse bottom</a> (<a href="/w/index.php?title=Template:Collapse_bottom&action=edit" title="Template:Collapse bottom">view source</a>) (protected)</li><li><a href="/wiki/Template:Collapse_top" title="Template:Collapse top">Template:Collapse top</a> (<a href="/w/index.php?title=Template:Collapse_top&action=edit" title="Template:Collapse top">view source</a>) (protected)</li><li><a href="/wiki/Template:Collapse_top/styles.css" title="Template:Collapse top/styles.css">Template:Collapse top/styles.css</a> (<a href="/w/index.php?title=Template:Collapse_top/styles.css&action=edit" title="Template:Collapse top/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Template:Em" title="Template:Em">Template:Em</a> (<a href="/w/index.php?title=Template:Em&action=edit" title="Template:Em">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:EquationNote" title="Template:EquationNote">Template:EquationNote</a> (<a href="/w/index.php?title=Template:EquationNote&action=edit" title="Template:EquationNote">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:EquationRef" title="Template:EquationRef">Template:EquationRef</a> (<a href="/w/index.php?title=Template:EquationRef&action=edit" title="Template:EquationRef">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Functional_Analysis" class="mw-redirect" title="Template:Functional Analysis">Template:Functional Analysis</a> (<a href="/w/index.php?title=Template:Functional_Analysis&action=edit" class="mw-redirect" title="Template:Functional Analysis">edit</a>) </li><li><a href="/wiki/Template:Functional_analysis" title="Template:Functional analysis">Template:Functional analysis</a> (<a href="/w/index.php?title=Template:Functional_analysis&action=edit" title="Template:Functional analysis">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Halmos_A_Hilbert_Space_Problem_Book_1982" title="Template:Halmos A Hilbert Space Problem Book 1982">Template:Halmos A Hilbert Space Problem Book 1982</a> (<a href="/w/index.php?title=Template:Halmos_A_Hilbert_Space_Problem_Book_1982&action=edit" title="Template:Halmos A Hilbert Space Problem Book 1982">edit</a>) </li><li><a href="/wiki/Template:Harvard_citations" title="Template:Harvard citations">Template:Harvard citations</a> (<a href="/w/index.php?title=Template:Harvard_citations&action=edit" title="Template:Harvard citations">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Harvard_citations/core" title="Template:Harvard citations/core">Template:Harvard citations/core</a> (<a href="/w/index.php?title=Template:Harvard_citations/core&action=edit" title="Template:Harvard citations/core">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Harvs" class="mw-redirect" title="Template:Harvs">Template:Harvs</a> (<a href="/w/index.php?title=Template:Harvs&action=edit" class="mw-redirect" title="Template:Harvs">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:HilbertSpace" class="mw-redirect" title="Template:HilbertSpace">Template:HilbertSpace</a> (<a href="/w/index.php?title=Template:HilbertSpace&action=edit" class="mw-redirect" title="Template:HilbertSpace">edit</a>) </li><li><a href="/wiki/Template:Hilbert_space" title="Template:Hilbert space">Template:Hilbert space</a> (<a href="/w/index.php?title=Template:Hilbert_space&action=edit" title="Template:Hilbert space">edit</a>) </li><li><a href="/wiki/Template:Hlist/styles.css" title="Template:Hlist/styles.css">Template:Hlist/styles.css</a> (<a href="/w/index.php?title=Template:Hlist/styles.css&action=edit" title="Template:Hlist/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Template:Icon" title="Template:Icon">Template:Icon</a> (<a href="/w/index.php?title=Template:Icon&action=edit" title="Template:Icon">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Ifsubst" title="Template:Ifsubst">Template:Ifsubst</a> (<a href="/w/index.php?title=Template:Ifsubst&action=edit" title="Template:Ifsubst">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Lp_spaces" title="Template:Lp spaces">Template:Lp spaces</a> (<a href="/w/index.php?title=Template:Lp_spaces&action=edit" title="Template:Lp spaces">edit</a>) </li><li><a href="/wiki/Template:Main_other" title="Template:Main other">Template:Main other</a> (<a href="/w/index.php?title=Template:Main_other&action=edit" title="Template:Main other">view source</a>) (protected)</li><li><a href="/wiki/Template:Math" title="Template:Math">Template:Math</a> (<a href="/w/index.php?title=Template:Math&action=edit" title="Template:Math">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Math_theorem" title="Template:Math theorem">Template:Math theorem</a> (<a href="/w/index.php?title=Template:Math_theorem&action=edit" title="Template:Math theorem">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Math_theorem/styles.css" title="Template:Math theorem/styles.css">Template:Math theorem/styles.css</a> (<a href="/w/index.php?title=Template:Math_theorem/styles.css&action=edit" title="Template:Math theorem/styles.css">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Navbox" title="Template:Navbox">Template:Navbox</a> (<a href="/w/index.php?title=Template:Navbox&action=edit" title="Template:Navbox">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:NumBlk" class="mw-redirect" title="Template:NumBlk">Template:NumBlk</a> (<a href="/w/index.php?title=Template:NumBlk&action=edit" class="mw-redirect" title="Template:NumBlk">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Numbered_block" title="Template:Numbered block">Template:Numbered block</a> (<a href="/w/index.php?title=Template:Numbered_block&action=edit" title="Template:Numbered block">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Pagetype" title="Template:Pagetype">Template:Pagetype</a> (<a href="/w/index.php?title=Template:Pagetype&action=edit" title="Template:Pagetype">view source</a>) (protected)</li><li><a href="/wiki/Template:Pipe" title="Template:Pipe">Template:Pipe</a> (<a href="/w/index.php?title=Template:Pipe&action=edit" title="Template:Pipe">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Refbegin" title="Template:Refbegin">Template:Refbegin</a> (<a href="/w/index.php?title=Template:Refbegin&action=edit" title="Template:Refbegin">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Refbegin/styles.css" title="Template:Refbegin/styles.css">Template:Refbegin/styles.css</a> (<a href="/w/index.php?title=Template:Refbegin/styles.css&action=edit" title="Template:Refbegin/styles.css">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Refend" title="Template:Refend">Template:Refend</a> (<a href="/w/index.php?title=Template:Refend&action=edit" title="Template:Refend">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Reflist" title="Template:Reflist">Template:Reflist</a> (<a href="/w/index.php?title=Template:Reflist&action=edit" title="Template:Reflist">view source</a>) (protected)</li><li><a href="/wiki/Template:Reflist/styles.css" title="Template:Reflist/styles.css">Template:Reflist/styles.css</a> (<a href="/w/index.php?title=Template:Reflist/styles.css&action=edit" title="Template:Reflist/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Template:Replace" title="Template:Replace">Template:Replace</a> (<a href="/w/index.php?title=Template:Replace&action=edit" title="Template:Replace">view source</a>) (protected)</li><li><a href="/wiki/Template:SDcat" title="Template:SDcat">Template:SDcat</a> (<a href="/w/index.php?title=Template:SDcat&action=edit" title="Template:SDcat">view source</a>) (protected)</li><li><a href="/wiki/Template:Short_description" title="Template:Short description">Template:Short description</a> (<a href="/w/index.php?title=Template:Short_description&action=edit" title="Template:Short description">view source</a>) (protected)</li><li><a href="/wiki/Template:Short_description/lowercasecheck" title="Template:Short description/lowercasecheck">Template:Short description/lowercasecheck</a> (<a href="/w/index.php?title=Template:Short_description/lowercasecheck&action=edit" title="Template:Short description/lowercasecheck">view source</a>) (protected)</li><li><a href="/wiki/Template:Small" title="Template:Small">Template:Small</a> (<a href="/w/index.php?title=Template:Small&action=edit" title="Template:Small">view source</a>) (protected)</li><li><a href="/wiki/Template:Springer" class="mw-redirect" title="Template:Springer">Template:Springer</a> (<a href="/w/index.php?title=Template:Springer&action=edit" class="mw-redirect" title="Template:Springer">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:SpringerEOM" title="Template:SpringerEOM">Template:SpringerEOM</a> (<a href="/w/index.php?title=Template:SpringerEOM&action=edit" title="Template:SpringerEOM">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Trim" title="Template:Trim">Template:Trim</a> (<a href="/w/index.php?title=Template:Trim&action=edit" title="Template:Trim">view source</a>) (protected)</li><li><a href="/wiki/Template:Visible_anchor" title="Template:Visible anchor">Template:Visible anchor</a> (<a href="/w/index.php?title=Template:Visible_anchor&action=edit" title="Template:Visible anchor">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Visible_anchor/styles.css" title="Template:Visible anchor/styles.css">Template:Visible anchor/styles.css</a> (<a href="/w/index.php?title=Template:Visible_anchor/styles.css&action=edit" title="Template:Visible anchor/styles.css">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Anchor" title="Module:Anchor">Module:Anchor</a> (<a href="/w/index.php?title=Module:Anchor&action=edit" title="Module:Anchor">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Annotated_link" title="Module:Annotated link">Module:Annotated link</a> (<a href="/w/index.php?title=Module:Annotated_link&action=edit" title="Module:Annotated link">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Arguments" title="Module:Arguments">Module:Arguments</a> (<a href="/w/index.php?title=Module:Arguments&action=edit" title="Module:Arguments">view source</a>) (protected)</li><li><a href="/wiki/Module:Check_for_unknown_parameters" title="Module:Check for unknown parameters">Module:Check for unknown parameters</a> (<a href="/w/index.php?title=Module:Check_for_unknown_parameters&action=edit" title="Module:Check for unknown parameters">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1" title="Module:Citation/CS1">Module:Citation/CS1</a> (<a href="/w/index.php?title=Module:Citation/CS1&action=edit" title="Module:Citation/CS1">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/COinS" title="Module:Citation/CS1/COinS">Module:Citation/CS1/COinS</a> (<a href="/w/index.php?title=Module:Citation/CS1/COinS&action=edit" title="Module:Citation/CS1/COinS">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Configuration" title="Module:Citation/CS1/Configuration">Module:Citation/CS1/Configuration</a> (<a href="/w/index.php?title=Module:Citation/CS1/Configuration&action=edit" title="Module:Citation/CS1/Configuration">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Date_validation" title="Module:Citation/CS1/Date validation">Module:Citation/CS1/Date validation</a> (<a href="/w/index.php?title=Module:Citation/CS1/Date_validation&action=edit" title="Module:Citation/CS1/Date validation">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Identifiers" title="Module:Citation/CS1/Identifiers">Module:Citation/CS1/Identifiers</a> (<a href="/w/index.php?title=Module:Citation/CS1/Identifiers&action=edit" title="Module:Citation/CS1/Identifiers">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Utilities" title="Module:Citation/CS1/Utilities">Module:Citation/CS1/Utilities</a> (<a href="/w/index.php?title=Module:Citation/CS1/Utilities&action=edit" title="Module:Citation/CS1/Utilities">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Whitelist" title="Module:Citation/CS1/Whitelist">Module:Citation/CS1/Whitelist</a> (<a href="/w/index.php?title=Module:Citation/CS1/Whitelist&action=edit" title="Module:Citation/CS1/Whitelist">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/styles.css" title="Module:Citation/CS1/styles.css">Module:Citation/CS1/styles.css</a> (<a href="/w/index.php?title=Module:Citation/CS1/styles.css&action=edit" title="Module:Citation/CS1/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Module:Disambiguation/templates" title="Module:Disambiguation/templates">Module:Disambiguation/templates</a> (<a href="/w/index.php?title=Module:Disambiguation/templates&action=edit" title="Module:Disambiguation/templates">view source</a>) (protected)</li><li><a href="/wiki/Module:GetShortDescription" title="Module:GetShortDescription">Module:GetShortDescription</a> (<a href="/w/index.php?title=Module:GetShortDescription&action=edit" title="Module:GetShortDescription">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Icon" title="Module:Icon">Module:Icon</a> (<a href="/w/index.php?title=Module:Icon&action=edit" title="Module:Icon">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Icon/data" title="Module:Icon/data">Module:Icon/data</a> (<a href="/w/index.php?title=Module:Icon/data&action=edit" title="Module:Icon/data">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang" title="Module:Lang">Module:Lang</a> (<a href="/w/index.php?title=Module:Lang&action=edit" title="Module:Lang">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang/ISO_639_synonyms" title="Module:Lang/ISO 639 synonyms">Module:Lang/ISO 639 synonyms</a> (<a href="/w/index.php?title=Module:Lang/ISO_639_synonyms&action=edit" title="Module:Lang/ISO 639 synonyms">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang/data" title="Module:Lang/data">Module:Lang/data</a> (<a href="/w/index.php?title=Module:Lang/data&action=edit" title="Module:Lang/data">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang/data/iana_languages" title="Module:Lang/data/iana languages">Module:Lang/data/iana languages</a> (<a href="/w/index.php?title=Module:Lang/data/iana_languages&action=edit" title="Module:Lang/data/iana languages">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang/data/iana_regions" title="Module:Lang/data/iana regions">Module:Lang/data/iana regions</a> (<a href="/w/index.php?title=Module:Lang/data/iana_regions&action=edit" title="Module:Lang/data/iana regions">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang/data/iana_scripts" title="Module:Lang/data/iana scripts">Module:Lang/data/iana scripts</a> (<a href="/w/index.php?title=Module:Lang/data/iana_scripts&action=edit" title="Module:Lang/data/iana scripts">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang/data/iana_suppressed_scripts" title="Module:Lang/data/iana suppressed scripts">Module:Lang/data/iana suppressed scripts</a> (<a href="/w/index.php?title=Module:Lang/data/iana_suppressed_scripts&action=edit" title="Module:Lang/data/iana suppressed scripts">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Lang/data/iana_variants" title="Module:Lang/data/iana variants">Module:Lang/data/iana variants</a> (<a href="/w/index.php?title=Module:Lang/data/iana_variants&action=edit" title="Module:Lang/data/iana variants">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Navbar" title="Module:Navbar">Module:Navbar</a> (<a href="/w/index.php?title=Module:Navbar&action=edit" title="Module:Navbar">view source</a>) (protected)</li><li><a href="/wiki/Module:Navbar/configuration" title="Module:Navbar/configuration">Module:Navbar/configuration</a> (<a href="/w/index.php?title=Module:Navbar/configuration&action=edit" title="Module:Navbar/configuration">view source</a>) (protected)</li><li><a href="/wiki/Module:Navbar/styles.css" title="Module:Navbar/styles.css">Module:Navbar/styles.css</a> (<a href="/w/index.php?title=Module:Navbar/styles.css&action=edit" title="Module:Navbar/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Module:Navbox" title="Module:Navbox">Module:Navbox</a> (<a href="/w/index.php?title=Module:Navbox&action=edit" title="Module:Navbox">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Navbox/configuration" title="Module:Navbox/configuration">Module:Navbox/configuration</a> (<a href="/w/index.php?title=Module:Navbox/configuration&action=edit" title="Module:Navbox/configuration">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Navbox/styles.css" title="Module:Navbox/styles.css">Module:Navbox/styles.css</a> (<a href="/w/index.php?title=Module:Navbox/styles.css&action=edit" title="Module:Navbox/styles.css">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Pagetype" title="Module:Pagetype">Module:Pagetype</a> (<a href="/w/index.php?title=Module:Pagetype&action=edit" title="Module:Pagetype">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/config" title="Module:Pagetype/config">Module:Pagetype/config</a> (<a href="/w/index.php?title=Module:Pagetype/config&action=edit" title="Module:Pagetype/config">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/disambiguation" class="mw-redirect" title="Module:Pagetype/disambiguation">Module:Pagetype/disambiguation</a> (<a href="/w/index.php?title=Module:Pagetype/disambiguation&action=edit" class="mw-redirect" title="Module:Pagetype/disambiguation">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/rfd" title="Module:Pagetype/rfd">Module:Pagetype/rfd</a> (<a href="/w/index.php?title=Module:Pagetype/rfd&action=edit" title="Module:Pagetype/rfd">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/setindex" title="Module:Pagetype/setindex">Module:Pagetype/setindex</a> (<a href="/w/index.php?title=Module:Pagetype/setindex&action=edit" title="Module:Pagetype/setindex">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/softredirect" title="Module:Pagetype/softredirect">Module:Pagetype/softredirect</a> (<a href="/w/index.php?title=Module:Pagetype/softredirect&action=edit" title="Module:Pagetype/softredirect">view source</a>) (protected)</li><li><a href="/wiki/Module:SDcat" title="Module:SDcat">Module:SDcat</a> (<a href="/w/index.php?title=Module:SDcat&action=edit" title="Module:SDcat">view source</a>) (protected)</li><li><a href="/wiki/Module:String" title="Module:String">Module:String</a> (<a href="/w/index.php?title=Module:String&action=edit" title="Module:String">view source</a>) (protected)</li><li><a href="/wiki/Module:TableTools" title="Module:TableTools">Module:TableTools</a> (<a href="/w/index.php?title=Module:TableTools&action=edit" title="Module:TableTools">view source</a>) (protected)</li><li><a href="/wiki/Module:Template_wrapper" title="Module:Template wrapper">Module:Template wrapper</a> (<a href="/w/index.php?title=Module:Template_wrapper&action=edit" title="Module:Template wrapper">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Unicode_data" title="Module:Unicode data">Module:Unicode data</a> (<a href="/w/index.php?title=Module:Unicode_data&action=edit" title="Module:Unicode data">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Wikitext_Parsing" title="Module:Wikitext Parsing">Module:Wikitext Parsing</a> (<a href="/w/index.php?title=Module:Wikitext_Parsing&action=edit" title="Module:Wikitext Parsing">view source</a>) (protected)</li><li><a href="/wiki/Module:Yesno" title="Module:Yesno">Module:Yesno</a> (<a href="/w/index.php?title=Module:Yesno&action=edit" title="Module:Yesno">view source</a>) (protected)</li></ul></div><p id="mw-returnto">Return to <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a>.</p> <!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/wiki/Cauchy–Schwarz_inequality">https://en.wikipedia.org/wiki/Cauchy–Schwarz_inequality</a>"</div></div> <div id="catlinks" class="catlinks catlinks-allhidden" data-mw="interface"></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Cauchy%E2%80%93Schwarz_inequality&action=edit&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.canary-84779d6bf6-psplp","wgBackendResponseTime":414,"wgPageParseReport":{"limitreport":{"cputime":"0.069","walltime":"0.103","ppvisitednodes":{"value":418,"limit":1000000},"postexpandincludesize":{"value":17740,"limit":2097152},"templateargumentsize":{"value":6556,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":469,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 76.938 1 -total"," 99.89% 76.853 2 Template:Blocked_text"," 51.06% 39.287 2 Template:Replace"," 33.25% 25.581 1 Template:Colocationwebhost"," 29.51% 22.707 1 Template:Hidden"," 12.18% 9.369 1 Template:Hidden_begin"," 12.05% 9.274 1 Template:Tlx"," 1.97% 1.518 1 MediaWiki:Wikimedia-globalblocking-blockedtext-mistake"," 1.86% 1.432 1 Template:Hidden_end"," 1.50% 1.155 1 MediaWiki:Wikimedia-globalblocking-blockedtext-mistake-email-steward"]},"scribunto":{"limitreport-timeusage":{"value":"0.013","limit":"10.000"},"limitreport-memusage":{"value":1043349,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.canary-84779d6bf6-psplp","timestamp":"20241125002509","ttl":2592000,"transientcontent":false}}});});</script> </body> </html>