CINXE.COM

Search results for: terrain analysis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: terrain analysis</title> <meta name="description" content="Search results for: terrain analysis"> <meta name="keywords" content="terrain analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="terrain analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="terrain analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27973</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: terrain analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27973</span> Propagation of DEM Varying Accuracy into Terrain-Based Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wassim%20Katerji">Wassim Katerji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercedes%20Farjas"> Mercedes Farjas</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Morillo"> Carmen Morillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrain-based%20analysis" title="terrain-based analysis">terrain-based analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title=" accuracy assessment"> accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Digital%20Elevation%20Model%20%28DEM%29" title=" Digital Elevation Model (DEM)"> Digital Elevation Model (DEM)</a> </p> <a href="https://publications.waset.org/abstracts/16142/propagation-of-dem-varying-accuracy-into-terrain-based-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27972</span> Three-Dimensional Optimal Path Planning of a Flying Robot for Terrain Following/Terrain Avoidance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Kosari">Amirreza Kosari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Maghsoudi"> Hossein Maghsoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malahat%20Givar"> Malahat Givar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the three-dimensional optimal path planning of a flying robot for Terrain Following / Terrain Avoidance (TF/TA) purposes using Direct Collocation has been investigated. To this purpose, firstly, the appropriate equations of motion representing the flying robot translational movement have been described. The three-dimensional optimal path planning of the flying vehicle in terrain following/terrain avoidance maneuver is formulated as an optimal control problem. The terrain profile, as the main allowable height constraint has been modeled using Fractal Generation Method. The resulting optimal control problem is discretized by applying Direct Collocation numerical technique, and then transformed into a Nonlinear Programming Problem (NLP). The efficacy of the proposed method is demonstrated by extensive simulations, and in particular, it is verified that this approach could produce a solution satisfying almost all performance and environmental constraints encountering a low-level flying maneuver <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20following" title=" terrain following"> terrain following</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20programming" title=" nonlinear programming"> nonlinear programming</a> </p> <a href="https://publications.waset.org/abstracts/98941/three-dimensional-optimal-path-planning-of-a-flying-robot-for-terrain-followingterrain-avoidance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27971</span> Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubhakar%20Gupta">Shubhakar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhruv%20Prakash"> Dhruv Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Apoorv%20Mehta"> Apoorv Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20robotics" title="modular robotics">modular robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20detection" title=" terrain detection"> terrain detection</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20classification" title=" terrain classification"> terrain classification</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/118337/modular-robotics-and-terrain-detection-using-inertial-measurement-unit-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27970</span> Flow Characterization in Complex Terrain for Aviation Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20Rasheed">Adil Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandar%20Tabib"> Mandar Tabib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation%20safety" title="aviation safety">aviation safety</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain-induced%20turbulence" title=" terrain-induced turbulence"> terrain-induced turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20flow" title=" atmospheric flow"> atmospheric flow</a>, <a href="https://publications.waset.org/abstracts/search?q=alert%20system" title=" alert system"> alert system</a> </p> <a href="https://publications.waset.org/abstracts/42780/flow-characterization-in-complex-terrain-for-aviation-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27969</span> The Effect of Land Cover on Movement of Vehicles in the Terrain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krisstalova%20Dana">Krisstalova Dana</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazal%20Jan"> Mazal Jan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=movement%20in%20a%20terrain" title="movement in a terrain">movement in a terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20factors" title=" geographical factors"> geographical factors</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20of%20a%20field" title=" surface of a field"> surface of a field</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20evaluation" title=" mathematical evaluation"> mathematical evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20and%20searching%20paths" title=" optimization and searching paths"> optimization and searching paths</a> </p> <a href="https://publications.waset.org/abstracts/21438/the-effect-of-land-cover-on-movement-of-vehicles-in-the-terrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27968</span> TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Sarma">Siddharth Sarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayush%20Majumdar"> Ayush Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Sabu"> Nidhi Sabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mufaddal%20Jiruwaala"> Mufaddal Jiruwaala</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Paygude"> Shilpa Paygude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ESRGAN" title=" ESRGAN"> ESRGAN</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20upscaling" title=" image upscaling"> image upscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20resolution" title=" super resolution"> super resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/193143/terraenhance-high-resolution-digital-elevation-model-generation-using-gans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27967</span> Design and Validation of Different Steering Geometries for an All-Terrain Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabhsharan%20Singh">Prabhsharan Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Sindhu"> Rahul Sindhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Sikka"> Piyush Sikka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steering system is an integral part and medium through which the driver communicates with the vehicle and terrain, hence the most suitable steering geometry as per requirements must be chosen. The function of the chosen steering geometry of an All-Terrain Vehicle (ATV) is to provide the desired understeer gradient, minimum tire slippage, expected weight transfer during turning as these are requirements for a good steering geometry of a BAJA ATV. This research paper focuses on choosing the best suitable steering geometry for BAJA ATV tracks by reasoning the working principle and using fundamental trigonometric functions for obtaining these geometries on the same vehicle itself, namely Ackermann, Anti- Ackermann, Parallel Ackermann. Full vehicle analysis was carried out on Adams Car Analysis software, and graphical results were obtained for various parameters. Steering geometries were achieved by using a single versatile knuckle for frontward and rearward tie-rod placement and were practically tested with the help of data acquisition systems set up on the ATV. Each was having certain characteristics, setup, and parameters were observed for the BAJA ATV, and correlations were created between analytical and practical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-terrain%20vehicle" title="all-terrain vehicle">all-terrain vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=Ackermann" title=" Ackermann"> Ackermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Adams%20car" title=" Adams car"> Adams car</a>, <a href="https://publications.waset.org/abstracts/search?q=Baja%20Sae" title=" Baja Sae"> Baja Sae</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20geometry" title=" steering geometry"> steering geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20system" title=" steering system"> steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=tire%20slip" title=" tire slip"> tire slip</a>, <a href="https://publications.waset.org/abstracts/search?q=traction" title=" traction"> traction</a>, <a href="https://publications.waset.org/abstracts/search?q=understeer%20gradient" title=" understeer gradient"> understeer gradient</a> </p> <a href="https://publications.waset.org/abstracts/121416/design-and-validation-of-different-steering-geometries-for-an-all-terrain-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27966</span> Critical Terrain Slope Calculation for Locating Small Hydropower Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Vrekos">C. Vrekos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Evagelides"> C. Evagelides</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Samarinas"> N. Samarinas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Arampatzis"> G. Arampatzis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> As known, the water energy is a renewable and clean source of energy. Energy production from hydropower has been the first, and still is today a renewable source used to generate electricity. The optimal location and sizing of a small hydropower plant is a very important issue in engineering design which encourages investigation. The aim of this paper is to present a formula that can be utilized for locating the position of a small hydropower plant although there is a high dependence on economic, environmental, and social parameters. In this paper, the economic and technical side of the problem is considered. More specifically, there is a critical terrain slope that determines if the plant should be located at the end of the slope or not. Of course, this formula can be used for a first estimate and does not include detailed economic analysis. At the end, a case study is presented for the location of a small hydropower plant in order to demonstrate the validity of the proposed formula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20terrain%20slope" title="critical terrain slope">critical terrain slope</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower%20plant%20locating" title=" hydropower plant locating"> hydropower plant locating</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/84538/critical-terrain-slope-calculation-for-locating-small-hydropower-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27965</span> Terrain Classification for Ground Robots Based on Acoustic Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Kiefer">Bernd Kiefer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Gebru%20Tesfay"> Abraham Gebru Tesfay</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietrich%20Klakow"> Dietrich Klakow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system&rsquo;s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20features" title="acoustic features">acoustic features</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robots" title=" autonomous robots"> autonomous robots</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20classification" title=" terrain classification"> terrain classification</a> </p> <a href="https://publications.waset.org/abstracts/71127/terrain-classification-for-ground-robots-based-on-acoustic-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27964</span> Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shetie%20Gatew">Shetie Gatew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=andosols" title="andosols">andosols</a>, <a href="https://publications.waset.org/abstracts/search?q=cambisols" title=" cambisols"> cambisols</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20elevation%20model" title=" digital elevation model"> digital elevation model</a>, <a href="https://publications.waset.org/abstracts/search?q=leptosols" title=" leptosols"> leptosols</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-landscaps%20relation" title=" soil-landscaps relation"> soil-landscaps relation</a> </p> <a href="https://publications.waset.org/abstracts/178285/mapping-soils-from-terrain-features-the-case-of-nech-sar-national-park-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27963</span> Evolution Mechanism of the Formation of Rock Heap under Seismic Action and Analysis on Engineering Geological Structure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Xiu%20Wan">Jian-Xiu Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20Yin"> Yao Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In complex terrain and poor geological conditions areas, Railway, highway and other transportation constructions are still strongly developing. However, various geological disasters happened such as landslide, rock heap and so on. According to the results of geological investigation, the form of skirt (trapezoidal), semicircle and triangle rock heaps are mainly due to complex internal force and external force, in a certain extent, which is related to the terrain, the nature of the rock mass, the supply area and the surface shape of rock heap. Combined with the above factors, discrete element numerical simulation of rock mass is established under different terrain conditions based on 3DEC, and accelerated formation process of rock heap under seismic action is simulated. The fragmentation structure supply area is calculated, in which the most dangerous area is located. At the same time, the formation mechanism and development process are studied in different terrain conditions, and the structure of rock heap is judged by section, which can provide a strong theoretical and technical support for the prevention and control of geological disasters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3DEC" title="3DEC">3DEC</a>, <a href="https://publications.waset.org/abstracts/search?q=fragmentation%20structure" title=" fragmentation structure"> fragmentation structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20heap" title=" rock heap"> rock heap</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20action" title=" seismic action"> seismic action</a> </p> <a href="https://publications.waset.org/abstracts/40697/evolution-mechanism-of-the-formation-of-rock-heap-under-seismic-action-and-analysis-on-engineering-geological-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27962</span> New Approaches to the Determination of the Time Costs of Movements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Kristalova">Dana Kristalova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20of%20a%20terrain" title="surface of a terrain">surface of a terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=movement%20of%20vehicles" title=" movement of vehicles"> movement of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20factor" title=" geographical factor"> geographical factor</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20of%20routes" title=" optimization of routes"> optimization of routes</a> </p> <a href="https://publications.waset.org/abstracts/19508/new-approaches-to-the-determination-of-the-time-costs-of-movements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27961</span> Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weng%20Jiantao">Weng Jiantao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Yiqun"> Wu Yiqun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=island%20terrain" title=" island terrain"> island terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20selection" title=" site selection"> site selection</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20mechanism" title=" construction mechanism"> construction mechanism</a> </p> <a href="https://publications.waset.org/abstracts/33532/site-selection-and-construction-mechanism-of-the-island-settlements-in-china-based-on-cfd-gis-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27960</span> Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Micallef">Daniel Micallef</a>, <a href="https://publications.waset.org/abstracts/search?q=Damien%20Bounaudet"> Damien Bounaudet</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20N.%20Farrugia"> Robert N. Farrugia</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20P.%20Borg"> Simon P. Borg</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Buhagiar"> Vincent Buhagiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tonio%20Sant"> Tonio Sant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20terrain" title="complex terrain">complex terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-ventilation" title=" cross-ventilation"> cross-ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20driven%20ventilation" title=" wind driven ventilation"> wind driven ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20resource" title=" wind resource"> wind resource</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/91489/characterisation-of-wind-driven-ventilation-in-complex-terrain-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27959</span> Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziad%20Abdeldayem">Ziad Abdeldayem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Markiewicz"> Jakub Markiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunal%20Kansara"> Kunal Kansara</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Edwards"> Laura Edwards</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as <em>filtering</em>. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20laser%20scanning" title="airborne laser scanning">airborne laser scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20terrain%20models" title=" digital terrain models"> digital terrain models</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=forested%20areas" title=" forested areas"> forested areas</a> </p> <a href="https://publications.waset.org/abstracts/114916/extracting-terrain-points-from-airborne-laser-scanning-data-in-densely-forested-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27958</span> Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umberto%20Di%20Staso">Umberto Di Staso</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Soave"> Marco Soave</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessio%20Giori"> Alessio Giori</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Prandi"> Federico Prandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaele%20De%20Amicis"> Raffaele De Amicis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called &ldquo;Terrain Builder&rdquo;. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Terrain%20Builder" title="Terrain Builder">Terrain Builder</a>, <a href="https://publications.waset.org/abstracts/search?q=WebGL" title=" WebGL"> WebGL</a>, <a href="https://publications.waset.org/abstracts/search?q=Virtual%20Globe" title=" Virtual Globe"> Virtual Globe</a>, <a href="https://publications.waset.org/abstracts/search?q=CesiumJS" title=" CesiumJS"> CesiumJS</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiled%20Map%20Service" title=" Tiled Map Service"> Tiled Map Service</a>, <a href="https://publications.waset.org/abstracts/search?q=TMS" title=" TMS"> TMS</a>, <a href="https://publications.waset.org/abstracts/search?q=Height-Map" title=" Height-Map"> Height-Map</a>, <a href="https://publications.waset.org/abstracts/search?q=Regular%20Grid" title=" Regular Grid"> Regular Grid</a>, <a href="https://publications.waset.org/abstracts/search?q=Geovisual%20Analytics" title=" Geovisual Analytics"> Geovisual Analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=DTM" title=" DTM"> DTM</a> </p> <a href="https://publications.waset.org/abstracts/35472/heterogeneous-resolution-and-multi-source-terrain-builder-for-cesiumjs-webgl-virtual-globe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27957</span> The Influence of Air Temperature Controls in Estimation of Air Temperature over Homogeneous Terrain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariza%20Yunus">Fariza Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmee%20Jaafar"> Jasmee Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zamalia%20Mahmud"> Zamalia Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Nisa%E2%80%99%20Khairul%20Azmi"> Nurul Nisa’ Khairul Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursalleh%20K.%20Chang"> Nursalleh K. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursalleh%20K.%20Chang"> Nursalleh K. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variation of air temperature from one place to another is cause by air temperature controls. In general, the most important control of air temperature is elevation. Another significant independent variable in estimating air temperature is the location of meteorological stations. Distances to coastline and land use type are also contributed to significant variations in the air temperature. On the other hand, in homogeneous terrain direct interpolation of discrete points of air temperature work well to estimate air temperature values in un-sampled area. In this process the estimation is solely based on discrete points of air temperature. However, this study presents that air temperature controls also play significant roles in estimating air temperature over homogenous terrain of Peninsular Malaysia. An Inverse Distance Weighting (IDW) interpolation technique was adopted to generate continuous data of air temperature. This study compared two different datasets, observed mean monthly data of T, and estimation error of T–T’, where T’ estimated value from a multiple regression model. The multiple regression model considered eight independent variables of elevation, latitude, longitude, coastline, and four land use types of water bodies, forest, agriculture and build up areas, to represent the role of air temperature controls. Cross validation analysis was conducted to review accuracy of the estimation values. Final results show, estimation values of T–T’ produced lower errors for mean monthly mean air temperature over homogeneous terrain in Peninsular Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20control" title="air temperature control">air temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation%20analysis" title=" interpolation analysis"> interpolation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=peninsular%20Malaysia" title=" peninsular Malaysia"> peninsular Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title=" air temperature "> air temperature </a> </p> <a href="https://publications.waset.org/abstracts/12799/the-influence-of-air-temperature-controls-in-estimation-of-air-temperature-over-homogeneous-terrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27956</span> Design of a Robot with a Transformable Track System in Tackling Motion Barrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Yi%20Cho">Kai-Yi Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Fa-Shian%20Chang"> Fa-Shian Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lih-Tyng%20Hwang"> Lih-Tyng Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Feng%20Liu"> Chih-Feng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Nan%20Lee"> Jeng-Nan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Min%20Wang"> Shun-Min Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhu-Wei%20Ji"> Jhu-Wei Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a ground robot which has the tracked transformative structures of the motion mechanism. The robot has a good ability to adapt to the terrain, due to the front end of the track can be deformed, it can more easily pass the more complex area, such as to climb stairs and ramp areas. Usually in the disaster area, where the terrain is generally broken and complicated, there will be many slopes, broken walls, rubble, and obstacles, then if you want the robot through this area, you need to have a good off-road performance for possible complex terrain, this robot with the transformative tracked mechanism has a strong adaptability, it can overcome the limitation of the terrains to be a good rescue robot. Also, the robot has a good flexibility in the shape of contact with the ground; that can adapt the varied terrain by the deformable track, thus able to pass the different terrains, that was verified through the experiments on a test-platform and a field test. The prototype of the robot system has been developed, and experiments are carried out to verify the validity of the proposed design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tracked%20robot" title="tracked robot">tracked robot</a>, <a href="https://publications.waset.org/abstracts/search?q=rescue%20robot" title=" rescue robot"> rescue robot</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20mechanism" title=" transformation mechanism"> transformation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20track" title=" deformable track"> deformable track</a>, <a href="https://publications.waset.org/abstracts/search?q=hull%20design" title=" hull design"> hull design</a> </p> <a href="https://publications.waset.org/abstracts/50960/design-of-a-robot-with-a-transformable-track-system-in-tackling-motion-barrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27955</span> Bio-Mimetic Foot Design for Legged Locomotion over Unstructured Terrain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Kolano">Hannah Kolano</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Nadan"> Paul Nadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Ryan"> Jeremy Ryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophia%20Nielsen"> Sophia Nielsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hooves of goats and other ruminants, or the family Ruminantia, are uniquely structured to adapt to rough terrain. Their hooves possess a hard outer shell and a soft interior that allow them to both conform to uneven surfaces and hook onto prominent features. In an effort to apply this unique mechanism to a robotics context, artificial feet for a hexapedal robot have been designed based on the hooves of ruminants to improve the robot’s ability to traverse unstructured environments such as those found on a rocky planet or asteroid, as well as in earth-based environments such as rubble, caves, and mountainous regions. The feet were manufactured using a combination of 3D printing and polyurethane casting techniques and attached to a commercially available hexapedal robot. The robot was programmed with a terrain-adaptive gait and proved capable of traversing a variety of uneven surfaces and inclines. This development of more adaptable robotic feet allows legged robots to operate in a wider range of environments and expands their possible applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=legged%20locomotion" title=" legged locomotion"> legged locomotion</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20foot%20design" title=" robotic foot design"> robotic foot design</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminant%20feet" title=" ruminant feet"> ruminant feet</a>, <a href="https://publications.waset.org/abstracts/search?q=unstructured%20terrain%20navigation" title=" unstructured terrain navigation"> unstructured terrain navigation</a> </p> <a href="https://publications.waset.org/abstracts/123946/bio-mimetic-foot-design-for-legged-locomotion-over-unstructured-terrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27954</span> An Improved Method to Eliminate the Distortion of Terrain Relief in DEM Generation Using Contour Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=RyongJin%20Ri">RyongJin Ri</a>, <a href="https://publications.waset.org/abstracts/search?q=SongChol%20Kim"> SongChol Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=SungIl%20Jon"> SungIl Jon</a>, <a href="https://publications.waset.org/abstracts/search?q=KyongIl%20Ji"> KyongIl Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> : In this paper, an improved algorithm is proposed to eliminate the distortion of terrain relief when generating DEMs from digitized contour lines in the area bounded by inflectional contour lines such as narrow and long mountain ridges or valleys. To this end, mountain ridge lines (valley lines) are extracted from the area, and the steepest slope segment is detected based on ridge or valley lines. After detecting the steepest slope segment, the elevation of the grid points is interpolated on the profile section using the cubic Hermit function. The experiment shows that the accuracy of the DEM of the terrain-distortionable region generated by the proposed method is improved significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEM" title="DEM">DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=contour%20lines" title=" contour lines"> contour lines</a>, <a href="https://publications.waset.org/abstracts/search?q=ridge%20line" title=" ridge line"> ridge line</a>, <a href="https://publications.waset.org/abstracts/search?q=steepest%20slope%20segment" title=" steepest slope segment"> steepest slope segment</a> </p> <a href="https://publications.waset.org/abstracts/194164/an-improved-method-to-eliminate-the-distortion-of-terrain-relief-in-dem-generation-using-contour-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27953</span> Performance Analysis of Geophysical Database Referenced Navigation: The Combination of Gravity Gradient and Terrain Using Extended Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisun%20Lee">Jisun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Hyoun%20Kwon"> Jay Hyoun Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an alternative way to compensate the INS (inertial navigation system) error in non-GNSS (Global Navigation Satellite System) environment, geophysical database referenced navigation is being studied. In this study, both gravity gradient and terrain data were combined to complement the weakness of sole geophysical data as well as to improve the stability of the positioning. The main process to compensate the INS error using geophysical database was constructed on the basis of the EKF (Extended Kalman Filter). In detail, two type of combination method, centralized and decentralized filter, were applied to check the pros and cons of its algorithm and to find more robust results. The performance of each navigation algorithm was evaluated based on the simulation by supposing that the aircraft flies with precise geophysical DB and sensors above nine different trajectories. Especially, the results were compared to the ones from sole geophysical database referenced navigation to check the improvement due to a combination of the heterogeneous geophysical database. It was found that the overall navigation performance was improved, but not all trajectories generated better navigation result by the combination of gravity gradient with terrain data. Also, it was found that the centralized filter generally showed more stable results. It is because that the way to allocate the weight for the decentralized filter could not be optimized due to the local inconsistency of geophysical data. In the future, switching of geophysical data or combining different navigation algorithm are necessary to obtain more robust navigation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Extended%20Kalman%20Filter" title="Extended Kalman Filter">Extended Kalman Filter</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20database%20referenced%20navigation" title=" geophysical database referenced navigation"> geophysical database referenced navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient" title=" gravity gradient"> gravity gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain" title=" terrain "> terrain </a> </p> <a href="https://publications.waset.org/abstracts/67266/performance-analysis-of-geophysical-database-referenced-navigation-the-combination-of-gravity-gradient-and-terrain-using-extended-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27952</span> Explore the New Urbanization Patterns of the Varied Terrain Inland Areas: The Case of Hubei Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Chen">Zhan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaping%20Huang"> Yaping Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Shen"> Xiao Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yichun%20Li"> Yichun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New urbanization is a strategic fulcrum of China's future development, regional urbanization is a hot research field, different from the contiguous urbanization patterns of the eastern coastal plains and the node type urbanization patterns of the southwest mountainous areas, central inland areas has the realistic conditions of complex terrain conditions and kinds of phases, the dominant power of urbanization development, organizational power, coordination of the urbanization development and the natural environment, will be the core issue in the process of urbanization. This article starts from the characteristics of the typical urbanization development in such areas of Hubei Province, analyzing the current outstanding and typical problems in the process of urbanization in Hubei Province, and propose targeted to promote the basic ideas and implementation paths of the development of new urbanization, in order to provide experience and learn from similar cities of the development of urbanization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=varied%20terrain" title="varied terrain">varied terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=inland%20area" title=" inland area"> inland area</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20explore" title=" path explore"> path explore</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubei%20Province" title=" Hubei Province"> Hubei Province</a> </p> <a href="https://publications.waset.org/abstracts/15857/explore-the-new-urbanization-patterns-of-the-varied-terrain-inland-areas-the-case-of-hubei-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27951</span> Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Zakerinejad">Reza Zakerinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TreeNet%20model" title="TreeNet model">TreeNet model</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20analysis" title=" terrain analysis"> terrain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Golestan%20Province" title=" Golestan Province"> Golestan Province</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/27028/prediction-of-gully-erosion-with-stochastic-modeling-by-using-geographic-information-system-and-remote-sensing-data-in-north-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27950</span> Wind Interference Effect on Tall Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai">Atul K. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigar%20K.%20Sevalia"> Jigar K. Sevalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20A.%20Vasanwala"> Sandip A. Vasanwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20region" title=" wake region"> wake region</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/6233/wind-interference-effect-on-tall-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27949</span> Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Vidhyaprakash">D. Vidhyaprakash</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elango"> A. Elango</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheeled%20mobile%20robot" title="wheeled mobile robot">wheeled mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain" title=" terrain"> terrain</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20slippage" title=" wheel slippage"> wheel slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=odometryerror" title=" odometryerror"> odometryerror</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a> </p> <a href="https://publications.waset.org/abstracts/38028/studies-on-affecting-factors-of-wheel-slip-and-odometry-error-on-real-time-of-wheeled-mobile-robots-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27948</span> Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keisuke%20Takahata">Keisuke Takahata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Suetsugu"> Hiroshi Suetsugu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20terrain%20model" title="digital terrain model">digital terrain model</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20LiDAR" title=" satellite LiDAR"> satellite LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20processes" title=" gaussian processes"> gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20quantification" title=" uncertainty quantification"> uncertainty quantification</a> </p> <a href="https://publications.waset.org/abstracts/148360/satellite-lidar-based-digital-terrain-model-correction-using-gaussian-process-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27947</span> Modeling of Long Wave Generation and Propagation via Seabed Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Hua%20Chang">Chih-Hua Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses a three-dimensional (3D) fully nonlinear model to simulate the wave generation problem caused by the movement of the seabed. The numerical model is first simplified into two dimensions and then compared with the existing two-dimensional (2D) experimental data and the 2D numerical results of other shallow-water wave models. Results show that this model is different from the earlier shallow-water wave models, with the phase being closer to the experimental results of wave propagation. The results of this study are also compared with those of the 3D experimental results of other researchers. Satisfactory results can be obtained in both the waveform and the flow field. This study assesses the application of the model to simulate the wave caused by the circular (radius r0) terrain rising or falling (moving distance bm). The influence of wave-making parameters r0 and bm are discussed. This study determines that small-range (e.g., r0 = 2, normalized by the static water depth), rising, or sinking terrain will produce significant wave groups in the far field. For large-scale moving terrain (e.g., r0 = 10), uplift and deformation will potentially generate the leading solitary-like waves in the far field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20wave" title="seismic wave">seismic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20generation" title=" wave generation"> wave generation</a>, <a href="https://publications.waset.org/abstracts/search?q=far-field%20waves" title=" far-field waves"> far-field waves</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed%20deformation" title=" seabed deformation"> seabed deformation</a> </p> <a href="https://publications.waset.org/abstracts/158851/modeling-of-long-wave-generation-and-propagation-via-seabed-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27946</span> Characterization of Kopff Crater Using Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreekumari%20Patel">Shreekumari Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhjot%20Kaur"> Prabhjot Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Paras%20Solanki"> Paras Solanki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crater" title="crater">crater</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=moon" title=" moon"> moon</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20observations" title=" radar observations"> radar observations</a> </p> <a href="https://publications.waset.org/abstracts/96879/characterization-of-kopff-crater-using-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27945</span> A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mbadiwe%20S.%20Benyeogor">Mbadiwe S. Benyeogor</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladayo%20O.%20Olakanmi"> Oladayo O. Olakanmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosisochukwu%20P.%20Nnoli"> Kosisochukwu P. Nnoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20I.%20Lawal"> Olusegun I. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20JJ.%20Gratton"> Eric JJ. Gratton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20suspension" title="active suspension">active suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robots" title=" autonomous robots"> autonomous robots</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20computing" title=" edge computing"> edge computing</a>, <a href="https://publications.waset.org/abstracts/search?q=navigational%20sensors" title=" navigational sensors"> navigational sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=terramechanics" title=" terramechanics"> terramechanics</a> </p> <a href="https://publications.waset.org/abstracts/144497/a-gyro-stabilized-autonomous-multi-terrain-quadrupedal-wheeled-robot-towards-edge-enabled-self-balancing-autonomy-and-terramechanical-efficiency-of-unmanned-off-road-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27944</span> Wake Effects of Wind Turbines and Its Impacts on Power Curve Measurements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajan%20Antony%20Mathew">Sajan Antony Mathew</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhukya%20Ramdas"> Bhukya Ramdas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract—The impetus of wind energy deployment over the last few decades has seen potential sites being harvested very actively for wind farm development. Due to the scarce availability of highly potential sites, the turbines are getting more optimized in its location wherein minimum spacing between the turbines are resorted without comprising on the optimization of its energy yield. The optimization of the energy yield from a wind turbine is achieved by effective micrositing techniques. These time-tested techniques which are applied from site to site on terrain conditions that meet the requirements of the International standard for power performance measurements of wind turbines result in the positioning of wind turbines for optimized energy yields. The international standard for Power Curve Measurements has rules of procedure and methodology to evaluate the terrain, obstacles and sector for measurements. There are many challenges at the sites for complying with the requirements for terrain, obstacles and sector for measurements. Studies are being attempted to carry out these measurements within the scope of the international standard as various other procedures specified in alternate standards or the integration of LIDAR for Power Curve Measurements are in the nascent stage. The paper strives to assist in the understanding of the fact that if positioning of a wind turbine at a site is based on an optimized output, then there are no wake effects seen on the power curve of an adjacent wind turbine. The paper also demonstrates that an invalid sector for measurements could be used in the analysis in alteration to the requirement as per the international standard for power performance measurements. Therefore the paper strives firstly to demonstrate that if a wind turbine is optimally positioned, no wake effects are seen and secondly the sector for measurements in such a case could include sectors which otherwise would have to be excluded as per the requirements of International standard for power performance measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micrositing" title="micrositing">micrositing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20performance" title=" power performance"> power performance</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20effects" title=" wake effects"> wake effects</a> </p> <a href="https://publications.waset.org/abstracts/16561/wake-effects-of-wind-turbines-and-its-impacts-on-power-curve-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=932">932</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=933">933</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=terrain%20analysis&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10