CINXE.COM

Search results for: blob detection

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: blob detection</title> <meta name="description" content="Search results for: blob detection"> <meta name="keywords" content="blob detection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="blob detection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="blob detection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3456</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: blob detection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3456</span> Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ammar">Muhammad Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=Talha%20Ali"> Talha Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Basit"> Abdul Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtawar%20Rajput"> Bakhtawar Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Zobia%20Sohail"> Zobia Sohail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=music%20note" title="music note">music note</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20music" title=" sheet music"> sheet music</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20music%20recognition" title=" optical music recognition"> optical music recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=blob%20detection" title=" blob detection"> blob detection</a>, <a href="https://publications.waset.org/abstracts/search?q=thresholding" title=" thresholding"> thresholding</a>, <a href="https://publications.waset.org/abstracts/search?q=dictionary%20generation" title=" dictionary generation"> dictionary generation</a> </p> <a href="https://publications.waset.org/abstracts/133670/music-note-detection-and-dictionary-generation-from-music-sheet-using-image-processing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3455</span> Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Ganesh%20Rajagopal">Balaji Ganesh Rajagopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Subramanian%20Appavu%20alias%20Balamurugan">Subramanian Appavu alias Balamurugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayyalraj%20Midhun%20Kumar"> Ayyalraj Midhun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Nallaperumal"> Krishnan Nallaperumal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20transportation" title="traffic transportation">traffic transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20density%20estimation" title=" traffic density estimation"> traffic density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=blob%20identification%20and%20tracking" title=" blob identification and tracking"> blob identification and tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20velocity%20of%20vehicles" title=" relative velocity of vehicles"> relative velocity of vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20between%20vehicles" title=" correlation between vehicles"> correlation between vehicles</a> </p> <a href="https://publications.waset.org/abstracts/12455/indian-road-traffic-flow-analysis-using-blob-tracking-from-video-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3454</span> Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lan%20Du">Lan Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Dai"> Hui Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title="change detection">change detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20Aperture%20Radar%20%28SAR%29" title=" Synthetic Aperture Radar (SAR)"> Synthetic Aperture Radar (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Scale-Invariant%20Feature%20Transformation%20%28SIFT%29" title=" Scale-Invariant Feature Transformation (SIFT)"> Scale-Invariant Feature Transformation (SIFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/66992/change-detection-method-based-on-scale-invariant-feature-transformation-keypoints-and-segmentation-for-synthetic-aperture-radar-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3453</span> Information Retrieval from Internet Using Hand Gestures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aniket%20S.%20Joshi">Aniket S. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20R.%20Mane"> Aditya R. Mane</a>, <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Tukaram"> Arjun Tukaram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the 21st century, in the era of e-world, people are continuously getting updated by daily information such as weather conditions, news, stock exchange market updates, new projects, cricket updates, sports and other such applications. In the busy situation, they want this information on the little use of keyboard, time. Today in order to get such information user have to repeat same mouse and keyboard actions which includes time and inconvenience. In India due to rural background many people are not much familiar about the use of computer and internet also. Also in small clinics, small offices, and hotels and in the airport there should be a system which retrieves daily information with the minimum use of keyboard and mouse actions. We plan to design application based project that can easily retrieve information with minimum use of keyboard and mouse actions and make our task more convenient and easier. This can be possible with an image processing application which takes real time hand gestures which will get matched by system and retrieve information. Once selected the functions with hand gestures, the system will report action information to user. In this project we use real time hand gesture movements to select required option which is stored on the screen in the form of RSS Feeds. Gesture will select the required option and the information will be popped and we got the information. A real time hand gesture makes the application handier and easier to use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand%20detection" title="hand detection">hand detection</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20tracking" title=" hand tracking"> hand tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20gesture%20recognition" title=" hand gesture recognition"> hand gesture recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=HSV%20color%20model" title=" HSV color model"> HSV color model</a>, <a href="https://publications.waset.org/abstracts/search?q=Blob%20detection" title=" Blob detection"> Blob detection</a> </p> <a href="https://publications.waset.org/abstracts/29069/information-retrieval-from-internet-using-hand-gestures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3452</span> Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Jeong%20Kim">Jae-Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Ro%20Kim"> Ki-Ro Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MIMO-OFDM" title="MIMO-OFDM">MIMO-OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=QRD-M" title=" QRD-M"> QRD-M</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20condition" title=" channel condition"> channel condition</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a> </p> <a href="https://publications.waset.org/abstracts/3518/efficient-signal-detection-using-qrd-m-based-on-channel-condition-in-mimo-ofdm-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3451</span> Reduced Complexity of ML Detection Combined with DFE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Hyun%20Ro">Jae-Hyun Ro</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Bin%20Ha"> Chang-Bin Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection" title="detection">detection</a>, <a href="https://publications.waset.org/abstracts/search?q=DFE" title=" DFE"> DFE</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO-OFDM" title=" MIMO-OFDM"> MIMO-OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=ML" title=" ML"> ML</a> </p> <a href="https://publications.waset.org/abstracts/42215/reduced-complexity-of-ml-detection-combined-with-dfe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">610</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3450</span> Alphabet Recognition Using Pixel Probability Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaidehi%20Murarka">Vaidehi Murarka</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Mehta"> Sneha Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Dishant%20Upadhyay"> Dishant Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contour-detection" title="contour-detection">contour-detection</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-processing" title=" pre-processing"> pre-processing</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20coefficient" title=" recognition coefficient"> recognition coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=runtime-template%20generation" title=" runtime-template generation"> runtime-template generation</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20matrix" title=" weight matrix "> weight matrix </a> </p> <a href="https://publications.waset.org/abstracts/12115/alphabet-recognition-using-pixel-probability-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3449</span> Cigarette Smoke Detection Based on YOLOV3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Li">Wei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuo%20Yang"> Tuo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20detection" title=" cigarette smoke detection"> cigarette smoke detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLOV3" title=" YOLOV3"> YOLOV3</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20feature%20extraction" title=" color feature extraction"> color feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/159151/cigarette-smoke-detection-based-on-yolov3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3448</span> An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Benmoussa">H. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20El%20Kalam"> A. A. El Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ait%20Ouahman"> A. Ait Ouahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intrusion%20Detection%20System%20%28IDS%29" title="Intrusion Detection System (IDS)">Intrusion Detection System (IDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20detection" title=" preventive detection"> preventive detection</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agents" title=" mobile agents"> mobile agents</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20architecture" title=" distributed architecture"> distributed architecture</a> </p> <a href="https://publications.waset.org/abstracts/18239/an-architecture-for-new-generation-of-distributed-intrusion-detection-system-based-on-preventive-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3447</span> Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omair%20Ghori">Omair Ghori</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Stadler"> Anton Stadler</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wilk"> Stefan Wilk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Effelsberg"> Wolfgang Effelsberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20analysis" title="contrast analysis">contrast analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20fire%20detection" title=" early fire detection"> early fire detection</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20smoke%20detection" title=" video smoke detection"> video smoke detection</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a> </p> <a href="https://publications.waset.org/abstracts/52006/video-based-ambient-smoke-detection-by-detecting-directional-contrast-decrease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3446</span> Intrusion Detection Techniques in NaaS in the Cloud: A Review </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mahmood">Rashid Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDS" title="IDS">IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=naas" title=" naas"> naas</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/36475/intrusion-detection-techniques-in-naas-in-the-cloud-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3445</span> Securing Web Servers by the Intrusion Detection System (IDS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Farhaoui">Yousef Farhaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title="intrusion detection">intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=architectures" title=" architectures"> architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic" title=" characteristic"> characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=tools" title=" tools"> tools</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20server" title=" web server"> web server</a> </p> <a href="https://publications.waset.org/abstracts/13346/securing-web-servers-by-the-intrusion-detection-system-ids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3444</span> Suggestion for Malware Detection Agent Considering Network Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Hoon%20Hong">Ji-Hoon Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Hee%20Kim"> Dong-Hee Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam-Uk%20Kim"> Nam-Uk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-Myoung%20Chung"> Tai-Myoung Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android%20malware%20detection" title="android malware detection">android malware detection</a>, <a href="https://publications.waset.org/abstracts/search?q=software-defined%20network" title=" software-defined network"> software-defined network</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20environment" title=" interaction environment"> interaction environment</a>, <a href="https://publications.waset.org/abstracts/search?q=android%20malware%20detection" title=" android malware detection"> android malware detection</a>, <a href="https://publications.waset.org/abstracts/search?q=software-defined%20network" title=" software-defined network"> software-defined network</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20environment" title=" interaction environment"> interaction environment</a> </p> <a href="https://publications.waset.org/abstracts/39330/suggestion-for-malware-detection-agent-considering-network-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3443</span> Improved Skin Detection Using Colour Space and Texture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjram%20Sofiane">Medjram Sofiane</a>, <a href="https://publications.waset.org/abstracts/search?q=Babahenini%20Mohamed%20Chaouki"> Babahenini Mohamed Chaouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benali%20Yamina"> Mohamed Benali Yamina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title="skin detection">skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YCbCr" title=" YCbCr"> YCbCr</a>, <a href="https://publications.waset.org/abstracts/search?q=GLCM" title=" GLCM"> GLCM</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20skin" title=" human skin"> human skin</a> </p> <a href="https://publications.waset.org/abstracts/19039/improved-skin-detection-using-colour-space-and-texture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3442</span> Real-Time Detection of Space Manipulator Self-Collision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xiaodong">Zhang Xiaodong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Zixin"> Tang Zixin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xin"> Liu Xin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20manipulator" title="space manipulator">space manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20detection" title=" collision detection"> collision detection</a>, <a href="https://publications.waset.org/abstracts/search?q=self-collision" title=" self-collision"> self-collision</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20real-time%20collision%20detection" title=" the real-time collision detection"> the real-time collision detection</a> </p> <a href="https://publications.waset.org/abstracts/23258/real-time-detection-of-space-manipulator-self-collision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3441</span> Iris Detection on RGB Image for Controlling Side Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norzalina%20Othman">Norzalina Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Na%E2%80%99imy%20Wan"> Nurul Na’imy Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Azliza%20Mohd%20Rusli"> Azliza Mohd Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Noor%20Syahirah%20Meor%20Idris"> Wan Noor Syahirah Meor Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iris%20detection" title="iris detection">iris detection</a>, <a href="https://publications.waset.org/abstracts/search?q=midpoint%20coordinates" title=" midpoint coordinates"> midpoint coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB%20images" title=" RGB images"> RGB images</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20mirror" title=" side mirror"> side mirror</a> </p> <a href="https://publications.waset.org/abstracts/8133/iris-detection-on-rgb-image-for-controlling-side-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3440</span> Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leping%20Chen">Leping Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Daoxiang%20An"> Daoxiang An</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaotao%20Huang"> Xiaotao Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20SAR" title="circular SAR">circular SAR</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20detection" title=" vehicle detection"> vehicle detection</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic" title=" automatic"> automatic</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a> </p> <a href="https://publications.waset.org/abstracts/84548/automatic-vehicle-detection-using-circular-synthetic-aperture-radar-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3439</span> Adaptive CFAR Analysis for Non-Gaussian Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouchemha%20Amel">Bouchemha Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Chachoui%20Takieddine"> Chachoui Takieddine</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Maalem"> H. Maalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic detection of targets in a modern communication system RADAR is based primarily on the concept of adaptive CFAR detector. To have an effective detection, we must minimize the influence of disturbances due to the clutter. The detection algorithm adapts the CFAR detection threshold which is proportional to the average power of the clutter, maintaining a constant probability of false alarm. In this article, we analyze the performance of two variants of adaptive algorithms CA-CFAR and OS-CFAR and we compare the thresholds of these detectors in the marine environment (no-Gaussian) with a Weibull distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFAR" title="CFAR">CFAR</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold" title=" threshold"> threshold</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull" title=" Weibull"> Weibull</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/21359/adaptive-cfar-analysis-for-non-gaussian-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3438</span> Intrusion Detection Techniques in Mobile Adhoc Networks: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mahmood">Rashid Mahmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Sarwar"> Muhammad Junaid Sarwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile ad hoc networks (MANETs) use has been well-known from the last few years in the many applications, like mission critical applications. In the (MANETS) prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in (MANETs). The authentication and encryption is considered the first solution of the MANETs problem where as now these are not sufficient as MANET use is increasing. In this paper we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in MANET and aim to comparing in some important fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MANET" title="MANET">MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=IDS" title=" IDS"> IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusions" title=" intrusions"> intrusions</a>, <a href="https://publications.waset.org/abstracts/search?q=signature" title=" signature"> signature</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a> </p> <a href="https://publications.waset.org/abstracts/32173/intrusion-detection-techniques-in-mobile-adhoc-networks-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3437</span> Plant Disease Detection Using Image Processing and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanskar">Sanskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Pal"> Abhinav Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aryush%20Gupta"> Aryush Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar%20Mishra"> Sushil Kumar Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20diseases" title="plant diseases">plant diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/194420/plant-disease-detection-using-image-processing-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3436</span> A Comparative Study of Virus Detection Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Al%20amro">Sulaiman Al amro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alkhalifah"> Ali Alkhalifah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20viruses" title="computer viruses">computer viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=virus%20detection" title=" virus detection"> virus detection</a>, <a href="https://publications.waset.org/abstracts/search?q=signature-based" title=" signature-based"> signature-based</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour-based" title=" behaviour-based"> behaviour-based</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic-based" title=" heuristic-based "> heuristic-based </a> </p> <a href="https://publications.waset.org/abstracts/28688/a-comparative-study-of-virus-detection-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3435</span> The Effect of Pixelation on Face Detection: Evidence from Eye Movements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaewmart%20Pongakkasira">Kaewmart Pongakkasira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated how different levels of pixelation affect face detection in natural scenes. Eye movements and reaction times, while observers searched for faces in natural scenes rendered in different ranges of pixels, were recorded. Detection performance for coarse visual detail at lower pixel size (3 x 3) was better than with very blurred detail carried by higher pixel size (9 x 9). The result is consistent with the notion that face detection relies on gross detail information of face-shape template, containing crude shape structure and features. In contrast, detection was impaired when face shape and features are obscured. However, it was considered that the degradation of scenic information might also contribute to the effect. In the next experiment, a more direct measurement of the effect of pixelation on face detection, only the embedded face photographs, but not the scene background, will be filtered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eye%20movements" title="eye movements">eye movements</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title=" face detection"> face detection</a>, <a href="https://publications.waset.org/abstracts/search?q=face-shape%20information" title=" face-shape information"> face-shape information</a>, <a href="https://publications.waset.org/abstracts/search?q=pixelation" title=" pixelation"> pixelation</a> </p> <a href="https://publications.waset.org/abstracts/54704/the-effect-of-pixelation-on-face-detection-evidence-from-eye-movements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3434</span> Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ranjeeth">M. Ranjeeth</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anuradha"> S. Anuradha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing" title="spectrum sensing">spectrum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20detection" title=" energy detection"> energy detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fading%20channels" title=" fading channels"> fading channels</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20false%20alarm" title=" probability of false alarm"> probability of false alarm</a> </p> <a href="https://publications.waset.org/abstracts/15800/performance-of-nakagami-fading-channel-over-energy-detection-based-spectrum-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3433</span> Intrusion Detection and Prevention System (IDPS) in Cloud Computing Using Anomaly-Based and Signature-Based Detection Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Onyima">John Onyima</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikechukwu%20Ezepue"> Ikechukwu Ezepue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Virtualization and cloud computing are among the fast-growing computing innovations in recent times. Organisations all over the world are moving their computing services towards the cloud this is because of its rapid transformation of the organization’s infrastructure and improvement of efficient resource utilization and cost reduction. However, this technology brings new security threats and challenges about safety, reliability and data confidentiality. Evidently, no single security technique can guarantee security or protection against malicious attacks on a cloud computing network hence an integrated model of intrusion detection and prevention system has been proposed. Anomaly-based and signature-based detection techniques will be integrated to enable the network and its host defend themselves with some level of intelligence. The anomaly-base detection was implemented using the local deviation factor graph-based (LDFGB) algorithm while the signature-based detection was implemented using the snort algorithm. Results from this collaborative intrusion detection and prevention techniques show robust and efficient security architecture for cloud computing networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly-based%20detection" title="anomaly-based detection">anomaly-based detection</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title=" intrusion detection"> intrusion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20prevention" title=" intrusion prevention"> intrusion prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=signature-based%20detection" title=" signature-based detection"> signature-based detection</a> </p> <a href="https://publications.waset.org/abstracts/89892/intrusion-detection-and-prevention-system-idps-in-cloud-computing-using-anomaly-based-and-signature-based-detection-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3432</span> Survey on Malware Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Wael">Doaa Wael</a>, <a href="https://publications.waset.org/abstracts/search?q=Naswa%20Abdelbaky"> Naswa Abdelbaky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malware is malicious software that is built to cause destructive actions and damage information systems and networks. Malware infections increase rapidly, and types of malware have become more sophisticated, which makes the malware detection process more difficult. On the other side, the Internet of Things IoT technology is vulnerable to malware attacks. These IoT devices are always connected to the internet and lack security. This makes them easy for hackers to access. These malware attacks are becoming the go-to attack for hackers. Thus, in order to deal with this challenge, new malware detection techniques are needed. Currently, building a blockchain solution that allows IoT devices to download any file from the internet and to verify/approve whether it is malicious or not is the need of the hour. In recent years, blockchain technology has stood as a solution to everything due to its features like decentralization, persistence, and anonymity. Moreover, using blockchain technology overcomes some difficulties in malware detection and improves the malware detection ratio over-than the techniques that do not utilize blockchain technology. In this paper, we study malware detection models which are based on blockchain technology. Furthermore, we elaborate on the effect of blockchain technology in malware detection, especially in the android environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malware%20analysis" title="malware analysis">malware analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=malware%20attacks" title=" malware attacks"> malware attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=malware%20detection%20approaches" title=" malware detection approaches"> malware detection approaches</a> </p> <a href="https://publications.waset.org/abstracts/164823/survey-on-malware-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3431</span> A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Koo%20Kim">Hyun-Koo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonghun%20Kim"> Yonghun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Hoon%20Kim"> Yong-Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Hee%20Lee"> Ju Hee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Myungho%20Song"> Myungho Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20system" title="advanced driver assistance system">advanced driver assistance system</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title=" pedestrian detection"> pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20matching%20method" title=" stereo matching method"> stereo matching method</a>, <a href="https://publications.waset.org/abstracts/search?q=stereo%20long-wave%20IR%20camera" title=" stereo long-wave IR camera"> stereo long-wave IR camera</a> </p> <a href="https://publications.waset.org/abstracts/58413/a-study-of-effective-stereo-matching-method-for-long-wave-infrared-camera-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3430</span> mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yang">Yang Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Liu"> Dan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20flow%20anomaly%20detection%20%28NAD%29" title="network flow anomaly detection (NAD)">network flow anomaly detection (NAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-teacher%20knowledge%20distillation" title=" multi-teacher knowledge distillation"> multi-teacher knowledge distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/156811/mkdnad-a-network-flow-anomaly-detection-method-based-on-multi-teacher-knowledge-distillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3429</span> Rapid Detection System of Airborne Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kei%20Takenaka"> Kei Takenaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viruses" title="viruses">viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=sampler" title=" sampler"> sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=mist" title=" mist"> mist</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20dyes" title=" fluorescent dyes"> fluorescent dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=microreaction" title=" microreaction"> microreaction</a> </p> <a href="https://publications.waset.org/abstracts/2700/rapid-detection-system-of-airborne-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3428</span> Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Izosimov">Igor Izosimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinides%2Flanthanides%20detection" title="actinides/lanthanides detection">actinides/lanthanides detection</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20spectroscopy%20with%20time%20resolution" title=" laser spectroscopy with time resolution"> laser spectroscopy with time resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence%2Fchemiluminescence" title=" luminescence/chemiluminescence"> luminescence/chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=solutions" title=" solutions"> solutions</a> </p> <a href="https://publications.waset.org/abstracts/61605/application-of-laser-spectroscopy-for-detection-of-actinides-and-lanthanides-in-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3427</span> Improvements in OpenCV&#039;s Viola Jones Algorithm in Face Detection–Skin Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Bharti">Jyoti Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Gupta"> M. K. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Astha%20Jain"> Astha Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new improved approach for false positives filtering of detected face images on OpenCV’s Viola Jones Algorithm In this approach, for Filtering of False Positives, Skin Detection in two colour spaces i.e. HSV (Hue, Saturation and Value) and YCrCb (Y is luma component and Cr- red difference, Cb- Blue difference) is used. As a result, it is found that false detection has been reduced. Our proposed method reaches the accuracy of about 98.7%. Thus, a better recognition rate is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title="face detection">face detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Viola%20Jones" title=" Viola Jones"> Viola Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20positives" title=" false positives"> false positives</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenCV" title=" OpenCV"> OpenCV</a> </p> <a href="https://publications.waset.org/abstracts/48849/improvements-in-opencvs-viola-jones-algorithm-in-face-detection-skin-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=115">115</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blob%20detection&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10