CINXE.COM
MS COCO Benchmark (Real-Time Object Detection) | Papers With Code
<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <script> const GTAG_ENABLED = true ; const GTAG_TRACKING_ID = "UA-121182717-1"; const SENTRY_DSN_FRONTEND = "".trim(); const GLOBAL_CSRF_TOKEN = 'MwNYAg6DIKhQ6rM0pZPGwywRmvAaJq7IZrKQyf55npCJlc9hJDf3eJPurEYuOLN1'; const MEDIA_URL = "https://production-media.paperswithcode.com/"; const ASSETS_URL = "https://production-assets.paperswithcode.com"; run_after_frontend_loaded = window.run_after_frontend_loaded || []; </script> <link rel="preconnect" href="https://production-assets.paperswithcode.com"><link rel="dns-prefetch" href="https://production-assets.paperswithcode.com"><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/65e877e527022735c1a1.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/917632e36982ca7933c8.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/f1405bd8a987c2ea8a67.woff2" crossorigin><script>(()=>{if(GTAG_ENABLED){const t=document.createElement("script");function n(){window.dataLayer.push(arguments)}t.src=`https://www.googletagmanager.com/gtag/js?id=${GTAG_TRACKING_ID}`,document.head.appendChild(t),window.dataLayer=window.dataLayer||[],window.gtag=n,n("js",new Date),n("config",GTAG_TRACKING_ID),window.captureOutboundLink=function(t){n("event","click",{event_category:"outbound",event_label:t})}}else window.captureOutboundLink=function(n){document.location=n}})();</script><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/2.6da00df7.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/351.a22a9607.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/452.d3ecdfa4.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/553.4050647d.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/553.357efc0e.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/sota.table.fe0fcc15.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/sota.table.040f2c99.js"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/553.4050647d.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/sota.table.fe0fcc15.css"> <!-- Metadata --> <title>MS COCO Benchmark (Real-Time Object Detection) | Papers With Code</title> <meta name="description" content="The current state-of-the-art on MS COCO is D-FINE-X+. See a full comparison of 71 papers with code." /> <!-- Open Graph protocol metadata --> <meta property="og:title" content="Papers with Code - MS COCO Benchmark (Real-Time Object Detection)"> <meta property="og:description" content="The current state-of-the-art on MS COCO is D-FINE-X+. See a full comparison of 71 papers with code."> <meta property="og:image" content="https://production-media.paperswithcode.com/sota-thumbs/real-time-object-detection-on-coco-large_5b6ad561.png"> <meta property="og:url" content="https://paperswithcode.com/sota/real-time-object-detection-on-coco"> <!-- Twitter metadata --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@paperswithcode"> <meta name="twitter:title" content="Papers with Code - MS COCO Benchmark (Real-Time Object Detection)"> <meta name="twitter:description" content="The current state-of-the-art on MS COCO is D-FINE-X+. See a full comparison of 71 papers with code."> <meta name="twitter:creator" content="@paperswithcode"> <meta name="twitter:url" content="https://paperswithcode.com/sota/real-time-object-detection-on-coco"> <meta name="twitter:domain" content="paperswithcode.com"> <!-- JSON LD --> <script type="application/ld+json">{ "@context": "http://schema.org", "@graph": { "@type": "ItemList", "name": "MS COCO Benchmark (Real-Time Object Detection)", "description": "The current state-of-the-art on MS COCO is D-FINE-X+. See a full comparison of 71 papers with code.", "url": "https://paperswithcode.com/sota/real-time-object-detection-on-coco", "image": "https://production-media.paperswithcode.com/sota-thumbs/real-time-object-detection-on-coco-large_5b6ad561.png" } }</script> <meta name="theme-color" content="#fff"/> <link rel="manifest" href="https://production-assets.paperswithcode.com/static/manifest.web.json"> </head> <body> <nav class="navbar navbar-expand-lg navbar-light header"> <a class="navbar-brand" href="/"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> </a> <div class="navbar-mobile-twitter d-lg-none"> <a rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class=" icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-bs-toggle="collapse" data-target="#top-menu" data-bs-target="#top-menu" aria-controls="top-menu" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="top-menu"> <ul class="navbar-nav mr-auto navbar-nav__left light-header"> <li class="nav-item header-search"> <form action="/search" method="get" id="id_global_search_form" autocomplete="off"> <input type="text" name="q_meta" style="display:none" id="q_meta" /> <input type="hidden" name="q_type" id="q_type" /> <input id="id_global_search_input" autocomplete="off" value="" name='q' class="global-search" type="search" placeholder='Search'/> <button type="submit" class="icon"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="search"><svg viewBox="0 0 512.025 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M508.5 482.6c4.7 4.7 4.7 12.3 0 17l-9.9 9.9c-4.7 4.7-12.3 4.7-17 0l-129-129c-2.2-2.3-3.5-5.3-3.5-8.5v-10.2C312 396 262.5 417 208 417 93.1 417 0 323.9 0 209S93.1 1 208 1s208 93.1 208 208c0 54.5-21 104-55.3 141.1H371c3.2 0 6.2 1.2 8.5 3.5zM208 385c97.3 0 176-78.7 176-176S305.3 33 208 33 32 111.7 32 209s78.7 176 176 176z"/></svg></span></button> </form> </li> <li class="nav-item"> <a class="nav-link" href="/sota"> Browse State-of-the-Art </a> </li> <li class="nav-item"> <a class="nav-link" href="/datasets"> Datasets </a> </li> <li class="nav-item"> <a class="nav-link" href="/methods">Methods</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" role="button" id="navbarDropdownRepro" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false" > More </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownRepro"> <a class="dropdown-item" href="/newsletter">Newsletter</a> <a class="dropdown-item" href="/rc2022">RC2022</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="/about">About</a> <a class="dropdown-item" href="/trends">Trends</a> <a class="dropdown-item" href="https://portal.paperswithcode.com/"> Portals </a> <a class="dropdown-item" href="/libraries"> Libraries </a> </div> </li> </ul> <ul class="navbar-nav ml-auto navbar-nav__right navbar-subscribe justify-content-center align-items-center"> <li class="nav-item"> <a class="nav-link" rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class="nav-link-social-icon icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </li> <li class="nav-item"> <a id="signin-link" class="nav-link" href="/accounts/login?next=/sota/real-time-object-detection-on-coco">Sign In</a> </li> </ul> </div> </nav> <!-- Page modals --> <div class="modal fade" id="emailModal" tabindex="-1" role="dialog" aria-labelledby="emailModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h3 class="modal-title" id="emailModalLabel">Subscribe to the PwC Newsletter</h3> <button type="button" class="close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <div class="modal-body-info-text"> Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets.<br/><br/> <a href="/newsletter">Read previous issues</a> </div> <input type="hidden" name="csrfmiddlewaretoken" value="MwNYAg6DIKhQ6rM0pZPGwywRmvAaJq7IZrKQyf55npCJlc9hJDf3eJPurEYuOLN1"> <input placeholder="Enter your email" type="email" class="form-control pwc-email" name="address" id="id_address" max_length="100" required> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Subscribe</button> </div> </form> </div> </div> </div> <!-- Login --> <div class="modal fade" id="loginModal" tabindex="-1" role="dialog" aria-labelledby="loginModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="loginModalLabel">Join the community</h5> <button type="button" class="close btn-close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="login-modal-message"> You need to <a href="/accounts/login?next=/sota/real-time-object-detection-on-coco">log in</a> to edit.<br/> You can <a href="/accounts/register?next=/sota/real-time-object-detection-on-coco">create a new account</a> if you don't have one.<br/><br/> </div> </div> </div> </div> <div class="container content content-buffer "> <div class="leaderboard-header"> <a href="/task/real-time-object-detection"> <span class="badge badge-primary"> <img src="https://production-media.paperswithcode.com/thumbnails/task/task-0000000741-47d0617a.jpg"> <span>Real-Time Object Detection</span> </span> </a> </div> <div id="sota-page"> <div class="text-center"> <img src="https://production-assets.paperswithcode.com/perf/images/spin-1s-32px-ed14c515.gif"> </div> </div> <link href="https://production-assets.paperswithcode.com/static/fonts/font-awesome/css/all.min.css" rel="stylesheet" /> <script type="application/javascript"> const CSRF_TOKEN = "MwNYAg6DIKhQ6rM0pZPGwywRmvAaJq7IZrKQyf55npCJlc9hJDf3eJPurEYuOLN1"; const USER_IS_AUTHENTICATED = false; const LOGIN_REQUIRED = true; </script> <script type="module" src="https://unpkg.com/ionicons@5.1.2/dist/ionicons/ionicons.esm.js" ></script> <script nomodule="" src="https://unpkg.com/ionicons@5.1.2/dist/ionicons/ionicons.js" ></script> <!-- Start SOTA Table Generation --> <script id="evaluation-chart-data" type="application/json">{"all": {"yAxis": {"title": "box AP", "includeZero": false, "gridColor": "#ddd", "valueFormatString": "", "minimum": 24.87, "maximum": 62.43}, "data": {"trend": {"name": "State-of-the-art methods", "type": "line", "showInLegend": true, "markerSize": 10, "toolTipContent": "{name}: {y}", "color": "#21ccc7", "dataPoints": [{"x": "2018-04-08", "y": 33.0, "name": "YOLOv3-L", "nameShort": "YOLOv3-L", "nameDetails": null, "paperSlug": "yolov3-an-incremental-improvement", "usesAdditionalData": false}, {"x": "2020-04-23", "y": 43.5, "name": "YOLOv4-L", "nameShort": "YOLOv4-L", "nameDetails": null, "paperSlug": "yolov4-optimal-speed-and-accuracy-of-object", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 56.9, "name": "PRB-FPN6-E-ELAN", "nameShort": "PRB-FPN6-E-ELAN", "nameDetails": "1280", "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2022-09-07", "y": 57.2, "name": "YOLOv6-L6", "nameShort": "YOLOv6-L6", "nameDetails": "1280", "paperSlug": "yolov6-a-single-stage-object-detection", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 59.3, "name": "D-FINE-X+", "nameShort": "D-FINE-X+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}]}, "other": {"name": "Other methods", "type": "scatter", "showInLegend": true, "color": "#ddd", "markerSize": 10, "toolTipContent": "{name}: {y}", "dataPoints": [{"x": "2020-04-23", "y": 43.0, "name": "YOLOv4-M", "nameShort": "YOLOv4-M", "nameDetails": null, "paperSlug": "yolov4-optimal-speed-and-accuracy-of-object", "usesAdditionalData": false}, {"x": "2020-04-23", "y": 41.2, "name": "YOLOv4-S", "nameShort": "YOLOv4-S", "nameDetails": null, "paperSlug": "yolov4-optimal-speed-and-accuracy-of-object", "usesAdditionalData": false}, {"x": "2020-05-26", "y": 42.0, "name": "Faster RCNN-FPN+", "nameShort": "Faster RCNN-FPN+", "nameDetails": null, "paperSlug": "end-to-end-object-detection-with-transformers", "usesAdditionalData": false}, {"x": "2020-06-25", "y": 28.0, "name": "YOLOv5n", "nameShort": "YOLOv5n", "nameDetails": null, "paperSlug": "yolov5-6d-advancing-6-dof-instrument-pose", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 53.3, "name": "PRB-FPN-MSP", "nameShort": "PRB-FPN-MSP", "nameDetails": null, "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 52.5, "name": "PRB-FPN-ELAN", "nameShort": "PRB-FPN-ELAN", "nameDetails": null, "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 51.8, "name": "PRB-FPN-CSP", "nameShort": "PRB-FPN-CSP", "nameDetails": null, "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2021-05-10", "y": 55.4, "name": "YOLOR-D6", "nameShort": "YOLOR-D6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": true}, {"x": "2021-05-10", "y": 54.8, "name": "YOLOR-E6", "nameShort": "YOLOR-E6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": true}, {"x": "2021-05-10", "y": 54.1, "name": "YOLOR-W6", "nameShort": "YOLOR-W6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": true}, {"x": "2021-05-10", "y": 53.0, "name": "YOLOR-P6D", "nameShort": "YOLOR-P6D", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": false}, {"x": "2021-05-10", "y": 52.6, "name": "YOLOR-P6", "nameShort": "YOLOR-P6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": false}, {"x": "2021-07-18", "y": 50.4, "name": "YOLOv5-X", "nameShort": "YOLOv5-X", "nameDetails": null, "paperSlug": "yolox-exceeding-yolo-series-in-2021", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 54.7, "name": "PP-YOLOE+_X", "nameShort": "PP-YOLOE+_X", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 54.0, "name": "PP-YOLOE+_L", "nameShort": "PP-YOLOE+_L", "nameDetails": "distillation", "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 52.9, "name": "PP-YOLOE+_L", "nameShort": "PP-YOLOE+_L", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 51.0, "name": "YOLOv3", "nameShort": "YOLOv3", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 49.8, "name": "PP-YOLOE+_M", "nameShort": "PP-YOLOE+_M", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 56.8, "name": "YOLOv7-E6E", "nameShort": "YOLOv7-E6E", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 56.6, "name": "YOLOv7-D6", "nameShort": "YOLOv7-D6", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 56.0, "name": "YOLOv7-E6", "nameShort": "YOLOv7-E6", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 54.9, "name": "YOLOv7-W6", "nameShort": "YOLOv7-W6", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 53.1, "name": "YOLOv7-X", "nameShort": "YOLOv7-X", "nameDetails": null, "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 50.8, "name": "DAMO-YOLO-L", "nameShort": "DAMO-YOLO-L", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 49.2, "name": "DAMO-YOLO-M", "nameShort": "DAMO-YOLO-M", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 46.0, "name": "DAMO-YOLO-S", "nameShort": "DAMO-YOLO-S", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 42.0, "name": "DAMO-YOLO-T", "nameShort": "DAMO-YOLO-T", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-12-14", "y": 52.8, "name": "RTMDet", "nameShort": "RTMDet", "nameDetails": null, "paperSlug": "rtmdet-an-empirical-study-of-designing-real", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 52.8, "name": "YOLOv6-L", "nameShort": "YOLOv6-L", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 50.3, "name": "YOLOv6-S6", "nameShort": "YOLOv6-S6", "nameDetails": "1280", "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 50.0, "name": "YOLOv6-M", "nameShort": "YOLOv6-M", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 45.0, "name": "YOLOv6-S", "nameShort": "YOLOv6-S", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 37.5, "name": "YOLOv6-N", "nameShort": "YOLOv6-N", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 56.3, "name": "RT-DETR-H", "nameShort": "RT-DETR-H", "nameDetails": "640", "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 54.8, "name": "RT-DETR-X", "nameShort": "RT-DETR-X", "nameDetails": null, "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 54.3, "name": "RT-DETR-R101", "nameShort": "RT-DETR-R101", "nameDetails": null, "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 53.0, "name": "RT-DETR-L", "nameShort": "RT-DETR-L", "nameDetails": null, "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 55.6, "name": "YOLOv9-E", "nameShort": "YOLOv9-E", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 55.0, "name": "GELAN-E", "nameShort": "GELAN-E", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 53.0, "name": "YOLOv9-C", "nameShort": "YOLOv9-C", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 52.5, "name": "GELAN-C", "nameShort": "GELAN-C", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 51.4, "name": "YOLOv9-M", "nameShort": "YOLOv9-M", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 51.1, "name": "GELAN-M", "nameShort": "GELAN-M", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 46.8, "name": "YOLOv9-S", "nameShort": "YOLOv9-S", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 46.7, "name": "GELAN-S", "nameShort": "GELAN-S", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 54.4, "name": "YOLOv10-X", "nameShort": "YOLOv10-X", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 53.4, "name": "YOLOv10-L", "nameShort": "YOLOv10-L", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 52.7, "name": "YOLOv10-B", "nameShort": "YOLOv10-B", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 51.3, "name": "YOLOv10-M", "nameShort": "YOLOv10-M", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 46.8, "name": "YOLOv10-S", "nameShort": "YOLOv10-S", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 39.5, "name": "YOLOv10-N", "nameShort": "YOLOv10-N", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-07-05", "y": 47.4, "name": "MAFYOLOs", "nameShort": "MAFYOLOs", "nameDetails": null, "paperSlug": "multi-branch-auxiliary-fusion-yolo-with-re", "usesAdditionalData": false}, {"x": "2024-07-08", "y": 51.2, "name": "MAFYOLOm", "nameShort": "MAFYOLOm", "nameDetails": null, "paperSlug": "multi-branch-auxiliary-fusion-yolo-with-re", "usesAdditionalData": false}, {"x": "2024-07-08", "y": 42.4, "name": "MAFYOLOn", "nameShort": "MAFYOLOn", "nameDetails": null, "paperSlug": "multi-branch-auxiliary-fusion-yolo-with-re", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 57.1, "name": "D-FINE-L+", "nameShort": "D-FINE-L+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}, {"x": "2024-10-17", "y": 55.8, "name": "D-FINE-X", "nameShort": "D-FINE-X", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 55.1, "name": "D-FINE-M+", "nameShort": "D-FINE-M+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}, {"x": "2024-10-17", "y": 54.0, "name": "D-FINE-L", "nameShort": "D-FINE-L", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 52.3, "name": "D-FINE-M", "nameShort": "D-FINE-M", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 50.7, "name": "D-FINE-S+", "nameShort": "D-FINE-S+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}, {"x": "2024-10-17", "y": 48.5, "name": "D-FINE-S", "nameShort": "D-FINE-S", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 54.7, "name": "YOLOv11x", "nameShort": "YOLOv11x", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 53.4, "name": "YOLOv11l", "nameShort": "YOLOv11l", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 51.5, "name": "YOLOv11m", "nameShort": "YOLOv11m", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 47.0, "name": "YOLOv11s", "nameShort": "YOLOv11s", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 39.5, "name": "YOLOv11n", "nameShort": "YOLOv11n", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}]}}}, "uses_additional_data": {"yAxis": {"title": "box AP", "includeZero": false, "gridColor": "#ddd", "valueFormatString": "", "minimum": 49.84, "maximum": 60.16}, "data": {"trend": {"name": "State-of-the-art methods", "type": "line", "showInLegend": true, "markerSize": 10, "toolTipContent": "{name}: {y}", "color": "#21ccc7", "dataPoints": [{"x": "2021-05-10", "y": 55.4, "name": "YOLOR-D6", "nameShort": "YOLOR-D6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": true}, {"x": "2024-10-17", "y": 59.3, "name": "D-FINE-X+", "nameShort": "D-FINE-X+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}]}, "other": {"name": "Other methods", "type": "scatter", "showInLegend": true, "color": "#ddd", "markerSize": 10, "toolTipContent": "{name}: {y}", "dataPoints": [{"x": "2021-05-10", "y": 54.8, "name": "YOLOR-E6", "nameShort": "YOLOR-E6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": true}, {"x": "2021-05-10", "y": 54.1, "name": "YOLOR-W6", "nameShort": "YOLOR-W6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": true}, {"x": "2024-10-17", "y": 57.1, "name": "D-FINE-L+", "nameShort": "D-FINE-L+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}, {"x": "2024-10-17", "y": 55.1, "name": "D-FINE-M+", "nameShort": "D-FINE-M+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}, {"x": "2024-10-17", "y": 50.7, "name": "D-FINE-S+", "nameShort": "D-FINE-S+", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": true}]}}}, "no_additional_data": {"yAxis": {"title": "box AP", "includeZero": false, "gridColor": "#ddd", "valueFormatString": "", "minimum": 25.08, "maximum": 60.120000000000005}, "data": {"trend": {"name": "State-of-the-art methods", "type": "line", "showInLegend": true, "markerSize": 10, "toolTipContent": "{name}: {y}", "color": "#21ccc7", "dataPoints": [{"x": "2018-04-08", "y": 33.0, "name": "YOLOv3-L", "nameShort": "YOLOv3-L", "nameDetails": null, "paperSlug": "yolov3-an-incremental-improvement", "usesAdditionalData": false}, {"x": "2020-04-23", "y": 43.5, "name": "YOLOv4-L", "nameShort": "YOLOv4-L", "nameDetails": null, "paperSlug": "yolov4-optimal-speed-and-accuracy-of-object", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 56.9, "name": "PRB-FPN6-E-ELAN", "nameShort": "PRB-FPN6-E-ELAN", "nameDetails": "1280", "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2022-09-07", "y": 57.2, "name": "YOLOv6-L6", "nameShort": "YOLOv6-L6", "nameDetails": "1280", "paperSlug": "yolov6-a-single-stage-object-detection", "usesAdditionalData": false}]}, "other": {"name": "Other methods", "type": "scatter", "showInLegend": true, "color": "#ddd", "markerSize": 10, "toolTipContent": "{name}: {y}", "dataPoints": [{"x": "2020-04-23", "y": 43.0, "name": "YOLOv4-M", "nameShort": "YOLOv4-M", "nameDetails": null, "paperSlug": "yolov4-optimal-speed-and-accuracy-of-object", "usesAdditionalData": false}, {"x": "2020-04-23", "y": 41.2, "name": "YOLOv4-S", "nameShort": "YOLOv4-S", "nameDetails": null, "paperSlug": "yolov4-optimal-speed-and-accuracy-of-object", "usesAdditionalData": false}, {"x": "2020-05-26", "y": 42.0, "name": "Faster RCNN-FPN+", "nameShort": "Faster RCNN-FPN+", "nameDetails": null, "paperSlug": "end-to-end-object-detection-with-transformers", "usesAdditionalData": false}, {"x": "2020-06-25", "y": 28.0, "name": "YOLOv5n", "nameShort": "YOLOv5n", "nameDetails": null, "paperSlug": "yolov5-6d-advancing-6-dof-instrument-pose", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 53.3, "name": "PRB-FPN-MSP", "nameShort": "PRB-FPN-MSP", "nameDetails": null, "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 52.5, "name": "PRB-FPN-ELAN", "nameShort": "PRB-FPN-ELAN", "nameDetails": null, "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2020-12-03", "y": 51.8, "name": "PRB-FPN-CSP", "nameShort": "PRB-FPN-CSP", "nameDetails": null, "paperSlug": "parallel-residual-bi-fusion-feature-pyramid", "usesAdditionalData": false}, {"x": "2021-05-10", "y": 53.0, "name": "YOLOR-P6D", "nameShort": "YOLOR-P6D", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": false}, {"x": "2021-05-10", "y": 52.6, "name": "YOLOR-P6", "nameShort": "YOLOR-P6", "nameDetails": null, "paperSlug": "you-only-learn-one-representation-unified", "usesAdditionalData": false}, {"x": "2021-07-18", "y": 50.4, "name": "YOLOv5-X", "nameShort": "YOLOv5-X", "nameDetails": null, "paperSlug": "yolox-exceeding-yolo-series-in-2021", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 54.7, "name": "PP-YOLOE+_X", "nameShort": "PP-YOLOE+_X", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 54.0, "name": "PP-YOLOE+_L", "nameShort": "PP-YOLOE+_L", "nameDetails": "distillation", "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 52.9, "name": "PP-YOLOE+_L", "nameShort": "PP-YOLOE+_L", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 51.0, "name": "YOLOv3", "nameShort": "YOLOv3", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-03-30", "y": 49.8, "name": "PP-YOLOE+_M", "nameShort": "PP-YOLOE+_M", "nameDetails": null, "paperSlug": "pp-yoloe-an-evolved-version-of-yolo", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 56.8, "name": "YOLOv7-E6E", "nameShort": "YOLOv7-E6E", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 56.6, "name": "YOLOv7-D6", "nameShort": "YOLOv7-D6", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 56.0, "name": "YOLOv7-E6", "nameShort": "YOLOv7-E6", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 54.9, "name": "YOLOv7-W6", "nameShort": "YOLOv7-W6", "nameDetails": "1280", "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-07-06", "y": 53.1, "name": "YOLOv7-X", "nameShort": "YOLOv7-X", "nameDetails": null, "paperSlug": "yolov7-trainable-bag-of-freebies-sets-new", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 50.8, "name": "DAMO-YOLO-L", "nameShort": "DAMO-YOLO-L", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 49.2, "name": "DAMO-YOLO-M", "nameShort": "DAMO-YOLO-M", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 46.0, "name": "DAMO-YOLO-S", "nameShort": "DAMO-YOLO-S", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-11-23", "y": 42.0, "name": "DAMO-YOLO-T", "nameShort": "DAMO-YOLO-T", "nameDetails": null, "paperSlug": "damo-yolo-a-report-on-real-time-object", "usesAdditionalData": false}, {"x": "2022-12-14", "y": 52.8, "name": "RTMDet", "nameShort": "RTMDet", "nameDetails": null, "paperSlug": "rtmdet-an-empirical-study-of-designing-real", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 52.8, "name": "YOLOv6-L", "nameShort": "YOLOv6-L", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 50.3, "name": "YOLOv6-S6", "nameShort": "YOLOv6-S6", "nameDetails": "1280", "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 50.0, "name": "YOLOv6-M", "nameShort": "YOLOv6-M", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 45.0, "name": "YOLOv6-S", "nameShort": "YOLOv6-S", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-01-13", "y": 37.5, "name": "YOLOv6-N", "nameShort": "YOLOv6-N", "nameDetails": null, "paperSlug": "yolov6-v3-0-a-full-scale-reloading", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 56.3, "name": "RT-DETR-H", "nameShort": "RT-DETR-H", "nameDetails": "640", "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 54.8, "name": "RT-DETR-X", "nameShort": "RT-DETR-X", "nameDetails": null, "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 54.3, "name": "RT-DETR-R101", "nameShort": "RT-DETR-R101", "nameDetails": null, "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2023-04-17", "y": 53.0, "name": "RT-DETR-L", "nameShort": "RT-DETR-L", "nameDetails": null, "paperSlug": "detrs-beat-yolos-on-real-time-object", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 55.6, "name": "YOLOv9-E", "nameShort": "YOLOv9-E", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 55.0, "name": "GELAN-E", "nameShort": "GELAN-E", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 53.0, "name": "YOLOv9-C", "nameShort": "YOLOv9-C", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 52.5, "name": "GELAN-C", "nameShort": "GELAN-C", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 51.4, "name": "YOLOv9-M", "nameShort": "YOLOv9-M", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 51.1, "name": "GELAN-M", "nameShort": "GELAN-M", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 46.8, "name": "YOLOv9-S", "nameShort": "YOLOv9-S", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-02-21", "y": 46.7, "name": "GELAN-S", "nameShort": "GELAN-S", "nameDetails": null, "paperSlug": "yolov9-learning-what-you-want-to-learn-using", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 54.4, "name": "YOLOv10-X", "nameShort": "YOLOv10-X", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 53.4, "name": "YOLOv10-L", "nameShort": "YOLOv10-L", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 52.7, "name": "YOLOv10-B", "nameShort": "YOLOv10-B", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 51.3, "name": "YOLOv10-M", "nameShort": "YOLOv10-M", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 46.8, "name": "YOLOv10-S", "nameShort": "YOLOv10-S", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-05-23", "y": 39.5, "name": "YOLOv10-N", "nameShort": "YOLOv10-N", "nameDetails": null, "paperSlug": "yolov10-real-time-end-to-end-object-detection", "usesAdditionalData": false}, {"x": "2024-07-05", "y": 47.4, "name": "MAFYOLOs", "nameShort": "MAFYOLOs", "nameDetails": null, "paperSlug": "multi-branch-auxiliary-fusion-yolo-with-re", "usesAdditionalData": false}, {"x": "2024-07-08", "y": 51.2, "name": "MAFYOLOm", "nameShort": "MAFYOLOm", "nameDetails": null, "paperSlug": "multi-branch-auxiliary-fusion-yolo-with-re", "usesAdditionalData": false}, {"x": "2024-07-08", "y": 42.4, "name": "MAFYOLOn", "nameShort": "MAFYOLOn", "nameDetails": null, "paperSlug": "multi-branch-auxiliary-fusion-yolo-with-re", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 55.8, "name": "D-FINE-X", "nameShort": "D-FINE-X", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 54.0, "name": "D-FINE-L", "nameShort": "D-FINE-L", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 52.3, "name": "D-FINE-M", "nameShort": "D-FINE-M", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-17", "y": 48.5, "name": "D-FINE-S", "nameShort": "D-FINE-S", "nameDetails": null, "paperSlug": "d-fine-redefine-regression-task-in-detrs-as", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 54.7, "name": "YOLOv11x", "nameShort": "YOLOv11x", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 53.4, "name": "YOLOv11l", "nameShort": "YOLOv11l", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 51.5, "name": "YOLOv11m", "nameShort": "YOLOv11m", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 47.0, "name": "YOLOv11s", "nameShort": "YOLOv11s", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}, {"x": "2024-10-23", "y": 39.5, "name": "YOLOv11n", "nameShort": "YOLOv11n", "nameDetails": null, "paperSlug": "yolov11-an-overview-of-the-key-architectural", "usesAdditionalData": false}]}}}}</script> <script id="evaluation-table-metrics" type="application/json">[{"id": 49446, "name": "box AP", "is_loss": false, "is_fixed": false}, {"id": 301, "name": "FPS (V100, b=1)", "is_loss": false, "is_fixed": false}]</script> <script id="evaluation-table-data" type="application/json">[{"table_id": 247, "row_id": 89235, "rank": 1, "method": "D-FINE-X+", "mlmodel": {}, "method_short": "D-FINE-X+", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "59.3", "FPS (V100, b=1)": "78 (T4)"}, "raw_metrics": {"box AP": 59.3, "FPS (V100, b=1)": 78.0}, "uses_additional_data": true, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=89235"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 131682, "rank": 2, "method": "YOLOv6-L6(1280)", "mlmodel": {}, "method_short": "YOLOv6-L6", "method_details": "1280", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-09-07", "metrics": {"box AP": "57.2", "FPS (V100, b=1)": "26"}, "raw_metrics": {"box AP": 57.2, "FPS (V100, b=1)": 26.0}, "uses_additional_data": false, "paper": {"id": 1070708, "title": "YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications", "url": "/paper/yolov6-a-single-stage-object-detection", "published": "2022-09-07T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 131683, "rank": 3, "method": "D-FINE-L+", "mlmodel": {}, "method_short": "D-FINE-L+", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "57.1", "FPS (V100, b=1)": "124 (T4)"}, "raw_metrics": {"box AP": 57.1, "FPS (V100, b=1)": 124.0}, "uses_additional_data": true, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=131683"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 115843, "rank": 4, "method": "PRB-FPN6-E-ELAN(1280)", "mlmodel": {}, "method_short": "PRB-FPN6-E-ELAN", "method_details": "1280", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-12-03", "metrics": {"box AP": "56.9", "FPS (V100, b=1)": "31"}, "raw_metrics": {"box AP": 56.9, "FPS (V100, b=1)": 31.0}, "uses_additional_data": false, "paper": {"id": 724164, "title": "Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection", "url": "/paper/parallel-residual-bi-fusion-feature-pyramid", "published": "2020-12-03T00:00:00.000000", "code": true, "review_url": "/paper/parallel-residual-bi-fusion-feature-pyramid/review/?hl=115843"}, "external_source_url": null, "tags": [{"id": 606, "name": "ELAN", "color": "#78cc24"}], "reports": []}, {"table_id": 247, "row_id": 87169, "rank": 5, "method": "YOLOv7-E6E(1280)", "mlmodel": {}, "method_short": "YOLOv7-E6E", "method_details": "1280", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-07-06", "metrics": {"box AP": "56.8", "FPS (V100, b=1)": "36"}, "raw_metrics": {"box AP": 56.8, "FPS (V100, b=1)": 36.0}, "uses_additional_data": false, "paper": {"id": 1038769, "title": "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", "url": "/paper/yolov7-trainable-bag-of-freebies-sets-new", "published": "2022-07-06T00:00:00.000000", "code": true, "review_url": "/paper/yolov7-trainable-bag-of-freebies-sets-new/review/?hl=87169"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 87168, "rank": 6, "method": "YOLOv7-D6(1280)", "mlmodel": {}, "method_short": "YOLOv7-D6", "method_details": "1280", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-07-06", "metrics": {"box AP": "56.6", "FPS (V100, b=1)": "44"}, "raw_metrics": {"box AP": 56.6, "FPS (V100, b=1)": 44.0}, "uses_additional_data": false, "paper": {"id": 1038769, "title": "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", "url": "/paper/yolov7-trainable-bag-of-freebies-sets-new", "published": "2022-07-06T00:00:00.000000", "code": true, "review_url": "/paper/yolov7-trainable-bag-of-freebies-sets-new/review/?hl=87168"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 110779, "rank": 7, "method": "RT-DETR-H(640)", "mlmodel": {}, "method_short": "RT-DETR-H", "method_details": "640", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-04-17", "metrics": {"box AP": "56.3", "FPS (V100, b=1)": "40 (T4)"}, "raw_metrics": {"box AP": 56.3, "FPS (V100, b=1)": 40.0}, "uses_additional_data": false, "paper": {"id": 1191762, "title": "DETRs Beat YOLOs on Real-time Object Detection", "url": "/paper/detrs-beat-yolos-on-real-time-object", "published": "2023-04-17T00:00:00.000000", "code": true, "review_url": "/paper/detrs-beat-yolos-on-real-time-object/review/?hl=110779"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 87167, "rank": 8, "method": "YOLOv7-E6(1280)", "mlmodel": {}, "method_short": "YOLOv7-E6", "method_details": "1280", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-07-06", "metrics": {"box AP": "56", "FPS (V100, b=1)": "56"}, "raw_metrics": {"box AP": 56.0, "FPS (V100, b=1)": 56.0}, "uses_additional_data": false, "paper": {"id": 1038769, "title": "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", "url": "/paper/yolov7-trainable-bag-of-freebies-sets-new", "published": "2022-07-06T00:00:00.000000", "code": true, "review_url": "/paper/yolov7-trainable-bag-of-freebies-sets-new/review/?hl=87167"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 131684, "rank": 9, "method": "D-FINE-X", "mlmodel": {}, "method_short": "D-FINE-X", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "55.8", "FPS (V100, b=1)": "78 (T4)"}, "raw_metrics": {"box AP": 55.8, "FPS (V100, b=1)": 78.0}, "uses_additional_data": false, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=131684"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 120994, "rank": 10, "method": "YOLOv9-E", "mlmodel": {}, "method_short": "YOLOv9-E", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "55.6", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 55.6, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 56121, "rank": 11, "method": "YOLOR-D6", "mlmodel": {}, "method_short": "YOLOR-D6", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2021-05-10", "metrics": {"box AP": "55.4", "FPS (V100, b=1)": "30"}, "raw_metrics": {"box AP": 55.4, "FPS (V100, b=1)": 30.0}, "uses_additional_data": true, "paper": {"id": 796114, "title": "You Only Learn One Representation: Unified Network for Multiple Tasks", "url": "/paper/you-only-learn-one-representation-unified", "published": "2021-05-10T00:00:00.000000", "code": true, "review_url": "/paper/you-only-learn-one-representation-unified/review/?hl=56121"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 131685, "rank": 12, "method": "D-FINE-M+", "mlmodel": {}, "method_short": "D-FINE-M+", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "55.1", "FPS (V100, b=1)": "178 (T4)"}, "raw_metrics": {"box AP": 55.1, "FPS (V100, b=1)": 178.0}, "uses_additional_data": true, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=131685"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 120998, "rank": 13, "method": "GELAN-E", "mlmodel": {}, "method_short": "GELAN-E", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "55.0", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 55.0, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 606, "name": "ELAN", "color": "#78cc24"}], "reports": []}, {"table_id": 247, "row_id": 87166, "rank": 14, "method": "YOLOv7-W6(1280)", "mlmodel": {}, "method_short": "YOLOv7-W6", "method_details": "1280", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-07-06", "metrics": {"box AP": "54.9", "FPS (V100, b=1)": "84"}, "raw_metrics": {"box AP": 54.9, "FPS (V100, b=1)": 84.0}, "uses_additional_data": false, "paper": {"id": 1038769, "title": "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", "url": "/paper/yolov7-trainable-bag-of-freebies-sets-new", "published": "2022-07-06T00:00:00.000000", "code": true, "review_url": "/paper/yolov7-trainable-bag-of-freebies-sets-new/review/?hl=87166"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 110778, "rank": 15, "method": "RT-DETR-X", "mlmodel": {}, "method_short": "RT-DETR-X", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-04-17", "metrics": {"box AP": "54.8", "FPS (V100, b=1)": "74 (T4)"}, "raw_metrics": {"box AP": 54.8, "FPS (V100, b=1)": 74.0}, "uses_additional_data": false, "paper": {"id": 1191762, "title": "DETRs Beat YOLOs on Real-time Object Detection", "url": "/paper/detrs-beat-yolos-on-real-time-object", "published": "2023-04-17T00:00:00.000000", "code": true, "review_url": "/paper/detrs-beat-yolos-on-real-time-object/review/?hl=110778"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 32378, "rank": 16, "method": "YOLOR-E6", "mlmodel": {}, "method_short": "YOLOR-E6", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2021-05-10", "metrics": {"box AP": "54.8", "FPS (V100, b=1)": "37"}, "raw_metrics": {"box AP": 54.8, "FPS (V100, b=1)": 37.0}, "uses_additional_data": true, "paper": {"id": 796114, "title": "You Only Learn One Representation: Unified Network for Multiple Tasks", "url": "/paper/you-only-learn-one-representation-unified", "published": "2021-05-10T00:00:00.000000", "code": true, "review_url": "/paper/you-only-learn-one-representation-unified/review/?hl=32378"}, "external_source_url": null, "tags": [{"id": 12, "name": "single scale", "color": "#006ea3"}, {"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 134056, "rank": 17, "method": "YOLOv11x", "mlmodel": {}, "method_short": "YOLOv11x", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-23", "metrics": {"box AP": "54.7", "FPS (V100, b=1)": "88 (T4)"}, "raw_metrics": {"box AP": 54.7, "FPS (V100, b=1)": 88.0}, "uses_additional_data": false, "paper": {"id": 1550106, "title": "YOLOv11: An Overview of the Key Architectural Enhancements", "url": "/paper/yolov11-an-overview-of-the-key-architectural", "published": "2024-10-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov11-an-overview-of-the-key-architectural/review/?hl=134056"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 87487, "rank": 18, "method": "PP-YOLOE+_X", "mlmodel": {}, "method_short": "PP-YOLOE+_X", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-03-30", "metrics": {"box AP": "54.7", "FPS (V100, b=1)": "45"}, "raw_metrics": {"box AP": 54.7, "FPS (V100, b=1)": 45.0}, "uses_additional_data": false, "paper": {"id": 986185, "title": "PP-YOLOE: An evolved version of YOLO", "url": "/paper/pp-yoloe-an-evolved-version-of-yolo", "published": "2022-03-30T00:00:00.000000", "code": true, "review_url": "/paper/pp-yoloe-an-evolved-version-of-yolo/review/?hl=87487"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 122751, "rank": 19, "method": "YOLOv10-X", "mlmodel": {}, "method_short": "YOLOv10-X", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-05-23", "metrics": {"box AP": "54.4", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 54.4, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1444487, "title": "YOLOv10: Real-Time End-to-End Object Detection", "url": "/paper/yolov10-real-time-end-to-end-object-detection", "published": "2024-05-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov10-real-time-end-to-end-object-detection/review/?hl=122751"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 118600, "rank": 20, "method": "RT-DETR-R101", "mlmodel": {}, "method_short": "RT-DETR-R101", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-04-17", "metrics": {"box AP": "54.3", "FPS (V100, b=1)": "74 (T4)"}, "raw_metrics": {"box AP": 54.3, "FPS (V100, b=1)": 74.0}, "uses_additional_data": false, "paper": {"id": 1191762, "title": "DETRs Beat YOLOs on Real-time Object Detection", "url": "/paper/detrs-beat-yolos-on-real-time-object", "published": "2023-04-17T00:00:00.000000", "code": true, "review_url": "/paper/detrs-beat-yolos-on-real-time-object/review/?hl=118600"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 32379, "rank": 21, "method": "YOLOR-W6", "mlmodel": {}, "method_short": "YOLOR-W6", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2021-05-10", "metrics": {"box AP": "54.1", "FPS (V100, b=1)": "47"}, "raw_metrics": {"box AP": 54.1, "FPS (V100, b=1)": 47.0}, "uses_additional_data": true, "paper": {"id": 796114, "title": "You Only Learn One Representation: Unified Network for Multiple Tasks", "url": "/paper/you-only-learn-one-representation-unified", "published": "2021-05-10T00:00:00.000000", "code": true, "review_url": "/paper/you-only-learn-one-representation-unified/review/?hl=32379"}, "external_source_url": null, "tags": [{"id": 12, "name": "single scale", "color": "#006ea3"}, {"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 131686, "rank": 22, "method": "D-FINE-L", "mlmodel": {}, "method_short": "D-FINE-L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "54.0", "FPS (V100, b=1)": "124 (T4)"}, "raw_metrics": {"box AP": 54.0, "FPS (V100, b=1)": 124.0}, "uses_additional_data": false, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=131686"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 98582, "rank": 23, "method": "PP-YOLOE+_L(distillation)", "mlmodel": {}, "method_short": "PP-YOLOE+_L", "method_details": "distillation", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-03-30", "metrics": {"box AP": "54.0", "FPS (V100, b=1)": "78"}, "raw_metrics": {"box AP": 54.0, "FPS (V100, b=1)": 78.0}, "uses_additional_data": false, "paper": {"id": 986185, "title": "PP-YOLOE: An evolved version of YOLO", "url": "/paper/pp-yoloe-an-evolved-version-of-yolo", "published": "2022-03-30T00:00:00.000000", "code": true, "review_url": "/paper/pp-yoloe-an-evolved-version-of-yolo/review/?hl=98582"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 134055, "rank": 24, "method": "YOLOv11l", "mlmodel": {}, "method_short": "YOLOv11l", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-23", "metrics": {"box AP": "53.4", "FPS (V100, b=1)": "161 (T4)"}, "raw_metrics": {"box AP": 53.4, "FPS (V100, b=1)": 161.0}, "uses_additional_data": false, "paper": {"id": 1550106, "title": "YOLOv11: An Overview of the Key Architectural Enhancements", "url": "/paper/yolov11-an-overview-of-the-key-architectural", "published": "2024-10-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov11-an-overview-of-the-key-architectural/review/?hl=134055"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 122750, "rank": 25, "method": "YOLOv10-L", "mlmodel": {}, "method_short": "YOLOv10-L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-05-23", "metrics": {"box AP": "53.4", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 53.4, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1444487, "title": "YOLOv10: Real-Time End-to-End Object Detection", "url": "/paper/yolov10-real-time-end-to-end-object-detection", "published": "2024-05-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov10-real-time-end-to-end-object-detection/review/?hl=122750"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 103648, "rank": 26, "method": "PRB-FPN-MSP", "mlmodel": {}, "method_short": "PRB-FPN-MSP", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-12-03", "metrics": {"box AP": "53.3", "FPS (V100, b=1)": "94"}, "raw_metrics": {"box AP": 53.3, "FPS (V100, b=1)": 94.0}, "uses_additional_data": false, "paper": {"id": 724164, "title": "Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection", "url": "/paper/parallel-residual-bi-fusion-feature-pyramid", "published": "2020-12-03T00:00:00.000000", "code": true, "review_url": "/paper/parallel-residual-bi-fusion-feature-pyramid/review/?hl=103648"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 87165, "rank": 27, "method": "YOLOv7-X", "mlmodel": {}, "method_short": "YOLOv7-X", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-07-06", "metrics": {"box AP": "53.1", "FPS (V100, b=1)": "114"}, "raw_metrics": {"box AP": 53.1, "FPS (V100, b=1)": 114.0}, "uses_additional_data": false, "paper": {"id": 1038769, "title": "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", "url": "/paper/yolov7-trainable-bag-of-freebies-sets-new", "published": "2022-07-06T00:00:00.000000", "code": true, "review_url": "/paper/yolov7-trainable-bag-of-freebies-sets-new/review/?hl=87165"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 110777, "rank": 28, "method": "RT-DETR-L", "mlmodel": {}, "method_short": "RT-DETR-L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-04-17", "metrics": {"box AP": "53.0", "FPS (V100, b=1)": "114 (T4)"}, "raw_metrics": {"box AP": 53.0, "FPS (V100, b=1)": 114.0}, "uses_additional_data": false, "paper": {"id": 1191762, "title": "DETRs Beat YOLOs on Real-time Object Detection", "url": "/paper/detrs-beat-yolos-on-real-time-object", "published": "2023-04-17T00:00:00.000000", "code": true, "review_url": "/paper/detrs-beat-yolos-on-real-time-object/review/?hl=110777"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 115846, "rank": 29, "method": "YOLOR-P6D", "mlmodel": {}, "method_short": "YOLOR-P6D", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2021-05-10", "metrics": {"box AP": "53", "FPS (V100, b=1)": "49"}, "raw_metrics": {"box AP": 53.0, "FPS (V100, b=1)": 49.0}, "uses_additional_data": false, "paper": {"id": 796114, "title": "You Only Learn One Representation: Unified Network for Multiple Tasks", "url": "/paper/you-only-learn-one-representation-unified", "published": "2021-05-10T00:00:00.000000", "code": true, "review_url": "/paper/you-only-learn-one-representation-unified/review/?hl=115846"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 120993, "rank": 30, "method": "YOLOv9-C", "mlmodel": {}, "method_short": "YOLOv9-C", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "53.0", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 53.0, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 87488, "rank": 31, "method": "PP-YOLOE+_L", "mlmodel": {}, "method_short": "PP-YOLOE+_L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-03-30", "metrics": {"box AP": "52.9", "FPS (V100, b=1)": "78"}, "raw_metrics": {"box AP": 52.9, "FPS (V100, b=1)": 78.0}, "uses_additional_data": false, "paper": {"id": 986185, "title": "PP-YOLOE: An evolved version of YOLO", "url": "/paper/pp-yoloe-an-evolved-version-of-yolo", "published": "2022-03-30T00:00:00.000000", "code": true, "review_url": "/paper/pp-yoloe-an-evolved-version-of-yolo/review/?hl=87488"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 121549, "rank": 32, "method": "YOLOv6-L", "mlmodel": {}, "method_short": "YOLOv6-L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-01-13", "metrics": {"box AP": "52.8", "FPS (V100, b=1)": "98"}, "raw_metrics": {"box AP": 52.8, "FPS (V100, b=1)": 98.0}, "uses_additional_data": false, "paper": {"id": 1142145, "title": "YOLOv6 v3.0: A Full-Scale Reloading", "url": "/paper/yolov6-v3-0-a-full-scale-reloading", "published": "2023-01-13T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 87697, "rank": 33, "method": "RTMDet", "mlmodel": {}, "method_short": "RTMDet", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-12-14", "metrics": {"box AP": "52.8", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 52.8, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1128748, "title": "RTMDet: An Empirical Study of Designing Real-Time Object Detectors", "url": "/paper/rtmdet-an-empirical-study-of-designing-real", "published": "2022-12-14T00:00:00.000000", "code": true, "review_url": "/paper/rtmdet-an-empirical-study-of-designing-real/review/?hl=87697"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 122749, "rank": 34, "method": "YOLOv10-B", "mlmodel": {}, "method_short": "YOLOv10-B", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-05-23", "metrics": {"box AP": "52.7", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 52.7, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1444487, "title": "YOLOv10: Real-Time End-to-End Object Detection", "url": "/paper/yolov10-real-time-end-to-end-object-detection", "published": "2024-05-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov10-real-time-end-to-end-object-detection/review/?hl=122749"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 59728, "rank": 35, "method": "YOLOR-P6", "mlmodel": {}, "method_short": "YOLOR-P6", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2021-05-10", "metrics": {"box AP": "52.6", "FPS (V100, b=1)": "49"}, "raw_metrics": {"box AP": 52.6, "FPS (V100, b=1)": 49.0}, "uses_additional_data": false, "paper": {"id": 796114, "title": "You Only Learn One Representation: Unified Network for Multiple Tasks", "url": "/paper/you-only-learn-one-representation-unified", "published": "2021-05-10T00:00:00.000000", "code": true, "review_url": "/paper/you-only-learn-one-representation-unified/review/?hl=59728"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 103647, "rank": 36, "method": "PRB-FPN-ELAN", "mlmodel": {}, "method_short": "PRB-FPN-ELAN", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-12-03", "metrics": {"box AP": "52.5", "FPS (V100, b=1)": "70"}, "raw_metrics": {"box AP": 52.5, "FPS (V100, b=1)": 70.0}, "uses_additional_data": false, "paper": {"id": 724164, "title": "Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection", "url": "/paper/parallel-residual-bi-fusion-feature-pyramid", "published": "2020-12-03T00:00:00.000000", "code": true, "review_url": "/paper/parallel-residual-bi-fusion-feature-pyramid/review/?hl=103647"}, "external_source_url": null, "tags": [{"id": 606, "name": "ELAN", "color": "#78cc24"}], "reports": []}, {"table_id": 247, "row_id": 120997, "rank": 37, "method": "GELAN-C", "mlmodel": {}, "method_short": "GELAN-C", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "52.5", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 52.5, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 606, "name": "ELAN", "color": "#78cc24"}], "reports": []}, {"table_id": 247, "row_id": 131687, "rank": 38, "method": "D-FINE-M", "mlmodel": {}, "method_short": "D-FINE-M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "52.3", "FPS (V100, b=1)": "178 (T4)"}, "raw_metrics": {"box AP": 52.3, "FPS (V100, b=1)": 178.0}, "uses_additional_data": false, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=131687"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 103649, "rank": 39, "method": "PRB-FPN-CSP", "mlmodel": {}, "method_short": "PRB-FPN-CSP", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-12-03", "metrics": {"box AP": "51.8", "FPS (V100, b=1)": "113"}, "raw_metrics": {"box AP": 51.8, "FPS (V100, b=1)": 113.0}, "uses_additional_data": false, "paper": {"id": 724164, "title": "Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single-Shot Object Detection", "url": "/paper/parallel-residual-bi-fusion-feature-pyramid", "published": "2020-12-03T00:00:00.000000", "code": true, "review_url": "/paper/parallel-residual-bi-fusion-feature-pyramid/review/?hl=103649"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 134054, "rank": 40, "method": "YOLOv11m", "mlmodel": {}, "method_short": "YOLOv11m", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-23", "metrics": {"box AP": "51.5", "FPS (V100, b=1)": "212 (T4)"}, "raw_metrics": {"box AP": 51.5, "FPS (V100, b=1)": 212.0}, "uses_additional_data": false, "paper": {"id": 1550106, "title": "YOLOv11: An Overview of the Key Architectural Enhancements", "url": "/paper/yolov11-an-overview-of-the-key-architectural", "published": "2024-10-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov11-an-overview-of-the-key-architectural/review/?hl=134054"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 120991, "rank": 41, "method": "YOLOv9-M", "mlmodel": {}, "method_short": "YOLOv9-M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "51.4", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 51.4, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 122748, "rank": 42, "method": "YOLOv10-M", "mlmodel": {}, "method_short": "YOLOv10-M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-05-23", "metrics": {"box AP": "51.3", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 51.3, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1444487, "title": "YOLOv10: Real-Time End-to-End Object Detection", "url": "/paper/yolov10-real-time-end-to-end-object-detection", "published": "2024-05-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov10-real-time-end-to-end-object-detection/review/?hl=122748"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 125325, "rank": 43, "method": "MAFYOLOm", "mlmodel": {}, "method_short": "MAFYOLOm", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-07-08", "metrics": {"box AP": "51.2", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 51.2, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1476721, "title": "Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection", "url": "/paper/multi-branch-auxiliary-fusion-yolo-with-re", "published": "2024-07-05T00:00:00.000000", "code": true, "review_url": "/paper/multi-branch-auxiliary-fusion-yolo-with-re/review/?hl=125325"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 120996, "rank": 44, "method": "GELAN-M", "mlmodel": {}, "method_short": "GELAN-M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "51.1", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 51.1, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 606, "name": "ELAN", "color": "#78cc24"}], "reports": []}, {"table_id": 247, "row_id": 98583, "rank": 45, "method": "YOLOv3", "mlmodel": {}, "method_short": "YOLOv3", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-03-30", "metrics": {"box AP": "51.0", "FPS (V100, b=1)": "123"}, "raw_metrics": {"box AP": 51.0, "FPS (V100, b=1)": 123.0}, "uses_additional_data": false, "paper": {"id": 986185, "title": "PP-YOLOE: An evolved version of YOLO", "url": "/paper/pp-yoloe-an-evolved-version-of-yolo", "published": "2022-03-30T00:00:00.000000", "code": true, "review_url": "/paper/pp-yoloe-an-evolved-version-of-yolo/review/?hl=98583"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 117559, "rank": 46, "method": "DAMO-YOLO-L", "mlmodel": {}, "method_short": "DAMO-YOLO-L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-11-23", "metrics": {"box AP": "50.8", "FPS (V100, b=1)": "126"}, "raw_metrics": {"box AP": 50.8, "FPS (V100, b=1)": 126.0}, "uses_additional_data": false, "paper": {"id": 1119918, "title": "DAMO-YOLO : A Report on Real-Time Object Detection Design", "url": "/paper/damo-yolo-a-report-on-real-time-object", "published": "2022-11-23T00:00:00.000000", "code": true, "review_url": "/paper/damo-yolo-a-report-on-real-time-object/review/?hl=117559"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 131688, "rank": 47, "method": "D-FINE-S+", "mlmodel": {}, "method_short": "D-FINE-S+", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "50.7", "FPS (V100, b=1)": "287 (T4)"}, "raw_metrics": {"box AP": 50.7, "FPS (V100, b=1)": 287.0}, "uses_additional_data": true, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=131688"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 59713, "rank": 48, "method": "YOLOv5-X", "mlmodel": {}, "method_short": "YOLOv5-X", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2021-07-18", "metrics": {"box AP": "50.4", "FPS (V100, b=1)": "62.5"}, "raw_metrics": {"box AP": 50.4, "FPS (V100, b=1)": 62.5}, "uses_additional_data": false, "paper": {"id": 837592, "title": "YOLOX: Exceeding YOLO Series in 2021", "url": "/paper/yolox-exceeding-yolo-series-in-2021", "published": "2021-07-18T00:00:00.000000", "code": true, "review_url": "/paper/yolox-exceeding-yolo-series-in-2021/review/?hl=59713"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 121552, "rank": 49, "method": "YOLOv6-S6(1280)", "mlmodel": {}, "method_short": "YOLOv6-S6", "method_details": "1280", "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-01-13", "metrics": {"box AP": "50.3", "FPS (V100, b=1)": "98"}, "raw_metrics": {"box AP": 50.3, "FPS (V100, b=1)": 98.0}, "uses_additional_data": false, "paper": {"id": 1142145, "title": "YOLOv6 v3.0: A Full-Scale Reloading", "url": "/paper/yolov6-v3-0-a-full-scale-reloading", "published": "2023-01-13T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 121551, "rank": 50, "method": "YOLOv6-M", "mlmodel": {}, "method_short": "YOLOv6-M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-01-13", "metrics": {"box AP": "50.0", "FPS (V100, b=1)": "175"}, "raw_metrics": {"box AP": 50.0, "FPS (V100, b=1)": 175.0}, "uses_additional_data": false, "paper": {"id": 1142145, "title": "YOLOv6 v3.0: A Full-Scale Reloading", "url": "/paper/yolov6-v3-0-a-full-scale-reloading", "published": "2023-01-13T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 87489, "rank": 51, "method": "PP-YOLOE+_M", "mlmodel": {}, "method_short": "PP-YOLOE+_M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-03-30", "metrics": {"box AP": "49.8", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 49.8, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 986185, "title": "PP-YOLOE: An evolved version of YOLO", "url": "/paper/pp-yoloe-an-evolved-version-of-yolo", "published": "2022-03-30T00:00:00.000000", "code": true, "review_url": "/paper/pp-yoloe-an-evolved-version-of-yolo/review/?hl=87489"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 87708, "rank": 52, "method": "DAMO-YOLO-M", "mlmodel": {}, "method_short": "DAMO-YOLO-M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-11-23", "metrics": {"box AP": "49.2", "FPS (V100, b=1)": "233"}, "raw_metrics": {"box AP": 49.2, "FPS (V100, b=1)": 233.0}, "uses_additional_data": false, "paper": {"id": 1119918, "title": "DAMO-YOLO : A Report on Real-Time Object Detection Design", "url": "/paper/damo-yolo-a-report-on-real-time-object", "published": "2022-11-23T00:00:00.000000", "code": true, "review_url": "/paper/damo-yolo-a-report-on-real-time-object/review/?hl=87708"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 131689, "rank": 53, "method": "D-FINE-S", "mlmodel": {}, "method_short": "D-FINE-S", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-17", "metrics": {"box AP": "48.5", "FPS (V100, b=1)": "287 (T4)"}, "raw_metrics": {"box AP": 48.5, "FPS (V100, b=1)": 287.0}, "uses_additional_data": false, "paper": {"id": 1544442, "title": "D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement", "url": "/paper/d-fine-redefine-regression-task-in-detrs-as", "published": "2024-10-17T00:00:00.000000", "code": true, "review_url": "/paper/d-fine-redefine-regression-task-in-detrs-as/review/?hl=131689"}, "external_source_url": null, "tags": [{"id": 501, "name": "DETR", "color": "#5c3566"}], "reports": []}, {"table_id": 247, "row_id": 125324, "rank": 54, "method": "MAFYOLOs", "mlmodel": {}, "method_short": "MAFYOLOs", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-07-05", "metrics": {"box AP": "47.4", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 47.4, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1476721, "title": "Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection", "url": "/paper/multi-branch-auxiliary-fusion-yolo-with-re", "published": "2024-07-05T00:00:00.000000", "code": true, "review_url": "/paper/multi-branch-auxiliary-fusion-yolo-with-re/review/?hl=125324"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 134053, "rank": 55, "method": "YOLOv11s", "mlmodel": {}, "method_short": "YOLOv11s", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-23", "metrics": {"box AP": "47.0", "FPS (V100, b=1)": "400 (T4)"}, "raw_metrics": {"box AP": 47.0, "FPS (V100, b=1)": 400.0}, "uses_additional_data": false, "paper": {"id": 1550106, "title": "YOLOv11: An Overview of the Key Architectural Enhancements", "url": "/paper/yolov11-an-overview-of-the-key-architectural", "published": "2024-10-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov11-an-overview-of-the-key-architectural/review/?hl=134053"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 120992, "rank": 56, "method": "YOLOv9-S", "mlmodel": {}, "method_short": "YOLOv9-S", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "46.8", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 46.8, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 122747, "rank": 57, "method": "YOLOv10-S", "mlmodel": {}, "method_short": "YOLOv10-S", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-05-23", "metrics": {"box AP": "46.8", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 46.8, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1444487, "title": "YOLOv10: Real-Time End-to-End Object Detection", "url": "/paper/yolov10-real-time-end-to-end-object-detection", "published": "2024-05-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov10-real-time-end-to-end-object-detection/review/?hl=122747"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 120995, "rank": 58, "method": "GELAN-S", "mlmodel": {}, "method_short": "GELAN-S", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-02-21", "metrics": {"box AP": "46.7", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 46.7, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1384785, "title": "YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information", "url": "/paper/yolov9-learning-what-you-want-to-learn-using", "published": "2024-02-21T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 606, "name": "ELAN", "color": "#78cc24"}], "reports": []}, {"table_id": 247, "row_id": 87707, "rank": 59, "method": "DAMO-YOLO-S", "mlmodel": {}, "method_short": "DAMO-YOLO-S", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-11-23", "metrics": {"box AP": "46", "FPS (V100, b=1)": "325"}, "raw_metrics": {"box AP": 46.0, "FPS (V100, b=1)": 325.0}, "uses_additional_data": false, "paper": {"id": 1119918, "title": "DAMO-YOLO : A Report on Real-Time Object Detection Design", "url": "/paper/damo-yolo-a-report-on-real-time-object", "published": "2022-11-23T00:00:00.000000", "code": true, "review_url": "/paper/damo-yolo-a-report-on-real-time-object/review/?hl=87707"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 121553, "rank": 60, "method": "YOLOv6-S", "mlmodel": {}, "method_short": "YOLOv6-S", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-01-13", "metrics": {"box AP": "45.0", "FPS (V100, b=1)": "339"}, "raw_metrics": {"box AP": 45.0, "FPS (V100, b=1)": 339.0}, "uses_additional_data": false, "paper": {"id": 1142145, "title": "YOLOv6 v3.0: A Full-Scale Reloading", "url": "/paper/yolov6-v3-0-a-full-scale-reloading", "published": "2023-01-13T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 121567, "rank": 61, "method": "YOLOv4-L", "mlmodel": {}, "method_short": "YOLOv4-L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-04-23", "metrics": {"box AP": "43.5", "FPS (V100, b=1)": "23"}, "raw_metrics": {"box AP": 43.5, "FPS (V100, b=1)": 23.0}, "uses_additional_data": false, "paper": {"id": 192023, "title": "YOLOv4: Optimal Speed and Accuracy of Object Detection", "url": "/paper/yolov4-optimal-speed-and-accuracy-of-object", "published": "2020-04-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov4-optimal-speed-and-accuracy-of-object/review/?hl=121567"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 121566, "rank": 62, "method": "YOLOv4-M", "mlmodel": {}, "method_short": "YOLOv4-M", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-04-23", "metrics": {"box AP": "43.0", "FPS (V100, b=1)": "31"}, "raw_metrics": {"box AP": 43.0, "FPS (V100, b=1)": 31.0}, "uses_additional_data": false, "paper": {"id": 192023, "title": "YOLOv4: Optimal Speed and Accuracy of Object Detection", "url": "/paper/yolov4-optimal-speed-and-accuracy-of-object", "published": "2020-04-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov4-optimal-speed-and-accuracy-of-object/review/?hl=121566"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 125323, "rank": 63, "method": "MAFYOLOn", "mlmodel": {}, "method_short": "MAFYOLOn", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-07-08", "metrics": {"box AP": "42.4", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 42.4, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1476721, "title": "Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection", "url": "/paper/multi-branch-auxiliary-fusion-yolo-with-re", "published": "2024-07-05T00:00:00.000000", "code": true, "review_url": "/paper/multi-branch-auxiliary-fusion-yolo-with-re/review/?hl=125323"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 87706, "rank": 64, "method": "DAMO-YOLO-T", "mlmodel": {}, "method_short": "DAMO-YOLO-T", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2022-11-23", "metrics": {"box AP": "42", "FPS (V100, b=1)": "397"}, "raw_metrics": {"box AP": 42.0, "FPS (V100, b=1)": 397.0}, "uses_additional_data": false, "paper": {"id": 1119918, "title": "DAMO-YOLO : A Report on Real-Time Object Detection Design", "url": "/paper/damo-yolo-a-report-on-real-time-object", "published": "2022-11-23T00:00:00.000000", "code": true, "review_url": "/paper/damo-yolo-a-report-on-real-time-object/review/?hl=87706"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 59741, "rank": 65, "method": "Faster RCNN-FPN+", "mlmodel": {}, "method_short": "Faster RCNN-FPN+", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-05-26", "metrics": {"box AP": "42", "FPS (V100, b=1)": "26"}, "raw_metrics": {"box AP": 42.0, "FPS (V100, b=1)": 26.0}, "uses_additional_data": false, "paper": {"id": 197767, "title": "End-to-End Object Detection with Transformers", "url": "/paper/end-to-end-object-detection-with-transformers", "published": "2020-05-26T00:00:00.000000", "code": true, "review_url": "/paper/end-to-end-object-detection-with-transformers/review/?hl=59741"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 87164, "rank": 66, "method": "YOLOv4-S", "mlmodel": {}, "method_short": "YOLOv4-S", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-04-23", "metrics": {"box AP": "41.2", "FPS (V100, b=1)": "38"}, "raw_metrics": {"box AP": 41.2, "FPS (V100, b=1)": 38.0}, "uses_additional_data": false, "paper": {"id": 192023, "title": "YOLOv4: Optimal Speed and Accuracy of Object Detection", "url": "/paper/yolov4-optimal-speed-and-accuracy-of-object", "published": "2020-04-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov4-optimal-speed-and-accuracy-of-object/review/?hl=87164"}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 134052, "rank": 67, "method": "YOLOv11n", "mlmodel": {}, "method_short": "YOLOv11n", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-10-23", "metrics": {"box AP": "39.5", "FPS (V100, b=1)": "667 (T4)"}, "raw_metrics": {"box AP": 39.5, "FPS (V100, b=1)": 667.0}, "uses_additional_data": false, "paper": {"id": 1550106, "title": "YOLOv11: An Overview of the Key Architectural Enhancements", "url": "/paper/yolov11-an-overview-of-the-key-architectural", "published": "2024-10-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov11-an-overview-of-the-key-architectural/review/?hl=134052"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 122746, "rank": 68, "method": "YOLOv10-N", "mlmodel": {}, "method_short": "YOLOv10-N", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2024-05-23", "metrics": {"box AP": "39.5", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 39.5, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 1444487, "title": "YOLOv10: Real-Time End-to-End Object Detection", "url": "/paper/yolov10-real-time-end-to-end-object-detection", "published": "2024-05-23T00:00:00.000000", "code": true, "review_url": "/paper/yolov10-real-time-end-to-end-object-detection/review/?hl=122746"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 121555, "rank": 69, "method": "YOLOv6-N", "mlmodel": {}, "method_short": "YOLOv6-N", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2023-01-13", "metrics": {"box AP": "37.5", "FPS (V100, b=1)": "779"}, "raw_metrics": {"box AP": 37.5, "FPS (V100, b=1)": 779.0}, "uses_additional_data": false, "paper": {"id": 1142145, "title": "YOLOv6 v3.0: A Full-Scale Reloading", "url": "/paper/yolov6-v3-0-a-full-scale-reloading", "published": "2023-01-13T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [{"id": 15, "name": "YOLO", "color": "#11029c"}], "reports": []}, {"table_id": 247, "row_id": 121568, "rank": 70, "method": "YOLOv3-L", "mlmodel": {}, "method_short": "YOLOv3-L", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2018-04-08", "metrics": {"box AP": "33.0", "FPS (V100, b=1)": null}, "raw_metrics": {"box AP": 33.0, "FPS (V100, b=1)": null}, "uses_additional_data": false, "paper": {"id": 6477, "title": "YOLOv3: An Incremental Improvement", "url": "/paper/yolov3-an-incremental-improvement", "published": "2018-04-08T00:00:00.000000", "code": true, "review_url": "/paper/yolov3-an-incremental-improvement/review/?hl=121568"}, "external_source_url": null, "tags": [], "reports": []}, {"table_id": 247, "row_id": 121556, "rank": 71, "method": "YOLOv5n", "mlmodel": {}, "method_short": "YOLOv5n", "method_details": null, "mlmodel_short": null, "mlmodeldetails": null, "evaluation_date": "2020-06-25", "metrics": {"box AP": "28.0", "FPS (V100, b=1)": "6.3"}, "raw_metrics": {"box AP": 28.0, "FPS (V100, b=1)": 6.3}, "uses_additional_data": false, "paper": {"id": 1406129, "title": "YOLOv5-6D: Advancing 6-DoF Instrument Pose Estimation in Variable X-Ray Imaging Geometries", "url": "/paper/yolov5-6d-advancing-6-dof-instrument-pose", "published": "2024-03-22T00:00:00.000000", "code": true, "review_url": null}, "external_source_url": null, "tags": [], "reports": []}]</script> <script id="community-chart-data" type="application/json">{"all": {"yAxis": {"title": "box AP", "includeZero": false, "gridColor": "#ddd", "valueFormatString": ""}, "data": {"trend": {"name": "State-of-the-art methods", "type": "line", "showInLegend": true, "markerSize": 10, "toolTipContent": "{name}: {y}", "color": "#21ccc7", "dataPoints": []}, "other": {"name": "Other methods", "type": "scatter", "showInLegend": true, "color": "#ddd", "markerSize": 10, "toolTipContent": "{name}: {y}", "dataPoints": []}}}, "uses_additional_data": {"yAxis": {"title": "box AP", "includeZero": false, "gridColor": "#ddd", "valueFormatString": ""}, "data": {"trend": {"name": "State-of-the-art methods", "type": "line", "showInLegend": true, "markerSize": 10, "toolTipContent": "{name}: {y}", "color": "#21ccc7", "dataPoints": []}, "other": {"name": "Other methods", "type": "scatter", "showInLegend": true, "color": "#ddd", "markerSize": 10, "toolTipContent": "{name}: {y}", "dataPoints": []}}}, "no_additional_data": {"yAxis": {"title": "box AP", "includeZero": false, "gridColor": "#ddd", "valueFormatString": ""}, "data": {"trend": {"name": "State-of-the-art methods", "type": "line", "showInLegend": true, "markerSize": 10, "toolTipContent": "{name}: {y}", "color": "#21ccc7", "dataPoints": []}, "other": {"name": "Other methods", "type": "scatter", "showInLegend": true, "color": "#ddd", "markerSize": 10, "toolTipContent": "{name}: {y}", "dataPoints": []}}}}</script> <script id="community-table-metrics" type="application/json">[]</script> <script id="community-table-data" type="application/json">[]</script> <script id="dataset-details" type="application/json">[{"name": "MS COCO", "fullName": "Microsoft Common Objects in Context", "url": "/dataset/coco", "description": "The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 328K images.", "imagePath": "https://production-media.paperswithcode.com/datasets/0daad4f0-886b-44ed-9b96-80d99e037f16.png", "iconName": "film", "color": "#F37668"}]</script> <script id="sota-page-details" type="application/json">{"task_main_area_name": "Computer Vision", "task_name": "Real-Time Object Detection", "dataset_name": "MS COCO", "description": "", "mirror_url": null, "has_competition_entries": false}</script> <script type="application/javascript"> let evaluationChartData = JSON.parse( document.getElementById("evaluation-chart-data").textContent ); let evaluationTableMetrics = JSON.parse( document.getElementById("evaluation-table-metrics").textContent ); let evaluationTableData = JSON.parse( document.getElementById("evaluation-table-data").textContent ); let communityChartData = JSON.parse( document.getElementById("community-chart-data").textContent ); let communityTableMetrics = JSON.parse( document.getElementById("community-table-metrics").textContent ); let communityTableData = JSON.parse( document.getElementById("community-table-data").textContent ); let datasetDetails = JSON.parse( document.getElementById("dataset-details").textContent ); let sotaPageDetails = JSON.parse( document.getElementById("sota-page-details").textContent ); // Containers let sotaPageContainer = document.getElementById("sota-page"); // Breadcrumbs let breadcrumbs = [ { title: "Browse", url: "/sota" }, { title: sotaPageDetails.task_main_area_name, url: "/area/computer-vision" }, { title: sotaPageDetails.task_name, url: "/task/real-time-object-detection" }, { title: sotaPageDetails.dataset_name + " dataset", url: "/dataset/coco" } ]; let highlight = ( null ); function datasetsSearchUrl(query) { return "/datasets?q="+encodeURIComponent(query); } function newDatasetUrl(datasetName) { return "/contribute/dataset/new?name="+encodeURIComponent(datasetName); } const SOTA_AUTOCOMPLETE_PAPER_URL = "/sota/autocomplete/paper"; const VIEW_PAPER_URL = "/paper/PAPER_SLUG"; </script> <!-- End SOTA Table Generation --> </div> <div class="footer"> <div class="footer-contact"> <span class="footer-contact-item">Contact us on:</span> <a class="footer-contact-item" href="mailto:hello@paperswithcode.com"> <span class=" icon-wrapper icon-ion" data-name="mail"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M424 80H88a56.06 56.06 0 0 0-56 56v240a56.06 56.06 0 0 0 56 56h336a56.06 56.06 0 0 0 56-56V136a56.06 56.06 0 0 0-56-56zm-14.18 92.63l-144 112a16 16 0 0 1-19.64 0l-144-112a16 16 0 1 1 19.64-25.26L256 251.73l134.18-104.36a16 16 0 0 1 19.64 25.26z"/></svg></span> hello@paperswithcode.com </a>. <span class="footer-contact-item"> Papers With Code is a free resource with all data licensed under <a rel="noreferrer" href="https://creativecommons.org/licenses/by-sa/4.0/">CC-BY-SA</a>. </span> </div> <div class="footer-links"> <a href="/site/terms">Terms</a> <a href="/site/data-policy">Data policy</a> <a href="/site/cookies-policy">Cookies policy</a> <a href="/about#team" class="fair-logo"> from <img src=""> </a> </div> </div> <script> // MathJax window.MathJax = { tex: { inlineMath: [ ["$", "$"], ["\\(", "\\)"], ], }, }; const mathjaxScript = document.createElement("script"); mathjaxScript.src = "https://production-assets.paperswithcode.com/static/js/mathjax/tex-chtml.js"; document.head.appendChild(mathjaxScript); </script> <script src="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/2.6da00df7.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/351.a22a9607.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/452.d3ecdfa4.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/553.357efc0e.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/sota.table.040f2c99.js" defer></script> </body> </html>