CINXE.COM

aek beny - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>aek beny - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="GiRnq4US6vfdaQwR1LXAgnAG++dzFzyZ+7FMq+Aq/lOYrfU0ZM3N9pp8bdqcFm2j0HiaIaXZ8q9gLum/k0Vjgg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="aek beny" /> <meta name="description" content="aek beny: 4 Followers, 12 Following, 151 Research papers. Research interests: Video and Data Transmission over Mobile Networks, Information Theory and coding,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15270,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277246439,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732537628000); window.Aedu.timeDifference = new Date().getTime() - 1732537628000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/aekbeny" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":62155,"name":"Video and Data Transmission over Mobile Networks","url":"https://www.academia.edu/Documents/in/Video_and_Data_Transmission_over_Mobile_Networks"},{"id":14975,"name":"Information Theory and coding","url":"https://www.academia.edu/Documents/in/Information_Theory_and_coding"},{"id":2180,"name":"Optical Fiber Communications","url":"https://www.academia.edu/Documents/in/Optical_Fiber_Communications"},{"id":21395,"name":"Telecommunication","url":"https://www.academia.edu/Documents/in/Telecommunication"},{"id":4252,"name":"Computer Networks","url":"https://www.academia.edu/Documents/in/Computer_Networks"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/aekbeny&quot;,&quot;location&quot;:&quot;/aekbeny&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/aekbeny&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-b723efbd-bf53-40a7-826f-b2d93c091161"></div> <div id="ProfileCheckPaperUpdate-react-component-b723efbd-bf53-40a7-826f-b2d93c091161"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">aek beny</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="aek" data-follow-user-id="102721421" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="102721421"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">4</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">12</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="102721421" href="https://www.academia.edu/Documents/in/Video_and_Data_Transmission_over_Mobile_Networks"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/aekbeny&quot;,&quot;location&quot;:&quot;/aekbeny&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/aekbeny&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Video and Data Transmission over Mobile Networks&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9350c165-4aa9-4401-8bda-c7d53eae6c14"></div> <div id="Pill-react-component-9350c165-4aa9-4401-8bda-c7d53eae6c14"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="102721421" href="https://www.academia.edu/Documents/in/Information_Theory_and_coding"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Information Theory and coding&quot;]}" data-trace="false" data-dom-id="Pill-react-component-bfda66b3-9eed-443d-ac8f-9e56caac9c21"></div> <div id="Pill-react-component-bfda66b3-9eed-443d-ac8f-9e56caac9c21"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="102721421" href="https://www.academia.edu/Documents/in/Optical_Fiber_Communications"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Optical Fiber Communications&quot;]}" data-trace="false" data-dom-id="Pill-react-component-9eb3ca27-4e8d-4004-ac70-d386003a0df5"></div> <div id="Pill-react-component-9eb3ca27-4e8d-4004-ac70-d386003a0df5"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="102721421" href="https://www.academia.edu/Documents/in/Telecommunication"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Telecommunication&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5918c776-a25b-467c-b507-f082b99c8baa"></div> <div id="Pill-react-component-5918c776-a25b-467c-b507-f082b99c8baa"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="102721421" href="https://www.academia.edu/Documents/in/Computer_Networks"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Computer Networks&quot;]}" data-trace="false" data-dom-id="Pill-react-component-aeec66b5-e54b-4baa-9315-12ebe5c09fb1"></div> <div id="Pill-react-component-aeec66b5-e54b-4baa-9315-12ebe5c09fb1"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by aek beny</h3></div><div class="js-work-strip profile--work_container" data-work-id="120863205"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120863205/Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling"><img alt="Research paper thumbnail of Textual Data Selection based on Mean Square Difference Probability for Language Modeling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120863205/Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling">Textual Data Selection based on Mean Square Difference Probability for Language Modeling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120863205"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120863205"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120863205; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120863205]").text(description); $(".js-view-count[data-work-id=120863205]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120863205; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120863205']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120863205, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120863205]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120863205,"title":"Textual Data Selection based on Mean Square Difference Probability for Language Modeling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120863205/Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling","translated_internal_url":"","created_at":"2024-06-11T03:22:07.273-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120863204"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120863204/The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition"><img alt="Research paper thumbnail of The Incremental Artificial Immune System for Arabic Handwritten Recognition" class="work-thumbnail" src="https://attachments.academia-assets.com/115881026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120863204/The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition">The Incremental Artificial Immune System for Arabic Handwritten Recognition</a></div><div class="wp-workCard_item"><span>Journal of Information Technology Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The historical document is a treasure. The frequent use of these documents requires having a nume...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The historical document is a treasure. The frequent use of these documents requires having a numeric copy. The use of these numeric documents requires developing techniques to facilitate their use. The search by content, the word spotting, and handwriting recognition became important points of research in document analysis. For this purpose, in this article is covered the recognition of the Arabic manuscript names extracted from the register of names of the Tunisian national archive. In the study, the authors have used several techniques for extracting knowledge, coding, and name recognition. The authors have also optimized the clonclas algorithm using the incremental principle from the i2gng algorithm. The results encourage continuing exploration.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f6ffab72bfb808ab16a26da5adbd9b5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115881026,&quot;asset_id&quot;:120863204,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115881026/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120863204"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120863204"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120863204; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120863204]").text(description); $(".js-view-count[data-work-id=120863204]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120863204; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120863204']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120863204, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f6ffab72bfb808ab16a26da5adbd9b5f" } } $('.js-work-strip[data-work-id=120863204]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120863204,"title":"The Incremental Artificial Immune System for Arabic Handwritten Recognition","translated_title":"","metadata":{"abstract":"The historical document is a treasure. The frequent use of these documents requires having a numeric copy. The use of these numeric documents requires developing techniques to facilitate their use. The search by content, the word spotting, and handwriting recognition became important points of research in document analysis. For this purpose, in this article is covered the recognition of the Arabic manuscript names extracted from the register of names of the Tunisian national archive. In the study, the authors have used several techniques for extracting knowledge, coding, and name recognition. The authors have also optimized the clonclas algorithm using the incremental principle from the i2gng algorithm. The results encourage continuing exploration.","publisher":"IGI Global","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Information Technology Research"},"translated_abstract":"The historical document is a treasure. The frequent use of these documents requires having a numeric copy. The use of these numeric documents requires developing techniques to facilitate their use. The search by content, the word spotting, and handwriting recognition became important points of research in document analysis. For this purpose, in this article is covered the recognition of the Arabic manuscript names extracted from the register of names of the Tunisian national archive. In the study, the authors have used several techniques for extracting knowledge, coding, and name recognition. The authors have also optimized the clonclas algorithm using the incremental principle from the i2gng algorithm. The results encourage continuing exploration.","internal_url":"https://www.academia.edu/120863204/The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition","translated_internal_url":"","created_at":"2024-06-11T03:22:07.070-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115881026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115881026/thumbnails/1.jpg","file_name":"viewtitlesample.pdf","download_url":"https://www.academia.edu/attachments/115881026/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Incremental_Artificial_Immune_System.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115881026/viewtitlesample-libre.pdf?1718103131=\u0026response-content-disposition=attachment%3B+filename%3DThe_Incremental_Artificial_Immune_System.pdf\u0026Expires=1732541227\u0026Signature=KnrEczlpfusvkuxm6DVyDMlhxGsNDaRY3MXf6f6dTpHfvDtU7Y~hvWmo9e4fcErh3GbpclUT5aCha3vTFY6M0ecSo26Eoo1TGmdCGjPoTs8WQlOVKmcaVeh1l9gpuWzcGDt1pJar54ZTgD-0DImkvJcyIH1rj5OdY5Mxls32-LZ6AkLYjhwdS1N-8Dsqpzgu3BPhRyFD-d9QMoI5II-qexuKXk2N8p9W8kSJ62cUizn5tIxcUPafNwj1fpmLQ4MkgCAQwUEJ-d~aLMJA-MlAkAX~jhCI1VDqd9Am3YOCNKojHv796R3E88wjFnfZmKh0ZPl8dHBHgHAJztxTmT2u1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115881026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115881026/thumbnails/1.jpg","file_name":"viewtitlesample.pdf","download_url":"https://www.academia.edu/attachments/115881026/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Incremental_Artificial_Immune_System.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115881026/viewtitlesample-libre.pdf?1718103131=\u0026response-content-disposition=attachment%3B+filename%3DThe_Incremental_Artificial_Immune_System.pdf\u0026Expires=1732541227\u0026Signature=KnrEczlpfusvkuxm6DVyDMlhxGsNDaRY3MXf6f6dTpHfvDtU7Y~hvWmo9e4fcErh3GbpclUT5aCha3vTFY6M0ecSo26Eoo1TGmdCGjPoTs8WQlOVKmcaVeh1l9gpuWzcGDt1pJar54ZTgD-0DImkvJcyIH1rj5OdY5Mxls32-LZ6AkLYjhwdS1N-8Dsqpzgu3BPhRyFD-d9QMoI5II-qexuKXk2N8p9W8kSJ62cUizn5tIxcUPafNwj1fpmLQ4MkgCAQwUEJ-d~aLMJA-MlAkAX~jhCI1VDqd9Am3YOCNKojHv796R3E88wjFnfZmKh0ZPl8dHBHgHAJztxTmT2u1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":46118,"name":"Handwriting","url":"https://www.academia.edu/Documents/in/Handwriting"},{"id":394043,"name":"Treasure","url":"https://www.academia.edu/Documents/in/Treasure"},{"id":586207,"name":"IGI Global","url":"https://www.academia.edu/Documents/in/IGI_Global"}],"urls":[{"id":42845590,"url":"https://www.igi-global.com/viewtitle.aspx?TitleId=238027"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120863203"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120863203/Recognition_of_Individuals_Based_on_Hand_Geometry"><img alt="Research paper thumbnail of Recognition of Individuals Based on Hand Geometry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120863203/Recognition_of_Individuals_Based_on_Hand_Geometry">Recognition of Individuals Based on Hand Geometry</a></div><div class="wp-workCard_item"><span>World Scientific Proceedings Series on Computer Engineering and Information Science</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120863203"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120863203"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120863203; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120863203]").text(description); $(".js-view-count[data-work-id=120863203]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120863203; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120863203']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120863203, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120863203]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120863203,"title":"Recognition of Individuals Based on Hand Geometry","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"World Scientific Proceedings Series on Computer Engineering and Information Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120863203/Recognition_of_Individuals_Based_on_Hand_Geometry","translated_internal_url":"","created_at":"2024-06-11T03:22:05.934-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Recognition_of_Individuals_Based_on_Hand_Geometry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":54418,"name":"Geometry","url":"https://www.academia.edu/Documents/in/Geometry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736666"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736666/%E3%82%AB%E3%83%A9%E3%83%BC%E7%94%BB%E5%83%8F%E3%82%BB%E3%82%B0%E3%83%A1%E3%83%B3%E3%83%86%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E3%82%A8%E3%82%B3%E3%83%BC%E7%8A%B6%E6%85%8B%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%81%AE%E5%AE%9F%E9%A8%93%E7%9A%84%E8%A9%95%E4%BE%A1_Powered_by_NICT_"><img alt="Research paper thumbnail of カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価【Powered by NICT】" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736666/%E3%82%AB%E3%83%A9%E3%83%BC%E7%94%BB%E5%83%8F%E3%82%BB%E3%82%B0%E3%83%A1%E3%83%B3%E3%83%86%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E3%82%A8%E3%82%B3%E3%83%BC%E7%8A%B6%E6%85%8B%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%81%AE%E5%AE%9F%E9%A8%93%E7%9A%84%E8%A9%95%E4%BE%A1_Powered_by_NICT_">カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価【Powered by NICT】</a></div><div class="wp-workCard_item"><span>IEEE Conference Proceedings</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736666"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736666"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736666; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736666]").text(description); $(".js-view-count[data-work-id=120736666]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736666; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736666']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736666, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736666]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736666,"title":"カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価【Powered by NICT】","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"IEEE Conference Proceedings"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736666/%E3%82%AB%E3%83%A9%E3%83%BC%E7%94%BB%E5%83%8F%E3%82%BB%E3%82%B0%E3%83%A1%E3%83%B3%E3%83%86%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E3%82%A8%E3%82%B3%E3%83%BC%E7%8A%B6%E6%85%8B%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%81%AE%E5%AE%9F%E9%A8%93%E7%9A%84%E8%A9%95%E4%BE%A1_Powered_by_NICT_","translated_internal_url":"","created_at":"2024-06-08T10:35:05.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価_Powered_by_NICT_","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[],"urls":[{"id":42768103,"url":"http://jglobal.jst.go.jp/public/201602280594749440"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736665/Over_fitting_avoidance_in_probabilistic_neural_networks"><img alt="Research paper thumbnail of Over-fitting avoidance in probabilistic neural networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736665/Over_fitting_avoidance_in_probabilistic_neural_networks">Over-fitting avoidance in probabilistic neural networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The proposed algorithm addresses one of the major drawbacks of probabilistic neural networks, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the new network is compared against performance of standard probabilistic neural networks for different databases from the UCI database repository. Results show an important gain in network size and performance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736665]").text(description); $(".js-view-count[data-work-id=120736665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736665, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736665,"title":"Over-fitting avoidance in probabilistic neural networks","translated_title":"","metadata":{"abstract":"In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The proposed algorithm addresses one of the major drawbacks of probabilistic neural networks, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the new network is compared against performance of standard probabilistic neural networks for different databases from the UCI database repository. Results show an important gain in network size and performance.","publication_date":{"day":1,"month":6,"year":2015,"errors":{}}},"translated_abstract":"In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The proposed algorithm addresses one of the major drawbacks of probabilistic neural networks, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the new network is compared against performance of standard probabilistic neural networks for different databases from the UCI database repository. Results show an important gain in network size and performance.","internal_url":"https://www.academia.edu/120736665/Over_fitting_avoidance_in_probabilistic_neural_networks","translated_internal_url":"","created_at":"2024-06-08T10:35:04.915-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Over_fitting_avoidance_in_probabilistic_neural_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":42768102,"url":"https://doi.org/10.1109/wcitca.2015.7367037"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736664/Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets"><img alt="Research paper thumbnail of Contribution to decision-making in the big data industry based on the multiparametric similarity measure for Pythagorean fuzzy sets" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736664/Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets">Contribution to decision-making in the big data industry based on the multiparametric similarity measure for Pythagorean fuzzy sets</a></div><div class="wp-workCard_item"><span>Journal of Logic and Computation</span><span>, Jul 23, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume, Velocity, Variety, Veracity and Value. Big Data is useful to improve decision-making to adjust it better to market demand, specifically selection of supplier that is an important link to optimize the logistic chain of enterprises. In this case, leadership or decider is ahead one serious complex problem, inexact and fuzzy. Pythagorean fuzzy set (PFS) is disposing the indeterminacy data by the membership and the nonmembership functions; it is a generalization of the intuitionist fuzzy set when the last set is limited. First, some results for PFSs are displaying in this study as particular cases and generalization of some binary operations. After, an improved score function of Pythagorean fuzzy number is proposed to avoid the comparison problem in practice. In addition, an existing approach exploring the combined alternatives weight to settle Pythagorean fuzzy issue by multi-parametric similarity measure is applied with the new proposed score function to selection of supplier issue with five serious criteria as a Big Data industry decision-making problem in economic environment. Finally, a comparison of the presented method with some existing approaches has been executed in the light of counterintuitive phenomena for validating its advantages.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736664]").text(description); $(".js-view-count[data-work-id=120736664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736664,"title":"Contribution to decision-making in the big data industry based on the multiparametric similarity measure for Pythagorean fuzzy sets","translated_title":"","metadata":{"abstract":"Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume, Velocity, Variety, Veracity and Value. Big Data is useful to improve decision-making to adjust it better to market demand, specifically selection of supplier that is an important link to optimize the logistic chain of enterprises. In this case, leadership or decider is ahead one serious complex problem, inexact and fuzzy. Pythagorean fuzzy set (PFS) is disposing the indeterminacy data by the membership and the nonmembership functions; it is a generalization of the intuitionist fuzzy set when the last set is limited. First, some results for PFSs are displaying in this study as particular cases and generalization of some binary operations. After, an improved score function of Pythagorean fuzzy number is proposed to avoid the comparison problem in practice. In addition, an existing approach exploring the combined alternatives weight to settle Pythagorean fuzzy issue by multi-parametric similarity measure is applied with the new proposed score function to selection of supplier issue with five serious criteria as a Big Data industry decision-making problem in economic environment. Finally, a comparison of the presented method with some existing approaches has been executed in the light of counterintuitive phenomena for validating its advantages.","publisher":"Oxford University Press","publication_date":{"day":23,"month":7,"year":2022,"errors":{}},"publication_name":"Journal of Logic and Computation"},"translated_abstract":"Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume, Velocity, Variety, Veracity and Value. Big Data is useful to improve decision-making to adjust it better to market demand, specifically selection of supplier that is an important link to optimize the logistic chain of enterprises. In this case, leadership or decider is ahead one serious complex problem, inexact and fuzzy. Pythagorean fuzzy set (PFS) is disposing the indeterminacy data by the membership and the nonmembership functions; it is a generalization of the intuitionist fuzzy set when the last set is limited. First, some results for PFSs are displaying in this study as particular cases and generalization of some binary operations. After, an improved score function of Pythagorean fuzzy number is proposed to avoid the comparison problem in practice. In addition, an existing approach exploring the combined alternatives weight to settle Pythagorean fuzzy issue by multi-parametric similarity measure is applied with the new proposed score function to selection of supplier issue with five serious criteria as a Big Data industry decision-making problem in economic environment. Finally, a comparison of the presented method with some existing approaches has been executed in the light of counterintuitive phenomena for validating its advantages.","internal_url":"https://www.academia.edu/120736664/Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets","translated_internal_url":"","created_at":"2024-06-08T10:35:04.647-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic"},{"id":54284,"name":"Generalization","url":"https://www.academia.edu/Documents/in/Generalization"},{"id":75000,"name":"Philosophy and Religious Studies","url":"https://www.academia.edu/Documents/in/Philosophy_and_Religious_Studies"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":42768101,"url":"https://doi.org/10.1093/logcom/exac046"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736663/New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus"><img alt="Research paper thumbnail of New Contribution to Adaptive Temporal Radial Basis Function Applied on TIMIT Corpus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736663/New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus">New Contribution to Adaptive Temporal Radial Basis Function Applied on TIMIT Corpus</a></div><div class="wp-workCard_item"><span>International Conference on Cognitive Modelling</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Introduction A successful speech recognition system has to determine features not only present in...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Introduction A successful speech recognition system has to determine features not only present in the input pattern at one point in time, but also features of input pattern changing over time ( e.g., Berthold, 1994; Benyettou, 1995). In network design, great importance must be attributed to correct choice of the number of hidden neurons, which helps avoiding problems of overfitting and contributes to reduce the time required for the training without significantly affecting the network performances (e.g., Colla &amp;amp; Reyneri &amp;amp; Sgarbi, 1999), but never looking to architecture adapting effect according to input. The goal to combine the approach of the RBF with the shift invariance features of the TDNN, can be get a new robust model, this is named temporal radial basis function “TRBF” (e.g., Mesbahi &amp;amp; Benyettou, 2003), but to be more efficient, we have adapt these networks so that they come more dynamic according to their behaviour and features of the object has study. It can be goes more clearly in continuous speech. Therefore in object to obtain an Adaptive TRBF, we must adapt the TRBF networks, consequently it was necessary to develop an algorithm that permits to solve this type of problem, this algorithm is called “DOLS” which means Dynamic Orthogonal Least Square, that will be presented in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736663]").text(description); $(".js-view-count[data-work-id=120736663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736663,"title":"New Contribution to Adaptive Temporal Radial Basis Function Applied on TIMIT Corpus","translated_title":"","metadata":{"abstract":"Introduction A successful speech recognition system has to determine features not only present in the input pattern at one point in time, but also features of input pattern changing over time ( e.g., Berthold, 1994; Benyettou, 1995). In network design, great importance must be attributed to correct choice of the number of hidden neurons, which helps avoiding problems of overfitting and contributes to reduce the time required for the training without significantly affecting the network performances (e.g., Colla \u0026amp; Reyneri \u0026amp; Sgarbi, 1999), but never looking to architecture adapting effect according to input. The goal to combine the approach of the RBF with the shift invariance features of the TDNN, can be get a new robust model, this is named temporal radial basis function “TRBF” (e.g., Mesbahi \u0026amp; Benyettou, 2003), but to be more efficient, we have adapt these networks so that they come more dynamic according to their behaviour and features of the object has study. It can be goes more clearly in continuous speech. Therefore in object to obtain an Adaptive TRBF, we must adapt the TRBF networks, consequently it was necessary to develop an algorithm that permits to solve this type of problem, this algorithm is called “DOLS” which means Dynamic Orthogonal Least Square, that will be presented in this paper.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"International Conference on Cognitive Modelling"},"translated_abstract":"Introduction A successful speech recognition system has to determine features not only present in the input pattern at one point in time, but also features of input pattern changing over time ( e.g., Berthold, 1994; Benyettou, 1995). In network design, great importance must be attributed to correct choice of the number of hidden neurons, which helps avoiding problems of overfitting and contributes to reduce the time required for the training without significantly affecting the network performances (e.g., Colla \u0026amp; Reyneri \u0026amp; Sgarbi, 1999), but never looking to architecture adapting effect according to input. The goal to combine the approach of the RBF with the shift invariance features of the TDNN, can be get a new robust model, this is named temporal radial basis function “TRBF” (e.g., Mesbahi \u0026amp; Benyettou, 2003), but to be more efficient, we have adapt these networks so that they come more dynamic according to their behaviour and features of the object has study. It can be goes more clearly in continuous speech. Therefore in object to obtain an Adaptive TRBF, we must adapt the TRBF networks, consequently it was necessary to develop an algorithm that permits to solve this type of problem, this algorithm is called “DOLS” which means Dynamic Orthogonal Least Square, that will be presented in this paper.","internal_url":"https://www.academia.edu/120736663/New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus","translated_internal_url":"","created_at":"2024-06-08T10:35:04.425-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":5751,"name":"Radial Basis Function","url":"https://www.academia.edu/Documents/in/Radial_Basis_Function"},{"id":352180,"name":"Overfitting","url":"https://www.academia.edu/Documents/in/Overfitting"}],"urls":[{"id":42768100,"url":"https://dblp.uni-trier.de/db/conf/iccm/iccm2004.html#MesbahiB04"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736662/The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System"><img alt="Research paper thumbnail of The Cooperation of Immune Agents for Intrusion Detection System" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736662/The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System">The Cooperation of Immune Agents for Intrusion Detection System</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nowadays information technology and communication has evolve, computer networks became vulnerable...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nowadays information technology and communication has evolve, computer networks became vulnerable faced to new forms of threats. In this article, a new model of intrusion detection based on multi-agents system and inspired from the biological immune system is presented. We begin through a presentation of the biological immune systems, followed by immune algorithm, a model of artificial immune system which is integrated in the behavior of distributed agents on the network is proposed in order to ensure a good intrusions detection. The internal structure of the immune agents and their capacity to distinguish between self and not-self is also presented. Agents are able to achieve simultaneous treatments, they are auto-adaptable to environment evolution and have also the property of distributed coordination.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736662]").text(description); $(".js-view-count[data-work-id=120736662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736662, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736662,"title":"The Cooperation of Immune Agents for Intrusion Detection System","translated_title":"","metadata":{"abstract":"Nowadays information technology and communication has evolve, computer networks became vulnerable faced to new forms of threats. In this article, a new model of intrusion detection based on multi-agents system and inspired from the biological immune system is presented. We begin through a presentation of the biological immune systems, followed by immune algorithm, a model of artificial immune system which is integrated in the behavior of distributed agents on the network is proposed in order to ensure a good intrusions detection. The internal structure of the immune agents and their capacity to distinguish between self and not-self is also presented. Agents are able to achieve simultaneous treatments, they are auto-adaptable to environment evolution and have also the property of distributed coordination.","publication_date":{"day":29,"month":12,"year":2017,"errors":{}}},"translated_abstract":"Nowadays information technology and communication has evolve, computer networks became vulnerable faced to new forms of threats. In this article, a new model of intrusion detection based on multi-agents system and inspired from the biological immune system is presented. We begin through a presentation of the biological immune systems, followed by immune algorithm, a model of artificial immune system which is integrated in the behavior of distributed agents on the network is proposed in order to ensure a good intrusions detection. The internal structure of the immune agents and their capacity to distinguish between self and not-self is also presented. Agents are able to achieve simultaneous treatments, they are auto-adaptable to environment evolution and have also the property of distributed coordination.","internal_url":"https://www.academia.edu/120736662/The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System","translated_internal_url":"","created_at":"2024-06-08T10:35:04.045-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":320736,"name":"Intrusion Detection System","url":"https://www.academia.edu/Documents/in/Intrusion_Detection_System"}],"urls":[{"id":42768099,"url":"https://doi.org/10.1145/3178264.3178290"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736661/On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks"><img alt="Research paper thumbnail of On-Line Arabic Characters Recognition Using Enhanced Time Delay Neural Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736661/On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks">On-Line Arabic Characters Recognition Using Enhanced Time Delay Neural Networks</a></div><div class="wp-workCard_item"><span>International Journal on Communications Antenna and Propagation</span><span>, Aug 31, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper concerns with the online recognition of isolated hand writing Arabic characters, throu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper concerns with the online recognition of isolated hand writing Arabic characters, through, the interpretation of a script presented by a pen trajectory.  This technique was generally used in the electronic organizers of Personal Digital Assistant type. First of all, we have built a data base with several scripters using a graphic tablet which will be used in our application. In order to have a precise recognition of the isolated characters, it is important to model their structure the most correctly possible. In this work we present the study, the implementation and the result of the test of a particular neural network which is the Time Delay Neural Networks.  We have followed a two steps approach, in the first one, the character characteristics are extracted, and in the second one, a temporal multi-layered perception is developed for a future classification. Our temporal approach with the adaptive topology, responds to the nature of the Arabic script during the acquisition phase while the use of different learning algorithms can minimize the cost function and improve recognition rates. The parameterization of these two parts will allow us to analyze the impact of the neural network topology on the results of character recognition rates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736661]").text(description); $(".js-view-count[data-work-id=120736661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736661,"title":"On-Line Arabic Characters Recognition Using Enhanced Time Delay Neural Networks","translated_title":"","metadata":{"abstract":"This paper concerns with the online recognition of isolated hand writing Arabic characters, through, the interpretation of a script presented by a pen trajectory.  This technique was generally used in the electronic organizers of Personal Digital Assistant type. First of all, we have built a data base with several scripters using a graphic tablet which will be used in our application. In order to have a precise recognition of the isolated characters, it is important to model their structure the most correctly possible. In this work we present the study, the implementation and the result of the test of a particular neural network which is the Time Delay Neural Networks.  We have followed a two steps approach, in the first one, the character characteristics are extracted, and in the second one, a temporal multi-layered perception is developed for a future classification. Our temporal approach with the adaptive topology, responds to the nature of the Arabic script during the acquisition phase while the use of different learning algorithms can minimize the cost function and improve recognition rates. The parameterization of these two parts will allow us to analyze the impact of the neural network topology on the results of character recognition rates.","publisher":"Praise Worthy Prize, s.r.l.","publication_date":{"day":31,"month":8,"year":2017,"errors":{}},"publication_name":"International Journal on Communications Antenna and Propagation"},"translated_abstract":"This paper concerns with the online recognition of isolated hand writing Arabic characters, through, the interpretation of a script presented by a pen trajectory.  This technique was generally used in the electronic organizers of Personal Digital Assistant type. First of all, we have built a data base with several scripters using a graphic tablet which will be used in our application. In order to have a precise recognition of the isolated characters, it is important to model their structure the most correctly possible. In this work we present the study, the implementation and the result of the test of a particular neural network which is the Time Delay Neural Networks.  We have followed a two steps approach, in the first one, the character characteristics are extracted, and in the second one, a temporal multi-layered perception is developed for a future classification. Our temporal approach with the adaptive topology, responds to the nature of the Arabic script during the acquisition phase while the use of different learning algorithms can minimize the cost function and improve recognition rates. The parameterization of these two parts will allow us to analyze the impact of the neural network topology on the results of character recognition rates.","internal_url":"https://www.academia.edu/120736661/On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks","translated_internal_url":"","created_at":"2024-06-08T10:35:03.826-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":42768098,"url":"https://doi.org/10.15866/irecap.v7i4.13204"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736660/The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_"><img alt="Research paper thumbnail of The Multi-Agents Immune System for Network Intrusions Detection (MAISID)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736660/The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_">The Multi-Agents Immune System for Network Intrusions Detection (MAISID)</a></div><div class="wp-workCard_item"><span>Oriental journal of computer science and technology</span><span>, Dec 4, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736660]").text(description); $(".js-view-count[data-work-id=120736660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736660,"title":"The Multi-Agents Immune System for Network Intrusions Detection (MAISID)","translated_title":"","metadata":{"publisher":"Oriental Scientific Publishing Company","publication_date":{"day":4,"month":12,"year":2013,"errors":{}},"publication_name":"Oriental journal of computer science and technology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736660/The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_","translated_internal_url":"","created_at":"2024-06-08T10:35:03.625-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":320736,"name":"Intrusion Detection System","url":"https://www.academia.edu/Documents/in/Intrusion_Detection_System"}],"urls":[{"id":42768097,"url":"https://www.computerscijournal.org/vol6no4/the-multi-agents-immune-system-for-network-intrusions-detection-maisid/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736657"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736657/Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks"><img alt="Research paper thumbnail of Blood vessel segmentation in retinal images using echo state networks" class="work-thumbnail" src="https://attachments.academia-assets.com/115792765/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736657/Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks">Blood vessel segmentation in retinal images using echo state networks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f40f93681e2589e835eb3c01f0bf9c28" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792765,&quot;asset_id&quot;:120736657,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792765/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736657"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736657"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736657; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736657]").text(description); $(".js-view-count[data-work-id=120736657]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736657; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736657']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736657, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f40f93681e2589e835eb3c01f0bf9c28" } } $('.js-work-strip[data-work-id=120736657]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736657,"title":"Blood vessel segmentation in retinal images using echo state networks","translated_title":"","metadata":{"publication_date":{"day":1,"month":2,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736657/Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks","translated_internal_url":"","created_at":"2024-06-08T10:35:03.055-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792765/thumbnails/1.jpg","file_name":"ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks.pdf","download_url":"https://www.academia.edu/attachments/115792765/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Blood_vessel_segmentation_in_retinal_ima.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792765/ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks-libre.pdf?1717870273=\u0026response-content-disposition=attachment%3B+filename%3DBlood_vessel_segmentation_in_retinal_ima.pdf\u0026Expires=1732541227\u0026Signature=HZ61dMrmCQmcKokJwRE60ewcDaJnLKqwraanVZ4b5DQ1lVHRHBe8O6exkay9TWWlW5sqAm0geIXtZp03EsxqHE37CCZp56~IZ9E4SR-zuok4dYqavj49GXO4QjzY7PFnOGLA7JRonUHzQcGX2AWPbgMSBy2dKmeBQXnkdob6kKLNVBJEhj4-Zj04AfP6kpJKSbh44AMYqd826EkV~2s8w1PzN4mCYOayKzvt0GslCurqk-TxqV2tIauM79pdPDAgzN6hD3rXYXtqY9KTZou-1oCwQcZhpxkJDzHNGs8oxwt8mK-cC7y27MMJ3OZETKF-ENZ5YCjoQagPgLpIpEQiQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792765/thumbnails/1.jpg","file_name":"ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks.pdf","download_url":"https://www.academia.edu/attachments/115792765/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Blood_vessel_segmentation_in_retinal_ima.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792765/ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks-libre.pdf?1717870273=\u0026response-content-disposition=attachment%3B+filename%3DBlood_vessel_segmentation_in_retinal_ima.pdf\u0026Expires=1732541227\u0026Signature=HZ61dMrmCQmcKokJwRE60ewcDaJnLKqwraanVZ4b5DQ1lVHRHBe8O6exkay9TWWlW5sqAm0geIXtZp03EsxqHE37CCZp56~IZ9E4SR-zuok4dYqavj49GXO4QjzY7PFnOGLA7JRonUHzQcGX2AWPbgMSBy2dKmeBQXnkdob6kKLNVBJEhj4-Zj04AfP6kpJKSbh44AMYqd826EkV~2s8w1PzN4mCYOayKzvt0GslCurqk-TxqV2tIauM79pdPDAgzN6hD3rXYXtqY9KTZou-1oCwQcZhpxkJDzHNGs8oxwt8mK-cC7y27MMJ3OZETKF-ENZ5YCjoQagPgLpIpEQiQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision"},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing"},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence"},{"id":93217,"name":"Segmentation","url":"https://www.academia.edu/Documents/in/Segmentation"},{"id":177908,"name":"Retinal","url":"https://www.academia.edu/Documents/in/Retinal"},{"id":1192696,"name":"G","url":"https://www.academia.edu/Documents/in/G"}],"urls":[{"id":42768096,"url":"https://pure.ulster.ac.uk/ws/files/11571684/ICACI%2017%20-%20Blood%20vessel%20segmentation%20in%20retinal%20images%20using%20echo%20state%20networks.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736655"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736655/Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals"><img alt="Research paper thumbnail of Control of Nosocomial Infections by Data Mining - TI Journals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736655/Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals">Control of Nosocomial Infections by Data Mining - TI Journals</a></div><div class="wp-workCard_item"><span>World Applied Programming</span><span>, Nov 23, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: These last 15 years have been rich in publishing high quality scientific studies evalua...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: These last 15 years have been rich in publishing high quality scientific studies evaluating the effectiveness of measures to prevent nosocomial infections, particularly in intensive care unit (ICU), comparison of the results of these studies and practices in intensive care units can now to better define a program for preventing nosocomial infections to develop in these services. Focused on managing the risk of infection and prevention of nosocomial infections, our study, using tools that use data mining methods, together proposals for how well resuscitation. Among the techniques we use in data mining classification, neural networks and decision trees that also use the description used for prevention or for the unsupervised classification and clustering, we estimate we have for the rules Association. These techniques are used with several algorithms that give different results and which are distinguished from each other.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736655"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736655"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736655; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736655]").text(description); $(".js-view-count[data-work-id=120736655]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736655; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736655']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736655, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736655]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736655,"title":"Control of Nosocomial Infections by Data Mining - TI Journals","translated_title":"","metadata":{"abstract":"Abstract: These last 15 years have been rich in publishing high quality scientific studies evaluating the effectiveness of measures to prevent nosocomial infections, particularly in intensive care unit (ICU), comparison of the results of these studies and practices in intensive care units can now to better define a program for preventing nosocomial infections to develop in these services. Focused on managing the risk of infection and prevention of nosocomial infections, our study, using tools that use data mining methods, together proposals for how well resuscitation. Among the techniques we use in data mining classification, neural networks and decision trees that also use the description used for prevention or for the unsupervised classification and clustering, we estimate we have for the rules Association. These techniques are used with several algorithms that give different results and which are distinguished from each other.","publisher":"TI Journals","publication_date":{"day":23,"month":11,"year":2012,"errors":{}},"publication_name":"World Applied Programming"},"translated_abstract":"Abstract: These last 15 years have been rich in publishing high quality scientific studies evaluating the effectiveness of measures to prevent nosocomial infections, particularly in intensive care unit (ICU), comparison of the results of these studies and practices in intensive care units can now to better define a program for preventing nosocomial infections to develop in these services. Focused on managing the risk of infection and prevention of nosocomial infections, our study, using tools that use data mining methods, together proposals for how well resuscitation. Among the techniques we use in data mining classification, neural networks and decision trees that also use the description used for prevention or for the unsupervised classification and clustering, we estimate we have for the rules Association. These techniques are used with several algorithms that give different results and which are distinguished from each other.","internal_url":"https://www.academia.edu/120736655/Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals","translated_internal_url":"","created_at":"2024-06-08T10:35:02.677-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"},{"id":263029,"name":"Intensive Care Unit","url":"https://www.academia.edu/Documents/in/Intensive_Care_Unit"}],"urls":[{"id":42768095,"url":"http://www.waprogramming.com/papers/50af655257d8f7.64063909.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736654/Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_"><img alt="Research paper thumbnail of Third International Conference on Soft Computing, Artificial Intelligence (SAI-2014)" class="work-thumbnail" src="https://attachments.academia-assets.com/115792763/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736654/Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_">Third International Conference on Soft Computing, Artificial Intelligence (SAI-2014)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9aa25de51dc456b58f7608399e8d16de" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792763,&quot;asset_id&quot;:120736654,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792763/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736654]").text(description); $(".js-view-count[data-work-id=120736654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9aa25de51dc456b58f7608399e8d16de" } } $('.js-work-strip[data-work-id=120736654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736654,"title":"Third International Conference on Soft Computing, Artificial Intelligence (SAI-2014)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736654/Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_","translated_internal_url":"","created_at":"2024-06-08T10:35:02.466-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792763/thumbnails/1.jpg","file_name":"toc429.pdf","download_url":"https://www.academia.edu/attachments/115792763/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Third_International_Conference_on_Soft_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792763/toc429-libre.pdf?1717870254=\u0026response-content-disposition=attachment%3B+filename%3DThird_International_Conference_on_Soft_C.pdf\u0026Expires=1732541227\u0026Signature=XMweWoucGl7j66N8-h0wEi8BlQbANKibytGiMBiqCfTT1QDqXqoii8ySSQagc9l-FByvIDlMiqvWZZ19-EuuAa5lS4IBtIrvJpQTuW84yDw7UjOX1mFif97c6HXZTujD5nmtBZG6mhj3rmVGNcvTcRBlhIX2QeBqXnXfF98AGkTj4Wrd6kB5K0MV2JWbUflHLVQP0SUyEnI3a5lcBrCg4Jb3AEmsw3hm3sYpT5IQ2yVpDGTeLqykXhh8zTrKRSR2D6kkpqHxwG48FL5rfw8~f7wQ~iRm8cw~8TA4~IHQgpt84m-8eVWhc2nzHHxJbcdIOB-jNF5X0WCFgMuYmS1pPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792763/thumbnails/1.jpg","file_name":"toc429.pdf","download_url":"https://www.academia.edu/attachments/115792763/download_file?st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Third_International_Conference_on_Soft_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792763/toc429-libre.pdf?1717870254=\u0026response-content-disposition=attachment%3B+filename%3DThird_International_Conference_on_Soft_C.pdf\u0026Expires=1732541227\u0026Signature=XMweWoucGl7j66N8-h0wEi8BlQbANKibytGiMBiqCfTT1QDqXqoii8ySSQagc9l-FByvIDlMiqvWZZ19-EuuAa5lS4IBtIrvJpQTuW84yDw7UjOX1mFif97c6HXZTujD5nmtBZG6mhj3rmVGNcvTcRBlhIX2QeBqXnXfF98AGkTj4Wrd6kB5K0MV2JWbUflHLVQP0SUyEnI3a5lcBrCg4Jb3AEmsw3hm3sYpT5IQ2yVpDGTeLqykXhh8zTrKRSR2D6kkpqHxwG48FL5rfw8~f7wQ~iRm8cw~8TA4~IHQgpt84m-8eVWhc2nzHHxJbcdIOB-jNF5X0WCFgMuYmS1pPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":115792764,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792764/thumbnails/1.jpg","file_name":"toc429.pdf","download_url":"https://www.academia.edu/attachments/115792764/download_file","bulk_download_file_name":"Third_International_Conference_on_Soft_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792764/toc429-libre.pdf?1717870255=\u0026response-content-disposition=attachment%3B+filename%3DThird_International_Conference_on_Soft_C.pdf\u0026Expires=1732541227\u0026Signature=EkBNfbF9ZeFDXlf5P50MWnSJAZpI654ZqWZfTiQYf9mOEmfFA~KiMkQxY1DbMAqt6UyzpBSHAvxQ-mSDhKGkdLyEY4WKcM4oVV0NvbzZPUmvUle0fyN8P5awO3hKvgXsJQH45bqGf5BPuolrNd9-XBsJLtoCUmd-K1Yaz-4anvmf1kkKRPOBwJM44dJ822HGltJ-dpyxlCnau9P0R~9-6JuYccn2iohIXgJXC2U3dstsqD9x8qLqmznLSwwD7O740UqPH0aYXOdZN5iWtirLfpIiZF6bPNM3ru3G7g16T1xE~FzMCetteJMH8ozJGO9OzgCkCiGRCYsOaT~yKREFfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing"}],"urls":[{"id":42768094,"url":"https://airccse.org/toc429.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736653/Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining"><img alt="Research paper thumbnail of Symbolic interpretation of artificial neural networks based on multiobjective genetic algorithms and association rules mining" class="work-thumbnail" src="https://attachments.academia-assets.com/115792811/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736653/Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining">Symbolic interpretation of artificial neural networks based on multiobjective genetic algorithms and association rules mining</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, Nov 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="39bf534c011741ea67b2c34dbc6822c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792811,&quot;asset_id&quot;:120736653,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792811/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736653]").text(description); $(".js-view-count[data-work-id=120736653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "39bf534c011741ea67b2c34dbc6822c7" } } $('.js-work-strip[data-work-id=120736653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736653,"title":"Symbolic interpretation of artificial neural networks based on multiobjective genetic algorithms and association rules mining","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Hybrid Intelligent Systems that combine knowledge-based and artificial neural network systems typically have four phases involving domain knowledge representation, mapping of this knowledge into an initial connectionist architecture, network training, and rule extraction, respectively. The final phase is important because it can provide a trained connectionist architecture with explanation power and validate its output decisions. Moreover, it can be used to refine and maintain the initial knowledge acquired from domain experts. In this paper, we present three rule-extraction techniques. The first technique extracts a set of binary rules from any type of neural network. The other two techniques are specific to feedforward networks, with a single hidden layer of sigmoidal units. Technique 2 extracts partial rules that represent the most important embedded knowledge with an adjustable level of detail, while the third technique provides a more comprehensive and universal approach. A rule-evaluation technique, which orders extracted rules based on three performance measures, is then proposed. The three techniques area applied to the iris and breast cancer data sets. The extracted rules are evaluated qualitatively and quantitatively, and are compared with those obtained by other approaches.","publication_date":{"day":1,"month":11,"year":2018,"errors":{}},"publication_name":"Applied Soft Computing","grobid_abstract_attachment_id":115792811},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736653/Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining","translated_internal_url":"","created_at":"2024-06-08T10:35:02.224-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792811/thumbnails/1.jpg","file_name":"69.77410320240608-1-mn3ht6.pdf","download_url":"https://www.academia.edu/attachments/115792811/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_interpretation_of_artificial_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792811/69.77410320240608-1-mn3ht6-libre.pdf?1717870258=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_interpretation_of_artificial_ne.pdf\u0026Expires=1732541227\u0026Signature=MUtxoiX9FLPNj4EYbY6OeBJjqT~PT30qZQA0GNIV4AmESFP-SvtX~9gq0gd5TBlT7~cYylSZUVlOL~V5i2RpS-3iAbifkhjVonLqsaXQNWlzq9KhB3cdbjETMiMQ2xPmJeWE4hH~3p80jHtX9LSoc72a3V1O2-kRL6Ejg4FgUvVEDnzO5dywCqHIoiw1o0IWqDIvmUku6jjsdm~vTw-fyZ~PaJ3x5sRI1ZplVUo1YPXv~7z1XycrPLJCV42vjEdBFhBT1QNpuaEzv7tChBX4SKQTfyb2CCiw7bQh90UdI0im8otU81k-9DJZbMmSwMxYzQY4RTwY22UoCTT8~DjxHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792811/thumbnails/1.jpg","file_name":"69.77410320240608-1-mn3ht6.pdf","download_url":"https://www.academia.edu/attachments/115792811/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_interpretation_of_artificial_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792811/69.77410320240608-1-mn3ht6-libre.pdf?1717870258=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_interpretation_of_artificial_ne.pdf\u0026Expires=1732541227\u0026Signature=MUtxoiX9FLPNj4EYbY6OeBJjqT~PT30qZQA0GNIV4AmESFP-SvtX~9gq0gd5TBlT7~cYylSZUVlOL~V5i2RpS-3iAbifkhjVonLqsaXQNWlzq9KhB3cdbjETMiMQ2xPmJeWE4hH~3p80jHtX9LSoc72a3V1O2-kRL6Ejg4FgUvVEDnzO5dywCqHIoiw1o0IWqDIvmUku6jjsdm~vTw-fyZ~PaJ3x5sRI1ZplVUo1YPXv~7z1XycrPLJCV42vjEdBFhBT1QNpuaEzv7tChBX4SKQTfyb2CCiw7bQh90UdI0im8otU81k-9DJZbMmSwMxYzQY4RTwY22UoCTT8~DjxHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":3077466,"name":"Association Rule Learning","url":"https://www.academia.edu/Documents/in/Association_Rule_Learning"}],"urls":[{"id":42768093,"url":"https://doi.org/10.1016/j.asoc.2018.08.007"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736652/Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems"><img alt="Research paper thumbnail of Fusion of Direct Probabilistic Multi-Class Support Vector Machines to Enhance Mental Tasks Recognition Performance in BCI Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736652/Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems">Fusion of Direct Probabilistic Multi-Class Support Vector Machines to Enhance Mental Tasks Recognition Performance in BCI Systems</a></div><div class="wp-workCard_item"><span>International Journal on Communications Antenna and Propagation</span><span>, Oct 31, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736652]").text(description); $(".js-view-count[data-work-id=120736652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736652,"title":"Fusion of Direct Probabilistic Multi-Class Support Vector Machines to Enhance Mental Tasks Recognition Performance in BCI Systems","translated_title":"","metadata":{"publisher":"Praise Worthy Prize, s.r.l.","publication_date":{"day":31,"month":10,"year":2018,"errors":{}},"publication_name":"International Journal on Communications Antenna and Propagation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736652/Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems","translated_internal_url":"","created_at":"2024-06-08T10:35:01.962-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":11880,"name":"Brain Computer Interface","url":"https://www.academia.edu/Documents/in/Brain_Computer_Interface"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine"}],"urls":[{"id":42768092,"url":"https://doi.org/10.15866/irecap.v8i5.14068"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736650/Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine"><img alt="Research paper thumbnail of Optimization of Medical Data Transfer from the MIT-BIH Arrhythmia Database to the Learning Machine" class="work-thumbnail" src="https://attachments.academia-assets.com/115792804/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736650/Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine">Optimization of Medical Data Transfer from the MIT-BIH Arrhythmia Database to the Learning Machine</a></div><div class="wp-workCard_item"><span>US-China education review</span><span>, Oct 28, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6bb455ccc1cf8808fe2f658d0b3e815" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792804,&quot;asset_id&quot;:120736650,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792804/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736650]").text(description); $(".js-view-count[data-work-id=120736650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6bb455ccc1cf8808fe2f658d0b3e815" } } $('.js-work-strip[data-work-id=120736650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736650,"title":"Optimization of Medical Data Transfer from the MIT-BIH Arrhythmia Database to the Learning Machine","translated_title":"","metadata":{"publisher":"David Publishing Company","grobid_abstract":"Cardiovascular disease is a major public health problem and the leading cause of death in the world. An electrocardiogram (ECG) is a recording of the electrical activity of the heart as a function of time. Due to the speed of implementation, efficiency and especially reliability for diagnosis, the ECG plays an important role in monitoring and diagnosing patients today. The ECG is only effective when it is recorded over a long time. The analysis of such a recording requires methods of parameter optimization and automatic classification of heartbeats. In this paper, a genetic algorithm is used to optimize the ECG signal. The proposed method is able to optimize the ECG data and exceeds the result of related works which proves its effectiveness in ECG arrhythmias detection.","publication_date":{"day":28,"month":10,"year":2017,"errors":{}},"publication_name":"US-China education review","grobid_abstract_attachment_id":115792804},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736650/Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine","translated_internal_url":"","created_at":"2024-06-08T10:35:00.257-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792804/thumbnails/1.jpg","file_name":"0b83acead37ca48d39c08f6d80051452d22e.pdf","download_url":"https://www.academia.edu/attachments/115792804/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimization_of_Medical_Data_Transfer_fr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792804/0b83acead37ca48d39c08f6d80051452d22e-libre.pdf?1717870251=\u0026response-content-disposition=attachment%3B+filename%3DOptimization_of_Medical_Data_Transfer_fr.pdf\u0026Expires=1732541228\u0026Signature=estJIDsIls8v0od5feTTnNOvbyLucmIwlLFTA7BYZ49xE1J0vT0ppvBqf0GDSPkCFFlvwOWsw4zG3-qd2x-uITNcU8YCNgVRyMmSodMdrY0OO8TJJQoyZmN88-kdczOL6uXDic4qMI2HqiWYocx~pmovwp9AsDM90QFWkRUiKJMsIJRBaIFvSGeo5eiWiI~T5iY3UNzUP~LNgyywejFkU0J6eFymO4A39gfh8dCeq-csnxRWlDAdGYzAUeCcriP-Jfrraw7nY0NKwcfUqkQmdtqQSdlKl18WgR~HONYWrRKe~qdfueQCxO7lNjZ3rtUBZeGx0gH7iV5UjSlERQ8hww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792804/thumbnails/1.jpg","file_name":"0b83acead37ca48d39c08f6d80051452d22e.pdf","download_url":"https://www.academia.edu/attachments/115792804/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimization_of_Medical_Data_Transfer_fr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792804/0b83acead37ca48d39c08f6d80051452d22e-libre.pdf?1717870251=\u0026response-content-disposition=attachment%3B+filename%3DOptimization_of_Medical_Data_Transfer_fr.pdf\u0026Expires=1732541228\u0026Signature=estJIDsIls8v0od5feTTnNOvbyLucmIwlLFTA7BYZ49xE1J0vT0ppvBqf0GDSPkCFFlvwOWsw4zG3-qd2x-uITNcU8YCNgVRyMmSodMdrY0OO8TJJQoyZmN88-kdczOL6uXDic4qMI2HqiWYocx~pmovwp9AsDM90QFWkRUiKJMsIJRBaIFvSGeo5eiWiI~T5iY3UNzUP~LNgyywejFkU0J6eFymO4A39gfh8dCeq-csnxRWlDAdGYzAUeCcriP-Jfrraw7nY0NKwcfUqkQmdtqQSdlKl18WgR~HONYWrRKe~qdfueQCxO7lNjZ3rtUBZeGx0gH7iV5UjSlERQ8hww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":596862,"name":"Transfer of Learning","url":"https://www.academia.edu/Documents/in/Transfer_of_Learning"}],"urls":[{"id":42768091,"url":"https://doi.org/10.17265/2161-6248/2017.10.004"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736649/Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_"><img alt="Research paper thumbnail of Corrigendum to “Kernel-based learning and feature selection analysis for cancer diagnosis” [Appl. Soft Comput. 51 (2017) 39–48]" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736649/Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_">Corrigendum to “Kernel-based learning and feature selection analysis for cancer diagnosis” [Appl. Soft Comput. 51 (2017) 39–48]</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, Mar 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736649]").text(description); $(".js-view-count[data-work-id=120736649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736649, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736649,"title":"Corrigendum to “Kernel-based learning and feature selection analysis for cancer diagnosis” [Appl. Soft Comput. 51 (2017) 39–48]","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":3,"year":2023,"errors":{}},"publication_name":"Applied Soft Computing"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736649/Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_","translated_internal_url":"","created_at":"2024-06-08T10:35:00.029-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"}],"urls":[{"id":42768089,"url":"https://doi.org/10.1016/j.asoc.2023.110098"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736648"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736648/Une_approche_%C3%A9volutionnaire_multi_contraintes_pour_loptimisation_de_la_g%C3%A9n%C3%A9ration_automatique_demplois_du_temps_universitaires"><img alt="Research paper thumbnail of Une approche évolutionnaire multi-contraintes pour l&#39;optimisation de la génération automatique d&#39;emplois du temps universitaires" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736648/Une_approche_%C3%A9volutionnaire_multi_contraintes_pour_loptimisation_de_la_g%C3%A9n%C3%A9ration_automatique_demplois_du_temps_universitaires">Une approche évolutionnaire multi-contraintes pour l&#39;optimisation de la génération automatique d&#39;emplois du temps universitaires</a></div><div class="wp-workCard_item"><span>HAL (Le Centre pour la Communication Scientifique Directe)</span><span>, Jun 1, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736648"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736648"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736648; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736648]").text(description); $(".js-view-count[data-work-id=120736648]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736648; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736648']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736648, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736648]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736648,"title":"Une approche évolutionnaire multi-contraintes pour l'optimisation de la génération automatique d'emplois du temps universitaires","translated_title":"","metadata":{"publisher":"Le Centre pour la Communication Scientifique Directe","publication_date":{"day":1,"month":6,"year":2015,"errors":{}},"publication_name":"HAL (Le Centre pour la Communication Scientifique Directe)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736648/Une_approche_%C3%A9volutionnaire_multi_contraintes_pour_loptimisation_de_la_g%C3%A9n%C3%A9ration_automatique_demplois_du_temps_universitaires","translated_internal_url":"","created_at":"2024-06-08T10:34:59.811-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Une_approche_évolutionnaire_multi_contraintes_pour_loptimisation_de_la_génération_automatique_demplois_du_temps_universitaires","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":42768088,"url":"https://hal.archives-ouvertes.fr/hal-01198440"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736646"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736646/Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification"><img alt="Research paper thumbnail of Hybrid self organizing map and probabilistic quadratic loss multi-class support vector machine for mental tasks classification" class="work-thumbnail" src="https://attachments.academia-assets.com/115792798/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736646/Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification">Hybrid self organizing map and probabilistic quadratic loss multi-class support vector machine for mental tasks classification</a></div><div class="wp-workCard_item"><span>Informatics in Medicine Unlocked</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d129407a38d745e5d1bfc7d2335e80e5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792798,&quot;asset_id&quot;:120736646,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792798/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736646"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736646"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736646; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736646]").text(description); $(".js-view-count[data-work-id=120736646]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736646; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736646']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736646, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d129407a38d745e5d1bfc7d2335e80e5" } } $('.js-work-strip[data-work-id=120736646]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736646,"title":"Hybrid self organizing map and probabilistic quadratic loss multi-class support vector machine for mental tasks classification","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Informatics in Medicine Unlocked"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736646/Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification","translated_internal_url":"","created_at":"2024-06-08T10:34:59.560-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792798,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792798/thumbnails/1.jpg","file_name":"82170486.pdf","download_url":"https://www.academia.edu/attachments/115792798/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_self_organizing_map_and_probabili.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792798/82170486-libre.pdf?1717870260=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_self_organizing_map_and_probabili.pdf\u0026Expires=1732541228\u0026Signature=hIolILSP9AkwNJBl4iDOkTCHif8ItCmhYX8aIh78xOJ0BzBVLDB-xmqWKpF2muxm4OccVzAFOP3JoqW6jxnOAZlhNQg03LhicyEqKJUqVz8eqpLfvpBUDFra0LEqFkC8LhJqll8Zyfs8~YmXQQQyBDICoitZWO2WnB6MFg64HZd70ERSJmkqMDfqOhAg5PruuQVsQpZqPlOtp0c7JW0SjNbypQ16S8wzpFZmcY9RxrBWg~QC2ZbAUsvno9mYpRh6JH~7HXfJloSs-nrhfvZ-R7heODLVTK~84oVh1RDXVntCVQ4v2AuorQOUYjaovRVPA2erJyE8TOyZKPgEEBhH7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792798,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792798/thumbnails/1.jpg","file_name":"82170486.pdf","download_url":"https://www.academia.edu/attachments/115792798/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_self_organizing_map_and_probabili.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792798/82170486-libre.pdf?1717870260=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_self_organizing_map_and_probabili.pdf\u0026Expires=1732541228\u0026Signature=hIolILSP9AkwNJBl4iDOkTCHif8ItCmhYX8aIh78xOJ0BzBVLDB-xmqWKpF2muxm4OccVzAFOP3JoqW6jxnOAZlhNQg03LhicyEqKJUqVz8eqpLfvpBUDFra0LEqFkC8LhJqll8Zyfs8~YmXQQQyBDICoitZWO2WnB6MFg64HZd70ERSJmkqMDfqOhAg5PruuQVsQpZqPlOtp0c7JW0SjNbypQ16S8wzpFZmcY9RxrBWg~QC2ZbAUsvno9mYpRh6JH~7HXfJloSs-nrhfvZ-R7heODLVTK~84oVh1RDXVntCVQ4v2AuorQOUYjaovRVPA2erJyE8TOyZKPgEEBhH7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":11880,"name":"Brain Computer Interface","url":"https://www.academia.edu/Documents/in/Brain_Computer_Interface"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine"},{"id":2323255,"name":"Self Organizing Map","url":"https://www.academia.edu/Documents/in/Self_Organizing_Map"}],"urls":[{"id":42768087,"url":"https://doi.org/10.1016/j.imu.2016.09.001"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736645"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736645/Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification"><img alt="Research paper thumbnail of Cross-Validation Probabilistic Neural Network Based Face Identification" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736645/Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification">Cross-Validation Probabilistic Neural Network Based Face Identification</a></div><div class="wp-workCard_item"><span>Journal of Information Processing Systems</span><span>, Oct 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736645"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736645"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736645; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736645]").text(description); $(".js-view-count[data-work-id=120736645]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736645; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736645']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736645, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736645]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736645,"title":"Cross-Validation Probabilistic Neural Network Based Face Identification","translated_title":"","metadata":{"publisher":"Korea Information Processing Society","publication_date":{"day":1,"month":10,"year":2018,"errors":{}},"publication_name":"Journal of Information Processing Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736645/Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification","translated_internal_url":"","created_at":"2024-06-08T10:34:58.761-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network"}],"urls":[{"id":42768086,"url":"http://jips-k.org/q.jips?pn=594"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12738117" id="papers"><div class="js-work-strip profile--work_container" data-work-id="120863205"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120863205/Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling"><img alt="Research paper thumbnail of Textual Data Selection based on Mean Square Difference Probability for Language Modeling" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120863205/Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling">Textual Data Selection based on Mean Square Difference Probability for Language Modeling</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120863205"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120863205"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120863205; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120863205]").text(description); $(".js-view-count[data-work-id=120863205]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120863205; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120863205']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120863205, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120863205]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120863205,"title":"Textual Data Selection based on Mean Square Difference Probability for Language Modeling","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2018,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120863205/Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling","translated_internal_url":"","created_at":"2024-06-11T03:22:07.273-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Textual_Data_Selection_based_on_Mean_Square_Difference_Probability_for_Language_Modeling","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120863204"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120863204/The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition"><img alt="Research paper thumbnail of The Incremental Artificial Immune System for Arabic Handwritten Recognition" class="work-thumbnail" src="https://attachments.academia-assets.com/115881026/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120863204/The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition">The Incremental Artificial Immune System for Arabic Handwritten Recognition</a></div><div class="wp-workCard_item"><span>Journal of Information Technology Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The historical document is a treasure. The frequent use of these documents requires having a nume...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The historical document is a treasure. The frequent use of these documents requires having a numeric copy. The use of these numeric documents requires developing techniques to facilitate their use. The search by content, the word spotting, and handwriting recognition became important points of research in document analysis. For this purpose, in this article is covered the recognition of the Arabic manuscript names extracted from the register of names of the Tunisian national archive. In the study, the authors have used several techniques for extracting knowledge, coding, and name recognition. The authors have also optimized the clonclas algorithm using the incremental principle from the i2gng algorithm. The results encourage continuing exploration.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f6ffab72bfb808ab16a26da5adbd9b5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115881026,&quot;asset_id&quot;:120863204,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115881026/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120863204"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120863204"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120863204; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120863204]").text(description); $(".js-view-count[data-work-id=120863204]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120863204; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120863204']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120863204, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f6ffab72bfb808ab16a26da5adbd9b5f" } } $('.js-work-strip[data-work-id=120863204]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120863204,"title":"The Incremental Artificial Immune System for Arabic Handwritten Recognition","translated_title":"","metadata":{"abstract":"The historical document is a treasure. The frequent use of these documents requires having a numeric copy. The use of these numeric documents requires developing techniques to facilitate their use. The search by content, the word spotting, and handwriting recognition became important points of research in document analysis. For this purpose, in this article is covered the recognition of the Arabic manuscript names extracted from the register of names of the Tunisian national archive. In the study, the authors have used several techniques for extracting knowledge, coding, and name recognition. The authors have also optimized the clonclas algorithm using the incremental principle from the i2gng algorithm. The results encourage continuing exploration.","publisher":"IGI Global","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Information Technology Research"},"translated_abstract":"The historical document is a treasure. The frequent use of these documents requires having a numeric copy. The use of these numeric documents requires developing techniques to facilitate their use. The search by content, the word spotting, and handwriting recognition became important points of research in document analysis. For this purpose, in this article is covered the recognition of the Arabic manuscript names extracted from the register of names of the Tunisian national archive. In the study, the authors have used several techniques for extracting knowledge, coding, and name recognition. The authors have also optimized the clonclas algorithm using the incremental principle from the i2gng algorithm. The results encourage continuing exploration.","internal_url":"https://www.academia.edu/120863204/The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition","translated_internal_url":"","created_at":"2024-06-11T03:22:07.070-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115881026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115881026/thumbnails/1.jpg","file_name":"viewtitlesample.pdf","download_url":"https://www.academia.edu/attachments/115881026/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Incremental_Artificial_Immune_System.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115881026/viewtitlesample-libre.pdf?1718103131=\u0026response-content-disposition=attachment%3B+filename%3DThe_Incremental_Artificial_Immune_System.pdf\u0026Expires=1732541227\u0026Signature=KnrEczlpfusvkuxm6DVyDMlhxGsNDaRY3MXf6f6dTpHfvDtU7Y~hvWmo9e4fcErh3GbpclUT5aCha3vTFY6M0ecSo26Eoo1TGmdCGjPoTs8WQlOVKmcaVeh1l9gpuWzcGDt1pJar54ZTgD-0DImkvJcyIH1rj5OdY5Mxls32-LZ6AkLYjhwdS1N-8Dsqpzgu3BPhRyFD-d9QMoI5II-qexuKXk2N8p9W8kSJ62cUizn5tIxcUPafNwj1fpmLQ4MkgCAQwUEJ-d~aLMJA-MlAkAX~jhCI1VDqd9Am3YOCNKojHv796R3E88wjFnfZmKh0ZPl8dHBHgHAJztxTmT2u1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_Incremental_Artificial_Immune_System_for_Arabic_Handwritten_Recognition","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115881026,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115881026/thumbnails/1.jpg","file_name":"viewtitlesample.pdf","download_url":"https://www.academia.edu/attachments/115881026/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_Incremental_Artificial_Immune_System.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115881026/viewtitlesample-libre.pdf?1718103131=\u0026response-content-disposition=attachment%3B+filename%3DThe_Incremental_Artificial_Immune_System.pdf\u0026Expires=1732541227\u0026Signature=KnrEczlpfusvkuxm6DVyDMlhxGsNDaRY3MXf6f6dTpHfvDtU7Y~hvWmo9e4fcErh3GbpclUT5aCha3vTFY6M0ecSo26Eoo1TGmdCGjPoTs8WQlOVKmcaVeh1l9gpuWzcGDt1pJar54ZTgD-0DImkvJcyIH1rj5OdY5Mxls32-LZ6AkLYjhwdS1N-8Dsqpzgu3BPhRyFD-d9QMoI5II-qexuKXk2N8p9W8kSJ62cUizn5tIxcUPafNwj1fpmLQ4MkgCAQwUEJ-d~aLMJA-MlAkAX~jhCI1VDqd9Am3YOCNKojHv796R3E88wjFnfZmKh0ZPl8dHBHgHAJztxTmT2u1Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":491,"name":"Information Technology","url":"https://www.academia.edu/Documents/in/Information_Technology"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":1432,"name":"Natural Language Processing","url":"https://www.academia.edu/Documents/in/Natural_Language_Processing"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":46118,"name":"Handwriting","url":"https://www.academia.edu/Documents/in/Handwriting"},{"id":394043,"name":"Treasure","url":"https://www.academia.edu/Documents/in/Treasure"},{"id":586207,"name":"IGI Global","url":"https://www.academia.edu/Documents/in/IGI_Global"}],"urls":[{"id":42845590,"url":"https://www.igi-global.com/viewtitle.aspx?TitleId=238027"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120863203"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120863203/Recognition_of_Individuals_Based_on_Hand_Geometry"><img alt="Research paper thumbnail of Recognition of Individuals Based on Hand Geometry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120863203/Recognition_of_Individuals_Based_on_Hand_Geometry">Recognition of Individuals Based on Hand Geometry</a></div><div class="wp-workCard_item"><span>World Scientific Proceedings Series on Computer Engineering and Information Science</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120863203"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120863203"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120863203; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120863203]").text(description); $(".js-view-count[data-work-id=120863203]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120863203; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120863203']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120863203, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120863203]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120863203,"title":"Recognition of Individuals Based on Hand Geometry","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"World Scientific Proceedings Series on Computer Engineering and Information Science"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120863203/Recognition_of_Individuals_Based_on_Hand_Geometry","translated_internal_url":"","created_at":"2024-06-11T03:22:05.934-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Recognition_of_Individuals_Based_on_Hand_Geometry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":54418,"name":"Geometry","url":"https://www.academia.edu/Documents/in/Geometry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736666"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736666/%E3%82%AB%E3%83%A9%E3%83%BC%E7%94%BB%E5%83%8F%E3%82%BB%E3%82%B0%E3%83%A1%E3%83%B3%E3%83%86%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E3%82%A8%E3%82%B3%E3%83%BC%E7%8A%B6%E6%85%8B%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%81%AE%E5%AE%9F%E9%A8%93%E7%9A%84%E8%A9%95%E4%BE%A1_Powered_by_NICT_"><img alt="Research paper thumbnail of カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価【Powered by NICT】" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736666/%E3%82%AB%E3%83%A9%E3%83%BC%E7%94%BB%E5%83%8F%E3%82%BB%E3%82%B0%E3%83%A1%E3%83%B3%E3%83%86%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E3%82%A8%E3%82%B3%E3%83%BC%E7%8A%B6%E6%85%8B%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%81%AE%E5%AE%9F%E9%A8%93%E7%9A%84%E8%A9%95%E4%BE%A1_Powered_by_NICT_">カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価【Powered by NICT】</a></div><div class="wp-workCard_item"><span>IEEE Conference Proceedings</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736666"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736666"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736666; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736666]").text(description); $(".js-view-count[data-work-id=120736666]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736666; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736666']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736666, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736666]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736666,"title":"カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価【Powered by NICT】","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"IEEE Conference Proceedings"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736666/%E3%82%AB%E3%83%A9%E3%83%BC%E7%94%BB%E5%83%8F%E3%82%BB%E3%82%B0%E3%83%A1%E3%83%B3%E3%83%86%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E3%82%A8%E3%82%B3%E3%83%BC%E7%8A%B6%E6%85%8B%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%81%AE%E5%AE%9F%E9%A8%93%E7%9A%84%E8%A9%95%E4%BE%A1_Powered_by_NICT_","translated_internal_url":"","created_at":"2024-06-08T10:35:05.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"カラー画像セグメンテーションのためのエコー状態ネットワークの実験的評価_Powered_by_NICT_","translated_slug":"","page_count":null,"language":"ja","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[],"urls":[{"id":42768103,"url":"http://jglobal.jst.go.jp/public/201602280594749440"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736665"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736665/Over_fitting_avoidance_in_probabilistic_neural_networks"><img alt="Research paper thumbnail of Over-fitting avoidance in probabilistic neural networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736665/Over_fitting_avoidance_in_probabilistic_neural_networks">Over-fitting avoidance in probabilistic neural networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The proposed algorithm addresses one of the major drawbacks of probabilistic neural networks, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the new network is compared against performance of standard probabilistic neural networks for different databases from the UCI database repository. Results show an important gain in network size and performance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736665"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736665"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736665; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736665]").text(description); $(".js-view-count[data-work-id=120736665]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736665; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736665']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736665, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736665]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736665,"title":"Over-fitting avoidance in probabilistic neural networks","translated_title":"","metadata":{"abstract":"In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The proposed algorithm addresses one of the major drawbacks of probabilistic neural networks, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the new network is compared against performance of standard probabilistic neural networks for different databases from the UCI database repository. Results show an important gain in network size and performance.","publication_date":{"day":1,"month":6,"year":2015,"errors":{}}},"translated_abstract":"In this work, a new training algorithm for probabilistic neural networks (PNN) is presented. The proposed algorithm addresses one of the major drawbacks of probabilistic neural networks, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the new network is compared against performance of standard probabilistic neural networks for different databases from the UCI database repository. Results show an important gain in network size and performance.","internal_url":"https://www.academia.edu/120736665/Over_fitting_avoidance_in_probabilistic_neural_networks","translated_internal_url":"","created_at":"2024-06-08T10:35:04.915-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Over_fitting_avoidance_in_probabilistic_neural_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":42768102,"url":"https://doi.org/10.1109/wcitca.2015.7367037"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736664/Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets"><img alt="Research paper thumbnail of Contribution to decision-making in the big data industry based on the multiparametric similarity measure for Pythagorean fuzzy sets" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736664/Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets">Contribution to decision-making in the big data industry based on the multiparametric similarity measure for Pythagorean fuzzy sets</a></div><div class="wp-workCard_item"><span>Journal of Logic and Computation</span><span>, Jul 23, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume, Velocity, Variety, Veracity and Value. Big Data is useful to improve decision-making to adjust it better to market demand, specifically selection of supplier that is an important link to optimize the logistic chain of enterprises. In this case, leadership or decider is ahead one serious complex problem, inexact and fuzzy. Pythagorean fuzzy set (PFS) is disposing the indeterminacy data by the membership and the nonmembership functions; it is a generalization of the intuitionist fuzzy set when the last set is limited. First, some results for PFSs are displaying in this study as particular cases and generalization of some binary operations. After, an improved score function of Pythagorean fuzzy number is proposed to avoid the comparison problem in practice. In addition, an existing approach exploring the combined alternatives weight to settle Pythagorean fuzzy issue by multi-parametric similarity measure is applied with the new proposed score function to selection of supplier issue with five serious criteria as a Big Data industry decision-making problem in economic environment. Finally, a comparison of the presented method with some existing approaches has been executed in the light of counterintuitive phenomena for validating its advantages.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736664]").text(description); $(".js-view-count[data-work-id=120736664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736664,"title":"Contribution to decision-making in the big data industry based on the multiparametric similarity measure for Pythagorean fuzzy sets","translated_title":"","metadata":{"abstract":"Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume, Velocity, Variety, Veracity and Value. Big Data is useful to improve decision-making to adjust it better to market demand, specifically selection of supplier that is an important link to optimize the logistic chain of enterprises. In this case, leadership or decider is ahead one serious complex problem, inexact and fuzzy. Pythagorean fuzzy set (PFS) is disposing the indeterminacy data by the membership and the nonmembership functions; it is a generalization of the intuitionist fuzzy set when the last set is limited. First, some results for PFSs are displaying in this study as particular cases and generalization of some binary operations. After, an improved score function of Pythagorean fuzzy number is proposed to avoid the comparison problem in practice. In addition, an existing approach exploring the combined alternatives weight to settle Pythagorean fuzzy issue by multi-parametric similarity measure is applied with the new proposed score function to selection of supplier issue with five serious criteria as a Big Data industry decision-making problem in economic environment. Finally, a comparison of the presented method with some existing approaches has been executed in the light of counterintuitive phenomena for validating its advantages.","publisher":"Oxford University Press","publication_date":{"day":23,"month":7,"year":2022,"errors":{}},"publication_name":"Journal of Logic and Computation"},"translated_abstract":"Big Data allows analysing and assessing all human production types with its 5Vs, which are Volume, Velocity, Variety, Veracity and Value. Big Data is useful to improve decision-making to adjust it better to market demand, specifically selection of supplier that is an important link to optimize the logistic chain of enterprises. In this case, leadership or decider is ahead one serious complex problem, inexact and fuzzy. Pythagorean fuzzy set (PFS) is disposing the indeterminacy data by the membership and the nonmembership functions; it is a generalization of the intuitionist fuzzy set when the last set is limited. First, some results for PFSs are displaying in this study as particular cases and generalization of some binary operations. After, an improved score function of Pythagorean fuzzy number is proposed to avoid the comparison problem in practice. In addition, an existing approach exploring the combined alternatives weight to settle Pythagorean fuzzy issue by multi-parametric similarity measure is applied with the new proposed score function to selection of supplier issue with five serious criteria as a Big Data industry decision-making problem in economic environment. Finally, a comparison of the presented method with some existing approaches has been executed in the light of counterintuitive phenomena for validating its advantages.","internal_url":"https://www.academia.edu/120736664/Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets","translated_internal_url":"","created_at":"2024-06-08T10:35:04.647-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contribution_to_decision_making_in_the_big_data_industry_based_on_the_multiparametric_similarity_measure_for_Pythagorean_fuzzy_sets","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4165,"name":"Fuzzy Logic","url":"https://www.academia.edu/Documents/in/Fuzzy_Logic"},{"id":54284,"name":"Generalization","url":"https://www.academia.edu/Documents/in/Generalization"},{"id":75000,"name":"Philosophy and Religious Studies","url":"https://www.academia.edu/Documents/in/Philosophy_and_Religious_Studies"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[{"id":42768101,"url":"https://doi.org/10.1093/logcom/exac046"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736663"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736663/New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus"><img alt="Research paper thumbnail of New Contribution to Adaptive Temporal Radial Basis Function Applied on TIMIT Corpus" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736663/New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus">New Contribution to Adaptive Temporal Radial Basis Function Applied on TIMIT Corpus</a></div><div class="wp-workCard_item"><span>International Conference on Cognitive Modelling</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Introduction A successful speech recognition system has to determine features not only present in...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Introduction A successful speech recognition system has to determine features not only present in the input pattern at one point in time, but also features of input pattern changing over time ( e.g., Berthold, 1994; Benyettou, 1995). In network design, great importance must be attributed to correct choice of the number of hidden neurons, which helps avoiding problems of overfitting and contributes to reduce the time required for the training without significantly affecting the network performances (e.g., Colla &amp;amp; Reyneri &amp;amp; Sgarbi, 1999), but never looking to architecture adapting effect according to input. The goal to combine the approach of the RBF with the shift invariance features of the TDNN, can be get a new robust model, this is named temporal radial basis function “TRBF” (e.g., Mesbahi &amp;amp; Benyettou, 2003), but to be more efficient, we have adapt these networks so that they come more dynamic according to their behaviour and features of the object has study. It can be goes more clearly in continuous speech. Therefore in object to obtain an Adaptive TRBF, we must adapt the TRBF networks, consequently it was necessary to develop an algorithm that permits to solve this type of problem, this algorithm is called “DOLS” which means Dynamic Orthogonal Least Square, that will be presented in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736663"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736663"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736663; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736663]").text(description); $(".js-view-count[data-work-id=120736663]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736663; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736663']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736663, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736663]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736663,"title":"New Contribution to Adaptive Temporal Radial Basis Function Applied on TIMIT Corpus","translated_title":"","metadata":{"abstract":"Introduction A successful speech recognition system has to determine features not only present in the input pattern at one point in time, but also features of input pattern changing over time ( e.g., Berthold, 1994; Benyettou, 1995). In network design, great importance must be attributed to correct choice of the number of hidden neurons, which helps avoiding problems of overfitting and contributes to reduce the time required for the training without significantly affecting the network performances (e.g., Colla \u0026amp; Reyneri \u0026amp; Sgarbi, 1999), but never looking to architecture adapting effect according to input. The goal to combine the approach of the RBF with the shift invariance features of the TDNN, can be get a new robust model, this is named temporal radial basis function “TRBF” (e.g., Mesbahi \u0026amp; Benyettou, 2003), but to be more efficient, we have adapt these networks so that they come more dynamic according to their behaviour and features of the object has study. It can be goes more clearly in continuous speech. Therefore in object to obtain an Adaptive TRBF, we must adapt the TRBF networks, consequently it was necessary to develop an algorithm that permits to solve this type of problem, this algorithm is called “DOLS” which means Dynamic Orthogonal Least Square, that will be presented in this paper.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"International Conference on Cognitive Modelling"},"translated_abstract":"Introduction A successful speech recognition system has to determine features not only present in the input pattern at one point in time, but also features of input pattern changing over time ( e.g., Berthold, 1994; Benyettou, 1995). In network design, great importance must be attributed to correct choice of the number of hidden neurons, which helps avoiding problems of overfitting and contributes to reduce the time required for the training without significantly affecting the network performances (e.g., Colla \u0026amp; Reyneri \u0026amp; Sgarbi, 1999), but never looking to architecture adapting effect according to input. The goal to combine the approach of the RBF with the shift invariance features of the TDNN, can be get a new robust model, this is named temporal radial basis function “TRBF” (e.g., Mesbahi \u0026amp; Benyettou, 2003), but to be more efficient, we have adapt these networks so that they come more dynamic according to their behaviour and features of the object has study. It can be goes more clearly in continuous speech. Therefore in object to obtain an Adaptive TRBF, we must adapt the TRBF networks, consequently it was necessary to develop an algorithm that permits to solve this type of problem, this algorithm is called “DOLS” which means Dynamic Orthogonal Least Square, that will be presented in this paper.","internal_url":"https://www.academia.edu/120736663/New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus","translated_internal_url":"","created_at":"2024-06-08T10:35:04.425-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_Contribution_to_Adaptive_Temporal_Radial_Basis_Function_Applied_on_TIMIT_Corpus","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":5751,"name":"Radial Basis Function","url":"https://www.academia.edu/Documents/in/Radial_Basis_Function"},{"id":352180,"name":"Overfitting","url":"https://www.academia.edu/Documents/in/Overfitting"}],"urls":[{"id":42768100,"url":"https://dblp.uni-trier.de/db/conf/iccm/iccm2004.html#MesbahiB04"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736662"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736662/The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System"><img alt="Research paper thumbnail of The Cooperation of Immune Agents for Intrusion Detection System" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736662/The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System">The Cooperation of Immune Agents for Intrusion Detection System</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nowadays information technology and communication has evolve, computer networks became vulnerable...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nowadays information technology and communication has evolve, computer networks became vulnerable faced to new forms of threats. In this article, a new model of intrusion detection based on multi-agents system and inspired from the biological immune system is presented. We begin through a presentation of the biological immune systems, followed by immune algorithm, a model of artificial immune system which is integrated in the behavior of distributed agents on the network is proposed in order to ensure a good intrusions detection. The internal structure of the immune agents and their capacity to distinguish between self and not-self is also presented. Agents are able to achieve simultaneous treatments, they are auto-adaptable to environment evolution and have also the property of distributed coordination.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736662"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736662"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736662; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736662]").text(description); $(".js-view-count[data-work-id=120736662]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736662; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736662']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736662, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736662]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736662,"title":"The Cooperation of Immune Agents for Intrusion Detection System","translated_title":"","metadata":{"abstract":"Nowadays information technology and communication has evolve, computer networks became vulnerable faced to new forms of threats. In this article, a new model of intrusion detection based on multi-agents system and inspired from the biological immune system is presented. We begin through a presentation of the biological immune systems, followed by immune algorithm, a model of artificial immune system which is integrated in the behavior of distributed agents on the network is proposed in order to ensure a good intrusions detection. The internal structure of the immune agents and their capacity to distinguish between self and not-self is also presented. Agents are able to achieve simultaneous treatments, they are auto-adaptable to environment evolution and have also the property of distributed coordination.","publication_date":{"day":29,"month":12,"year":2017,"errors":{}}},"translated_abstract":"Nowadays information technology and communication has evolve, computer networks became vulnerable faced to new forms of threats. In this article, a new model of intrusion detection based on multi-agents system and inspired from the biological immune system is presented. We begin through a presentation of the biological immune systems, followed by immune algorithm, a model of artificial immune system which is integrated in the behavior of distributed agents on the network is proposed in order to ensure a good intrusions detection. The internal structure of the immune agents and their capacity to distinguish between self and not-self is also presented. Agents are able to achieve simultaneous treatments, they are auto-adaptable to environment evolution and have also the property of distributed coordination.","internal_url":"https://www.academia.edu/120736662/The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System","translated_internal_url":"","created_at":"2024-06-08T10:35:04.045-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Cooperation_of_Immune_Agents_for_Intrusion_Detection_System","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":320736,"name":"Intrusion Detection System","url":"https://www.academia.edu/Documents/in/Intrusion_Detection_System"}],"urls":[{"id":42768099,"url":"https://doi.org/10.1145/3178264.3178290"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736661/On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks"><img alt="Research paper thumbnail of On-Line Arabic Characters Recognition Using Enhanced Time Delay Neural Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736661/On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks">On-Line Arabic Characters Recognition Using Enhanced Time Delay Neural Networks</a></div><div class="wp-workCard_item"><span>International Journal on Communications Antenna and Propagation</span><span>, Aug 31, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper concerns with the online recognition of isolated hand writing Arabic characters, throu...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper concerns with the online recognition of isolated hand writing Arabic characters, through, the interpretation of a script presented by a pen trajectory.  This technique was generally used in the electronic organizers of Personal Digital Assistant type. First of all, we have built a data base with several scripters using a graphic tablet which will be used in our application. In order to have a precise recognition of the isolated characters, it is important to model their structure the most correctly possible. In this work we present the study, the implementation and the result of the test of a particular neural network which is the Time Delay Neural Networks.  We have followed a two steps approach, in the first one, the character characteristics are extracted, and in the second one, a temporal multi-layered perception is developed for a future classification. Our temporal approach with the adaptive topology, responds to the nature of the Arabic script during the acquisition phase while the use of different learning algorithms can minimize the cost function and improve recognition rates. The parameterization of these two parts will allow us to analyze the impact of the neural network topology on the results of character recognition rates.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736661]").text(description); $(".js-view-count[data-work-id=120736661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736661,"title":"On-Line Arabic Characters Recognition Using Enhanced Time Delay Neural Networks","translated_title":"","metadata":{"abstract":"This paper concerns with the online recognition of isolated hand writing Arabic characters, through, the interpretation of a script presented by a pen trajectory.  This technique was generally used in the electronic organizers of Personal Digital Assistant type. First of all, we have built a data base with several scripters using a graphic tablet which will be used in our application. In order to have a precise recognition of the isolated characters, it is important to model their structure the most correctly possible. In this work we present the study, the implementation and the result of the test of a particular neural network which is the Time Delay Neural Networks.  We have followed a two steps approach, in the first one, the character characteristics are extracted, and in the second one, a temporal multi-layered perception is developed for a future classification. Our temporal approach with the adaptive topology, responds to the nature of the Arabic script during the acquisition phase while the use of different learning algorithms can minimize the cost function and improve recognition rates. The parameterization of these two parts will allow us to analyze the impact of the neural network topology on the results of character recognition rates.","publisher":"Praise Worthy Prize, s.r.l.","publication_date":{"day":31,"month":8,"year":2017,"errors":{}},"publication_name":"International Journal on Communications Antenna and Propagation"},"translated_abstract":"This paper concerns with the online recognition of isolated hand writing Arabic characters, through, the interpretation of a script presented by a pen trajectory.  This technique was generally used in the electronic organizers of Personal Digital Assistant type. First of all, we have built a data base with several scripters using a graphic tablet which will be used in our application. In order to have a precise recognition of the isolated characters, it is important to model their structure the most correctly possible. In this work we present the study, the implementation and the result of the test of a particular neural network which is the Time Delay Neural Networks.  We have followed a two steps approach, in the first one, the character characteristics are extracted, and in the second one, a temporal multi-layered perception is developed for a future classification. Our temporal approach with the adaptive topology, responds to the nature of the Arabic script during the acquisition phase while the use of different learning algorithms can minimize the cost function and improve recognition rates. The parameterization of these two parts will allow us to analyze the impact of the neural network topology on the results of character recognition rates.","internal_url":"https://www.academia.edu/120736661/On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks","translated_internal_url":"","created_at":"2024-06-08T10:35:03.826-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Line_Arabic_Characters_Recognition_Using_Enhanced_Time_Delay_Neural_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3324,"name":"Arabic","url":"https://www.academia.edu/Documents/in/Arabic"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"}],"urls":[{"id":42768098,"url":"https://doi.org/10.15866/irecap.v7i4.13204"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736660"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736660/The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_"><img alt="Research paper thumbnail of The Multi-Agents Immune System for Network Intrusions Detection (MAISID)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736660/The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_">The Multi-Agents Immune System for Network Intrusions Detection (MAISID)</a></div><div class="wp-workCard_item"><span>Oriental journal of computer science and technology</span><span>, Dec 4, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736660"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736660"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736660; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736660]").text(description); $(".js-view-count[data-work-id=120736660]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736660; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736660']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736660, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736660]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736660,"title":"The Multi-Agents Immune System for Network Intrusions Detection (MAISID)","translated_title":"","metadata":{"publisher":"Oriental Scientific Publishing Company","publication_date":{"day":4,"month":12,"year":2013,"errors":{}},"publication_name":"Oriental journal of computer science and technology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736660/The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_","translated_internal_url":"","created_at":"2024-06-08T10:35:03.625-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Multi_Agents_Immune_System_for_Network_Intrusions_Detection_MAISID_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":320736,"name":"Intrusion Detection System","url":"https://www.academia.edu/Documents/in/Intrusion_Detection_System"}],"urls":[{"id":42768097,"url":"https://www.computerscijournal.org/vol6no4/the-multi-agents-immune-system-for-network-intrusions-detection-maisid/"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736657"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736657/Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks"><img alt="Research paper thumbnail of Blood vessel segmentation in retinal images using echo state networks" class="work-thumbnail" src="https://attachments.academia-assets.com/115792765/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736657/Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks">Blood vessel segmentation in retinal images using echo state networks</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f40f93681e2589e835eb3c01f0bf9c28" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792765,&quot;asset_id&quot;:120736657,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792765/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736657"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736657"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736657; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736657]").text(description); $(".js-view-count[data-work-id=120736657]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736657; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736657']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736657, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f40f93681e2589e835eb3c01f0bf9c28" } } $('.js-work-strip[data-work-id=120736657]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736657,"title":"Blood vessel segmentation in retinal images using echo state networks","translated_title":"","metadata":{"publication_date":{"day":1,"month":2,"year":2017,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736657/Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks","translated_internal_url":"","created_at":"2024-06-08T10:35:03.055-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792765/thumbnails/1.jpg","file_name":"ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks.pdf","download_url":"https://www.academia.edu/attachments/115792765/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Blood_vessel_segmentation_in_retinal_ima.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792765/ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks-libre.pdf?1717870273=\u0026response-content-disposition=attachment%3B+filename%3DBlood_vessel_segmentation_in_retinal_ima.pdf\u0026Expires=1732541227\u0026Signature=HZ61dMrmCQmcKokJwRE60ewcDaJnLKqwraanVZ4b5DQ1lVHRHBe8O6exkay9TWWlW5sqAm0geIXtZp03EsxqHE37CCZp56~IZ9E4SR-zuok4dYqavj49GXO4QjzY7PFnOGLA7JRonUHzQcGX2AWPbgMSBy2dKmeBQXnkdob6kKLNVBJEhj4-Zj04AfP6kpJKSbh44AMYqd826EkV~2s8w1PzN4mCYOayKzvt0GslCurqk-TxqV2tIauM79pdPDAgzN6hD3rXYXtqY9KTZou-1oCwQcZhpxkJDzHNGs8oxwt8mK-cC7y27MMJ3OZETKF-ENZ5YCjoQagPgLpIpEQiQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Blood_vessel_segmentation_in_retinal_images_using_echo_state_networks","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792765,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792765/thumbnails/1.jpg","file_name":"ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks.pdf","download_url":"https://www.academia.edu/attachments/115792765/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Blood_vessel_segmentation_in_retinal_ima.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792765/ICACI_2017_20-_20Blood_20vessel_20segmentation_20in_20retinal_20images_20using_20echo_20state_20networks-libre.pdf?1717870273=\u0026response-content-disposition=attachment%3B+filename%3DBlood_vessel_segmentation_in_retinal_ima.pdf\u0026Expires=1732541227\u0026Signature=HZ61dMrmCQmcKokJwRE60ewcDaJnLKqwraanVZ4b5DQ1lVHRHBe8O6exkay9TWWlW5sqAm0geIXtZp03EsxqHE37CCZp56~IZ9E4SR-zuok4dYqavj49GXO4QjzY7PFnOGLA7JRonUHzQcGX2AWPbgMSBy2dKmeBQXnkdob6kKLNVBJEhj4-Zj04AfP6kpJKSbh44AMYqd826EkV~2s8w1PzN4mCYOayKzvt0GslCurqk-TxqV2tIauM79pdPDAgzN6hD3rXYXtqY9KTZou-1oCwQcZhpxkJDzHNGs8oxwt8mK-cC7y27MMJ3OZETKF-ENZ5YCjoQagPgLpIpEQiQw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":854,"name":"Computer Vision","url":"https://www.academia.edu/Documents/in/Computer_Vision"},{"id":1185,"name":"Image Processing","url":"https://www.academia.edu/Documents/in/Image_Processing"},{"id":3521,"name":"Computational Intelligence","url":"https://www.academia.edu/Documents/in/Computational_Intelligence"},{"id":93217,"name":"Segmentation","url":"https://www.academia.edu/Documents/in/Segmentation"},{"id":177908,"name":"Retinal","url":"https://www.academia.edu/Documents/in/Retinal"},{"id":1192696,"name":"G","url":"https://www.academia.edu/Documents/in/G"}],"urls":[{"id":42768096,"url":"https://pure.ulster.ac.uk/ws/files/11571684/ICACI%2017%20-%20Blood%20vessel%20segmentation%20in%20retinal%20images%20using%20echo%20state%20networks.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736655"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736655/Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals"><img alt="Research paper thumbnail of Control of Nosocomial Infections by Data Mining - TI Journals" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736655/Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals">Control of Nosocomial Infections by Data Mining - TI Journals</a></div><div class="wp-workCard_item"><span>World Applied Programming</span><span>, Nov 23, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: These last 15 years have been rich in publishing high quality scientific studies evalua...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: These last 15 years have been rich in publishing high quality scientific studies evaluating the effectiveness of measures to prevent nosocomial infections, particularly in intensive care unit (ICU), comparison of the results of these studies and practices in intensive care units can now to better define a program for preventing nosocomial infections to develop in these services. Focused on managing the risk of infection and prevention of nosocomial infections, our study, using tools that use data mining methods, together proposals for how well resuscitation. Among the techniques we use in data mining classification, neural networks and decision trees that also use the description used for prevention or for the unsupervised classification and clustering, we estimate we have for the rules Association. These techniques are used with several algorithms that give different results and which are distinguished from each other.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736655"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736655"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736655; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736655]").text(description); $(".js-view-count[data-work-id=120736655]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736655; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736655']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736655, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736655]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736655,"title":"Control of Nosocomial Infections by Data Mining - TI Journals","translated_title":"","metadata":{"abstract":"Abstract: These last 15 years have been rich in publishing high quality scientific studies evaluating the effectiveness of measures to prevent nosocomial infections, particularly in intensive care unit (ICU), comparison of the results of these studies and practices in intensive care units can now to better define a program for preventing nosocomial infections to develop in these services. Focused on managing the risk of infection and prevention of nosocomial infections, our study, using tools that use data mining methods, together proposals for how well resuscitation. Among the techniques we use in data mining classification, neural networks and decision trees that also use the description used for prevention or for the unsupervised classification and clustering, we estimate we have for the rules Association. These techniques are used with several algorithms that give different results and which are distinguished from each other.","publisher":"TI Journals","publication_date":{"day":23,"month":11,"year":2012,"errors":{}},"publication_name":"World Applied Programming"},"translated_abstract":"Abstract: These last 15 years have been rich in publishing high quality scientific studies evaluating the effectiveness of measures to prevent nosocomial infections, particularly in intensive care unit (ICU), comparison of the results of these studies and practices in intensive care units can now to better define a program for preventing nosocomial infections to develop in these services. Focused on managing the risk of infection and prevention of nosocomial infections, our study, using tools that use data mining methods, together proposals for how well resuscitation. Among the techniques we use in data mining classification, neural networks and decision trees that also use the description used for prevention or for the unsupervised classification and clustering, we estimate we have for the rules Association. These techniques are used with several algorithms that give different results and which are distinguished from each other.","internal_url":"https://www.academia.edu/120736655/Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals","translated_internal_url":"","created_at":"2024-06-08T10:35:02.677-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Control_of_Nosocomial_Infections_by_Data_Mining_TI_Journals","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":131237,"name":"Cluster Analysis","url":"https://www.academia.edu/Documents/in/Cluster_Analysis"},{"id":263029,"name":"Intensive Care Unit","url":"https://www.academia.edu/Documents/in/Intensive_Care_Unit"}],"urls":[{"id":42768095,"url":"http://www.waprogramming.com/papers/50af655257d8f7.64063909.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736654"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736654/Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_"><img alt="Research paper thumbnail of Third International Conference on Soft Computing, Artificial Intelligence (SAI-2014)" class="work-thumbnail" src="https://attachments.academia-assets.com/115792763/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736654/Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_">Third International Conference on Soft Computing, Artificial Intelligence (SAI-2014)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9aa25de51dc456b58f7608399e8d16de" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792763,&quot;asset_id&quot;:120736654,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792763/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736654"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736654"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736654; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736654]").text(description); $(".js-view-count[data-work-id=120736654]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736654; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736654']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736654, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9aa25de51dc456b58f7608399e8d16de" } } $('.js-work-strip[data-work-id=120736654]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736654,"title":"Third International Conference on Soft Computing, Artificial Intelligence (SAI-2014)","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2014,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736654/Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_","translated_internal_url":"","created_at":"2024-06-08T10:35:02.466-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792763/thumbnails/1.jpg","file_name":"toc429.pdf","download_url":"https://www.academia.edu/attachments/115792763/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Third_International_Conference_on_Soft_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792763/toc429-libre.pdf?1717870254=\u0026response-content-disposition=attachment%3B+filename%3DThird_International_Conference_on_Soft_C.pdf\u0026Expires=1732541227\u0026Signature=XMweWoucGl7j66N8-h0wEi8BlQbANKibytGiMBiqCfTT1QDqXqoii8ySSQagc9l-FByvIDlMiqvWZZ19-EuuAa5lS4IBtIrvJpQTuW84yDw7UjOX1mFif97c6HXZTujD5nmtBZG6mhj3rmVGNcvTcRBlhIX2QeBqXnXfF98AGkTj4Wrd6kB5K0MV2JWbUflHLVQP0SUyEnI3a5lcBrCg4Jb3AEmsw3hm3sYpT5IQ2yVpDGTeLqykXhh8zTrKRSR2D6kkpqHxwG48FL5rfw8~f7wQ~iRm8cw~8TA4~IHQgpt84m-8eVWhc2nzHHxJbcdIOB-jNF5X0WCFgMuYmS1pPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Third_International_Conference_on_Soft_Computing_Artificial_Intelligence_SAI_2014_","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792763,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792763/thumbnails/1.jpg","file_name":"toc429.pdf","download_url":"https://www.academia.edu/attachments/115792763/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyNyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Third_International_Conference_on_Soft_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792763/toc429-libre.pdf?1717870254=\u0026response-content-disposition=attachment%3B+filename%3DThird_International_Conference_on_Soft_C.pdf\u0026Expires=1732541227\u0026Signature=XMweWoucGl7j66N8-h0wEi8BlQbANKibytGiMBiqCfTT1QDqXqoii8ySSQagc9l-FByvIDlMiqvWZZ19-EuuAa5lS4IBtIrvJpQTuW84yDw7UjOX1mFif97c6HXZTujD5nmtBZG6mhj3rmVGNcvTcRBlhIX2QeBqXnXfF98AGkTj4Wrd6kB5K0MV2JWbUflHLVQP0SUyEnI3a5lcBrCg4Jb3AEmsw3hm3sYpT5IQ2yVpDGTeLqykXhh8zTrKRSR2D6kkpqHxwG48FL5rfw8~f7wQ~iRm8cw~8TA4~IHQgpt84m-8eVWhc2nzHHxJbcdIOB-jNF5X0WCFgMuYmS1pPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":115792764,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792764/thumbnails/1.jpg","file_name":"toc429.pdf","download_url":"https://www.academia.edu/attachments/115792764/download_file","bulk_download_file_name":"Third_International_Conference_on_Soft_C.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792764/toc429-libre.pdf?1717870255=\u0026response-content-disposition=attachment%3B+filename%3DThird_International_Conference_on_Soft_C.pdf\u0026Expires=1732541227\u0026Signature=EkBNfbF9ZeFDXlf5P50MWnSJAZpI654ZqWZfTiQYf9mOEmfFA~KiMkQxY1DbMAqt6UyzpBSHAvxQ-mSDhKGkdLyEY4WKcM4oVV0NvbzZPUmvUle0fyN8P5awO3hKvgXsJQH45bqGf5BPuolrNd9-XBsJLtoCUmd-K1Yaz-4anvmf1kkKRPOBwJM44dJ822HGltJ-dpyxlCnau9P0R~9-6JuYccn2iohIXgJXC2U3dstsqD9x8qLqmznLSwwD7O740UqPH0aYXOdZN5iWtirLfpIiZF6bPNM3ru3G7g16T1xE~FzMCetteJMH8ozJGO9OzgCkCiGRCYsOaT~yKREFfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":6132,"name":"Soft Computing","url":"https://www.academia.edu/Documents/in/Soft_Computing"}],"urls":[{"id":42768094,"url":"https://airccse.org/toc429.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736653"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736653/Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining"><img alt="Research paper thumbnail of Symbolic interpretation of artificial neural networks based on multiobjective genetic algorithms and association rules mining" class="work-thumbnail" src="https://attachments.academia-assets.com/115792811/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736653/Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining">Symbolic interpretation of artificial neural networks based on multiobjective genetic algorithms and association rules mining</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, Nov 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="39bf534c011741ea67b2c34dbc6822c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792811,&quot;asset_id&quot;:120736653,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792811/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736653"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736653"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736653; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736653]").text(description); $(".js-view-count[data-work-id=120736653]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736653; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736653']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736653, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "39bf534c011741ea67b2c34dbc6822c7" } } $('.js-work-strip[data-work-id=120736653]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736653,"title":"Symbolic interpretation of artificial neural networks based on multiobjective genetic algorithms and association rules mining","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Hybrid Intelligent Systems that combine knowledge-based and artificial neural network systems typically have four phases involving domain knowledge representation, mapping of this knowledge into an initial connectionist architecture, network training, and rule extraction, respectively. The final phase is important because it can provide a trained connectionist architecture with explanation power and validate its output decisions. Moreover, it can be used to refine and maintain the initial knowledge acquired from domain experts. In this paper, we present three rule-extraction techniques. The first technique extracts a set of binary rules from any type of neural network. The other two techniques are specific to feedforward networks, with a single hidden layer of sigmoidal units. Technique 2 extracts partial rules that represent the most important embedded knowledge with an adjustable level of detail, while the third technique provides a more comprehensive and universal approach. A rule-evaluation technique, which orders extracted rules based on three performance measures, is then proposed. The three techniques area applied to the iris and breast cancer data sets. The extracted rules are evaluated qualitatively and quantitatively, and are compared with those obtained by other approaches.","publication_date":{"day":1,"month":11,"year":2018,"errors":{}},"publication_name":"Applied Soft Computing","grobid_abstract_attachment_id":115792811},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736653/Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining","translated_internal_url":"","created_at":"2024-06-08T10:35:02.224-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792811/thumbnails/1.jpg","file_name":"69.77410320240608-1-mn3ht6.pdf","download_url":"https://www.academia.edu/attachments/115792811/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_interpretation_of_artificial_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792811/69.77410320240608-1-mn3ht6-libre.pdf?1717870258=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_interpretation_of_artificial_ne.pdf\u0026Expires=1732541227\u0026Signature=MUtxoiX9FLPNj4EYbY6OeBJjqT~PT30qZQA0GNIV4AmESFP-SvtX~9gq0gd5TBlT7~cYylSZUVlOL~V5i2RpS-3iAbifkhjVonLqsaXQNWlzq9KhB3cdbjETMiMQ2xPmJeWE4hH~3p80jHtX9LSoc72a3V1O2-kRL6Ejg4FgUvVEDnzO5dywCqHIoiw1o0IWqDIvmUku6jjsdm~vTw-fyZ~PaJ3x5sRI1ZplVUo1YPXv~7z1XycrPLJCV42vjEdBFhBT1QNpuaEzv7tChBX4SKQTfyb2CCiw7bQh90UdI0im8otU81k-9DJZbMmSwMxYzQY4RTwY22UoCTT8~DjxHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Symbolic_interpretation_of_artificial_neural_networks_based_on_multiobjective_genetic_algorithms_and_association_rules_mining","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792811,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792811/thumbnails/1.jpg","file_name":"69.77410320240608-1-mn3ht6.pdf","download_url":"https://www.academia.edu/attachments/115792811/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Symbolic_interpretation_of_artificial_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792811/69.77410320240608-1-mn3ht6-libre.pdf?1717870258=\u0026response-content-disposition=attachment%3B+filename%3DSymbolic_interpretation_of_artificial_ne.pdf\u0026Expires=1732541227\u0026Signature=MUtxoiX9FLPNj4EYbY6OeBJjqT~PT30qZQA0GNIV4AmESFP-SvtX~9gq0gd5TBlT7~cYylSZUVlOL~V5i2RpS-3iAbifkhjVonLqsaXQNWlzq9KhB3cdbjETMiMQ2xPmJeWE4hH~3p80jHtX9LSoc72a3V1O2-kRL6Ejg4FgUvVEDnzO5dywCqHIoiw1o0IWqDIvmUku6jjsdm~vTw-fyZ~PaJ3x5sRI1ZplVUo1YPXv~7z1XycrPLJCV42vjEdBFhBT1QNpuaEzv7tChBX4SKQTfyb2CCiw7bQh90UdI0im8otU81k-9DJZbMmSwMxYzQY4RTwY22UoCTT8~DjxHQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":30329,"name":"Genetic Algorithm","url":"https://www.academia.edu/Documents/in/Genetic_Algorithm"},{"id":1211304,"name":"Artificial Neural Network","url":"https://www.academia.edu/Documents/in/Artificial_Neural_Network"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"},{"id":3077466,"name":"Association Rule Learning","url":"https://www.academia.edu/Documents/in/Association_Rule_Learning"}],"urls":[{"id":42768093,"url":"https://doi.org/10.1016/j.asoc.2018.08.007"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736652"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736652/Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems"><img alt="Research paper thumbnail of Fusion of Direct Probabilistic Multi-Class Support Vector Machines to Enhance Mental Tasks Recognition Performance in BCI Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736652/Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems">Fusion of Direct Probabilistic Multi-Class Support Vector Machines to Enhance Mental Tasks Recognition Performance in BCI Systems</a></div><div class="wp-workCard_item"><span>International Journal on Communications Antenna and Propagation</span><span>, Oct 31, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736652"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736652"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736652; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736652]").text(description); $(".js-view-count[data-work-id=120736652]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736652; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736652']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736652, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736652]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736652,"title":"Fusion of Direct Probabilistic Multi-Class Support Vector Machines to Enhance Mental Tasks Recognition Performance in BCI Systems","translated_title":"","metadata":{"publisher":"Praise Worthy Prize, s.r.l.","publication_date":{"day":31,"month":10,"year":2018,"errors":{}},"publication_name":"International Journal on Communications Antenna and Propagation"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736652/Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems","translated_internal_url":"","created_at":"2024-06-08T10:35:01.962-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fusion_of_Direct_Probabilistic_Multi_Class_Support_Vector_Machines_to_Enhance_Mental_Tasks_Recognition_Performance_in_BCI_Systems","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":11880,"name":"Brain Computer Interface","url":"https://www.academia.edu/Documents/in/Brain_Computer_Interface"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine"}],"urls":[{"id":42768092,"url":"https://doi.org/10.15866/irecap.v8i5.14068"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736650"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736650/Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine"><img alt="Research paper thumbnail of Optimization of Medical Data Transfer from the MIT-BIH Arrhythmia Database to the Learning Machine" class="work-thumbnail" src="https://attachments.academia-assets.com/115792804/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736650/Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine">Optimization of Medical Data Transfer from the MIT-BIH Arrhythmia Database to the Learning Machine</a></div><div class="wp-workCard_item"><span>US-China education review</span><span>, Oct 28, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6bb455ccc1cf8808fe2f658d0b3e815" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792804,&quot;asset_id&quot;:120736650,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792804/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736650"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736650"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736650; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736650]").text(description); $(".js-view-count[data-work-id=120736650]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736650; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736650']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736650, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6bb455ccc1cf8808fe2f658d0b3e815" } } $('.js-work-strip[data-work-id=120736650]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736650,"title":"Optimization of Medical Data Transfer from the MIT-BIH Arrhythmia Database to the Learning Machine","translated_title":"","metadata":{"publisher":"David Publishing Company","grobid_abstract":"Cardiovascular disease is a major public health problem and the leading cause of death in the world. An electrocardiogram (ECG) is a recording of the electrical activity of the heart as a function of time. Due to the speed of implementation, efficiency and especially reliability for diagnosis, the ECG plays an important role in monitoring and diagnosing patients today. The ECG is only effective when it is recorded over a long time. The analysis of such a recording requires methods of parameter optimization and automatic classification of heartbeats. In this paper, a genetic algorithm is used to optimize the ECG signal. The proposed method is able to optimize the ECG data and exceeds the result of related works which proves its effectiveness in ECG arrhythmias detection.","publication_date":{"day":28,"month":10,"year":2017,"errors":{}},"publication_name":"US-China education review","grobid_abstract_attachment_id":115792804},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736650/Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine","translated_internal_url":"","created_at":"2024-06-08T10:35:00.257-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792804/thumbnails/1.jpg","file_name":"0b83acead37ca48d39c08f6d80051452d22e.pdf","download_url":"https://www.academia.edu/attachments/115792804/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimization_of_Medical_Data_Transfer_fr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792804/0b83acead37ca48d39c08f6d80051452d22e-libre.pdf?1717870251=\u0026response-content-disposition=attachment%3B+filename%3DOptimization_of_Medical_Data_Transfer_fr.pdf\u0026Expires=1732541228\u0026Signature=estJIDsIls8v0od5feTTnNOvbyLucmIwlLFTA7BYZ49xE1J0vT0ppvBqf0GDSPkCFFlvwOWsw4zG3-qd2x-uITNcU8YCNgVRyMmSodMdrY0OO8TJJQoyZmN88-kdczOL6uXDic4qMI2HqiWYocx~pmovwp9AsDM90QFWkRUiKJMsIJRBaIFvSGeo5eiWiI~T5iY3UNzUP~LNgyywejFkU0J6eFymO4A39gfh8dCeq-csnxRWlDAdGYzAUeCcriP-Jfrraw7nY0NKwcfUqkQmdtqQSdlKl18WgR~HONYWrRKe~qdfueQCxO7lNjZ3rtUBZeGx0gH7iV5UjSlERQ8hww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Optimization_of_Medical_Data_Transfer_from_the_MIT_BIH_Arrhythmia_Database_to_the_Learning_Machine","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792804/thumbnails/1.jpg","file_name":"0b83acead37ca48d39c08f6d80051452d22e.pdf","download_url":"https://www.academia.edu/attachments/115792804/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Optimization_of_Medical_Data_Transfer_fr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792804/0b83acead37ca48d39c08f6d80051452d22e-libre.pdf?1717870251=\u0026response-content-disposition=attachment%3B+filename%3DOptimization_of_Medical_Data_Transfer_fr.pdf\u0026Expires=1732541228\u0026Signature=estJIDsIls8v0od5feTTnNOvbyLucmIwlLFTA7BYZ49xE1J0vT0ppvBqf0GDSPkCFFlvwOWsw4zG3-qd2x-uITNcU8YCNgVRyMmSodMdrY0OO8TJJQoyZmN88-kdczOL6uXDic4qMI2HqiWYocx~pmovwp9AsDM90QFWkRUiKJMsIJRBaIFvSGeo5eiWiI~T5iY3UNzUP~LNgyywejFkU0J6eFymO4A39gfh8dCeq-csnxRWlDAdGYzAUeCcriP-Jfrraw7nY0NKwcfUqkQmdtqQSdlKl18WgR~HONYWrRKe~qdfueQCxO7lNjZ3rtUBZeGx0gH7iV5UjSlERQ8hww__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":596862,"name":"Transfer of Learning","url":"https://www.academia.edu/Documents/in/Transfer_of_Learning"}],"urls":[{"id":42768091,"url":"https://doi.org/10.17265/2161-6248/2017.10.004"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736649"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736649/Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_"><img alt="Research paper thumbnail of Corrigendum to “Kernel-based learning and feature selection analysis for cancer diagnosis” [Appl. Soft Comput. 51 (2017) 39–48]" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736649/Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_">Corrigendum to “Kernel-based learning and feature selection analysis for cancer diagnosis” [Appl. Soft Comput. 51 (2017) 39–48]</a></div><div class="wp-workCard_item"><span>Applied Soft Computing</span><span>, Mar 1, 2023</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736649"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736649"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736649; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736649]").text(description); $(".js-view-count[data-work-id=120736649]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736649; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736649']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736649, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736649]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736649,"title":"Corrigendum to “Kernel-based learning and feature selection analysis for cancer diagnosis” [Appl. Soft Comput. 51 (2017) 39–48]","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":3,"year":2023,"errors":{}},"publication_name":"Applied Soft Computing"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736649/Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_","translated_internal_url":"","created_at":"2024-06-08T10:35:00.029-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Corrigendum_to_Kernel_based_learning_and_feature_selection_analysis_for_cancer_diagnosis_Appl_Soft_Comput_51_2017_39_48_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":37,"name":"Information Systems","url":"https://www.academia.edu/Documents/in/Information_Systems"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43619,"name":"Feature Selection","url":"https://www.academia.edu/Documents/in/Feature_Selection"}],"urls":[{"id":42768089,"url":"https://doi.org/10.1016/j.asoc.2023.110098"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736648"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736648/Une_approche_%C3%A9volutionnaire_multi_contraintes_pour_loptimisation_de_la_g%C3%A9n%C3%A9ration_automatique_demplois_du_temps_universitaires"><img alt="Research paper thumbnail of Une approche évolutionnaire multi-contraintes pour l&#39;optimisation de la génération automatique d&#39;emplois du temps universitaires" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736648/Une_approche_%C3%A9volutionnaire_multi_contraintes_pour_loptimisation_de_la_g%C3%A9n%C3%A9ration_automatique_demplois_du_temps_universitaires">Une approche évolutionnaire multi-contraintes pour l&#39;optimisation de la génération automatique d&#39;emplois du temps universitaires</a></div><div class="wp-workCard_item"><span>HAL (Le Centre pour la Communication Scientifique Directe)</span><span>, Jun 1, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736648"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736648"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736648; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736648]").text(description); $(".js-view-count[data-work-id=120736648]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736648; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736648']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736648, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736648]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736648,"title":"Une approche évolutionnaire multi-contraintes pour l'optimisation de la génération automatique d'emplois du temps universitaires","translated_title":"","metadata":{"publisher":"Le Centre pour la Communication Scientifique Directe","publication_date":{"day":1,"month":6,"year":2015,"errors":{}},"publication_name":"HAL (Le Centre pour la Communication Scientifique Directe)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736648/Une_approche_%C3%A9volutionnaire_multi_contraintes_pour_loptimisation_de_la_g%C3%A9n%C3%A9ration_automatique_demplois_du_temps_universitaires","translated_internal_url":"","created_at":"2024-06-08T10:34:59.811-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Une_approche_évolutionnaire_multi_contraintes_pour_loptimisation_de_la_génération_automatique_demplois_du_temps_universitaires","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":42768088,"url":"https://hal.archives-ouvertes.fr/hal-01198440"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736646"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/120736646/Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification"><img alt="Research paper thumbnail of Hybrid self organizing map and probabilistic quadratic loss multi-class support vector machine for mental tasks classification" class="work-thumbnail" src="https://attachments.academia-assets.com/115792798/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/120736646/Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification">Hybrid self organizing map and probabilistic quadratic loss multi-class support vector machine for mental tasks classification</a></div><div class="wp-workCard_item"><span>Informatics in Medicine Unlocked</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d129407a38d745e5d1bfc7d2335e80e5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:115792798,&quot;asset_id&quot;:120736646,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/115792798/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736646"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736646"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736646; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736646]").text(description); $(".js-view-count[data-work-id=120736646]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736646; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736646']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736646, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d129407a38d745e5d1bfc7d2335e80e5" } } $('.js-work-strip[data-work-id=120736646]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736646,"title":"Hybrid self organizing map and probabilistic quadratic loss multi-class support vector machine for mental tasks classification","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Informatics in Medicine Unlocked"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736646/Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification","translated_internal_url":"","created_at":"2024-06-08T10:34:59.560-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":115792798,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792798/thumbnails/1.jpg","file_name":"82170486.pdf","download_url":"https://www.academia.edu/attachments/115792798/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_self_organizing_map_and_probabili.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792798/82170486-libre.pdf?1717870260=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_self_organizing_map_and_probabili.pdf\u0026Expires=1732541228\u0026Signature=hIolILSP9AkwNJBl4iDOkTCHif8ItCmhYX8aIh78xOJ0BzBVLDB-xmqWKpF2muxm4OccVzAFOP3JoqW6jxnOAZlhNQg03LhicyEqKJUqVz8eqpLfvpBUDFra0LEqFkC8LhJqll8Zyfs8~YmXQQQyBDICoitZWO2WnB6MFg64HZd70ERSJmkqMDfqOhAg5PruuQVsQpZqPlOtp0c7JW0SjNbypQ16S8wzpFZmcY9RxrBWg~QC2ZbAUsvno9mYpRh6JH~7HXfJloSs-nrhfvZ-R7heODLVTK~84oVh1RDXVntCVQ4v2AuorQOUYjaovRVPA2erJyE8TOyZKPgEEBhH7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Hybrid_self_organizing_map_and_probabilistic_quadratic_loss_multi_class_support_vector_machine_for_mental_tasks_classification","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[{"id":115792798,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/115792798/thumbnails/1.jpg","file_name":"82170486.pdf","download_url":"https://www.academia.edu/attachments/115792798/download_file?st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&st=MTczMjUzNzYyOCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Hybrid_self_organizing_map_and_probabili.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/115792798/82170486-libre.pdf?1717870260=\u0026response-content-disposition=attachment%3B+filename%3DHybrid_self_organizing_map_and_probabili.pdf\u0026Expires=1732541228\u0026Signature=hIolILSP9AkwNJBl4iDOkTCHif8ItCmhYX8aIh78xOJ0BzBVLDB-xmqWKpF2muxm4OccVzAFOP3JoqW6jxnOAZlhNQg03LhicyEqKJUqVz8eqpLfvpBUDFra0LEqFkC8LhJqll8Zyfs8~YmXQQQyBDICoitZWO2WnB6MFg64HZd70ERSJmkqMDfqOhAg5PruuQVsQpZqPlOtp0c7JW0SjNbypQ16S8wzpFZmcY9RxrBWg~QC2ZbAUsvno9mYpRh6JH~7HXfJloSs-nrhfvZ-R7heODLVTK~84oVh1RDXVntCVQ4v2AuorQOUYjaovRVPA2erJyE8TOyZKPgEEBhH7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"},{"id":11880,"name":"Brain Computer Interface","url":"https://www.academia.edu/Documents/in/Brain_Computer_Interface"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":191289,"name":"Support vector machine","url":"https://www.academia.edu/Documents/in/Support_vector_machine"},{"id":2323255,"name":"Self Organizing Map","url":"https://www.academia.edu/Documents/in/Self_Organizing_Map"}],"urls":[{"id":42768087,"url":"https://doi.org/10.1016/j.imu.2016.09.001"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="120736645"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/120736645/Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification"><img alt="Research paper thumbnail of Cross-Validation Probabilistic Neural Network Based Face Identification" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/120736645/Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification">Cross-Validation Probabilistic Neural Network Based Face Identification</a></div><div class="wp-workCard_item"><span>Journal of Information Processing Systems</span><span>, Oct 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="120736645"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="120736645"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 120736645; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=120736645]").text(description); $(".js-view-count[data-work-id=120736645]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 120736645; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='120736645']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 120736645, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=120736645]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":120736645,"title":"Cross-Validation Probabilistic Neural Network Based Face Identification","translated_title":"","metadata":{"publisher":"Korea Information Processing Society","publication_date":{"day":1,"month":10,"year":2018,"errors":{}},"publication_name":"Journal of Information Processing Systems"},"translated_abstract":null,"internal_url":"https://www.academia.edu/120736645/Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification","translated_internal_url":"","created_at":"2024-06-08T10:34:58.761-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":102721421,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cross_Validation_Probabilistic_Neural_Network_Based_Face_Identification","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":102721421,"first_name":"aek","middle_initials":null,"last_name":"beny","page_name":"aekbeny","domain_name":"independent","created_at":"2019-02-18T04:20:09.215-08:00","display_name":"aek beny","url":"https://independent.academia.edu/aekbeny"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":43610,"name":"Probabilistic Logic","url":"https://www.academia.edu/Documents/in/Probabilistic_Logic"},{"id":450311,"name":"Probabilistic Neural Network","url":"https://www.academia.edu/Documents/in/Probabilistic_Neural_Network"}],"urls":[{"id":42768086,"url":"http://jips-k.org/q.jips?pn=594"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9a8d7c16195a843feb821a6ec55638d66ecac8e98d6d0a65bae048c8f3c78594", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Ej9vMLcxBmXZwlzNnNOu/kxqVVpatOOtHk1BTQ9h5bmQtv2vVu4hZJ7XPQbUcAPf7BQ0nIx6LZuF0uRZfA54aA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/aekbeny" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="z4zPBTQadXJKELpV+X/k2ZbWyjw/yZEM0GijmrSkZKlNBV2a1cVScw0F256x3En4Nqir+ukHXzpL9waOx8v5eA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10