CINXE.COM
Search results for: gene and chromosome issue
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gene and chromosome issue</title> <meta name="description" content="Search results for: gene and chromosome issue"> <meta name="keywords" content="gene and chromosome issue"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gene and chromosome issue" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gene and chromosome issue"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5033</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gene and chromosome issue</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5033</span> Polymorphism of Candidate Genes for Meat Production in Lori Sheep </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Nanekarania">Shahram Nanekarania</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Goodarzia"> Majid Goodarzia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calpastatin and callipyge have been known as one of the candidate genes in meat quality and quantity. Calpastatin gene has been located to chromosome 5 of sheep and callipyge gene has been localized in the telomeric region on ovine chromosome 18. The objective of this study was identification of calpastatin and callipyge genes polymorphism and analysis of genotype structure in population of Lori sheep kept in Iran. Blood samples were taken from 120 Lori sheep breed and genomic DNA was extracted by salting out method. Polymorphism was identified using the PCR-RFLP technique. The PCR products were digested with MspI and FaqI restriction enzymes for calpastatin gene and callipyge gene, respectively. In this population, three patterns were observed and AA, AB, BB genotype have been identified with the 0.32, 0.63, 0.05 frequencies for calpastatin gene. The results obtained for the callipyge gene revealed that only the wild-type allele A was observed, indicating that only genotype AA was present in the population under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title="polymorphism">polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=calpastatin" title=" calpastatin"> calpastatin</a>, <a href="https://publications.waset.org/abstracts/search?q=callipyge" title=" callipyge"> callipyge</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR-RFLP" title=" PCR-RFLP"> PCR-RFLP</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20sheep" title=" Lori sheep"> Lori sheep</a> </p> <a href="https://publications.waset.org/abstracts/8594/polymorphism-of-candidate-genes-for-meat-production-in-lori-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">612</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5032</span> A Second Order Genetic Algorithm for Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Toathom">T. Toathom</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Munlin"> M. Munlin</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sugunnasil"> P. Sugunnasil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traveling salesman problem (TSP) is one of the best-known problems in optimization problem. There are many research regarding the TSP. One of the most usage tool for this problem is the genetic algorithm (GA). The chromosome of the GA for TSP is normally encoded by the order of the visited city. However, the traditional chromosome encoding scheme has some limitations which are twofold: the large solution space and the inability to encapsulate some information. The number of solution for a certain problem is exponentially grow by the number of city. Moreover, the traditional chromosome encoding scheme fails to recognize the misplaced correct relation. It implies that the tradition method focuses only on exact solution. In this work, we relax some of the concept in the GA for TSP which is the exactness of the solution. The proposed work exploits the relation between cities in order to reduce the solution space in the chromosome encoding. In this paper, a second order GA is proposed to solve the TSP. The term second order refers to how the solution is encoded into chromosome. The chromosome is divided into 2 types: the high order chromosome and the low order chromosome. The high order chromosome is the chromosome that focus on the relation between cities such as the city A should be visited before city B. On the other hand, the low order chromosome is a type of chromosome that is derived from a high order chromosome. In other word, low order chromosome is encoded by the traditional chromosome encoding scheme. The genetic operation, mutation and crossover, will be performed on the high order chromosome. Then, the high order chromosome will be mapped to a group of low order chromosomes whose characteristics are satisfied with the high order chromosome. From the mapped set of chromosomes, the champion chromosome will be selected based on the fitness value which will be later used as a representative for the high order chromosome. The experiment is performed on the city data from TSPLIB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20population" title=" initial population"> initial population</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosomes%20encoding" title=" chromosomes encoding"> chromosomes encoding</a> </p> <a href="https://publications.waset.org/abstracts/42491/a-second-order-genetic-algorithm-for-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5031</span> Medical Neural Classifier Based on Improved Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadzil%20Ahmad">Fadzil Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Ashidi%20Mat%20Isa"> Noor Ashidi Mat Isa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20clasification" title=" pattern clasification"> pattern clasification</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20accuracy" title=" classification accuracy"> classification accuracy</a> </p> <a href="https://publications.waset.org/abstracts/14231/medical-neural-classifier-based-on-improved-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5030</span> Functional Gene Expression in Human Cells Using Linear Vectors Derived from Bacteriophage N15 Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaran%20Narayanan">Kumaran Narayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Sheng%20Liew"> Pei-Sheng Liew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper adapts the bacteriophage N15 protelomerase enzyme to assemble linear chromosomes as vectors for gene expression in human cells. Phage N15 has the unique ability to replicate as a linear plasmid with telomeres in E. coli during its prophage stage of life-cycle. The virus-encoded protelomerase enzyme cuts its circular genome and caps its ends to form hairpin telomeres, resulting in a linear human-chromosome-like structure in E. coli. In mammalian cells, however, no enzyme with TelN-like activities has been found. In this work, we show for the first-time transfer of the protelomerase from phage into human and mouse cells and demonstrate recapitulation of its activity in these hosts. The function of this enzyme is assayed by demonstrating cleavage of its target DNA, followed by detecting telomere formation based on its resistance to recBCD enzyme digestion. We show protelomerase expression persists for at least 60 days, which indicates limited silencing of its expression. Next, we show that an intact human β-globin gene delivered on this linear chromosome accurately retains its expression in the human cellular environment for at least 60 hours, demonstrating its stability and potential as a vector. These results demonstrate that the N15 protelomerse is able to function in mammalian cells to cut and heal DNA to create telomeres, which provides a new tool for creating novel structures by DNA resolution in these hosts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome" title="chromosome">chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-globin" title=" beta-globin"> beta-globin</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20vector" title=" linear vector"> linear vector</a> </p> <a href="https://publications.waset.org/abstracts/111231/functional-gene-expression-in-human-cells-using-linear-vectors-derived-from-bacteriophage-n15-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5029</span> Effect of Interaction between Colchicine Concentrations and Treatment Time Duration on the Percentage of Chromosome Polyploidy of Crepis capillaris (with and without 2B Chromosome) in vitro Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payman%20A.%20A.%20Zibari">Payman A. A. Zibari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosleh%20M.%20S.%20Duhoky"> Mosleh M. S. Duhoky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These experiments were conducted at Tissue Culture Laboratory/ Faculty of Agriculture / University of Duhok during the period from January 2011 to May 2013. The objectives of this study were to study the effects of interaction between colchcine concentrations and treatment time duration of Creps capilaris (with and without 2B chromosome) on chromosome polyploidy during fifteen passages until regeneration of plants from the callus. Data showed that high percentage of chromosome polyploidy approximately can be obtained from high concentration of colchicin and long time of duration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyploidy" title="polyploidy">polyploidy</a>, <a href="https://publications.waset.org/abstracts/search?q=Crepis%20capilaris" title=" Crepis capilaris"> Crepis capilaris</a>, <a href="https://publications.waset.org/abstracts/search?q=colchicine" title=" colchicine"> colchicine</a>, <a href="https://publications.waset.org/abstracts/search?q=B%20chromosome" title=" B chromosome"> B chromosome</a> </p> <a href="https://publications.waset.org/abstracts/38718/effect-of-interaction-between-colchicine-concentrations-and-treatment-time-duration-on-the-percentage-of-chromosome-polyploidy-of-crepis-capillaris-with-and-without-2b-chromosome-in-vitro-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5028</span> Chromosomes Are Present in a Fixed Region on the Equatorial Plate Within the Interphase of Cell Division</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chunxiao%20Wu">Chunxiao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongyun%20Jiang"> Dongyun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Jiang"> Tao Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Luxia%20Xu"> Luxia Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Xu"> Qian Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Zhao"> Meng Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Zhu"> Qin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhigang%20Guo"> Zhigang Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinlan%20Pan"> Jinlan Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Suning%20Chen"> Suning Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability and evolution of human genetics depends on chromosomes (and chromosome-chromosome interactions). We wish to understand the spatial location of chromosomes in dividing cells in order to understand the relationship between chromosome-chromosome interactions and to further investigate the role of chromosomes and their impact on cell biological behavior. In this study, we explored the relative spatial positional relationships of chromosomes [t (9;22) and t (15;17)] in B-ALL cells by using the three-dimensions DNA in situ fluorescent hybridization (3D-FISH) method. The results showed that chromosomes [t (9;22) and t (15;17)] showed relatively stable spatial relationships. The relative stability of the spatial location of chromosomes in dividing cells may be relevant to disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome" title="chromosome">chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20genetics" title=" human genetics"> human genetics</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20territory" title=" chromosome territory"> chromosome territory</a>, <a href="https://publications.waset.org/abstracts/search?q=3D-FISH" title=" 3D-FISH"> 3D-FISH</a> </p> <a href="https://publications.waset.org/abstracts/188219/chromosomes-are-present-in-a-fixed-region-on-the-equatorial-plate-within-the-interphase-of-cell-division" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5027</span> The Prevalence of X-Chromosome Aneuploidy in Recurrent Pregnancy Loss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Frikha">Rim Frikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouha%20Bouayed"> Nouha Bouayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Afifa%20Sellami"> Afifa Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nozha%20Chakroun"> Nozha Chakroun</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Douad"> Salima Douad</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Keskes"> Leila Keskes</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Rebai"> Tarek Rebai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recurrent pregnancy loss (RPL), classically defined as the occurrence of two or more failed pregnancies, is a serious reproductive problem, in which, chromosomal rearrangements in either carrier are a major cause; mainly the chromosome aneuploidy. This study was conducted to determine the frequency and contribution of X-chromosome aneuploidy in recurrent pregnancy loss. A retrospective study was carried out among 100 couples with more than 2 miscarriages, referred to our genetic counseling. In all the cases the detailed reproductive histories were taken. Chromosomal analysis was performed using RHG banding in peripheral blood. Of a total of 100 couples; 3 patients with a detected X-chromosome aneuploidy were identified with an overall frequency of 3%. Chromosome abnormalities are as below: a Turner syndrome with 45, X/46, XX mosaicism, a 47, XXX, and a Klinefelter syndrome with 46, XY/47, XXY. These data show a high incidence of X-chromosome aneuploidy; mainly with mosaicism; in RPL. Thus, couples with such chromosomal abnormality should be referred to a clinical geneticist with whom the option of pre-implantation genetic diagnosis in subsequent pregnancy should be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aneuploidy" title="aneuploidy">aneuploidy</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20testing" title=" genetic testing"> genetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20pregnancy%20loss" title="recurrent pregnancy loss">recurrent pregnancy loss</a>, <a href="https://publications.waset.org/abstracts/search?q=X-chromosome" title=" X-chromosome"> X-chromosome</a> </p> <a href="https://publications.waset.org/abstracts/45376/the-prevalence-of-x-chromosome-aneuploidy-in-recurrent-pregnancy-loss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5026</span> Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Al-Harbi">L. M. Al-Harbi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Shokry"> A. M. Shokry</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20M.%20Sabir"> J. S. M. Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chaudhary"> A. Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Manikandan"> J. Manikandan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Saini"> K. S. Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology" title=" ecology"> ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/5124/analysis-of-saudi-breast-cancer-patients-primary-tumors-using-array-comparative-genomic-hybridization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5025</span> Integrations of Students' Learning Achievements and Their Analytical Thinking Abilities with the Problem-Based Learning and the Concept Mapping Instructional Methods on Gene and Chromosome Issue at the 12th Grade Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waraporn%20Thaimit">Waraporn Thaimit</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuwadee%20Insamran"> Yuwadee Insamran</a>, <a href="https://publications.waset.org/abstracts/search?q=Natchanok%20Jansawang"> Natchanok Jansawang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Focusing on Analytical Thinking and Learning Achievement are the critical component of visual thinking that gives one the ability to solve problems quickly and effectively that allows to complex problems into components, and the result had been achieved or acquired form of the subject students of which resulted in changes within the individual as a result of activity in learning. The aims of this study are to administer on comparisons between students’ analytical thinking abilities and their learning achievements sample size consisted of 80 students who sat at the 12th grade level in 2 classes from Chaturaphak Phiman Ratchadaphisek School, the 40-student experimental group with the Problem-Based Learning (PBL) and 40-student controlling group with the Concept Mapping Instructional (CMI) methods were designed. Research instruments composed with the 5-lesson instructional plans to be assessed with the pretest and posttest techniques on each instructional method. Students’ responses of their analytical thinking abilities were assessed with the Analytical Thinking Tests and students’ learning achievements were tested of the Learning Achievement Tests. Statistically significant differences with the paired t-test and F-test (Two-way MANCOVA) between post- and pre-tests of the whole students in two chemistry classes were found. Associations between student learning outcomes in each instructional method and their analytical thinking abilities to their learning achievements also were found (ρ < .05). The use of two instructional methods for this study is revealed that the students perceive their abilities to be highly learning achievement in chemistry classes with the PBL group ought to higher than the CMI group. Suggestions that analytical thinking ability involves the process of gathering relevant information and identifying key issues related to the learning achievement information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparisons" title="comparisons">comparisons</a>, <a href="https://publications.waset.org/abstracts/search?q=students%20learning%20achievements" title=" students learning achievements"> students learning achievements</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20thinking%20abilities" title=" analytical thinking abilities"> analytical thinking abilities</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20problem-based%20learning%20method" title=" the problem-based learning method"> the problem-based learning method</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20concept%20mapping%20instructional%20method" title=" the concept mapping instructional method"> the concept mapping instructional method</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue" title=" gene and chromosome issue"> gene and chromosome issue</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry%20classes" title=" chemistry classes"> chemistry classes</a> </p> <a href="https://publications.waset.org/abstracts/51451/integrations-of-students-learning-achievements-and-their-analytical-thinking-abilities-with-the-problem-based-learning-and-the-concept-mapping-instructional-methods-on-gene-and-chromosome-issue-at-the-12th-grade-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5024</span> Chaos Fuzzy Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jalali%20Varnamkhasti">Mohammad Jalali Varnamkhasti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genetic algorithms have been very successful in handling difficult optimization problems. The fundamental problem in genetic algorithms is premature convergence. This paper, present a new fuzzy genetic algorithm based on chaotic values instead of the random values in genetic algorithm processes. In this algorithm, for initial population is used chaotic sequences and then a new sexual selection proposed for selection mechanism. In this technique, the population is divided such that the male and female would be selected in an alternate way. The layout of the male and female chromosomes in each generation is different. A female chromosome is selected by tournament selection size from the female group. Then, the male chromosome is selected, in order of preference based on the maximum Hamming distance between the male chromosome and the female chromosome or The highest fitness value of male chromosome (if more than one male chromosome is having the maximum Hamming distance existed), or Random selection. The selections of crossover and mutation operators are achieved by running the fuzzy logic controllers, the crossover and mutation probabilities are varied on the basis of the phenotype and genotype characteristics of the chromosome population. Computational experiments are conducted on the proposed techniques and the results are compared with some other operators, heuristic and local search algorithms commonly used for solving p-median problems published in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20system" title=" fuzzy system"> fuzzy system</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=sexual%20selection" title=" sexual selection"> sexual selection</a> </p> <a href="https://publications.waset.org/abstracts/30310/chaos-fuzzy-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5023</span> Mutations in the GJB2 Gene Are the Cause of an Important Number of Non-Syndromic Deafness Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habib%20Onsori">Habib Onsori</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Akrami"> Somayeh Akrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rahmati"> Mohammad Rahmati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deafness is the most common sensory disorder with the frequency of 1/1000 in many populations. Mutations in the GJB2 (CX26) gene at the DFNB1 locus on chromosome 13q12 are associated with congenital hearing loss. Approximately 80% of congenital hearing loss cases are recessively inherited and 15% dominantly inherited. Mutations of the GJB2 gene, encoding gap junction protein Connexin 26 (Cx26), are the most common cause of hereditary congenital hearing loss in many countries. This report presents two cases of different mutations from Iranian patients with bilateral hearing loss. DNA studies were performed for the GJB2 gene by PCR and sequencing methods. In one of them, direct sequencing of the gene showed a heterozygous T→C transition at nucleotide 604 resulting in a cysteine to arginine amino acid substitution at codon 202 (C202R) in the fourth extracellular domain (TM4) of the protein. The analyses indicate that the C202R mutation appeared de novo in the proband with a possible dominant effect (GenBank: KF 638275). In the other one, DNA sequencing revealed a compound heterozygous mutation (35delG, 363delC) in the Cx26 gene that is strongly associated with congenital non-syndromic hearing loss (NSHL). So screening the mutations for hearing loss individuals referring to genetics counseling centers before marriage and or pregnancy is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CX26" title="CX26">CX26</a>, <a href="https://publications.waset.org/abstracts/search?q=deafness" title=" deafness"> deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=GJB2" title=" GJB2"> GJB2</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a> </p> <a href="https://publications.waset.org/abstracts/25053/mutations-in-the-gjb2-gene-are-the-cause-of-an-important-number-of-non-syndromic-deafness-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5022</span> Genome-Wide Analysis of Long Terminal Repeat (LTR) Retrotransposons in Rabbit (Oryctolagus cuniculus) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20Khan">Zeeshan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Nouroz"> Faisal Nouroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20%20Noureen"> Shumaila Noureen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> European or common rabbit (Oryctolagus cuniculus) belongs to class Mammalia, order Lagomorpha of family Leporidae. They are distributed worldwide and are native to Europe (France, Spain and Portugal) and Africa (Morocco and Algeria). LTR retrotransposons are major Class I mobile genetic elements of eukaryotic genomes and play a crucial role in genome expansion, evolution and diversification. They were mostly annotated in various genomes by conventional approaches of homology searches, which restricted the annotation of novel elements. Present work involved de novo identification of LTR retrotransposons by LTR_FINDER in haploid genome of rabbit (2247.74 Mb) distributed in 22 chromosomes, of which 7,933 putative full-length or partial copies were identified containing 69.38 Mb of elements, accounting 3.08% of the genome. Highest copy numbers (731) were found on chromosome 7, followed by chromosome 12 (705), while the lowest copy numbers (27) were detected in chromosome 19 with no elements identified from chromosome 21 due to partially sequenced chromosome, unidentified nucleotides (N) and repeated simple sequence repeats (SSRs). The identified elements ranged in sizes from 1.2 - 25.8 Kb with average sizes between 2-10 Kb. Highest percentage (4.77%) of elements was found in chromosome 15, while lowest (0.55%) in chromosome 19. The most frequent tRNA type was Arginine present in majority of the elements. Based on gained results, it was estimated that rabbit exhibits 15,866 copies having 137.73 Mb of elements accounting 6.16% of diploid genome (44 chromosomes). Further molecular analyses will be helpful in chromosomal localization and distribution of these elements on chromosomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rabbit" title="rabbit">rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=LTR%20retrotransposons" title=" LTR retrotransposons"> LTR retrotransposons</a>, <a href="https://publications.waset.org/abstracts/search?q=genome" title=" genome"> genome</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome" title=" chromosome"> chromosome</a> </p> <a href="https://publications.waset.org/abstracts/90817/genome-wide-analysis-of-long-terminal-repeat-ltr-retrotransposons-in-rabbit-oryctolagus-cuniculus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5021</span> Analysis of the AZF Region in Slovak Men with Azoospermia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Bernasovsk%C3%A1">J. Bernasovská</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lohajov%C3%A1%20Behulov%C3%A1"> R. Lohajová Behulová</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Petrej%C4%8Dikov%C3%A1"> E. Petrejčiková</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Boro%C5%88ov%C3%A1"> I. Boroňová</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bernasovsk%C3%BD"> I. Bernasovský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Y chromosome microdeletions are the most common genetic cause of male infertility and screening for these microdeletions in azoospermic or severely oligospermic men is now standard practice. Analysis of the Y chromosome in men with azoospermia or severe oligozoospermia has resulted in the identification of three regions in the euchromatic part of the long arm of the human Y chromosome (Yq11) that are frequently deleted in men with otherwise unexplained spermatogenic failure. PCR analysis of microdeletions in the AZFa, AZFb and AZFc regions of the human Y chromosome is an important screening tool. The aim of this study was to analyse the type of microdeletions in men with fertility disorders in Slovakia. We evaluated 227 patients with azoospermia and with normal karyotype. All patient samples were analyzed cytogenetically. For PCR amplification of sequence-tagged sites (STS) of the AZFa, AZFb and AZFc regions of the Y chromosome was used Devyser AZF set. Fluorescently labeled primers for all markers in one multiplex PCR reaction were used and for automated visualization and identification of the STS markers we used genetic analyzer ABi 3500xl (Life Technologies). We reported 13 cases of deletions in the AZF region 5,73%. Particular types of deletions were recorded in each region AZFa,b,c .The presence of microdeletions in the AZFc region was the most frequent. The study confirmed that percentage of microdeletions in the AZF region is low in Slovak azoospermic patients, but important from a prognostic view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZF" title="AZF">AZF</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20infertility" title=" male infertility"> male infertility</a>, <a href="https://publications.waset.org/abstracts/search?q=microdeletions" title=" microdeletions"> microdeletions</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20chromosome" title=" Y chromosome"> Y chromosome</a> </p> <a href="https://publications.waset.org/abstracts/12638/analysis-of-the-azf-region-in-slovak-men-with-azoospermia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5020</span> Effect of Interaction between Different Concentrations of Colchicine, Time Duration and Two Verities of Crepis capillaris on Chromosome Polyploidy in vitro Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosleh%20M.%20S.%20Duhoky">Mosleh M. S. Duhoky</a>, <a href="https://publications.waset.org/abstracts/search?q=Payman%20A.%20A.%20Zibari"> Payman A. A. Zibari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These experiments were conducted at Tissue Culture Laboratory/ Faculty of Agriculture and Forestry/ University of Duhok during the period from January 2011 to May 2013. The objectives of this study were to study the effects of interaction between three different factors on percentage of polyploidy of Crepis capillaris by using Tissue culture technology. Concerning the data it is obvious that shaking of Crepis capillaris with 2B chromosome with 0.15 mM for ten days inscribed a high percentage of polyploidy within most fifteen passages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crepis%20capillaris" title="crepis capillaris">crepis capillaris</a>, <a href="https://publications.waset.org/abstracts/search?q=2B%20chromosome" title=" 2B chromosome"> 2B chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20culture" title=" tissue culture"> tissue culture</a>, <a href="https://publications.waset.org/abstracts/search?q=polyploidy" title=" polyploidy"> polyploidy</a> </p> <a href="https://publications.waset.org/abstracts/38730/effect-of-interaction-between-different-concentrations-of-colchicine-time-duration-and-two-verities-of-crepis-capillaris-on-chromosome-polyploidy-in-vitro-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5019</span> A Novel Chicken W Chromosome Specific Tandem Repeat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alsu%20F.%20Saifitdinova">Alsu F. Saifitdinova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20S.%20Komissarov"> Alexey S. Komissarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20A.%20Galkina"> Svetlana A. Galkina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20I.%20Koshel"> Elena I. Koshel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20Kulak"> Maria M. Kulak</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20J.%20O%27Brien"> Stephen J. O'Brien</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20R.%20Gaginskaya"> Elena R. Gaginskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=birds" title="birds">birds</a>, <a href="https://publications.waset.org/abstracts/search?q=lampbrush%20chromosomes" title=" lampbrush chromosomes"> lampbrush chromosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20chromosomes" title=" sex chromosomes"> sex chromosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20repeats" title=" tandem repeats"> tandem repeats</a> </p> <a href="https://publications.waset.org/abstracts/34218/a-novel-chicken-w-chromosome-specific-tandem-repeat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5018</span> STR and SNP Markers of Y-Chromosome Unveil Similarity between the Gene Pool of Kurds and Yezidis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chukhryaeva">M. Chukhryaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Skhalyakho"> R. Skhalyakho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kagazegeva"> J. Kagazegeva</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pocheshkhova"> E. Pocheshkhova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Yepiskopossyan"> L. Yepiskopossyan</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Balanovsky"> O. Balanovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Balanovska"> E. Balanovska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Middle East is crossroad of different populations at different times. The Kurds are of particular interest in this region. Historical sources suggested that the origin of the Kurds is associated with Medes. Therefore, it was especially interesting to compare gene pool of Kurds with other supposed descendants of Medes-Tats. Yezidis are ethno confessional group of Kurds. Yezidism as a confessional teaching was formed in the XI-XIII centuries in Iraq. Yezidism has caused reproductively isolation of Yezidis from neighboring populations for centuries. Also, isolation helps to retain Yezidian caste system. It is unknown how the history of Yezidis affected its genу pool because it has never been the object of researching. We have examined the Y-chromosome variation in Yezidis and Kurdish males to understand their gene pool. We collected DNA samples from 90 Yezidi males and 24 Kurdish males together with their pedigrees. We performed Y-STR analysis of 17 loci in the samples collected (Yfiler system from Applied Biosystems) and analysis of 42 Y-SNPs by real-time PCR. We compared our data with published data from other Kurdish groups and from European, Caucasian, and West Asian populations. We found that gene pool of Yezidis contains haplogroups common in the Middle East (J-M172(xM67,M12)- 24%, E-M35(xM78)- 9%) and in South Western Asia (R-M124- 8%) and variant with wide distribution area - R-M198(xM458- 9%). The gene pool of Kurdish has higher genetic diversity than Yezidis. Their dominants haplogroups are R-M198- 20,3 %, E-M35- 9%, J-M172- 9%. Multidimensional scaling also shows that the Kurds and Yezidis are part of the same frontier Asian cluster, which, in addition, included Armenians, Iranians, Turks, and Greeks. At the same time, the peoples of the Caucasus and Europe form isolated clusters that do not overlap with the Asian clusters. It is noteworthy that Kurds from our study gravitate towards Tats, which indicates that most likely these two populations are descendants of ancient Medes population. Multidimensional scaling also reveals similarity between gene pool of Yezidis, Kurds with Armenians and Iranians. The analysis of Yezidis pedigrees and their STR variability did not reveal a reliable connection between genetic diversity and caste system. This indicates that the Yezidis caste system is a social division and not a biological one. Thus, we showed that, despite many years of isolation, the gene pool of Yezidis retained a common layer with the gene pool of Kurds, these populations have common spectrum of haplogroups, but Yezidis have lower genetic diversity than Kurds. This study received primary support from the RSF grant No. 16-36-00122 to MC and grant No. 16-06-00364 to EP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20pool" title="gene pool">gene pool</a>, <a href="https://publications.waset.org/abstracts/search?q=haplogroup" title=" haplogroup"> haplogroup</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurds" title=" Kurds"> Kurds</a>, <a href="https://publications.waset.org/abstracts/search?q=SNP%20and%20STR%20markers" title=" SNP and STR markers"> SNP and STR markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Yezidis" title=" Yezidis"> Yezidis</a> </p> <a href="https://publications.waset.org/abstracts/82834/str-and-snp-markers-of-y-chromosome-unveil-similarity-between-the-gene-pool-of-kurds-and-yezidis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5017</span> Joubert Syndrome: A Rare Genetic Disorder Reported in Kurdish Family</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aran%20Abd%20Al%20Rahman">Aran Abd Al Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Joubert syndrome regards as a congenital cerebellar ataxia caused by autosomal recessive carried on X chromosome. The disease diagnosed by brain imaging—the so-called molar tooth sign. Neurological signs were present from the neonatal period and include hypotonia progressing to ataxia, global developmental delay, ocular motor apraxia, and breathing dysregulation. These signs are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton, and liver. 30 causative genes have been identified so far, all of which encode for proteins of the primary cilium or its apparatus, The purpose of our project was to detect the mutant gene (INPP5E gene) which cause Joubert syndrome. There were many methods used for diagnosis such as MRI and CT- scan and molecular diagnosis by doing ARMS PCR for detection of mutant gene that we were used in this research project. In this research for individual family which reported, the two children with parents, the two children were affected and were carrier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joubert%20syndrome" title="Joubert syndrome">Joubert syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20disease" title=" genetic disease"> genetic disease</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurdistan%20region" title=" Kurdistan region"> Kurdistan region</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaimani" title=" Sulaimani"> Sulaimani</a> </p> <a href="https://publications.waset.org/abstracts/112179/joubert-syndrome-a-rare-genetic-disorder-reported-in-kurdish-family" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5016</span> Frequency of BCR-ABL Fusion Transcript Types with Chronic Myeloid Leukemia by Multiplex Polymerase Chain Reaction in Srinagarind Hospital, Khon Kaen Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanokon%20Chaicom">Kanokon Chaicom</a>, <a href="https://publications.waset.org/abstracts/search?q=Chitima%20Sirijerachai"> Chitima Sirijerachai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanchana%20%20Chansung"> Kanchana Chansung</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinsuda%20Klangsang"> Pinsuda Klangsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Boonpeng%20Palaeng"> Boonpeng Palaeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajuab%20Chaimanee"> Prajuab Chaimanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pimjai%20Ananta"> Pimjai Ananta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chronic myeloid leukemia (CML) is characterized by the consistent involvement of the Philadelphia chromosome (Ph), which is derived from a reciprocal translocation between chromosome 9 and 22, the main product of the t(9;22) (q34;q11) translocation, is found in the leukemic clone of at least 95% of CML patients. There are two major forms of the BCR/ABL fusion gene, involving ABL exon 2, but including different exons of BCR gene. The transcripts b2a2 (e13a2) or b3a2 (e14a2) code for a p210 protein. Another fusion gene leads to the expression of an e1a2 transcript, which codes for a p190 protein. Other less common fusion genes are b3a3 or b2a3, which codes for a p203 protein and e19a2 (c3a2) transcript, which codes for a p230 protein. Its frequency varies in different populations. In this study, we aimed to report the frequency of BCR-ABL fusion transcript types with CML by multiplex PCR (polymerase chain reaction) in Srinagarind Hospital, Khon Kaen, Thailand. Multiplex PCR for BCR-ABL was performed on 58 patients, to detect different types of BCR-ABL transcripts of the t (9; 22). All patients examined were positive for some type of BCR/ABL rearrangement. The majority of the patients (93.10%) expressed one of the p210 BCR-ABL transcripts, b3a2 and b2a2 transcripts were detected in 53.45% and 39.65% respectively. The expression of an e1a2 transcript showed 3.75%. Co-expression of p210/p230 was detected in 3.45%. Co-expression of p210/p190 was not detected. Multiplex PCR is useful, saves time and reliable in the detection of BCR-ABL transcript types. The frequency of one or other rearrangement in CML varies in different population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=BCR-ABL%20fusion%20transcript%20types" title=" BCR-ABL fusion transcript types"> BCR-ABL fusion transcript types</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplex%20PCR" title=" multiplex PCR"> multiplex PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20BCR-ABL%20fusion" title=" frequency of BCR-ABL fusion"> frequency of BCR-ABL fusion</a> </p> <a href="https://publications.waset.org/abstracts/91777/frequency-of-bcr-abl-fusion-transcript-types-with-chronic-myeloid-leukemia-by-multiplex-polymerase-chain-reaction-in-srinagarind-hospital-khon-kaen-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5015</span> A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hala%20Alshamlan">Hala Alshamlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Badr"> Ghada Badr</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Alohali"> Yousef Alohali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20selection" title="gene selection">gene selection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20classification" title=" cancer classification"> cancer classification</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray" title=" microarray"> microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression%20profile" title=" gene expression profile"> gene expression profile</a> </p> <a href="https://publications.waset.org/abstracts/8991/a-review-of-effective-gene-selection-methods-for-cancer-classification-using-microarray-gene-expression-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5014</span> Phylogenetic Relationships between the Whole Sets of Individual Flow Sorted U, M, S and C Chromosomes of Aegilops and Wheat as Revealed by COS Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Farkas">András Farkas</a>, <a href="https://publications.waset.org/abstracts/search?q=Istv%C3%A1n%20Moln%C3%A1r"> István Molnár</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Vr%C3%A1na"> Jan Vrána</a>, <a href="https://publications.waset.org/abstracts/search?q=Veronika%20Bure%C5%A1ov%C3%A1"> Veronika Burešová</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20C%C3%A1pal"> Petr Cápal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Cseh"> András Cseh</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1rta%20Moln%C3%A1r-L%C3%A1ng"> Márta Molnár-Láng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Dole%C5%BEel"> Jaroslav Doležel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Species of Aegilops played a central role in the evolution of wheat and are sources of traits related to yield quality and tolerance against biotic and abiotic stresses. These wild genes and alleles are desirable to use in crop improvement programs via introgressive hybridization. However, the success of chromosome mediated gene transfer to wheat are hampered by the pour knowledge on the genome structure of Aegilops relative to wheat and by the low number of cost-effective molecular markers specific for Aegilops chromosomes. The COS markers specific for genes conserved throughout evolution in both sequence and copy number between Triticeae/Aegilops taxa and define orthologous regions, thus enabling the comparison of regions on the chromosomes of related species. The present study compared individual chromosomes of Aegilops umbellulata (UU), Ae. comosa (MM), Ae. speltoides (SS) and Ae. caudata (CC) purified by flourescent labelling with oligonucleotid SSR repeats and biparametric flow cytometry with wheat by identifying orthologous chromosomal regions by COS markers. The linear order of bin-mapped COS markers along the wheat D chromosomes was identified by the use of chromosome-specific sequence data and virtual gene order. Syntenic regions of wheat identifying genome rearrangements differentiating the U, M, S or C genomes from the D genome of wheat were detected. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species and wheat will facilitate the targeted development of new markers specific for U, M, S and C genomic regions and will contribute to the understanding of molecular processes related to the evolution of Aegilops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aegilops" title="Aegilops">Aegilops</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-markers" title=" cos-markers"> cos-markers</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-sorting" title=" flow-sorting"> flow-sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/29629/phylogenetic-relationships-between-the-whole-sets-of-individual-flow-sorted-u-m-s-and-c-chromosomes-of-aegilops-and-wheat-as-revealed-by-cos-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5013</span> Intelligent CRISPR Design for Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chen%20Hu">Yu-Chen Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title="gene therapy">gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR" title=" CRISPR"> CRISPR</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a> </p> <a href="https://publications.waset.org/abstracts/168750/intelligent-crispr-design-for-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5012</span> Mutation Analysis of the ATP7B Gene in 43 Vietnamese Wilson’s Disease Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huong%20M.%20T.%20Nguyen">Huong M. T. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoa%20A.%20P.%20Nguyen"> Hoa A. P. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20P.%20T.%20Nguyen"> Mai P. T. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20D.%20Ngo"> Ngoc D. Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20T.%20Ta"> Van T. Ta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai%20T.%20Le"> Hai T. Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20V.%20Phan"> Chi V. Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wilson’s disease (WD) is an autosomal recessive disorder of the copper metabolism, which is caused by a mutation in the copper-transporting P-type ATPase (<em>ATP7B</em>). The mechanism of this disease is the failure of hepatic excretion of copper to bile, and leads to copper deposits in the liver and other organs. The <em>ATP7B</em> gene is located on the long arm of chromosome 13 (13q14.3). This study aimed to investigate the gene mutation in the Vietnamese patients with WD, and make a presymptomatic diagnosis for their familial members. Forty-three WD patients and their 65 siblings were identified as having <em>ATP7B</em> gene mutations. Genomic DNA was extracted from peripheral blood samples; 21 exons and exon-intron boundaries of the <em>ATP7B</em> gene were analyzed by direct sequencing. We recognized four mutations ([R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G) in the sum of 20 detectable mutations, accounting for 87.2% of the total. Mutation S105* was determined to have a high rate (32.6%) in this study. The hotspot regions of <em>ATP7B</em> were found at exons 2, 16, and 8, and intron 14, in 39.6 %, 11.6 %, 9.3%, and 7 % of patients, respectively. Among nine homozygote/compound heterozygote siblings of the patients with WD, three individuals were determined as asymptomatic by screening mutations of the probands. They would begin treatment after diagnosis. In conclusion, 20 different mutations were detected in 43 WD patients. Of this number, four novel mutations were explored, including [R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G. The mutation S105* is the most prevalent and has been considered as a biomarker that can be used in a rapid detection assay for diagnosis of WD patients. Exons 2, 8, and 16, and intron 14 should be screened initially for WD patients in Vietnam. Based on risk profile for WD, genetic testing for presymptomatic patients is also useful in diagnosis and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATP7B%20gene" title="ATP7B gene">ATP7B gene</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation%20detection" title=" mutation detection"> mutation detection</a>, <a href="https://publications.waset.org/abstracts/search?q=presymptomatic%20diagnosis" title=" presymptomatic diagnosis"> presymptomatic diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnamese%20Wilson%E2%80%99s%20disease" title=" Vietnamese Wilson’s disease"> Vietnamese Wilson’s disease</a> </p> <a href="https://publications.waset.org/abstracts/58250/mutation-analysis-of-the-atp7b-gene-in-43-vietnamese-wilsons-disease-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5011</span> Dwindling the Stability of DNA Sequence by Base Substitution at Intersection of COMT and MIR4761 Gene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srishty%20Gulati">Srishty Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Anju%20Singh"> Anju Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Kukreti"> Shrikant Kukreti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manifestation of structural polymorphism in DNA depends on the sequence and surrounding environment. Ample of folded DNA structures have been found in the cellular system out of which DNA hairpins are very common, however, are indispensable due to their role in the replication initiation sites, recombination, transcription regulation, and protein recognition. We enumerate this approach in our study, where the two base substitutions and change in temperature embark destabilization of DNA structure and misbalance the equilibrium between two structures of a sequence present at the overlapping region of the human COMT gene and MIR4761 gene. COMT and MIR4761 gene encodes for catechol-O-methyltransferase (COMT) enzyme and microRNAs (miRNAs), respectively. Environmental changes and errors during cell division lead to genetic abnormalities. The COMT gene entailed in dopamine regulation fosters neurological diseases like Parkinson's disease, schizophrenia, velocardiofacial syndrome, etc. A 19-mer deoxyoligonucleotide sequence 5'-AGGACAAGGTGTGCATGCC-3' (COMT19) is located at exon-4 on chromosome 22 and band q11.2 at the intersection of COMT and MIR4761 gene. Bioinformatics studies suggest that this sequence is conserved in humans and few other organisms and is involved in recognition of transcription factors in the vicinity of 3'-end. Non-denaturating gel electrophoresis and CD spectroscopy of COMT sequences indicate the formation of hairpin type DNA structures. Temperature-dependent CD studies revealed an unusual shift in the slipped DNA-Hairpin DNA equilibrium with the change in temperature. Also, UV-thermal melting techniques suggest that the two base substitutions on the complementary strand of COMT19 did not affect the structure but reduces the stability of duplex. This study gives insight about the possibility of existing structurally polymorphic transient states within DNA segments present at the intersection of COMT and MIR4761 gene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base-substitution" title="base-substitution">base-substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol-o-methyltransferase%20%28COMT%29" title=" catechol-o-methyltransferase (COMT)"> catechol-o-methyltransferase (COMT)</a>, <a href="https://publications.waset.org/abstracts/search?q=hairpin-DNA" title=" hairpin-DNA"> hairpin-DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20polymorphism" title=" structural polymorphism"> structural polymorphism</a> </p> <a href="https://publications.waset.org/abstracts/121066/dwindling-the-stability-of-dna-sequence-by-base-substitution-at-intersection-of-comt-and-mir4761-gene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5010</span> Relating Symptoms with Protein Production Abnormality in Patients with Down Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruolan%20Zhou">Ruolan Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trisomy of human chromosome 21 is the primary cause of Down Syndrome (DS), and this genetic disease has significantly burdened families and countries, causing great controversy. To address this problem, the research takes an approach in exploring the relationship between genetic abnormality and this disease's symptoms, adopting several techniques, including data analysis and enrichment analysis. It also explores open-source websites, such as NCBI, DAVID, SOURCE, STRING, as well as UCSC, to complement its result. This research has analyzed the variety of genes on human chromosome 21 with simple coding, and by using analysis, it has specified the protein-coding genes, their function, and their location. By using enrichment analysis, this paper has found the abundance of keratin production-related coding-proteins on human chromosome 21. By adopting past researches, this research has attempted to disclose the relationship between trisomy of human chromosome 21 and keratin production abnormality, which might be the reason for common diseases in patients with Down Syndrome. At last, by addressing the advantage and insufficiency of this research, the discussion has provided specific directions for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Down%20Syndrome" title="Down Syndrome">Down Syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20production" title=" protein production"> protein production</a>, <a href="https://publications.waset.org/abstracts/search?q=genome" title=" genome"> genome</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20analysis" title=" enrichment analysis"> enrichment analysis</a> </p> <a href="https://publications.waset.org/abstracts/132358/relating-symptoms-with-protein-production-abnormality-in-patients-with-down-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5009</span> Prevalence of Down Syndrome: A Single-Center Study in Bandung, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bremmy%20Laksono">Bremmy Laksono</a>, <a href="https://publications.waset.org/abstracts/search?q=Riksa%20Parikrama"> Riksa Parikrama</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20A.%20Rosyada"> Nur A. Rosyada</a>, <a href="https://publications.waset.org/abstracts/search?q=Willyanti%20Soewondo"> Willyanti Soewondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dadang%20S.%20H.%20Effendi"> Dadang S. H. Effendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eriska%20Rianti"> Eriska Rianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Arlette%20S.%20Setiawan"> Arlette S. Setiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ine%20Sasmita"> Ine Sasmita</a>, <a href="https://publications.waset.org/abstracts/search?q=Risti%20S.%20Primanti"> Risti S. Primanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Erna%20Kurnikasari"> Erna Kurnikasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunia%20Sribudiani"> Yunia Sribudiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Down syndrome (DS) is a chromosomal abnormality characterised by complete 21 chromosome trisomy (classical or non-disjunction), or partial 21 chromosome trisomy (mosaicism), or chromosome rearrangement involving chromosome 21 (translocation). This study was carried out to describe the frequency of DS patients in a research institution in the city of Bandung, Indonesia. This descriptive study also provides a picture of the residential location and surrounding area of their dwellings. This study involved people with DS in various age whose chromosome were evaluated by conventional karyotyping method and FISH. Data were collected from 60 patients with DS from a total 150 patients during the period of September 2015 to August 2016 who were referred to Cell Culture and Cytogenetics Laboratory, Faculty of Medicine Universitas Padjadjaran, Indonesia. Results showed that the most common type of DS was non-disjunction (93%), followed by mosaicism (5%), no patient with translocation DS (0%), and a very rare type of tetrasomy 21 (2%). There were 39 males (65%) and 21 females (35%) of DS patient. Most of them live in suburban area beyond Bandung city (55%) while the rest live inside urban area of Bandung city (45%). They live mostly in dense area of greater Bandung area (65%) and only a few live in mid-density area (25%) and the least live in sparse populated area (10%). Their houses are mostly located in residential estate area (55%), nearby industrial area (37%), and around agricultural area (8%). Based on the study, it could be concluded that non-disjunction DS is the most common type. DS patients referred to the laboratory mostly came from dense residential zone in suburban area outside Bandung city. The low number of DS patients referred to the laboratory for chromosome analysis was the highlight to improve health service for people with genetic disorder. This study offered several information regarding area of DS patients’ residence and the condition of neighbourhood in Bandung city where they live as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome" title="chromosome">chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive" title=" descriptive"> descriptive</a>, <a href="https://publications.waset.org/abstracts/search?q=Down%20syndrome" title=" Down syndrome"> Down syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a> </p> <a href="https://publications.waset.org/abstracts/58434/prevalence-of-down-syndrome-a-single-center-study-in-bandung-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5008</span> Construction of the Large Scale Biological Networks from Microarrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadhl%20Alakwaa">Fadhl Alakwaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20regulatory%20network" title="gene regulatory network">gene regulatory network</a>, <a href="https://publications.waset.org/abstracts/search?q=biclustering" title=" biclustering"> biclustering</a>, <a href="https://publications.waset.org/abstracts/search?q=denoising" title=" denoising"> denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20biology" title=" system biology"> system biology</a> </p> <a href="https://publications.waset.org/abstracts/74607/construction-of-the-large-scale-biological-networks-from-microarrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5007</span> Monoallelic and Biallelic Deletions of 13q14 in a Group of 36 CLL Patients Investigated by CGH Haematological Cancer and SNP Array (8x60K)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Grygalewicz">B. Grygalewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Woroniecka"> R. Woroniecka</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rygier"> J. Rygier</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Borkowska"> K. Borkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Labak"> A. Labak</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nowakowska"> B. Nowakowska</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pienkowska-Grela"> B. Pienkowska-Grela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world. Hemizygous and or homozygous loss at 13q14 occur in more than half of cases and constitute the most frequent chromosomal abnormality in CLL. It is believed that deletions 13q14 play a role in CLL pathogenesis. Two microRNA genes miR-15a and miR- 16-1 are targets of 13q14 deletions and plays a tumor suppressor role by targeting antiapoptotic BCL2 gene. Deletion size, as a single change detected in FISH analysis, has haprognostic significance. Patients with small deletions, without RB1 gene involvement, have the best prognosis and the longest overall survival time (OS 133 months). In patients with bigger deletion region, containing RB1 gene, prognosis drops to intermediate, like in patients with normal karyotype and without changes in FISH with overall survival 111 months. Aim: Precise delineation of 13q14 deletions regions in two groups of CLL patients, with mono- and biallelic deletions and qualifications of their prognostic significance. Methods: Detection of 13q14 deletions was performed by FISH analysis with CLL probe panel (D13S319, LAMP1, TP53, ATM, CEP-12). Accurate deletion size detection was performed by CGH Haematological Cancer and SNP array (8x60K). Results: Our investigated group of CLL patients with the 13q14 deletion, detected by FISH analysis, comprised two groups: 18 patients with monoallelic deletions and 18 patients with biallelic deletions. In FISH analysis, in the monoallelic group the range of cells with deletion, was 43% to 97%, while in biallelic group deletion was detected in 11% to 94% of cells. Microarray analysis revealed precise deletion regions. In the monoallelic group, the range of size was 348,12 Kb to 34,82 Mb, with median deletion size 7,93 Mb. In biallelic group discrepancy of total deletions, size was 135,27 Kb to 33,33 Mb, with median deletion size 2,52 Mb. The median size of smaller deletion regions on one copy chromosome 13 was 1,08 Mb while the average region of bigger deletion on the second chromosome 13 was 4,04 Mb. In the monoallelic group, in 8/18 deletion region covered RB1 gene. In the biallelic group, in 4/18 cases, revealed deletion on one copy of biallelic deletion and in 2/18 showed deletion of RB1 gene on both deleted 13q14 regions. All minimal deleted regions included miR-15a and miR-16-1 genes. Genetic results will be correlated with clinical data. Conclusions: Application of CGH microarrays technique in CLL allows accurately delineate the size of 13q14 deletion regions, what have a prognostic value. All deleted regions included miR15a and miR-16-1, what confirms the essential role of these genes in CLL pathogenesis. In our investigated groups of CLL patients with mono- and biallelic 13q14 deletions, patients with biallelic deletion presented smaller deletion sizes (2,52 Mb vs 7,93 Mb), what is connected with better prognosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CLL" title="CLL">CLL</a>, <a href="https://publications.waset.org/abstracts/search?q=deletion%2013q14" title=" deletion 13q14"> deletion 13q14</a>, <a href="https://publications.waset.org/abstracts/search?q=CGH%20microarrays" title=" CGH microarrays"> CGH microarrays</a>, <a href="https://publications.waset.org/abstracts/search?q=SNP%20array" title=" SNP array"> SNP array</a> </p> <a href="https://publications.waset.org/abstracts/29716/monoallelic-and-biallelic-deletions-of-13q14-in-a-group-of-36-cll-patients-investigated-by-cgh-haematological-cancer-and-snp-array-8x60k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5006</span> Doubled Haploid Production in Wheat Using Imperata cylindrica Mediated Chromosome Elimination Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Patial">Madhu Patial</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharam%20Pal"> Dharam Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Kumar"> Jagdish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Chaudhary"> H. K. Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doubled haploid breeding serves as a useful technique in wheat improvement by providing instant and complete homozygosity. Of the various techniques employed for haploid production chromosome elimination has a large scale practical application in wheat improvement. Barclay (1975) initiated the technique in wheat by crossing wheat variety Chinese spring with Hordeum bulbosum, but due to presence of the dominant crossability inhibitor genes Kr7 and Kr2 in many wheat varieties, the technique was however genotypic specific. The discovery of wheat X maize system of haploid production being genotype non-specific is quite successful but still maize needs to be grown in greenhouse to coincide flowering with wheat crop. Recently, wheat X Imperate cylindrica has been identified as a new chromosome mediated DH approach for efficient haploid induction. An experiment to use this technique in wheat was set up by crossing six F1s and two three way F1s with Imperata cylindrica. The data was recorded for the three component traits of haploid induction viz., seed formation, embryo formation and regeneration frequency. Variation among wheat F1s was observed and higher frequency for all the traits were recorded in cross HD 2997/2*FL-8/DONSK-POLL and KLE/BER/2*FL-8/DONSK-POLL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=haploid" title=" haploid"> haploid</a>, <a href="https://publications.waset.org/abstracts/search?q=imperata%20cylindrica" title=" imperata cylindrica"> imperata cylindrica</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20elimination%20technique" title=" chromosome elimination technique"> chromosome elimination technique</a> </p> <a href="https://publications.waset.org/abstracts/24869/doubled-haploid-production-in-wheat-using-imperata-cylindrica-mediated-chromosome-elimination-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5005</span> Identification of Mx Gene Polymorphism in Indragiri Hulu duck by PCR-RFLP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Restu%20Misrianti">Restu Misrianti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The amino acid variation of Asn (allele A) at position 631 in Mx gene was specific to positive antiviral to avian viral desease. This research was aimed at identifying polymorphism of Mx gene in duck using molecular technique. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to select the genotype of AA, AG and GG. There were thirteen duck from Indragiri Hulu regency (Riau Province) used in this experiment. DNA amplification results showed that the Mx gene in duck is found in a 73 bp fragment. Mx gene in duck did not show any polymorphism. The frequency of the resistant allele (AA) was 0%, while the frequency of the susceptible allele (GG) was 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duck" title="duck">duck</a>, <a href="https://publications.waset.org/abstracts/search?q=Mx%20gene" title=" Mx gene"> Mx gene</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=RFLP" title=" RFLP"> RFLP</a> </p> <a href="https://publications.waset.org/abstracts/37764/identification-of-mx-gene-polymorphism-in-indragiri-hulu-duck-by-pcr-rflp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5004</span> Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsaneh%20Mohammadnejad">Afsaneh Mohammadnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianne%20Nygaard"> Marianne Nygaard</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Baumbach"> Jan Baumbach</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuxia%20Li"> Shuxia Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Weilong%20Li"> Weilong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesper%20Lund"> Jesper Lund</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20v.%20B.%20Hjelmborg"> Jacob v. B. Hjelmborg</a>, <a href="https://publications.waset.org/abstracts/search?q=Lene%20Christensen"> Lene Christensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Qihua%20Tan"> Qihua Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognition" title="cognition">cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20correlation%20coefficient" title=" generalized correlation coefficient"> generalized correlation coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=GWAS" title=" GWAS"> GWAS</a>, <a href="https://publications.waset.org/abstracts/search?q=twins" title=" twins"> twins</a> </p> <a href="https://publications.waset.org/abstracts/111850/generalized-correlation-coefficient-in-genome-wide-association-analysis-of-cognitive-ability-in-twins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=167">167</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=168">168</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gene%20and%20chromosome%20issue&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>