CINXE.COM

Search results for: factorial experimental design

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: factorial experimental design</title> <meta name="description" content="Search results for: factorial experimental design"> <meta name="keywords" content="factorial experimental design"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="factorial experimental design" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="factorial experimental design"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18076</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: factorial experimental design</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18076</span> The Development of Statistical Analysis in Agriculture Experimental Design Using R</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somruay%20Apichatibutarapong">Somruay Apichatibutarapong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chookiat%20Pudprommart"> Chookiat Pudprommart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to develop of statistical analysis by using R programming via internet applied for agriculture experimental design. Data were collected from 65 items in completely randomized design, randomized block design, Latin square design, split plot design, factorial design and nested design. The quantitative approach was used to investigate the quality of learning media on statistical analysis by using R programming via Internet by six experts and the opinions of 100 students who interested in experimental design and applied statistics. It was revealed that the experts’ opinions were good in all contents except a usage of web board and the students’ opinions were good in overall and all items. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title="experimental design">experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=r%20programming" title=" r programming"> r programming</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20statistics" title=" applied statistics"> applied statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/2748/the-development-of-statistical-analysis-in-agriculture-experimental-design-using-r" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18075</span> Adsorption of Malachite Green Dye onto Industrial Waste Materials: Full Factorial Design </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semra%20%C3%87oruh">Semra Çoruh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Tibet"> Yusuf Tibet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dyes are widely used in industries such as textiles, paper, paints, leather, rubber, plastics, cosmetics, food, and drug etc, to color their products. Due to their chemical structures, dyes are resistant to fading on exposure to light, water and many chemicals and, therefore, are difficult to be decolorized once released into the aquatic environment. Many of the organic dyes are hazardous and may affect aquatic life and even the food chain. This study deals with the adsorption of malachite green dye onto fly ash and red mud. The effects of experimental factors (adsorbent dosage, initial concentration, pH and temperature) on the adsorption process were examined by using 24 full factorial design. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. A regression model that considers the significant main and interaction effects was suggested. The results showed that initial dye concentration an pH is the most significant factor that affects the removal of malachite green. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title="malachite green">malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a> </p> <a href="https://publications.waset.org/abstracts/21950/adsorption-of-malachite-green-dye-onto-industrial-waste-materials-full-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18074</span> Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Firoz%20Kalam">M. Firoz Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfried%20Schuetz"> Wilfried Schuetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Hendrik%20Bredehoeft"> Jan Hendrik Bredehoeft </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorptive%20desulfurization" title=" adsorptive desulfurization"> adsorptive desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a> </p> <a href="https://publications.waset.org/abstracts/84261/experimental-design-and-optimization-of-diesel-oil-desulfurization-process-by-adsorption-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18073</span> Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20Ibrahim">Noha Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20S.%20Elzanfaly"> Eman S. Elzanfaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20A.%20Hassan"> Said A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20E.%20El%20Gendy"> Ahmed E. El Gendy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amlodipine" title="amlodipine">amlodipine</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20face-centred%20design" title=" central composite face-centred design"> central composite face-centred design</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title=" experimental design"> experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20factorial%20design" title=" fractional factorial design"> fractional factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20calibration" title=" multivariate calibration"> multivariate calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=olmesartan" title=" olmesartan"> olmesartan</a> </p> <a href="https://publications.waset.org/abstracts/120092/development-optimization-and-validation-of-a-synchronous-fluorescence-spectroscopic-method-with-multivariate-calibration-for-the-determination-of-amlodipine-and-olmesartan-implementing-experimental-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18072</span> Factorial Design Analysis for Quality of Video on MANET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyoup-Sang%20Yoon">Hyoup-Sang Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evalvid" title="evalvid">evalvid</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20ad%20hoc%20networks" title=" mobile ad hoc networks"> mobile ad hoc networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ns-2" title=" ns-2"> ns-2</a> </p> <a href="https://publications.waset.org/abstracts/6956/factorial-design-analysis-for-quality-of-video-on-manet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18071</span> Adsorption of Xylene Cyanol FF onto Activated Carbon from Brachystegia Eurycoma Seed Hulls: Determination of the Optimal Conditions by Statistical Design of Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20G%20Okibe">F. G Okibe</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E%20Gimba"> C. E Gimba</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20O%20Ajibola"> V. O Ajibola</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20G%20Ndukwe"> I. G Ndukwe</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20D.%20Paul"> E. D. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A full factorial experimental design technique at two levels and four factors (24) was used to optimize the adsorption at 615 nm of Xylene Cyanol ff in aqueous solutions onto activated carbon prepared from brachystegia eurycoma seed hulls by chemical carbonization method. The effect of pH (3 and 5), initial dye concentration (20 and 60 mg/l), adsorbent dosage (0.01 and 0.05 g), and contact time (30 and 60 min) on removal efficiency of the adsorbent for the dye were investigated at 298K. From the analysis of variance, response surface and cube plot, adsorbent dosage was observed to be the most significant factor affecting the adsorption process. However, from the interaction between the variables studied, the optimum removal efficiency was 96.80 % achieved with adsorbent dosage of 0.05 g, contact time 45 minutes, pH 3, and initial dye concentration 60 mg/l. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design" title="factorial experimental design">factorial experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=brachystegia%20eurycoma" title=" brachystegia eurycoma"> brachystegia eurycoma</a>, <a href="https://publications.waset.org/abstracts/search?q=xylene%20cyanol%20ff" title=" xylene cyanol ff"> xylene cyanol ff</a> </p> <a href="https://publications.waset.org/abstracts/13895/adsorption-of-xylene-cyanol-ff-onto-activated-carbon-from-brachystegia-eurycoma-seed-hulls-determination-of-the-optimal-conditions-by-statistical-design-of-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18070</span> The Classical Conditioning Effect of Animated Spokes-Characters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Tsai">Chia-Ching Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting-Hsiu%20Chen"> Ting-Hsiu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper adopted 2X2 factorial design. One factor was experimental versus control condition. The other factor was types of animated spokescharacter, and one of the two levels was expert type, and the other level is attractive type. In the study, we use control versus experimental conditioning and types of animated spokescharacter as independent variables, and brand attitude as dependent variable to examine the conditioning effect of types of animated spokescharacter on brand attitude. There are 123 subjects participating in the experiment. The results showed conditioning group presents that animated spokescharacter has significantly superior effect of product endorsement in contrast to non-conditioning one, while there is no significant impact of types of animated spokescharacter on brand attitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classical%20conditioning" title="classical conditioning">classical conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=animated%20spokes-character" title=" animated spokes-character"> animated spokes-character</a>, <a href="https://publications.waset.org/abstracts/search?q=brand%20attitude" title=" brand attitude"> brand attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a> </p> <a href="https://publications.waset.org/abstracts/43279/the-classical-conditioning-effect-of-animated-spokes-characters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18069</span> Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friday%20Godwin%20Okibe">Friday Godwin Okibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaoyi%20David%20Paul"> Elaoyi David Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladayo%20Thomas%20Ojekunle"> Oladayo Thomas Ojekunle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20and%20phosphorous%20co-doped%20Zno" title="nitrogen and phosphorous co-doped Zno">nitrogen and phosphorous co-doped Zno</a>, <a href="https://publications.waset.org/abstracts/search?q=p-nitrophenol" title=" p-nitrophenol"> p-nitrophenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design%20of%20experimental" title=" factorial design of experimental "> factorial design of experimental </a> </p> <a href="https://publications.waset.org/abstracts/73455/optimization-of-photocatalytic-degradation-of-para-nitrophenol-in-visible-light-by-nitrogen-and-phosphorus-co-doped-zinc-oxide-using-factorial-design-of-experimental" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18068</span> Development of an Experiment for Impedance Measurement of Structured Sandwich Sheet Metals by Using a Full Factorial Multi-Stage Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Vincent%20Haase">Florian Vincent Haase</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Dierl"> Adrian Dierl</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Henke"> Anna Henke</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Woll"> Ralf Woll</a>, <a href="https://publications.waset.org/abstracts/search?q=Ennes%20Sarradj"> Ennes Sarradj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structured sheet metals and structured sandwich sheet metals are three-dimensional, lightweight structures with increased stiffness which are used in the automotive industry. The impedance, a figure of resistance of a structure to vibrations, will be determined regarding plain sheets, structured sheets, and structured sandwich sheets. The aim of this paper is generating an experimental design in order to minimize costs and duration of experiments. The design of experiments will be used to reduce the large number of single tests required for the determination of correlation between the impedance and its influencing factors. Full and fractional factorials are applied in order to systematize and plan the experiments. Their major advantages are high quality results given the relatively small number of trials and their ability to determine the most important influencing factors including their specific interactions. The developed full factorial experimental design for the study of plain sheets includes three factor levels. In contrast to the study of plain sheets, the respective impedance analysis used on structured sheets and structured sandwich sheets should be split into three phases. The first phase consists of preliminary tests which identify relevant factor levels. These factor levels are subsequently employed in main tests, which have the objective of identifying complex relationships between the parameters and the reference variable. Possible post-tests can follow up in case additional study of factor levels or other factors are necessary. By using full and fractional factorial experimental designs, the required number of tests is reduced by half. In the context of this paper, the benefits from the application of design for experiments are presented. Furthermore, a multistage approach is shown to take into account unrealizable factor combinations and minimize experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structured%20sheet%20metals" title="structured sheet metals">structured sheet metals</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20sandwich%20sheet%20metals" title=" structured sandwich sheet metals"> structured sandwich sheet metals</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20measurement" title=" impedance measurement"> impedance measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/47479/development-of-an-experiment-for-impedance-measurement-of-structured-sandwich-sheet-metals-by-using-a-full-factorial-multi-stage-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18067</span> Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sert%C3%A7elik">Mustafa Sertçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacali%20Necefo%C4%9Flu"> Hacali Necefoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20%C3%87alban"> Turan Çalban</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Ku%C5%9Flu"> Soner Kuşlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Chevreul&rsquo;s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 2<sup>4</sup> factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul&rsquo;s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 <sup>o</sup>C, and the solid-to-liquid ratio 9/80 g.mL<sup>-1</sup>. The best dissolution yield in these conditions was 96.20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chevreul%27s%20salt" title="Chevreul&#039;s salt">Chevreul&#039;s salt</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design%20method" title=" factorial experimental design method"> factorial experimental design method</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title=" ammonium chloride"> ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/51927/optimization-of-dissolution-of-chevreuls-salt-in-ammonium-chloride-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18066</span> Design and Optimization of a Customized External Fixation Device for Lower Limb Injuries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Alqahtani">Mohammed S. Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20J.%20Bartolo"> Paulo J. Bartolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> External fixation is a common technique for the treatment and stabilization of bone fractures. Different designs have been proposed by companies and research groups, but all of them present limitations such as high weight, not comfortable to use, and not customized to individual patients. This paper proposes a lightweight customized external fixator, overcoming some of these limitations. External fixators are designed using a set of techniques such as medical imaging, CAD modelling, finite element analysis, and full factorial design of experiments. Key design parameters are discussed, and the optimal set of parameters is used to design the final external fixator. Numerical simulations are used to validate design concepts. Results present an optimal external fixation design with weight reduction of 13% without compromising its stiffness and structural integrity. External fixators are also designed to be additively manufactured, allowing to develop a strategy for personalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design%20modelling" title="computer-aided design modelling">computer-aided design modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20fixation" title=" external fixation"> external fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial" title=" full factorial"> full factorial</a>, <a href="https://publications.waset.org/abstracts/search?q=personalization" title=" personalization"> personalization</a> </p> <a href="https://publications.waset.org/abstracts/132633/design-and-optimization-of-a-customized-external-fixation-device-for-lower-limb-injuries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18065</span> Multiobjective Optimization of Wastwater Treatment by Electrochemical Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malek%20Bendjaballah">Malek Bendjaballah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacina%20Saidi"> Hacina Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Hamidoud"> Sarra Hamidoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater, <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title="electrocoagulation">electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20process" title=" green process"> green process</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title=" experimental design"> experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/158692/multiobjective-optimization-of-wastwater-treatment-by-electrochemical-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18064</span> Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deba%20Kumar%20Sarma">Deba Kumar Sarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjib%20Kr.%20Rajbongshi"> Sanjib Kr. Rajbongshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title="full factorial design">full factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=nose%20radius" title=" nose radius"> nose radius</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finish" title=" surface finish"> surface finish</a> </p> <a href="https://publications.waset.org/abstracts/40567/experimental-study-and-neural-network-modeling-in-prediction-of-surface-roughness-on-dry-turning-using-two-different-cutting-tool-nose-radii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18063</span> A Full Factorial Analysis of Microhardness Variation in Bead Welds Deposited by the Process Cold Wire Gas Metal Arc Welding (CW-GMAW)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Ribeiro">R. A. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Angelo%20Assun%C3%A7%C3%A3o"> P. D. Angelo Assunção</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Braga"> E. M. Braga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microhardness in weld beads is a function of the microstructure obtained in the welding process, and this by its time is dependent of the input variables established at the outset of the process. In this study the influence of angle between the plate and the cold wire, the position in which the cold wire is introduced and the rate in which this introduction is made are assessed as input parameters in CW-GMAW process. This paper looks to show that ordinary changes in the frame of CW-GMAW can improve microhardness, which is expected to vary as the input parameters change. To properly correlate the changes in the input parameters to consequent changes in microhardness of the weld bead, a full factorial design was employed. In fact, changes in the operational parameters improved the overall microhardness of the weld bead, which in turns can be an indication of improvement in the resistance to abrasive wear, constituting a cheap way to augment the abrasion wear resistance of welds used for cladding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasion" title="abrasion">abrasion</a>, <a href="https://publications.waset.org/abstracts/search?q=CW-GMAW" title=" CW-GMAW"> CW-GMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a> </p> <a href="https://publications.waset.org/abstracts/20184/a-full-factorial-analysis-of-microhardness-variation-in-bead-welds-deposited-by-the-process-cold-wire-gas-metal-arc-welding-cw-gmaw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18062</span> Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Guezzen">B. Guezzen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.A.%20Didi"> M.A. Didi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjahed"> B. Medjahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm<sup>+</sup>][D2EHP<sup>-</sup>]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (3<sup>3</sup>). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration &gt; salt effect &gt; initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R<sup>2</sup> = 0.91) and low probability values (P &lt; 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 &deg;C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title="ionic liquid">ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20acetate" title=" zinc acetate"> zinc acetate</a> </p> <a href="https://publications.waset.org/abstracts/57289/optimization-of-process-parameters-using-response-surface-methodology-for-the-removal-of-zincii-by-solvent-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18061</span> Evaluation of the Operating Parameters for Biodiesel Production Using a Membrane Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20L.%20Andrade">S. S. L. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Souza"> E. A. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20L.%20Santos"> L. C. L. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Moraes"> C. Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20C.%20L.%20Lobato"> A. K. C. L. Lobato </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel production using membrane reactor has become increasingly studied, because this process minimizes some of the main problems encountered in the biodiesel purification. The membrane reactor tries to minimize post-treatment steps, resulting in cost savings and enabling the competitiveness of biodiesel produced by homogeneous alkaline catalysis. This is due to the reaction and product separation may occur simultaneously. In order to evaluate the production of biodiesel from soybean oils using a tubular membrane reactor, a factorial experimental design was conducted (2³) to evaluate the influence of following variables: temperature (45 to 60 °C), catalyst concentration (0.5 to 1% by weight) and molar ratio of oil/methanol (1/6 to 1/9). In addition, the parametric sensitivity was evaluated by the analysis of variance and model through the response surface. The results showed a tendency of influence of the variables in the reaction conversion. The significance effect was higher for the catalyst concentration followed by the molar ratio of oil/methanol and finally the temperature. The best result was obtained under the conditions of 1% catalyst (KOH), molar ratio oil/methanol of 1/9 and temperature of 60 °C, resulting in an ester content of 99.07%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20production" title="biodiesel production">biodiesel production</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20reactor" title=" membrane reactor"> membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/39575/evaluation-of-the-operating-parameters-for-biodiesel-production-using-a-membrane-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18060</span> Improving Fused Deposition Modeling Efficiency: A Parameter Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wadea%20Ameen">Wadea Ameen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid prototyping (RP) technology, such as fused deposition modeling (FDM), is gaining popularity because it can produce functioning components with intricate geometric patterns in a reasonable amount of time. A multitude of process variables influences the quality of manufactured parts. In this study, four important process parameters such as layer thickness, model interior fill style, support fill style and orientation are considered. Their influence on three responses, such as build time, model material, and support material, is studied. Experiments are conducted based on factorial design, and the results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title="fused deposition modeling">fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/191939/improving-fused-deposition-modeling-efficiency-a-parameter-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18059</span> Effect of Naphtha in Addition to a Cycle Steam Stimulation Process Reducing the Heavy Oil Viscosity Using a Two-Level Factorial Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20A.%20Guerrero">Nora A. Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=Adan%20Leon"> Adan Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20I.%20Sandoval"> María I. Sandoval</a>, <a href="https://publications.waset.org/abstracts/search?q=Romel%20Perez"> Romel Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Munoz"> Samuel Munoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of solvents in cyclic steam stimulation is a technique that has shown an impact on the improved recovery of heavy oils. In this technique, it is possible to reduce the steam/oil ratio in the last stages of the process, at which time this ratio increases significantly. The mobility of improved crude oil increases due to the structural changes of its components, which at the same time reflected in the decrease in density and viscosity. In the present work, the effect of the variables such as temperature, time, and weight percentage of naphtha was evaluated, using a factorial design of experiments 23. From the results of analysis of variance (ANOVA) and Pareto diagram, it was possible to identify the effect on viscosity reduction. The experimental representation of the crude-vapor-naphtha interaction was carried out in a batch reactor on a Colombian heavy oil of 12.8° API and 3500 cP. The conditions of temperature, reaction time, and percentage of naphtha were 270-300 °C, 48-66 hours, and 3-9% by weight, respectively. The results showed a decrease in density with values in the range of 0.9542 to 0.9414 g/cm³, while the viscosity decrease was in the order of 55 to 70%. On the other hand, simulated distillation results, according to ASTM 7169, revealed significant conversions of the 315°C+ fraction. From the spectroscopic techniques of nuclear magnetic resonance NMR, infrared FTIR and UV-VIS visible ultraviolet, it was determined that the increase in the performance of the light fractions in the improved crude is due to the breakdown of alkyl chains. The methodology for cyclic steam injection with naphtha and laboratory-scale characterization can be considered as a practical tool in improved recovery processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscosity%20reduction" title="viscosity reduction">viscosity reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20steam%20stimulation" title=" cyclic steam stimulation"> cyclic steam stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=naphtha" title=" naphtha"> naphtha</a> </p> <a href="https://publications.waset.org/abstracts/122135/effect-of-naphtha-in-addition-to-a-cycle-steam-stimulation-process-reducing-the-heavy-oil-viscosity-using-a-two-level-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18058</span> Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Koronis">Georgios Koronis</a>, <a href="https://publications.waset.org/abstracts/search?q=Arlindo%20Silva"> Arlindo Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=flax%20fabrics" title=" flax fabrics"> flax fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber%20reinforced%20composites" title=" natural fiber reinforced composites"> natural fiber reinforced composites</a> </p> <a href="https://publications.waset.org/abstracts/59273/predicting-and-optimizing-the-mechanical-behavior-of-a-flax-reinforced-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18057</span> Optimization Study of Adsorption of Nickel(II) on Bentonite </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjahed">B. Medjahed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Didi"> M. A. Didi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Guezzen"> B. Guezzen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work concerns with the experimental study of the adsorption of the Ni(II) on bentonite. The effects of various parameters such as contact time, stirring rate, initial concentration of Ni(II), masse of clay, initial pH of aqueous solution and temperature on the adsorption yield, were carried out. The study of the effect of the ionic strength on the yield of adsorption was examined by the identification and the quantification of the present chemical species in the aqueous phase containing the metallic ion Ni(II). The adsorbed species were investigated by a calculation program using CHEAQS V. L20.1 in order to determine the relation between the percentages of the adsorbed species and the adsorption yield. The optimization process was carried out using 2<sup>3</sup>&nbsp;factorial designs. The individual and combined effects of three process parameters, i.e. initial Ni(II) concentration in aqueous solution (2.10<sup>&minus;3</sup>&nbsp;and 5.10<sup>&minus;3</sup>&nbsp;mol/L), initial pH of the solution (2 and 6.5), and mass of bentonite (0.03 and 0.3&nbsp;g) on Ni(II) adsorption, were studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%28II%29" title=" Nickel(II)"> Nickel(II)</a> </p> <a href="https://publications.waset.org/abstracts/74678/optimization-study-of-adsorption-of-nickelii-on-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18056</span> Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Guezzen">B. Guezzen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Didi"> M. A. Didi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjahed"> B. Medjahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA<sup>+</sup>) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 &deg;C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=organo-bentonite" title=" organo-bentonite"> organo-bentonite</a> </p> <a href="https://publications.waset.org/abstracts/74711/sorption-of-congo-red-from-aqueous-solution-by-surfactant-modified-bentonite-kinetic-and-factorial-design-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18055</span> Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krutika%20K.%20Sawant">Krutika K. Sawant</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Solanki"> Anil Solanki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disopyramide%20phosphate" title="disopyramide phosphate">disopyramide phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=microspheres" title=" microspheres"> microspheres</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=Box-Behnken%20design" title=" Box-Behnken design"> Box-Behnken design</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a> </p> <a href="https://publications.waset.org/abstracts/21542/response-surface-methodology-to-obtain-disopyramide-phosphate-loaded-controlled-release-ethyl-cellulose-microspheres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18054</span> Removal of Heavy Metals by KOH Activated Diplotaxis harra Biomass: Experimental Design Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Tounsadi">H. Tounsadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khalidi"> A. Khalidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdennouri"> M. Abdennouri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Barka"> N. Barka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to produce high quality activated carbons from Diplotaxis harra biomass by potassium hydroxide activation and their application for heavy metals removal. To reduce the number of experiments, full factorial experimental design at two levels were carried out to occur optimal preparation conditions and better conditions for the removal of cadmium and cobalt ions from aqueous solutions. The influence of different variables during the activation process, such as carbonization temperature, activation temperature, activation time and impregnation ratio (g KOH/g carbon) have been investigated, and the best production conditions were determined. The experimental results showed that removal of cadmium and cobalt ions onto activated carbons was more sensitive to methylene blue index instead of iodine number. Although, the removal of cadmium and cobalt ions is more influenced by activation temperature with a negative effect followed by the impregnation ratio with a positive impact. Based on the statistical data, the best conditions for the removal of cadmium and cobalt by prepared activated carbons have been established. The maximum iodine number and methylene blue index obtained under these conditions and the greater sorption capacities for cadmium and cobalt were investigated. These sorption capacities were greater than those of a commercial activated carbon used in water treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Diplotaxis%20harra" title=" Diplotaxis harra"> Diplotaxis harra</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20design" title=" experimental design"> experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20hydroxide" title=" potassium hydroxide"> potassium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/48982/removal-of-heavy-metals-by-koh-activated-diplotaxis-harra-biomass-experimental-design-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18053</span> Effect of Process Parameters on Mechanical Properties of Friction Stir Welded Aluminium Alloy Joints Using Factorial Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh">Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Gill"> Ankur Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Amardeep%20Singh%20Kang"> Amardeep Singh Kang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work an effort has been made to study the influence of the welding parameters on tensile strength of friction stir welding of aluminum. Three process parameters tool rotation speed, welding speed, and shoulder diameter were selected for the study. Two level factorial design of eight runs was selected for conducting the experiments. The mathematical model was developed from the data obtained. The significance of coefficients and adequacy of developed models were tested by ‘t’ test and ‘F’ test respectively. The effects of process parameters on mechanical properties have been represented in the form of graphs for better understanding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title=" aluminium alloy"> aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20speed" title=" welding speed "> welding speed </a> </p> <a href="https://publications.waset.org/abstracts/16410/effect-of-process-parameters-on-mechanical-properties-of-friction-stir-welded-aluminium-alloy-joints-using-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18052</span> Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20M.%20B.%20De%20Araujo">Caroline M. B. De Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Helenise%20A.%20Do%20Nascimento"> Helenise A. Do Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20J.%20Da%20S.%20Cavalcanti"> Claudia J. Da S. Cavalcanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20A.%20Da%20Motta%20Sobrinho"> Mauricio A. Da Motta Sobrinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20F.%20Pimentel"> Maria F. Pimentel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design" title="factorial experimental design">factorial experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20production" title=" oil production"> oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=three-phase%20separator" title=" three-phase separator"> three-phase separator</a> </p> <a href="https://publications.waset.org/abstracts/56766/preliminary-study-of-water-oil-separation-process-in-three-phase-separators-using-factorial-experimental-designs-and-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18051</span> Analyses and Optimization of Physical and Mechanical Properties of Direct Recycled Aluminium Alloy (AA6061) Wastes by ANOVA Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Rady">Mohammed H. Rady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Sukri%20Mustapa"> Mohd Sukri Mustapa</a>, <a href="https://publications.waset.org/abstracts/search?q=S%20Shamsudin"> S Shamsudin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Lajis"> M. A. Lajis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Wagiman"> A. Wagiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is aimed at investigating microhardness and density of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time. Three values of preheating temperature were taken as 450 &deg;C, 500 &deg;C, and 550 &deg;C. On the other hand, three values of preheating time were chosen (1, 2, 3) hours. The influences of the process parameters (preheating temperature and time) were analyzed using Design of Experiments (DOE) approach whereby full factorial design with center point analysis was adopted. The total runs were 11 and they comprise of two factors of full factorial design with 3 center points. The responses were microhardness and density. The results showed that the density and microhardness increased with decreasing the preheating temperature. The results also found that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analysis while both the preheating temperature and preheating time are important in density analysis. It can be concluded that setting temperature at 450 &deg;C for 1 hour resulted in the optimum responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA6061" title="AA6061">AA6061</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=DOE" title=" DOE"> DOE</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title=" hot extrusion"> hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a> </p> <a href="https://publications.waset.org/abstracts/87426/analyses-and-optimization-of-physical-and-mechanical-properties-of-direct-recycled-aluminium-alloy-aa6061-wastes-by-anova-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18050</span> Formulation of Film Forming Transdermal Spray Containing Fluconazole Using Full Factorial Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paresh%20M.%20Patel">Paresh M. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20A.%20Patel"> Amit A. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Parikh"> R. H. Parikh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation was undertaken to fabricate modified transport fluconazole that belongs to BCS class II and have a poor applicability on topical infection. So to improve topical application, transdermal spray could play a vital role by using ethyl cellulose and Eudragit® S100 as film-forming polymers. Concentration of Eudragit® S100, ethyl cellulose and permeation enhancer (camphor and menthol) were selected as independent variables, whereas drying time, viscosity and in-vitro drug release were selected as dependent variables in factorial design. The viscosity, drying time and in-vitro drug release of the optimize batch B15 was 40.1 cps, 47 sec. and 90.79% respectively. The film of optimized batch was flexible and dermal-adhesive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eudragit" title="Eudragit">Eudragit</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=fluconazole" title=" fluconazole"> fluconazole</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal%20spray" title=" transdermal spray"> transdermal spray</a> </p> <a href="https://publications.waset.org/abstracts/14151/formulation-of-film-forming-transdermal-spray-containing-fluconazole-using-full-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18049</span> Influence of Biological and Chemical Fertilizers on Quantitative Characteristics of Sweet Wormwood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Yarahmadi">Anahita Yarahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Mahboobi"> Nazanin Mahboobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Sadat%20Rahmatpour%20Nori"> Nahid Sadat Rahmatpour Nori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Bijeh%20Keshavarzi"> Mohammad Hossein Bijeh Keshavarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Shakori"> Mohammad Javad Shakori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed at considering biological fertilizer effect and chemical fertilizer on the quantitative characteristics of Sweet wormwood (Artemisia annua L.), an experiment was carried out in factorial design in completely randomized design with 4 replications in an experimental greenhouse which was located in Tehran. Experimental treatment involved chemical fertilizers (Nitrogen, Phosphorus) in4 levels and biological fertilizers in 4 levels (control, Nitroxin, Bio-phosphorus and Vemricompost). Results showed that using biological fertilizers and increasing different levels of chemical fertilizers (N, P) had significant effects on all the characteristics. Considering means comparison showed that biological fertilizers lead to significant enhancement on all the characteristics and among biological fertilizers, Vermicompost treatment has the most effect. Considering means comparison tables of different levels of chemical fertilizer have been found that (N80P80) had the most increase on characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemisia%20annua%20L" title="Artemisia annua L">Artemisia annua L</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-fertilizer" title=" bio-fertilizer"> bio-fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20fertilizer" title=" chemical fertilizer"> chemical fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a> </p> <a href="https://publications.waset.org/abstracts/66492/influence-of-biological-and-chemical-fertilizers-on-quantitative-characteristics-of-sweet-wormwood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18048</span> Adolescent Sleep Hygiene Scale and Adolescent Sleep Wake Scale: Factorial Analysis and Validation for Indian Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sataroopa%20Mishra">Sataroopa Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Basker"> Mona Basker</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Varkki"> Sneha Varkki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Kumar%20Pandian"> Ram Kumar Pandian</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Rebekah"> Grace Rebekah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Sleep deprivation is a matter of public health importance among adolescents. We used adolescent sleep wake scale and adolescent sleep hygiene scale to determine the sleep quality and sleep hygiene respectively of school going adolescents in Vellore city of India. The objective of the study was to do factorial analysis of the scales and validate it for use in local population. Methods: Observational questionnaire based cross sectional study. Setting: Community based school survey in a semi-urban setting in three schools in Vellore city. Data collection: Non probability sample was collected form students studying in standard 9 and 11. Students filled Adolescent Sleep Wake scale (ASWS) and Adolescent Sleep Hygiene Scale (ASHS) translated into vernacular language. Data Analysis: Exploratory Factorial Analysis was used to see the factor loading of various components of the two scales. Confirmatory factorial analysis is subsequently planned for assessing the internal validity of the scales.Results: 557 adolescents were included in the study of 12 – 17 years old. Exploratory factorial analysis of adolescent sleep hygiene scale indicated significant factor loading for 18 items from 28 items originally devised by the authors and has been reconstructed to four domains instead of 9 domains in the original scale namely sleep stability, cognitive – emotional, Physiological - bed time routine - behavioural arousal factor (activites before bedtime and during bed time), Sleep environment (lighting and bed sharing). Factorial analysis of Adolescent sleep wake scale showed factor loading of 18 items out of 28 items in original scale reconstructed into 5 aspects of sleep quality. Conclusions: The factorial analysis gives a reconstructed scale useful for the local population. Further a confirmatory factorial analysis has been subsequently planned to determine the internal consistency of the scale for local population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factorial%20analysis" title="factorial analysis">factorial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20hygiene" title=" sleep hygiene"> sleep hygiene</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20quality" title=" sleep quality"> sleep quality</a>, <a href="https://publications.waset.org/abstracts/search?q=adolescent%20sleep%20scale" title=" adolescent sleep scale"> adolescent sleep scale</a> </p> <a href="https://publications.waset.org/abstracts/78064/adolescent-sleep-hygiene-scale-and-adolescent-sleep-wake-scale-factorial-analysis-and-validation-for-indian-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18047</span> Optimisation of Dyes Decolourisation by Bacillus aryabhattai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Paz">A. Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cort%C3%A9s%20Di%C3%A9guez"> S. Cortés Diéguez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz"> J. M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Moldes"> A. B. Moldes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Dom%C3%ADnguez"> J. M. Domínguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20aryabhattai" title="Bacillus aryabhattai">Bacillus aryabhattai</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=decolourisation" title=" decolourisation"> decolourisation</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design"> central composite design</a> </p> <a href="https://publications.waset.org/abstracts/46645/optimisation-of-dyes-decolourisation-by-bacillus-aryabhattai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=602">602</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=603">603</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=factorial%20experimental%20design&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10