CINXE.COM
undefined - [v1]
<!DOCTYPE html><html data-capo=""><head><meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1"> <script id="CookieBot" src="https://consent.cookiebot.com/uc.js?cbid=6b5b25c6-89f0-4619-834a-8af9d1157dc1" async type="text/javascript"></script> <title> undefined - [v1] </title> <link rel="preconnect" href="https://pub.mdpi-res.com" crossorigin> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/fonts/suisse/fonts.css" media="all"> <style>/*! tailwindcss v3.3.2 | MIT License | https://tailwindcss.com*/*,:after,:before{border:0 solid;box-sizing:border-box}:after,:before{--tw-content:""}html{line-height:1.5;-webkit-text-size-adjust:100%;font-family:Suisse Int\'l,ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-feature-settings:normal;font-variation-settings:normal;tab-size:4}body{line-height:inherit;margin:0}hr{border-top-width:1px;color:inherit;height:0}abbr:where([title]){-webkit-text-decoration:underline dotted;text-decoration:underline dotted}h1,h2,h3,h4,h5,h6{font-size:inherit;font-weight:inherit}a{color:inherit;text-decoration:inherit}b,strong{font-weight:bolder}code,kbd,pre,samp{font-family:ui-monospace,SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:initial}sub{bottom:-.25em}sup{top:-.5em}table{border-collapse:collapse;border-color:inherit;text-indent:0}button,input,optgroup,select,textarea{color:inherit;font-family:inherit;font-size:100%;font-weight:inherit;line-height:inherit;margin:0;padding:0}button,select{text-transform:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button;background-color:initial;background-image:none}:-moz-focusring{outline:auto}:-moz-ui-invalid{box-shadow:none}progress{vertical-align:initial}::-webkit-inner-spin-button,::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}summary{display:list-item}blockquote,dd,dl,figure,h1,h2,h3,h4,h5,h6,hr,p,pre{margin:0}fieldset{margin:0}fieldset,legend{padding:0}menu,ol,ul{list-style:none;margin:0;padding:0}textarea{resize:vertical}input::placeholder,textarea::placeholder{color:#9ca3af;opacity:1}[role=button],button{cursor:pointer}:disabled{cursor:default}audio,canvas,embed,iframe,img,object,svg,video{display:block;vertical-align:middle}img,video{height:auto;max-width:100%}[hidden]{display:none}html{color:var(--color-text-default)}*,::backdrop,:after,:before{--tw-border-spacing-x:0;--tw-border-spacing-y:0;--tw-translate-x:0;--tw-translate-y:0;--tw-rotate:0;--tw-skew-x:0;--tw-skew-y:0;--tw-scale-x:1;--tw-scale-y:1;--tw-pan-x: ;--tw-pan-y: ;--tw-pinch-zoom: ;--tw-scroll-snap-strictness:proximity;--tw-gradient-from-position: ;--tw-gradient-via-position: ;--tw-gradient-to-position: ;--tw-ordinal: ;--tw-slashed-zero: ;--tw-numeric-figure: ;--tw-numeric-spacing: ;--tw-numeric-fraction: ;--tw-ring-inset: ;--tw-ring-offset-width:0px;--tw-ring-offset-color:#fff;--tw-ring-color:#3b82f680;--tw-ring-offset-shadow:0 0 #0000;--tw-ring-shadow:0 0 #0000;--tw-shadow:0 0 #0000;--tw-shadow-colored:0 0 #0000;--tw-blur: ;--tw-brightness: ;--tw-contrast: ;--tw-grayscale: ;--tw-hue-rotate: ;--tw-invert: ;--tw-saturate: ;--tw-sepia: ;--tw-drop-shadow: ;--tw-backdrop-blur: ;--tw-backdrop-brightness: ;--tw-backdrop-contrast: ;--tw-backdrop-grayscale: ;--tw-backdrop-hue-rotate: ;--tw-backdrop-invert: ;--tw-backdrop-opacity: ;--tw-backdrop-saturate: ;--tw-backdrop-sepia: }.container{width:100%}@media (min-width:576px){.container{max-width:576px}}@media (min-width:768px){.container{max-width:768px}}@media (min-width:1024px){.container{max-width:1024px}}@media (min-width:1280px){.container{max-width:1280px}}@media (min-width:1440px){.container{max-width:1440px}}@media (min-width:1920px){.container{max-width:1920px}}.prose{color:var(--tw-prose-body);max-width:65ch}.prose :where(p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where([class~=lead]):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-lead);font-size:1.25em;line-height:1.6;margin-bottom:1.2em;margin-top:1.2em}.prose :where(a):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-links);font-weight:500;text-decoration:underline}.prose :where(strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-bold);font-weight:600}.prose :where(a strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(ol):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol[type=A]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=A s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=I]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type=I s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type="1"]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal}.prose :where(ul):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:disc;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-counters);font-weight:400}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-bullets)}.prose :where(dt):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;margin-top:1.25em}.prose :where(hr):not(:where([class~=not-prose],[class~=not-prose] *)){border-color:var(--tw-prose-hr);border-top-width:1px;margin-bottom:3em;margin-top:3em}.prose :where(blockquote):not(:where([class~=not-prose],[class~=not-prose] *)){border-inline-start-color:var(--tw-prose-quote-borders);border-inline-start-width:.25rem;color:var(--tw-prose-quotes);font-style:italic;font-weight:500;margin-bottom:1.6em;margin-top:1.6em;padding-inline-start:1em;quotes:"\201C""\201D""\2018""\2019"}.prose :where(blockquote p:first-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:open-quote}.prose :where(blockquote p:last-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:close-quote}.prose :where(h1):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:2.25em;font-weight:800;line-height:1.1111111;margin-bottom:.8888889em;margin-top:0}.prose :where(h1 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:900}.prose :where(h2):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.5em;font-weight:700;line-height:1.3333333;margin-bottom:1em;margin-top:2em}.prose :where(h2 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:800}.prose :where(h3):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.25em;font-weight:600;line-height:1.6;margin-bottom:.6em;margin-top:1.6em}.prose :where(h3 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(h4):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;line-height:1.5;margin-bottom:.5em;margin-top:1.5em}.prose :where(h4 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(picture):not(:where([class~=not-prose],[class~=not-prose] *)){display:block;margin-bottom:2em;margin-top:2em}.prose :where(video):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(kbd):not(:where([class~=not-prose],[class~=not-prose] *)){border-radius:.3125rem;box-shadow:0 0 0 1px rgb(var(--tw-prose-kbd-shadows)/10%),0 3px 0 rgb(var(--tw-prose-kbd-shadows)/10%);color:var(--tw-prose-kbd);font-family:inherit;font-size:.875em;font-weight:500;padding-inline-end:.375em;padding-bottom:.1875em;padding-top:.1875em;padding-inline-start:.375em}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-code);font-size:.875em;font-weight:600}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:"`"}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:"`"}.prose :where(a code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h1 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h2 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.875em}.prose :where(h3 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.9em}.prose :where(h4 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(pre):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:var(--tw-prose-pre-bg);border-radius:.375rem;color:var(--tw-prose-pre-code);font-size:.875em;font-weight:400;line-height:1.7142857;margin-bottom:1.7142857em;margin-top:1.7142857em;overflow-x:auto;padding-inline-end:1.1428571em;padding-bottom:.8571429em;padding-top:.8571429em;padding-inline-start:1.1428571em}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:initial;border-radius:0;border-width:0;color:inherit;font-family:inherit;font-size:inherit;font-weight:inherit;line-height:inherit;padding:0}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:none}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:none}.prose :where(table):not(:where([class~=not-prose],[class~=not-prose] *)){font-size:.875em;line-height:1.7142857;margin-bottom:2em;margin-top:2em;table-layout:auto;width:100%}.prose :where(thead):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-th-borders);border-bottom-width:1px}.prose :where(thead th):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-inline-start:.5714286em;vertical-align:bottom}.prose :where(tbody tr):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-td-borders);border-bottom-width:1px}.prose :where(tbody tr:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-width:0}.prose :where(tbody td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:initial}.prose :where(tfoot):not(:where([class~=not-prose],[class~=not-prose] *)){border-top-color:var(--tw-prose-th-borders);border-top-width:1px}.prose :where(tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:top}.prose :where(th,td):not(:where([class~=not-prose],[class~=not-prose] *)){text-align:start}.prose :where(figure>*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(figcaption):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-captions);font-size:.875em;line-height:1.4285714;margin-top:.8571429em}.prose{--tw-prose-body:#374151;--tw-prose-headings:#111827;--tw-prose-lead:#4b5563;--tw-prose-links:#111827;--tw-prose-bold:#111827;--tw-prose-counters:#6b7280;--tw-prose-bullets:#d1d5db;--tw-prose-hr:#e5e7eb;--tw-prose-quotes:#111827;--tw-prose-quote-borders:#e5e7eb;--tw-prose-captions:#6b7280;--tw-prose-kbd:#111827;--tw-prose-kbd-shadows:17 24 39;--tw-prose-code:#111827;--tw-prose-pre-code:#e5e7eb;--tw-prose-pre-bg:#1f2937;--tw-prose-th-borders:#d1d5db;--tw-prose-td-borders:#e5e7eb;--tw-prose-invert-body:#d1d5db;--tw-prose-invert-headings:#fff;--tw-prose-invert-lead:#9ca3af;--tw-prose-invert-links:#fff;--tw-prose-invert-bold:#fff;--tw-prose-invert-counters:#9ca3af;--tw-prose-invert-bullets:#4b5563;--tw-prose-invert-hr:#374151;--tw-prose-invert-quotes:#f3f4f6;--tw-prose-invert-quote-borders:#374151;--tw-prose-invert-captions:#9ca3af;--tw-prose-invert-kbd:#fff;--tw-prose-invert-kbd-shadows:255 255 255;--tw-prose-invert-code:#fff;--tw-prose-invert-pre-code:#d1d5db;--tw-prose-invert-pre-bg:#00000080;--tw-prose-invert-th-borders:#4b5563;--tw-prose-invert-td-borders:#374151;font-size:1rem;line-height:1.75}.prose :where(picture>img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(li):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.5em;margin-top:.5em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(.prose>ul>li p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(.prose>ul>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ul>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(.prose>ol>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ol>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(ul ul,ul ol,ol ul,ol ol):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(dl):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where(dd):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:.5em;padding-inline-start:1.625em}.prose :where(hr+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h2+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h3+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h4+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(thead th:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(thead th:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(tbody td,tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-top:.5714286em;padding-inline-start:.5714286em}.prose :where(tbody td:first-child,tfoot td:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(tbody td:last-child,tfoot td:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(figure):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(.prose>:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(.prose>:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0}.sr-only{height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px;clip:rect(0,0,0,0);border-width:0;white-space:nowrap}.pointer-events-none{pointer-events:none}.visible{visibility:visible}.invisible{visibility:hidden}.collapse{visibility:collapse}.static{position:static}.fixed{position:fixed}.\!absolute{position:absolute!important}.absolute{position:absolute}.relative{position:relative}.sticky{position:sticky}.inset-0{inset:0}.inset-y-0{bottom:0;top:0}.-top-px{top:-1px}.bottom-0{bottom:0}.bottom-1{bottom:.25rem}.bottom-1\.5{bottom:.375rem}.bottom-10{bottom:2.5rem}.bottom-24{bottom:6rem}.bottom-4{bottom:1rem}.bottom-6{bottom:1.5rem}.bottom-\[7\.5rem\]{bottom:7.5rem}.bottom-md{bottom:var(--spacing-md)}.left-0{left:0}.left-1\/2{left:50%}.left-12{left:3rem}.left-4{left:1rem}.left-6{left:1.5rem}.left-md{left:var(--spacing-md)}.right-0{right:0}.right-1{right:.25rem}.right-1\.5{right:.375rem}.right-12{right:3rem}.right-2{right:.5rem}.right-2\.5{right:.625rem}.right-4{right:1rem}.right-6{right:1.5rem}.right-8{right:2rem}.right-\[-10px\]{right:-10px}.right-\[-4px\]{right:-4px}.right-\[-8px\]{right:-8px}.right-\[1rem\]{right:1rem}.right-\[3\.125rem\]{right:3.125rem}.top-0{top:0}.top-1{top:.25rem}.top-1\/2{top:50%}.top-12{top:3rem}.top-14{top:3.5rem}.top-16{top:4rem}.top-20{top:5rem}.top-4{top:1rem}.top-6{top:1.5rem}.top-\[-4px\]{top:-4px}.top-\[-5\.875rem\]{top:-5.875rem}.top-\[4\.625rem\]{top:4.625rem}.top-\[48\%\]{top:48%}.top-\[calc\(50vh\+15rem\)\]{top:calc(50vh + 15rem)}.top-\[calc\(50vh\+6\.25rem\)\]{top:calc(50vh + 6.25rem)}.isolate{isolation:isolate}.-z-10{z-index:-10}.z-0{z-index:0}.z-1{z-index:1}.z-10{z-index:10}.z-20{z-index:20}.z-40{z-index:40}.z-50{z-index:50}.float-left{float:left}.clear-left{clear:left}.m-0{margin:0}.m-\[\.625rem\]{margin:.625rem}.m-auto{margin:auto}.m-md{margin:var(--spacing-md)}.mx-auto{margin-left:auto;margin-right:auto}.mx-lg{margin-left:var(--spacing-lg);margin-right:var(--spacing-lg)}.mx-md{margin-left:var(--spacing-md);margin-right:var(--spacing-md)}.mx-sm{margin-left:var(--spacing-sm);margin-right:var(--spacing-sm)}.my-0{margin-bottom:0;margin-top:0}.my-2xl{margin-bottom:var(--spacing-2xl);margin-top:var(--spacing-2xl)}.my-4{margin-bottom:1rem;margin-top:1rem}.my-5xl{margin-bottom:var(--spacing-5xl);margin-top:var(--spacing-5xl)}.my-lg{margin-bottom:var(--spacing-lg);margin-top:var(--spacing-lg)}.my-md{margin-bottom:var(--spacing-md);margin-top:var(--spacing-md)}.my-sm{margin-bottom:var(--spacing-sm);margin-top:var(--spacing-sm)}.my-xl{margin-bottom:var(--spacing-xl);margin-top:var(--spacing-xl)}.-mr-0{margin-right:0}.-mr-0\.5{margin-right:-.125rem}.-mr-1{margin-right:-.25rem}.-mr-2{margin-right:-.5rem}.-mr-2\.5{margin-right:-.625rem}.-mt-xs{margin-top:calc(var(--spacing-xs)*-1)}.mb-1{margin-bottom:.25rem}.mb-2{margin-bottom:.5rem}.mb-2xl{margin-bottom:var(--spacing-2xl)}.mb-3{margin-bottom:.75rem}.mb-4{margin-bottom:1rem}.mb-6{margin-bottom:1.5rem}.mb-7xl{margin-bottom:var(--spacing-7xl)}.mb-\[0\.25rem\]{margin-bottom:.25rem}.mb-lg{margin-bottom:var(--spacing-lg)}.mb-md{margin-bottom:var(--spacing-md)}.mb-sm{margin-bottom:var(--spacing-sm)}.mb-xl{margin-bottom:var(--spacing-xl)}.mb-xs{margin-bottom:var(--spacing-xs)}.ml-2{margin-left:.5rem}.ml-2xl{margin-left:var(--spacing-2xl)}.ml-\[-0\.0625rem\]{margin-left:-.0625rem}.ml-\[-0\.75rem\]{margin-left:-.75rem}.ml-\[0\.625rem\]{margin-left:.625rem}.ml-\[0\.75rem\]{margin-left:.75rem}.ml-auto{margin-left:auto}.ml-lg{margin-left:var(--spacing-lg)}.ml-md{margin-left:var(--spacing-md)}.ml-sm{margin-left:var(--spacing-sm)}.ml-xs{margin-left:var(--spacing-xs)}.mr-4{margin-right:1rem}.mr-5{margin-right:1.25rem}.mr-6{margin-right:1.5rem}.mr-\[\.125rem\]{margin-right:.125rem}.mr-\[\.625rem\]{margin-right:.625rem}.mr-\[0\.3125rem\]{margin-right:.3125rem}.mr-\[2\.3125rem\]{margin-right:2.3125rem}.mr-\[2\.375rem\]{margin-right:2.375rem}.mr-\[5\.625rem\]{margin-right:5.625rem}.mr-lg{margin-right:var(--spacing-lg)}.mr-md{margin-right:var(--spacing-md)}.mr-sm{margin-right:var(--spacing-sm)}.mr-xl{margin-right:var(--spacing-xl)}.mr-xs{margin-right:var(--spacing-xs)}.mt-1{margin-top:.25rem}.mt-2xl{margin-top:var(--spacing-2xl)}.mt-3xl{margin-top:var(--spacing-3xl)}.mt-6{margin-top:1.5rem}.mt-\[-3rem\]{margin-top:-3rem}.mt-\[\.625rem\]{margin-top:.625rem}.mt-\[1\.25rem\]{margin-top:1.25rem}.mt-\[1rem\]{margin-top:1rem}.mt-lg{margin-top:var(--spacing-lg)}.mt-md{margin-top:var(--spacing-md)}.mt-sm{margin-top:var(--spacing-sm)}.mt-xl{margin-top:var(--spacing-xl)}.mt-xs{margin-top:var(--spacing-xs)}.box-border{box-sizing:border-box}.line-clamp-1{-webkit-line-clamp:1}.line-clamp-1,.line-clamp-3{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.line-clamp-3{-webkit-line-clamp:3}.\!block{display:block!important}.block{display:block}.\!inline-block{display:inline-block!important}.inline-block{display:inline-block}.\!inline{display:inline!important}.inline{display:inline}.flex{display:flex}.\!inline-flex{display:inline-flex!important}.inline-flex{display:inline-flex}.table{display:table}.grid{display:grid}.contents{display:contents}.\!hidden{display:none!important}.hidden{display:none}.aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.aspect-\[1200\/630\]{aspect-ratio:1200/630}.aspect-\[381\/200\]{aspect-ratio:381/200}.aspect-\[4\/5\]{aspect-ratio:4/5}.aspect-square{aspect-ratio:1/1}.aspect-video{aspect-ratio:16/9}.\!h-6{height:1.5rem!important}.h-0{height:0}.h-0\.5{height:.125rem}.h-1{height:.25rem}.h-1\.5{height:.375rem}.h-10{height:2.5rem}.h-12{height:3rem}.h-14{height:3.5rem}.h-16{height:4rem}.h-2{height:.5rem}.h-20{height:5rem}.h-28{height:7rem}.h-3{height:.75rem}.h-32{height:8rem}.h-36{height:9rem}.h-4{height:1rem}.h-48{height:12rem}.h-5{height:1.25rem}.h-52{height:13rem}.h-6{height:1.5rem}.h-7{height:1.75rem}.h-8{height:2rem}.h-80{height:20rem}.h-9{height:2.25rem}.h-96{height:24rem}.h-\[\.25rem\]{height:.25rem}.h-\[0\.5rem\]{height:.5rem}.h-\[0\.9rem\]{height:.9rem}.h-\[1\.15em\]{height:1.15em}.h-\[1\.3rem\]{height:1.3rem}.h-\[1\.4rem\]{height:1.4rem}.h-\[1\.5rem\]{height:1.5rem}.h-\[1\.8125rem\]{height:1.8125rem}.h-\[1\.875rem\]{height:1.875rem}.h-\[100\%\]{height:100%}.h-\[100px\]{height:100px}.h-\[150px\]{height:150px}.h-\[160px\]{height:160px}.h-\[1rem\]{height:1rem}.h-\[2\.5rem\]{height:2.5rem}.h-\[24rem\]{height:24rem}.h-\[25\.25rem\]{height:25.25rem}.h-\[3\.625rem\]{height:3.625rem}.h-\[3\.75rem\]{height:3.75rem}.h-\[30rem\]{height:30rem}.h-\[35\.5rem\]{height:35.5rem}.h-\[4\.5rem\]{height:4.5rem}.h-\[50rem\]{height:50rem}.h-\[5rem\]{height:5rem}.h-\[6\.5rem\]{height:6.5rem}.h-\[6px\]{height:6px}.h-\[80vh\]{height:80vh}.h-\[auto\],.h-auto{height:auto}.h-fit{height:fit-content}.h-full{height:100%}.h-px{height:1px}.max-h-60{max-height:15rem}.max-h-80{max-height:20rem}.min-h-\[1\.5rem\]{min-height:1.5rem}.min-h-\[100px\]{min-height:100px}.min-h-\[15vh\]{min-height:15vh}.min-h-\[45rem\]{min-height:45rem}.min-h-\[70vh\]{min-height:70vh}.min-h-full{min-height:100%}.\!w-2xl{width:var(--spacing-2xl)!important}.\!w-40{width:10rem!important}.\!w-fit{width:fit-content!important}.\!w-full{width:100%!important}.w-1{width:.25rem}.w-1\.5{width:.375rem}.w-1\/2{width:50%}.w-1\/4{width:25%}.w-1\/5{width:20%}.w-10{width:2.5rem}.w-12{width:3rem}.w-14{width:3.5rem}.w-16{width:4rem}.w-2{width:.5rem}.w-20{width:5rem}.w-28{width:7rem}.w-3{width:.75rem}.w-3\/5{width:60%}.w-32{width:8rem}.w-36{width:9rem}.w-4{width:1rem}.w-4\/5{width:80%}.w-40{width:10rem}.w-4xl{width:var(--spacing-4xl)}.w-5{width:1.25rem}.w-6{width:1.5rem}.w-60{width:15rem}.w-7{width:1.75rem}.w-8{width:2rem}.w-80{width:20rem}.w-9{width:2.25rem}.w-96{width:24rem}.w-\[\.25rem\]{width:.25rem}.w-\[1\.15em\]{width:1.15em}.w-\[1\.4rem\]{width:1.4rem}.w-\[1\.5rem\]{width:1.5rem}.w-\[1\.6rem\]{width:1.6rem}.w-\[10\%\]{width:10%}.w-\[10\.25rem\]{width:10.25rem}.w-\[10\.625rem\]{width:10.625rem}.w-\[100\%\]{width:100%}.w-\[10rem\]{width:10rem}.w-\[13\.125rem\]{width:13.125rem}.w-\[13rem\]{width:13rem}.w-\[15\%\]{width:15%}.w-\[18rem\]{width:18rem}.w-\[1rem\]{width:1rem}.w-\[2\.5rem\]{width:2.5rem}.w-\[2\.75rem\]{width:2.75rem}.w-\[20\%\]{width:20%}.w-\[22px\]{width:22px}.w-\[25rem\]{width:25rem}.w-\[30\%\]{width:30%}.w-\[33\%\]{width:33%}.w-\[4\.5rem\]{width:4.5rem}.w-\[6\.5rem\]{width:6.5rem}.w-\[6\.75rem\]{width:6.75rem}.w-\[7\.5rem\]{width:7.5rem}.w-\[92\.5vw\]{width:92.5vw}.w-auto{width:auto}.w-fit{width:fit-content}.w-full{width:100%}.w-max{width:max-content}.w-min{width:min-content}.w-px{width:1px}.w-screen{width:100vw}.\!min-w-0{min-width:0!important}.min-w-10{min-width:2.5rem}.min-w-12{min-width:3rem}.min-w-14{min-width:3.5rem}.min-w-28{min-width:7rem}.min-w-5{min-width:1.25rem}.min-w-6{min-width:1.5rem}.min-w-7{min-width:1.75rem}.min-w-8{min-width:2rem}.min-w-\[0\.5rem\]{min-width:.5rem}.min-w-\[0\.9rem\]{min-width:.9rem}.min-w-\[1\.3rem\]{min-width:1.3rem}.min-w-\[12\.5rem\]{min-width:12.5rem}.min-w-\[146px\]{min-width:146px}.min-w-\[156px\]{min-width:156px}.min-w-\[21rem\]{min-width:21rem}.min-w-\[3\.75rem\]{min-width:3.75rem}.min-w-\[4\.5rem\]{min-width:4.5rem}.min-w-\[6\.5rem\]{min-width:6.5rem}.min-w-fit{min-width:fit-content}.max-w-\[100\%\]{max-width:100%}.max-w-\[20rem\]{max-width:20rem}.max-w-\[25rem\]{max-width:25rem}.max-w-\[28\.5rem\]{max-width:28.5rem}.max-w-\[30\%\]{max-width:30%}.max-w-\[5rem\]{max-width:5rem}.max-w-\[6px\]{max-width:6px}.max-w-\[80\%\]{max-width:80%}.max-w-\[90rem\]{max-width:90rem}.max-w-\[96\%\]{max-width:96%}.max-w-\[98vw\]{max-width:98vw}.max-w-full{max-width:100%}.max-w-prose{max-width:65ch}.max-w-sm{max-width:24rem}.max-w-xs{max-width:20rem}.\!flex-none{flex:none!important}.flex-1{flex:1 1 0%}.flex-\[1\]{flex:1}.flex-\[2\]{flex:2}.flex-\[3\]{flex:3}.flex-auto{flex:1 1 auto}.flex-none{flex:none}.flex-shrink-0,.shrink-0{flex-shrink:0}.shrink-\[14\]{flex-shrink:14}.grow{flex-grow:1}.grow-\[2\]{flex-grow:2}.basis-6{flex-basis:1.5rem}.origin-bottom{transform-origin:bottom}.origin-bottom-left{transform-origin:bottom left}.origin-bottom-right{transform-origin:bottom right}.origin-center{transform-origin:center}.origin-left{transform-origin:left}.origin-right{transform-origin:right}.origin-top{transform-origin:top}.origin-top-left{transform-origin:top left}.origin-top-right{transform-origin:top right}.-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-x-full{--tw-translate-x:-100%;transform:translate(-100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-2{--tw-translate-y:-0.5rem;transform:translate(var(--tw-translate-x),-.5rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-4{--tw-translate-y:-1rem;transform:translate(var(--tw-translate-x),-1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-\[calc\(100\%\+0\.25rem\)\]{--tw-translate-y:calc(-100% + -0.25rem);transform:translate(var(--tw-translate-x),calc(-100% + -.25rem)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-full{--tw-translate-y:-100%;transform:translate(var(--tw-translate-x),-100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0{--tw-translate-x:0px;transform:translateY(var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0\.5{--tw-translate-x:0.125rem;transform:translate(.125rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-\[1\.375rem\]{--tw-translate-x:1.375rem;transform:translate(1.375rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-full{--tw-translate-x:100%;transform:translate(100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-0{--tw-translate-y:0px;transform:translate(var(--tw-translate-x)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-4{--tw-translate-y:1rem;transform:translate(var(--tw-translate-x),1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-full{--tw-translate-y:100%;transform:translate(var(--tw-translate-x),100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-180{--tw-rotate:180deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(180deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-45{--tw-rotate:45deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(45deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-100{--tw-scale-x:1;--tw-scale-y:1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1) scaleY(1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-95{--tw-scale-x:.95;--tw-scale-y:.95;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(.95) scaleY(.95);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-\[101\.5\%\]{--tw-scale-x:101.5%;--tw-scale-y:101.5%;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(101.5%) scaleY(101.5%)}.scale-\[101\.5\%\],.transform{transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}@keyframes spin{to{transform:rotate(1turn)}}.animate-spin{animation:spin 1s linear infinite}.cursor-default{cursor:default}.cursor-move{cursor:move}.cursor-not-allowed{cursor:not-allowed}.cursor-pointer{cursor:pointer}.select-none{-webkit-user-select:none;user-select:none}.resize-none{resize:none}.resize{resize:both}.\!list-inside{list-style-position:inside!important}.list-inside{list-style-position:inside}.list-decimal{list-style-type:decimal}.list-disc{list-style-type:disc}.appearance-none{appearance:none}.grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.flex-row{flex-direction:row}.flex-row-reverse{flex-direction:row-reverse}.flex-col{flex-direction:column}.flex-col-reverse{flex-direction:column-reverse}.flex-wrap{flex-wrap:wrap}.place-content-center{place-content:center}.content-center{align-content:center}.items-start{align-items:flex-start}.items-end{align-items:flex-end}.items-center{align-items:center}.items-baseline{align-items:baseline}.\!justify-start{justify-content:flex-start!important}.justify-start{justify-content:flex-start}.justify-end{justify-content:flex-end}.justify-center{justify-content:center}.\!justify-between{justify-content:space-between!important}.justify-between{justify-content:space-between}.justify-around{justify-content:space-around}.\!gap-md{gap:var(--spacing-md)!important}.gap-1{gap:.25rem}.gap-2{gap:.5rem}.gap-2\.5{gap:.625rem}.gap-3{gap:.75rem}.gap-4{gap:1rem}.gap-5{gap:1.25rem}.gap-6{gap:1.5rem}.gap-8{gap:2rem}.gap-\[0\.65em\]{gap:.65em}.gap-lg{gap:var(--spacing-lg)}.gap-md{gap:var(--spacing-md)}.gap-sm{gap:var(--spacing-sm)}.gap-xl{gap:var(--spacing-xl)}.gap-xs{gap:var(--spacing-xs)}.gap-x-1{column-gap:.25rem}.gap-x-4{column-gap:1rem}.gap-x-lg{column-gap:var(--spacing-lg)}.gap-x-sm{column-gap:var(--spacing-sm)}.gap-x-xs{column-gap:var(--spacing-xs)}.gap-y-5{row-gap:1.25rem}.gap-y-lg{row-gap:var(--spacing-lg)}.gap-y-md{row-gap:var(--spacing-md)}.gap-y-sm{row-gap:var(--spacing-sm)}.gap-y-xl{row-gap:var(--spacing-xl)}.gap-y-xs{row-gap:var(--spacing-xs)}.space-x-1>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:.25rem;margin-left:calc(.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(.25rem*var(--tw-space-x-reverse))}.space-x-5>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:1.25rem;margin-left:calc(1.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(1.25rem*var(--tw-space-x-reverse))}.space-y-1>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.25rem*var(--tw-space-y-reverse));margin-top:.25rem;margin-top:calc(.25rem*(1 - var(--tw-space-y-reverse)))}.space-y-2>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.5rem*var(--tw-space-y-reverse));margin-top:.5rem;margin-top:calc(.5rem*(1 - var(--tw-space-y-reverse)))}.space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.space-y-4>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(1rem*var(--tw-space-y-reverse));margin-top:1rem;margin-top:calc(1rem*(1 - var(--tw-space-y-reverse)))}.space-y-lg>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-lg)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-lg)*(1 - var(--tw-space-y-reverse)))}.space-y-md>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-md)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-md)*(1 - var(--tw-space-y-reverse)))}.space-y-sm>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-sm)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-sm)*(1 - var(--tw-space-y-reverse)))}.space-y-xs>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-xs)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-xs)*(1 - var(--tw-space-y-reverse)))}.divide-y>:not([hidden])~:not([hidden]){--tw-divide-y-reverse:0;border-bottom-width:0;border-bottom-width:calc(1px*var(--tw-divide-y-reverse));border-top-width:1px;border-top-width:calc(1px*(1 - var(--tw-divide-y-reverse)))}.divide-color-default>:not([hidden])~:not([hidden]){--tw-divide-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-divide-opacity))}.self-center{align-self:center}.overflow-auto{overflow:auto}.\!overflow-hidden{overflow:hidden!important}.overflow-hidden{overflow:hidden}.\!overflow-visible{overflow:visible!important}.overflow-scroll{overflow:scroll}.overflow-x-auto{overflow-x:auto}.overflow-y-auto{overflow-y:auto}.overflow-y-hidden{overflow-y:hidden}.overflow-y-scroll{overflow-y:scroll}.overscroll-none{overscroll-behavior:none}.truncate{overflow:hidden;white-space:nowrap}.text-ellipsis,.truncate{text-overflow:ellipsis}.whitespace-nowrap{white-space:nowrap}.whitespace-pre{white-space:pre}.whitespace-pre-line{white-space:pre-line}.\!break-words{overflow-wrap:break-word!important}.break-words{overflow-wrap:break-word}.\!break-all{word-break:break-all!important}.break-all{word-break:break-all}.rounded{border-radius:.25rem}.rounded-2xl{border-radius:1rem}.rounded-3xl{border-radius:1.5rem}.rounded-\[0\.15em\]{border-radius:.15em}.rounded-\[100\%\]{border-radius:100%}.rounded-\[4px\]{border-radius:4px}.rounded-\[50\%\]{border-radius:50%}.rounded-full{border-radius:9999px}.rounded-lg{border-radius:.5rem}.rounded-md{border-radius:.375rem}.rounded-none{border-radius:0}.rounded-sm{border-radius:.125rem}.rounded-xl{border-radius:.75rem}.border{border-width:1px}.border-2{border-width:2px}.border-\[\.0625rem\]{border-width:.0625rem}.border-\[0\.15em\]{border-width:.15em}.border-x-0{border-left-width:0;border-right-width:0}.border-b{border-bottom-width:1px}.border-b-2{border-bottom-width:2px}.border-l{border-left-width:1px}.border-l-2{border-left-width:2px}.border-l-\[0\.0625rem\]{border-left-width:.0625rem}.border-l-\[0\.125rem\]{border-left-width:.125rem}.border-l-\[3px\]{border-left-width:3px}.border-r{border-right-width:1px}.border-t{border-top-width:1px}.border-t-0{border-top-width:0}.border-t-2{border-top-width:2px}.border-t-\[\.0625rem\]{border-top-width:.0625rem}.border-solid{border-style:solid}.border-dashed{border-style:dashed}.border-none{border-style:none}.\!border-color-bold{--tw-border-opacity:1!important;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))!important}.\!border-color-brand{--tw-border-opacity:1!important;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))!important}.border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.border-\[\#DCDFE4\]{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgb(220 223 228/var(--tw-border-opacity))}.border-\[\#F8F9FD\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[\#FACC15\]{--tw-border-opacity:1;border-color:#facc15;border-color:rgb(250 204 21/var(--tw-border-opacity))}.border-\[\#FEF9C3\]{--tw-border-opacity:1;border-color:#fef9c3;border-color:rgb(254 249 195/var(--tw-border-opacity))}.border-\[\#b3b9c4\]{--tw-border-opacity:1;border-color:#b3b9c4;border-color:rgb(179 185 196/var(--tw-border-opacity))}.border-\[\#dcdfe6\]{--tw-border-opacity:1;border-color:#dcdfe6;border-color:rgb(220 223 230/var(--tw-border-opacity))}.border-\[\#f8f9fd\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[white\]{--tw-border-opacity:1;border-color:#fff;border-color:rgb(255 255 255/var(--tw-border-opacity))}.border-color-bold{--tw-border-opacity:1;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.border-color-brand{--tw-border-opacity:1;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.border-color-default{--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.border-color-error{--tw-border-opacity:1;border-color:rgba(var(--color-border-error),var(--tw-border-opacity))}.border-color-info{--tw-border-opacity:1;border-color:rgba(var(--color-border-info),var(--tw-border-opacity))}.border-color-inherit{border-color:inherit}.border-color-success{--tw-border-opacity:1;border-color:rgba(var(--color-border-success),var(--tw-border-opacity))}.border-color-transparent{border-color:#0000}.border-color-warning{--tw-border-opacity:1;border-color:rgba(var(--color-border-warning),var(--tw-border-opacity))}.border-t-color-default{--tw-border-opacity:1;border-top-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.\!bg-black{--tw-bg-opacity:1!important;background-color:rgba(var(--color-black),1)!important;background-color:rgba(var(--color-black),var(--tw-bg-opacity))!important}.\!bg-brand-bold{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-bold),1)!important;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))!important}.\!bg-brand-default{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-default),1)!important;background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))!important}.\!bg-brand-subtler{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-subtler),1)!important;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))!important}.\!bg-brand-sunken{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-sunken),1)!important;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))!important}.\!bg-success-subtlest{--tw-bg-opacity:1!important;background-color:rgba(var(--color-bg-success-subtlest),1)!important;background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))!important}.\!bg-surface-disabled{--tw-bg-opacity:1!important;background-color:rgba(var(--color-surface-disabled),1)!important;background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))!important}.\!bg-surface-subtle{--tw-bg-opacity:1!important;background-color:rgba(var(--color-surface-subtle),1)!important;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))!important}.\!bg-warning-bold{--tw-bg-opacity:1!important;background-color:rgba(var(--color-bg-warning-bold),1)!important;background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))!important}.bg-\[\#000000\],.bg-\[\#000\]{--tw-bg-opacity:1;background-color:#000;background-color:rgb(0 0 0/var(--tw-bg-opacity))}.bg-\[\#2867B2\]{--tw-bg-opacity:1;background-color:#2867b2;background-color:rgb(40 103 178/var(--tw-bg-opacity))}.bg-\[\#409eff\]{--tw-bg-opacity:1;background-color:#409eff;background-color:rgb(64 158 255/var(--tw-bg-opacity))}.bg-\[\#66b1ff\]{--tw-bg-opacity:1;background-color:#66b1ff;background-color:rgb(102 177 255/var(--tw-bg-opacity))}.bg-\[\#EAB308\]{--tw-bg-opacity:1;background-color:#eab308;background-color:rgb(234 179 8/var(--tw-bg-opacity))}.bg-\[\#F8F9FD\]{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgb(248 249 253/var(--tw-bg-opacity))}.bg-\[\#b3b9c4\]{--tw-bg-opacity:1;background-color:#b3b9c4;background-color:rgb(179 185 196/var(--tw-bg-opacity))}.bg-\[\#eaeaee\]{--tw-bg-opacity:1;background-color:#eaeaee;background-color:rgb(234 234 238/var(--tw-bg-opacity))}.bg-\[\#facc15\]{--tw-bg-opacity:1;background-color:#facc15;background-color:rgb(250 204 21/var(--tw-bg-opacity))}.bg-\[\#fff\]{--tw-bg-opacity:1;background-color:#fff;background-color:rgb(255 255 255/var(--tw-bg-opacity))}.bg-black{--tw-bg-opacity:1;background-color:rgba(var(--color-black),1);background-color:rgba(var(--color-black),var(--tw-bg-opacity))}.bg-black\/50{background-color:rgba(var(--color-black),.5)}.bg-black\/60{background-color:rgba(var(--color-black),.6)}.bg-black\/\[0\.12\]{background-color:rgba(var(--color-black),.12)}.bg-brand-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.bg-brand-boldest{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.bg-brand-default{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-default),1);background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))}.bg-brand-subtler{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtler),1);background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.bg-brand-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtlest),1);background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.bg-brand-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-sunken),1);background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.bg-content-bolder{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-bolder),1);background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.bg-content-default{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-default),1);background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.bg-content-inverse-subtler{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-inverse-subtler),1);background-color:rgba(var(--color-bg-content-inverse-subtler),var(--tw-bg-opacity))}.bg-content-subtle{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.bg-content-subtler{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtler),1);background-color:rgba(var(--color-bg-content-subtler),var(--tw-bg-opacity))}.bg-content-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtlest),1);background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.bg-content-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-sunken),1);background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.bg-error-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-bold),1);background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.bg-error-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-subtlest),1);background-color:rgba(var(--color-bg-error-subtlest),var(--tw-bg-opacity))}.bg-error-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-sunken),1);background-color:rgba(var(--color-bg-error-sunken),var(--tw-bg-opacity))}.bg-info-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-info-bold),1);background-color:rgba(var(--color-bg-info-bold),var(--tw-bg-opacity))}.bg-info-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-info-subtlest),1);background-color:rgba(var(--color-bg-info-subtlest),var(--tw-bg-opacity))}.bg-info-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-info-sunken),1);background-color:rgba(var(--color-bg-info-sunken),var(--tw-bg-opacity))}.bg-inherit{background-color:inherit}.bg-success-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-success-bold),1);background-color:rgba(var(--color-bg-success-bold),var(--tw-bg-opacity))}.bg-success-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-success-subtlest),1);background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))}.bg-success-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-success-sunken),1);background-color:rgba(var(--color-bg-success-sunken),var(--tw-bg-opacity))}.bg-surface-default{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.bg-surface-disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-disabled),1);background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))}.bg-surface-inverse{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-inverse),1);background-color:rgba(var(--color-surface-inverse),var(--tw-bg-opacity))}.bg-surface-selected{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.bg-surface-subtle{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.bg-transparent{background-color:initial}.bg-warning-bold{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-warning-bold),1);background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))}.bg-warning-subtlest{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-warning-subtlest),1);background-color:rgba(var(--color-bg-warning-subtlest),var(--tw-bg-opacity))}.bg-warning-sunken{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-warning-sunken),1);background-color:rgba(var(--color-bg-warning-sunken),var(--tw-bg-opacity))}.bg-white{--tw-bg-opacity:1;background-color:rgba(var(--color-white),1);background-color:rgba(var(--color-white),var(--tw-bg-opacity))}.bg-opacity-25{--tw-bg-opacity:0.25}.bg-opacity-75{--tw-bg-opacity:0.75}.bg-\[url\(\'\/img\/homepage\.png\'\)\]{background-image:url(/img/homepage.png)}.bg-gradient-to-r{background-image:linear-gradient(to right,var(--tw-gradient-stops))}.bg-none{background-image:none}.from-black\/70{--tw-gradient-from:rgba(var(--color-black),0.7) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-black),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.from-transparent{--tw-gradient-from:#0000 var(--tw-gradient-from-position);--tw-gradient-to:#0000 var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.to-black\/5{--tw-gradient-to:rgba(var(--color-black),0.05) var(--tw-gradient-to-position)}.to-white{--tw-gradient-to:rgba(var(--color-white),1) var(--tw-gradient-to-position)}.bg-cover{background-size:cover}.bg-fixed{background-attachment:fixed}.bg-center{background-position:50%}.bg-no-repeat{background-repeat:no-repeat}.fill-brand-bold{fill:rgba(var(--color-brand-bold),1)}.fill-brand-sunken{fill:rgba(var(--color-brand-sunken),1)}.object-cover{object-fit:cover}.\!p-0{padding:0!important}.\!p-sm{padding:var(--spacing-sm)!important}.\!p-xs{padding:var(--spacing-xs)!important}.p-0{padding:0}.p-0\.5{padding:.125rem}.p-4{padding:1rem}.p-5{padding:1.25rem}.p-8{padding:2rem}.p-\[\.75rem\]{padding:.75rem}.p-lg{padding:var(--spacing-lg)}.p-md{padding:var(--spacing-md)}.p-px{padding:1px}.p-sm{padding:var(--spacing-sm)}.p-xl{padding:var(--spacing-xl)}.\!px-0{padding-left:0!important;padding-right:0!important}.\!px-sm{padding-left:var(--spacing-sm)!important;padding-right:var(--spacing-sm)!important}.px-0{padding-left:0;padding-right:0}.px-10{padding-left:2.5rem;padding-right:2.5rem}.px-2{padding-left:.5rem;padding-right:.5rem}.px-4{padding-left:1rem;padding-right:1rem}.px-5{padding-left:1.25rem;padding-right:1.25rem}.px-8{padding-left:2rem;padding-right:2rem}.px-\[\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.px-\[0\.2rem\]{padding-left:.2rem;padding-right:.2rem}.px-\[0\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-lg{padding-left:var(--spacing-lg);padding-right:var(--spacing-lg)}.px-md{padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.px-sm{padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.px-xl{padding-left:var(--spacing-xl);padding-right:var(--spacing-xl)}.px-xs{padding-left:var(--spacing-xs);padding-right:var(--spacing-xs)}.py-0{padding-bottom:0;padding-top:0}.py-0\.5{padding-bottom:.125rem;padding-top:.125rem}.py-10{padding-bottom:2.5rem;padding-top:2.5rem}.py-2{padding-bottom:.5rem;padding-top:.5rem}.py-2xl{padding-bottom:var(--spacing-2xl);padding-top:var(--spacing-2xl)}.py-3{padding-bottom:.75rem;padding-top:.75rem}.py-3xl{padding-bottom:var(--spacing-3xl);padding-top:var(--spacing-3xl)}.py-4{padding-bottom:1rem;padding-top:1rem}.py-5xl{padding-bottom:var(--spacing-5xl);padding-top:var(--spacing-5xl)}.py-6{padding-bottom:1.5rem;padding-top:1.5rem}.py-7xl{padding-bottom:var(--spacing-7xl);padding-top:var(--spacing-7xl)}.py-\[\.3125rem\]{padding-bottom:.3125rem;padding-top:.3125rem}.py-\[0\.625rem\],.py-\[\.625rem\]{padding-bottom:.625rem;padding-top:.625rem}.py-\[1\.5rem\]{padding-bottom:1.5rem;padding-top:1.5rem}.py-lg{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-lg)}.py-md{padding-bottom:var(--spacing-md);padding-top:var(--spacing-md)}.py-sm{padding-bottom:var(--spacing-sm);padding-top:var(--spacing-sm)}.py-xl{padding-bottom:var(--spacing-xl);padding-top:var(--spacing-xl)}.py-xs{padding-bottom:var(--spacing-xs);padding-top:var(--spacing-xs)}.\!pl-0{padding-left:0!important}.\!pl-sm{padding-left:var(--spacing-sm)!important}.\!pr-sm{padding-right:var(--spacing-sm)!important}.pb-0{padding-bottom:0}.pb-2xl{padding-bottom:var(--spacing-2xl)}.pb-3{padding-bottom:.75rem}.pb-6{padding-bottom:1.5rem}.pb-7xl{padding-bottom:var(--spacing-7xl)}.pb-\[\.5rem\]{padding-bottom:.5rem}.pb-\[1\.875rem\]{padding-bottom:1.875rem}.pb-lg{padding-bottom:var(--spacing-lg)}.pb-md{padding-bottom:var(--spacing-md)}.pb-sm{padding-bottom:var(--spacing-sm)}.pb-xl{padding-bottom:var(--spacing-xl)}.pb-xs{padding-bottom:var(--spacing-xs)}.pl-0{padding-left:0}.pl-10{padding-left:2.5rem}.pl-2xl{padding-left:var(--spacing-2xl)}.pl-3{padding-left:.75rem}.pl-5{padding-left:1.25rem}.pl-8{padding-left:2rem}.pl-lg{padding-left:var(--spacing-lg)}.pl-md{padding-left:var(--spacing-md)}.pl-sm{padding-left:var(--spacing-sm)}.pl-xl{padding-left:var(--spacing-xl)}.pl-xs{padding-left:var(--spacing-xs)}.pr-0{padding-right:0}.pr-2xl{padding-right:var(--spacing-2xl)}.pr-3{padding-right:.75rem}.pr-lg{padding-right:var(--spacing-lg)}.pr-md{padding-right:var(--spacing-md)}.pr-sm{padding-right:var(--spacing-sm)}.pr-xl{padding-right:var(--spacing-xl)}.pr-xs{padding-right:var(--spacing-xs)}.pt-12{padding-top:3rem}.pt-14{padding-top:3.5rem}.pt-2xl{padding-top:var(--spacing-2xl)}.pt-3xl{padding-top:var(--spacing-3xl)}.pt-5xl{padding-top:var(--spacing-5xl)}.pt-6{padding-top:1.5rem}.pt-7xl{padding-top:var(--spacing-7xl)}.pt-\[\.625rem\]{padding-top:.625rem}.pt-\[\.75rem\]{padding-top:.75rem}.pt-\[0\.125rem\]{padding-top:.125rem}.pt-\[1\.25rem\]{padding-top:1.25rem}.pt-\[1\.875rem\]{padding-top:1.875rem}.pt-\[1rem\]{padding-top:1rem}.pt-\[2rem\]{padding-top:2rem}.pt-\[5rem\]{padding-top:5rem}.pt-lg{padding-top:var(--spacing-lg)}.pt-md{padding-top:var(--spacing-md)}.pt-sm{padding-top:var(--spacing-sm)}.pt-xl{padding-top:var(--spacing-xl)}.pt-xs{padding-top:var(--spacing-xs)}.text-left{text-align:left}.text-center{text-align:center}.text-right{text-align:right}.\!align-middle{vertical-align:middle!important}.align-middle{vertical-align:middle}.\!align-text-bottom{vertical-align:text-bottom!important}.\!text-base{font-size:1rem!important;line-height:1.5rem!important}.\!text-lg{font-size:1.125rem!important;line-height:1.75rem!important}.\!text-xs{font-size:.75rem!important;line-height:1rem!important}.text-2xl{font-size:1.5rem;line-height:2rem}.text-3xl{font-size:1.875rem;line-height:2.25rem}.text-4xl{font-size:2.25rem;line-height:2.5rem}.text-5xl{font-size:3rem;line-height:1}.text-\[\.4rem\]{font-size:.4rem}.text-\[\.75rem\]{font-size:.75rem}.text-\[\.875rem\]{font-size:.875rem}.text-\[0\.4rem\]{font-size:.4rem}.text-\[0\.575rem\]{font-size:.575rem}.text-\[1\.875rem\]{font-size:1.875rem}.text-\[2\.5rem\]{font-size:2.5rem}.text-base{font-size:1rem;line-height:1.5rem}.text-lg{font-size:1.125rem;line-height:1.75rem}.text-sm{font-size:.875rem;line-height:1.25rem}.text-xl{font-size:1.25rem;line-height:1.75rem}.text-xs{font-size:.75rem;line-height:1rem}.font-bold{font-weight:700}.font-light{font-weight:300}.font-medium{font-weight:500}.font-normal{font-weight:400}.font-semibold{font-weight:600}.uppercase{text-transform:uppercase}.lowercase{text-transform:lowercase}.italic{font-style:italic}.\!leading-\[0\]{line-height:0!important}.leading-10{line-height:2.5rem}.leading-6{line-height:1.5rem}.leading-\[0\]{line-height:0}.leading-\[1\.125rem\]{line-height:1.125rem}.leading-\[1\.1\]{line-height:1.1}.leading-\[1\.875rem\]{line-height:1.875rem}.leading-\[140\%\]{line-height:140%}.leading-none{line-height:1}.leading-normal{line-height:1.5}.\!text-color-black{--tw-text-opacity:1!important;color:rgba(var(--color-black),1)!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.\!text-color-brand-bold{--tw-text-opacity:1!important;color:rgba(var(--color-text-brand-bold),1)!important;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))!important}.\!text-color-default{--tw-text-opacity:1!important;color:rgba(var(--color-text-default),1)!important;color:rgba(var(--color-text-default),var(--tw-text-opacity))!important}.\!text-color-disabled{--tw-text-opacity:1!important;color:rgba(var(--color-text-disabled),1)!important;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))!important}.\!text-color-link-bold{--tw-text-opacity:1!important;color:rgba(var(--color-text-link-bold),1)!important;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))!important}.\!text-color-subtle{--tw-text-opacity:1!important;color:rgba(var(--color-text-subtle),1)!important;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))!important}.\!text-color-white{--tw-text-opacity:1!important;color:rgba(var(--color-white),1)!important;color:rgba(var(--color-white),var(--tw-text-opacity))!important}.text-\[\#000\]{--tw-text-opacity:1;color:#000;color:rgb(0 0 0/var(--tw-text-opacity))}.text-\[\#0156CE\]{--tw-text-opacity:1;color:#0156ce;color:rgb(1 86 206/var(--tw-text-opacity))}.text-\[\#172B4D\]{--tw-text-opacity:1;color:#172b4d;color:rgb(23 43 77/var(--tw-text-opacity))}.text-\[\#626F86\]{--tw-text-opacity:1;color:#626f86;color:rgb(98 111 134/var(--tw-text-opacity))}.text-\[\#758195\]{--tw-text-opacity:1;color:#758195;color:rgb(117 129 149/var(--tw-text-opacity))}.text-\[\#EAB308\]{--tw-text-opacity:1;color:#eab308;color:rgb(234 179 8/var(--tw-text-opacity))}.text-\[\#F1F2F4\]{--tw-text-opacity:1;color:#f1f2f4;color:rgb(241 242 244/var(--tw-text-opacity))}.text-\[\#FACC15\]{--tw-text-opacity:1;color:#facc15;color:rgb(250 204 21/var(--tw-text-opacity))}.text-\[\#FFFFFF\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-\[\#b3b9c4\]{--tw-text-opacity:1;color:#b3b9c4;color:rgb(179 185 196/var(--tw-text-opacity))}.text-\[\#f00\]{--tw-text-opacity:1;color:red;color:rgb(255 0 0/var(--tw-text-opacity))}.text-\[\#fff\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-color-black{--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}.text-color-border-bold{--tw-text-opacity:1;color:rgba(var(--color-border-bold),1);color:rgba(var(--color-border-bold),var(--tw-text-opacity))}.text-color-brand-bold{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.text-color-brand-bolder{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bolder),1);color:rgba(var(--color-text-brand-bolder),var(--tw-text-opacity))}.text-color-current{color:currentColor}.text-color-default{--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}.text-color-disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.text-color-error{--tw-text-opacity:1;color:rgba(var(--color-text-error),1);color:rgba(var(--color-text-error),var(--tw-text-opacity))}.text-color-info{--tw-text-opacity:1;color:rgba(var(--color-text-info),1);color:rgba(var(--color-text-info),var(--tw-text-opacity))}.text-color-inherit{color:inherit}.text-color-inverse{--tw-text-opacity:1;color:rgba(var(--color-white),1);color:rgba(var(--color-white),var(--tw-text-opacity))}.text-color-link-bold{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.text-color-link-bolder{--tw-text-opacity:1;color:rgba(var(--color-text-link-bolder),1);color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.text-color-link-subtle{--tw-text-opacity:1;color:rgba(var(--color-text-link-subtle),1);color:rgba(var(--color-text-link-subtle),var(--tw-text-opacity))}.text-color-on-brand{--tw-text-opacity:1;color:rgba(var(--color-text-on-brand),1);color:rgba(var(--color-text-on-brand),var(--tw-text-opacity))}.text-color-subtle{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.text-color-subtlest{--tw-text-opacity:1;color:rgba(var(--color-text-subtlest),1);color:rgba(var(--color-text-subtlest),var(--tw-text-opacity))}.text-color-success{--tw-text-opacity:1;color:rgba(var(--color-text-success),1);color:rgba(var(--color-text-success),var(--tw-text-opacity))}.text-color-warning{--tw-text-opacity:1;color:rgba(var(--color-text-warning),1);color:rgba(var(--color-text-warning),var(--tw-text-opacity))}.text-color-white{--tw-text-opacity:1;color:rgba(var(--color-white),1);color:rgba(var(--color-white),var(--tw-text-opacity))}.underline{text-decoration-line:underline}.\!no-underline{text-decoration-line:none!important}.no-underline{text-decoration-line:none}.antialiased{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.placeholder-text-color-subtle::placeholder{--tw-placeholder-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-placeholder-opacity))}.opacity-0{opacity:0}.opacity-100{opacity:1}.opacity-25{opacity:.25}.opacity-40{opacity:.4}.shadow{--tw-shadow:0 1px 3px 0 #0000001a,0 1px 2px -1px #0000001a;--tw-shadow-colored:0 1px 3px 0 var(--tw-shadow-color),0 1px 2px -1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 3px 0 #0000001a,0 1px 2px -1px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-\[4px_8px_10px_rgba\(214\2c 217\2c 222\2c 0\.8\)\]{--tw-shadow:4px 8px 10px #d6d9decc;--tw-shadow-colored:4px 8px 10px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,4px 8px 10px #d6d9decc;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-lg{--tw-shadow:0 10px 15px -3px #0000001a,0 4px 6px -4px #0000001a;--tw-shadow-colored:0 10px 15px -3px var(--tw-shadow-color),0 4px 6px -4px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 10px 15px -3px #0000001a,0 4px 6px -4px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-md{--tw-shadow:0 4px 6px -1px #0000001a,0 2px 4px -2px #0000001a;--tw-shadow-colored:0 4px 6px -1px var(--tw-shadow-color),0 2px 4px -2px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 4px 6px -1px #0000001a,0 2px 4px -2px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider{--tw-shadow:0.5px 0.5px 2px 1px #00000052;--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px #00000052;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider-active{--tw-shadow:0.5px 0.5px 2px 1px #0000006b;--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px #0000006b;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-sm{--tw-shadow:0 1px 2px 0 #0000000d;--tw-shadow-colored:0 1px 2px 0 var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 2px 0 #0000000d;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-xl{--tw-shadow:0 20px 25px -5px #0000001a,0 8px 10px -6px #0000001a;--tw-shadow-colored:0 20px 25px -5px var(--tw-shadow-color),0 8px 10px -6px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 20px 25px -5px #0000001a,0 8px 10px -6px #0000001a;box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.outline-none{outline:2px solid #0000;outline-offset:2px}.outline{outline-style:solid}.outline-2{outline-width:2px}.outline-offset-2{outline-offset:2px}.outline-\[\#EAB308\]{outline-color:#eab308}.outline-color-bold{outline-color:rgba(var(--color-border-bold),1)}.outline-color-brand{outline-color:rgba(var(--color-border-brand),1)}.ring-0{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.blur{--tw-blur:blur(8px);filter:blur(8px) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.grayscale{--tw-grayscale:grayscale(100%);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(100%) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.filter,.grayscale{filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.transition{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,-webkit-backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter,-webkit-backdrop-filter;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-all{transition-duration:.15s;transition-property:all;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-colors{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-height{transition-duration:.15s;transition-property:height;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-opacity{transition-duration:.15s;transition-property:opacity;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.duration-100{transition-duration:.1s}.duration-150{transition-duration:.15s}.duration-200{transition-duration:.2s}.duration-300{transition-duration:.3s}.duration-75{transition-duration:75ms}.duration-\[350ms\]{transition-duration:.35s}.ease-in{transition-timing-function:cubic-bezier(.4,0,1,1)}.ease-in-out{transition-timing-function:cubic-bezier(.4,0,.2,1)}.ease-out{transition-timing-function:cubic-bezier(0,0,.2,1)}.content-\[\'\'\]{--tw-content:"";content:"";content:var(--tw-content)}.cursor-grab{cursor:grab}.cursor-grabbing{cursor:grabbing}.touch-none{touch-action:none}.tap-highlight-transparent{-webkit-tap-highlight-color:rgba(0,0,0,0)}.touch-callout-none{-webkit-touch-callout:none}.transform-origin-0{transform-origin:0 0}.transform-style-flat{transform-style:flat}.cursor-ew-resize{cursor:ew-resize}.arrow-left:before{border:5px solid #0000;border-right-color:inherit;left:-10px}.arrow-left:before,.arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.arrow-right:before{border:5px solid #0000;border-left-color:inherit;right:-10px}.text-body{font-size:.875rem;line-height:1.25rem}@media (min-width:768px){.text-body{font-size:1rem;line-height:1.5rem}}.\[appearance\:textfield\]{appearance:textfield}.before\:absolute:before{content:var(--tw-content);position:absolute}.before\:-inset-2:before{content:var(--tw-content);inset:-.5rem}.after\:absolute:after{content:var(--tw-content);position:absolute}.after\:hidden:after{content:var(--tw-content);display:none}.after\:h-1\/2:after{content:var(--tw-content);height:50%}.after\:w-1\/2:after{content:var(--tw-content);width:50%}.after\:rounded-full:after{border-radius:9999px;content:var(--tw-content)}.after\:bg-brand-bold:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.after\:bg-content-default:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-default),1);background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.first\:pt-0:first-child{padding-top:0}.focus-within\:outline-none:focus-within{outline:2px solid #0000;outline-offset:2px}.focus-within\:outline:focus-within{outline-style:solid}.hover\:rounded-2xl:hover{border-radius:1rem}.hover\:border-2:hover{border-width:2px}.hover\:border-\[\#0156CE\]:hover{--tw-border-opacity:1;border-color:#0156ce;border-color:rgb(1 86 206/var(--tw-border-opacity))}.hover\:border-\[\#F8F9FD\]:hover{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.hover\:border-color-brand:hover{--tw-border-opacity:1;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.hover\:\!bg-surface-selected:hover{--tw-bg-opacity:1!important;background-color:rgba(var(--color-surface-selected),1)!important;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))!important}.hover\:\!bg-transparent:hover{background-color:initial!important}.hover\:bg-brand-bolder:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bolder),1);background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.hover\:bg-brand-subtlest:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtlest),1);background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.hover\:bg-brand-sunken:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-sunken),1);background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.hover\:bg-content-bold:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-bold),1);background-color:rgba(var(--color-bg-content-bold),var(--tw-bg-opacity))}.hover\:bg-content-sunken:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-sunken),1);background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.hover\:bg-surface-default:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.hover\:bg-surface-selected:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.hover\:pl-sm:hover{padding-left:var(--spacing-sm)}.hover\:font-semibold:hover{font-weight:600}.hover\:\!text-color-black:hover{--tw-text-opacity:1!important;color:rgba(var(--color-black),1)!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.hover\:text-color-black:hover{--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}.hover\:text-color-brand-bold:hover{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.hover\:text-color-link-bold:hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.hover\:text-color-link-bolder:hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bolder),1);color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.hover\:text-color-subtle:hover{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.hover\:underline:hover{text-decoration-line:underline}.hover\:grayscale-0:hover{--tw-grayscale:grayscale(0);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(0) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.focus\:bg-brand-strong:focus{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-strong),1);background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.focus\:outline-none:focus{outline:2px solid #0000;outline-offset:2px}.focus\:outline-color-brand:focus{outline-color:rgba(var(--color-border-brand),1)}.focus\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus\:ring-text-color-border-selected:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-border-selected),var(--tw-ring-opacity))}.focus-visible\:bg-brand-bold:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.focus-visible\:bg-brand-boldest:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.focus-visible\:bg-error-bold:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-error-bold),1);background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.focus-visible\:bg-surface-default:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.focus-visible\:bg-surface-selected:focus-visible{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.focus-visible\:outline-none:focus-visible{outline:2px solid #0000;outline-offset:2px}.focus-visible\:outline:focus-visible{outline-style:solid}.focus-visible\:outline-2:focus-visible{outline-width:2px}.focus-visible\:outline-color-selected:focus-visible{outline-color:rgba(var(--color-border-selected),1)}.focus-visible\:ring-2:focus-visible{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus-visible\:ring-offset-2:focus-visible{--tw-ring-offset-width:2px}.focus-visible\:ring-offset-brand-bold:focus-visible{--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.focus-visible\:ring-offset-white:focus-visible{--tw-ring-offset-color:rgba(var(--color-white),1)}.active\:\!bg-brand-subtlest:active{--tw-bg-opacity:1!important;background-color:rgba(var(--color-brand-subtlest),1)!important;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))!important}.active\:\!bg-inherit:active{background-color:inherit!important}.active\:\!bg-transparent:active{background-color:initial!important}.active\:bg-brand-boldest:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.active\:bg-brand-strong:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-strong),1);background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.active\:bg-brand-subtler:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtler),1);background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.active\:bg-brand-subtlest:active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-subtlest),1);background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.active\:bg-content-bolder:active{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-bolder),1);background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.active\:bg-content-subtlest:active{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtlest),1);background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.active\:text-color-brand-boldest:active{--tw-text-opacity:1;color:rgba(var(--color-text-brand-boldest),1);color:rgba(var(--color-text-brand-boldest),var(--tw-text-opacity))}.disabled\:border-color-default:disabled{--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.disabled\:bg-surface-subtle:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.disabled\:text-color-disabled:disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.group:hover .group-hover\:after\:bg-brand-bolder:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bolder),1);background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.group:active .group-active\:after\:bg-brand-boldest:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:rgba(var(--color-brand-boldest),1);background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.aria-disabled\:pointer-events-none[aria-disabled=true]{pointer-events:none}.aria-disabled\:cursor-default[aria-disabled=true]{cursor:default}.aria-disabled\:text-color-disabled[aria-disabled=true]{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.ui-open\:text-color-brand-bold[data-headlessui-state~=open]{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}:where([data-headlessui-state~=open]) .ui-open\:text-color-brand-bold{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.ui-disabled\:pointer-events-none[data-headlessui-state~=disabled]{pointer-events:none}.ui-disabled\:cursor-default[data-headlessui-state~=disabled]{cursor:default}.ui-disabled\:text-color-disabled[data-headlessui-state~=disabled]{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-state~=disabled]) .ui-disabled\:pointer-events-none{pointer-events:none}:where([data-headlessui-state~=disabled]) .ui-disabled\:cursor-default{cursor:default}:where([data-headlessui-state~=disabled]) .ui-disabled\:text-color-disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:outline-color-brand:focus{outline-color:rgba(var(--color-border-brand),1)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-brand-bold:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-brand-bold),var(--tw-ring-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-opacity-75:focus{--tw-ring-opacity:0.75}.slider-horizontal .h\:-right-2{right:-.5rem}.slider-horizontal .h\:-top-1{top:-.25rem}.slider-horizontal .h\:-top-1\.5{top:-.375rem}.slider-horizontal .h\:left-1\/2{left:50%}.slider-horizontal .h\:h-0{height:0}.slider-horizontal .h\:h-4{height:1rem}.slider-horizontal .h\:w-4{width:1rem}.slider-horizontal .h\:-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal .h\:arrow-bottom:before{border:5px solid #0000;border-top-color:inherit;bottom:-10px}.slider-horizontal .h\:arrow-bottom:before,.slider-horizontal .h\:arrow-top:before{content:"";height:0;left:50%;position:absolute;transform:translate(-50%);width:0}.slider-horizontal .h\:arrow-top:before{border:5px solid #0000;border-bottom-color:inherit;top:-10px}.slider-vertical .v\:-right-1{right:-.25rem}.slider-vertical .v\:-right-1\.25{right:-.3125rem}.slider-vertical .v\:-top-2{top:-.5rem}.slider-vertical .v\:-top-full{top:-100%}.slider-vertical .v\:top-1\/2{top:50%}.slider-vertical .v\:h-4{height:1rem}.slider-vertical .v\:w-0{width:0}.slider-vertical .v\:w-4{width:1rem}.slider-vertical .v\:-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .v\:cursor-ns-resize{cursor:ns-resize}.slider-vertical .v\:arrow-left:before{border:5px solid #0000;border-right-color:inherit;left:-10px}.slider-vertical .v\:arrow-left:before,.slider-vertical .v\:arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.slider-vertical .v\:arrow-right:before{border:5px solid #0000;border-left-color:inherit;right:-10px}.slider-horizontal .slider-origin>.merge-h\:bottom-3{bottom:.75rem}.slider-horizontal .slider-origin>.merge-h\:bottom-3\.5{bottom:.875rem}.slider-horizontal .slider-origin>.merge-h\:left-auto{left:auto}.slider-horizontal .slider-origin>.merge-h\:top-5{top:1.25rem}.slider-horizontal .slider-origin>.merge-h\:translate-x-1\/2{--tw-translate-x:50%;transform:translate(50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .slider-origin>.merge-v\:left-7{left:1.75rem}.slider-vertical .slider-origin>.merge-v\:right-1{right:.25rem}.slider-vertical .slider-origin>.merge-v\:top-auto{top:auto}.slider-vertical .slider-origin>.merge-v\:-translate-x-4{--tw-translate-x:-1rem;transform:translate(-1rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:-left-2{left:-.5rem}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:left-0{left:0}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:right-auto{right:auto}.slider-tap .tap\:transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.slider-tap .tap\:duration-300{transition-duration:.3s}.slider-tooltip-focus:not(.slider-focused) .tt-focus\:hidden{display:none!important}.slider-tooltip-focus.slider-focused:not(.slider-tooltip-hidden) .tt-focused\:block{display:block!important}.slider-tooltip-drag:not(.slider-state-drag) .tt-drag\:hidden{display:none!important}.slider-tooltip-drag.slider-state-drag .tt-dragging\:block\:not\(\.slider-tooltip-hidden\){display:block!important}@media not all and (min-width:1280px){.max-xl\:w-full{width:100%}}@media not all and (min-width:1024px){.max-lg\:items-center{align-items:center}.max-lg\:gap-x-6{column-gap:1.5rem}.max-lg\:pt-lg{padding-top:var(--spacing-lg)}}@media (min-width:576px){.sm\:sticky{position:sticky}.sm\:top-20{top:5rem}.sm\:w-20{width:5rem}.sm\:w-2xl{width:var(--spacing-2xl)}.sm\:w-\[100\%\]{width:100%}.sm\:w-\[50\%\]{width:50%}.sm\:\!max-w-\[20\%\]{max-width:20%!important}.sm\:max-w-\[33\%\]{max-width:33%}.sm\:grid-cols-2{grid-template-columns:repeat(2,minmax(0,1fr))}.sm\:border-0{border-width:0}.sm\:border-t{border-top-width:1px}.sm\:border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.sm\:pr-md{padding-right:var(--spacing-md)}.sm\:pt-0{padding-top:0}.sm\:pt-\[\.625rem\]{padding-top:.625rem}}@media (min-width:768px){.md\:h-9{height:2.25rem}.md\:w-9{width:2.25rem}.md\:w-\[100\%\]{width:100%}.md\:w-\[50\%\]{width:50%}.md\:flex-row{flex-direction:row}.md\:flex-row-reverse{flex-direction:row-reverse}}@media (min-width:1024px){.lg\:absolute{position:absolute}.lg\:sticky{position:sticky}.lg\:\!bottom-\[50vh\]{bottom:50vh!important}.lg\:bottom-xl{bottom:var(--spacing-xl)}.lg\:left-xl{left:var(--spacing-xl)}.lg\:top-7xl{top:var(--spacing-7xl)}.lg\:top-\[10\%\]{top:10%}.lg\:top-\[20\%\]{top:20%}.lg\:top-\[30\%\]{top:30%}.lg\:top-\[4\.5rem\]{top:4.5rem}.lg\:top-\[40\%\]{top:40%}.lg\:top-\[50\%\]{top:50%}.lg\:top-\[60\%\]{top:60%}.lg\:top-\[70\%\]{top:70%}.lg\:order-first{order:-9999}.lg\:m-0{margin:0}.lg\:m-lg{margin:var(--spacing-lg)}.lg\:mx-auto{margin-left:auto;margin-right:auto}.lg\:my-0{margin-bottom:0;margin-top:0}.lg\:my-12{margin-bottom:3rem;margin-top:3rem}.lg\:my-7xl{margin-bottom:var(--spacing-7xl);margin-top:var(--spacing-7xl)}.lg\:my-\[18\.75rem\]{margin-bottom:18.75rem;margin-top:18.75rem}.lg\:-mt-4xl{margin-top:calc(var(--spacing-4xl)*-1)}.lg\:mb-0{margin-bottom:0}.lg\:mb-10xl{margin-bottom:var(--spacing-10xl)}.lg\:mb-lg{margin-bottom:var(--spacing-lg)}.lg\:ml-3xl{margin-left:var(--spacing-3xl)}.lg\:ml-lg{margin-left:var(--spacing-lg)}.lg\:ml-sm{margin-left:var(--spacing-sm)}.lg\:mr-8xl{margin-right:var(--spacing-8xl)}.lg\:mr-\[4\.6875rem\]{margin-right:4.6875rem}.lg\:mr-lg{margin-right:var(--spacing-lg)}.lg\:mr-xl{margin-right:var(--spacing-xl)}.lg\:mt-0{margin-top:0}.lg\:mt-\[-3rem\]{margin-top:-3rem}.lg\:mt-lg{margin-top:var(--spacing-lg)}.lg\:mt-md{margin-top:var(--spacing-md)}.lg\:\!block{display:block!important}.lg\:block{display:block}.lg\:flex{display:flex}.lg\:\!inline-flex{display:inline-flex!important}.lg\:grid{display:grid}.lg\:\!hidden{display:none!important}.lg\:hidden{display:none}.lg\:aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.lg\:aspect-square{aspect-ratio:1/1}.lg\:h-12{height:3rem}.lg\:h-\[296px\]{height:296px}.lg\:h-\[7\.5rem\]{height:7.5rem}.lg\:max-h-\[100\%\]{max-height:100%}.lg\:max-h-\[30\%\]{max-height:30%}.lg\:max-h-\[40\%\]{max-height:40%}.lg\:max-h-\[50\%\]{max-height:50%}.lg\:max-h-\[60\%\]{max-height:60%}.lg\:max-h-\[70\%\]{max-height:70%}.lg\:max-h-\[80\%\]{max-height:80%}.lg\:max-h-\[90\%\]{max-height:90%}.lg\:min-h-screen{min-height:100vh}.lg\:\!w-\[20\%\]{width:20%!important}.lg\:\!w-\[75\%\]{width:75%!important}.lg\:\!w-fit{width:fit-content!important}.lg\:w-1\/2{width:50%}.lg\:w-1\/4{width:25%}.lg\:w-1\/5{width:20%}.lg\:w-12{width:3rem}.lg\:w-2\/3{width:66.666667%}.lg\:w-4\/5{width:80%}.lg\:w-\[100\%\]{width:100%}.lg\:w-\[19\.0625rem\]{width:19.0625rem}.lg\:w-\[22\.5rem\]{width:22.5rem}.lg\:w-\[25\%\]{width:25%}.lg\:w-\[31\.25rem\]{width:31.25rem}.lg\:w-\[315px\]{width:315px}.lg\:w-\[32rem\]{width:32rem}.lg\:w-\[33\%\]{width:33%}.lg\:w-\[333px\]{width:333px}.lg\:w-\[360px\]{width:360px}.lg\:w-\[50\%\]{width:50%}.lg\:w-fit{width:fit-content}.lg\:w-full{width:100%}.lg\:w-max{width:max-content}.lg\:\!min-w-\[40\%\]{min-width:40%!important}.lg\:max-w-2xl{max-width:42rem}.lg\:max-w-3xl{max-width:48rem}.lg\:max-w-4xl{max-width:56rem}.lg\:max-w-5xl{max-width:64rem}.lg\:max-w-6xl{max-width:72rem}.lg\:max-w-7xl{max-width:80rem}.lg\:max-w-\[28\.5rem\]{max-width:28.5rem}.lg\:max-w-\[30\%\]{max-width:30%}.lg\:max-w-\[32\%\]{max-width:32%}.lg\:max-w-\[80\%\]{max-width:80%}.lg\:max-w-lg{max-width:32rem}.lg\:max-w-md{max-width:28rem}.lg\:max-w-sm{max-width:24rem}.lg\:max-w-xl{max-width:36rem}.lg\:max-w-xs{max-width:20rem}.lg\:flex-1{flex:1 1 0%}.lg\:flex-auto{flex:1 1 auto}.lg\:flex-none{flex:none}.lg\:basis-1\/2{flex-basis:50%}.lg\:basis-1\/4{flex-basis:25%}.lg\:basis-\[15\.625rem\]{flex-basis:15.625rem}.lg\:list-disc{list-style-type:disc}.lg\:grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.lg\:flex-row{flex-direction:row}.lg\:flex-row-reverse{flex-direction:row-reverse}.lg\:flex-col{flex-direction:column}.lg\:flex-wrap{flex-wrap:wrap}.lg\:flex-nowrap{flex-wrap:nowrap}.lg\:items-center{align-items:center}.lg\:justify-end{justify-content:flex-end}.lg\:justify-between{justify-content:space-between}.lg\:gap-0{gap:0}.lg\:gap-2xl{gap:var(--spacing-2xl)}.lg\:gap-lg{gap:var(--spacing-lg)}.lg\:gap-xl{gap:var(--spacing-xl)}.lg\:gap-x-lg{column-gap:var(--spacing-lg)}.lg\:gap-y-lg{row-gap:var(--spacing-lg)}.lg\:\!space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0!important;margin-bottom:0!important;margin-bottom:calc(0px*var(--tw-space-y-reverse))!important;margin-top:0!important;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))!important}.lg\:space-x-lg>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:calc(var(--spacing-lg)*(1 - var(--tw-space-x-reverse)));margin-right:calc(var(--spacing-lg)*var(--tw-space-x-reverse))}.lg\:space-x-xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:calc(var(--spacing-xl)*(1 - var(--tw-space-x-reverse)));margin-right:calc(var(--spacing-xl)*var(--tw-space-x-reverse))}.lg\:space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(0px*var(--tw-space-y-reverse));margin-top:0;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))}.lg\:space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.lg\:rounded-2xl{border-radius:1rem}.lg\:rounded-3xl{border-radius:1.5rem}.lg\:border{border-width:1px}.lg\:border-0{border-width:0}.lg\:border-b{border-bottom-width:1px}.lg\:border-l{border-left-width:1px}.lg\:border-t-0{border-top-width:0}.lg\:border-none{border-style:none}.lg\:bg-surface-subtle{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.lg\:p-0{padding:0}.lg\:p-2xl{padding:var(--spacing-2xl)}.lg\:p-lg{padding:var(--spacing-lg)}.lg\:px-0{padding-left:0;padding-right:0}.lg\:px-10{padding-left:2.5rem;padding-right:2.5rem}.lg\:px-4{padding-left:1rem;padding-right:1rem}.lg\:px-4xl{padding-left:var(--spacing-4xl);padding-right:var(--spacing-4xl)}.lg\:px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.lg\:px-lg{padding-left:var(--spacing-lg);padding-right:var(--spacing-lg)}.lg\:py-0{padding-bottom:0;padding-top:0}.lg\:py-10xl{padding-bottom:var(--spacing-10xl);padding-top:var(--spacing-10xl)}.lg\:py-12{padding-bottom:3rem;padding-top:3rem}.lg\:py-2xl{padding-bottom:var(--spacing-2xl);padding-top:var(--spacing-2xl)}.lg\:py-32{padding-bottom:8rem;padding-top:8rem}.lg\:py-3xl{padding-bottom:var(--spacing-3xl);padding-top:var(--spacing-3xl)}.lg\:py-4xl{padding-bottom:var(--spacing-4xl);padding-top:var(--spacing-4xl)}.lg\:py-5xl{padding-bottom:var(--spacing-5xl);padding-top:var(--spacing-5xl)}.lg\:py-7xl{padding-bottom:var(--spacing-7xl);padding-top:var(--spacing-7xl)}.lg\:py-lg{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-lg)}.lg\:py-xl{padding-bottom:var(--spacing-xl);padding-top:var(--spacing-xl)}.lg\:pb-0{padding-bottom:0}.lg\:pb-2xl{padding-bottom:var(--spacing-2xl)}.lg\:pb-3xl{padding-bottom:var(--spacing-3xl)}.lg\:pb-5xl{padding-bottom:var(--spacing-5xl)}.lg\:pb-7xl{padding-bottom:var(--spacing-7xl)}.lg\:pb-\[12\.5rem\]{padding-bottom:12.5rem}.lg\:pb-\[6\.3125rem\]{padding-bottom:6.3125rem}.lg\:pb-lg{padding-bottom:var(--spacing-lg)}.lg\:pb-md{padding-bottom:var(--spacing-md)}.lg\:pb-sm{padding-bottom:var(--spacing-sm)}.lg\:pl-10{padding-left:2.5rem}.lg\:pl-2xl{padding-left:var(--spacing-2xl)}.lg\:pl-lg{padding-left:var(--spacing-lg)}.lg\:pl-sm{padding-left:var(--spacing-sm)}.lg\:pl-xl{padding-left:var(--spacing-xl)}.lg\:pr-0{padding-right:0}.lg\:pr-lg{padding-right:var(--spacing-lg)}.lg\:pr-xl{padding-right:var(--spacing-xl)}.lg\:pt-0{padding-top:0}.lg\:pt-2xl{padding-top:var(--spacing-2xl)}.lg\:pt-3xl{padding-top:var(--spacing-3xl)}.lg\:pt-5xl{padding-top:var(--spacing-5xl)}.lg\:pt-7xl{padding-top:var(--spacing-7xl)}.lg\:pt-\[5rem\]{padding-top:5rem}.lg\:pt-\[7\.5rem\]{padding-top:7.5rem}.lg\:pt-\[8\.125rem\]{padding-top:8.125rem}.lg\:pt-lg{padding-top:var(--spacing-lg)}.lg\:pt-md{padding-top:var(--spacing-md)}.lg\:pt-xl{padding-top:var(--spacing-xl)}.lg\:text-center{text-align:center}.lg\:\!text-3xl{font-size:1.875rem!important;line-height:2.25rem!important}}@media (min-width:1280px){.xl\:mr-7xl{margin-right:var(--spacing-7xl)}.xl\:mr-lg{margin-right:var(--spacing-lg)}.xl\:h-16{height:4rem}.xl\:w-16{width:4rem}.xl\:w-4{width:1rem}.xl\:w-\[100\%\]{width:100%}.xl\:w-\[25\%\]{width:25%}.xl\:w-\[27\.6875rem\]{width:27.6875rem}.xl\:w-\[33\%\]{width:33%}.xl\:w-\[50\%\]{width:50%}.xl\:space-x-3xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:calc(var(--spacing-3xl)*(1 - var(--tw-space-x-reverse)));margin-right:calc(var(--spacing-3xl)*var(--tw-space-x-reverse))}}@media (min-width:1440px){.xxl\:w-\[33\%\]{width:33%}}.\[\&\:\:-webkit-inner-spin-button\]\:appearance-none::-webkit-inner-spin-button,.\[\&\:\:-webkit-outer-spin-button\]\:appearance-none::-webkit-outer-spin-button{appearance:none}.\[\&\>a\]\:block>a{display:block}.\[\&\>a\]\:w-full>a{width:100%}.\[\&\>a\]\:px-2>a{padding-left:.5rem;padding-right:.5rem}.\[\&\>a\]\:px-4>a{padding-left:1rem;padding-right:1rem}.\[\&\>a\]\:py-md>a{padding-bottom:var(--spacing-md);padding-top:var(--spacing-md)}.\[\&\>div\]\:z-1>div{z-index:1}.\[\&\>div\]\:z-10>div{z-index:10}.\[\&\>div\]\:w-fit>div{width:fit-content}.\[\&\>ol\>li\]\:truncate>ol>li{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&\>span\]\:overflow-hidden>span{overflow:hidden}.\[\&\>span\]\:truncate>span{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&_input\]\:\!w-\[1\.15em\] input{width:1.15em!important}.\[\&_input\]\:text-center input{text-align:center}.\[\&_span\]\:hover\:text-color-brand-bold:hover span,.\[\&_span\]\:text-color-brand-bold span{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}</style> <style>@charset "UTF-8"; /*! tailwindcss v3.3.2 | MIT License | https://tailwindcss.com*/*,:after,:before{border:0 solid;box-sizing:border-box}:after,:before{--tw-content:""}html{line-height:1.5;-webkit-text-size-adjust:100%;font-family:Suisse Int\'l,ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-feature-settings:normal;font-variation-settings:normal;-moz-tab-size:4;-o-tab-size:4;tab-size:4}body{line-height:inherit;margin:0}hr{border-top-width:1px;color:inherit;height:0}abbr:where([title]){-webkit-text-decoration:underline dotted;text-decoration:underline dotted}h1,h2,h3,h4,h5,h6{font-size:inherit;font-weight:inherit}a{color:inherit;text-decoration:inherit}b,strong{font-weight:bolder}code,kbd,pre,samp{font-family:ui-monospace,SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}table{border-collapse:collapse;border-color:inherit;text-indent:0}button,input,optgroup,select,textarea{color:inherit;font-family:inherit;font-size:100%;font-weight:inherit;line-height:inherit;margin:0;padding:0}button,select{text-transform:none}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button;background-color:transparent;background-image:none}:-moz-focusring{outline:auto}:-moz-ui-invalid{box-shadow:none}progress{vertical-align:baseline}::-webkit-inner-spin-button,::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{-webkit-appearance:button;font:inherit}summary{display:list-item}blockquote,dd,dl,figure,h1,h2,h3,h4,h5,h6,hr,p,pre{margin:0}fieldset{margin:0}fieldset,legend{padding:0}menu,ol,ul{list-style:none;margin:0;padding:0}textarea{resize:vertical}input::-moz-placeholder,textarea::-moz-placeholder{color:#9ca3af;opacity:1}input::placeholder,textarea::placeholder{color:#9ca3af;opacity:1}[role=button],button{cursor:pointer}:disabled{cursor:default}audio,canvas,embed,iframe,img,object,svg,video{display:block;vertical-align:middle}img,video{height:auto;max-width:100%}[hidden]{display:none}html{color:0,0,0;color:var(--color-text-default)}:root{--color-blue-000:233,241,255;--color-blue-100:208,228,255;--color-blue-200:155,203,255;--color-blue-300:105,176,245;--color-blue-400:76,149,216;--color-blue-500:51,122,183;--color-blue-600:0,98,159;--color-blue-700:0,88,144;--color-blue-800:0,74,121;--color-blue-900:0,50,86;--color-blue-1000:0,29,52;--color-red-000:255,251,255;--color-red-100:255,218,212;--color-red-200:255,180,166;--color-red-300:255,138,117;--color-red-400:255,85,59;--color-red-500:225,25,0;--color-red-600:211,28,4;--color-red-700:189,19,0;--color-red-800:144,12,0;--color-red-900:103,6,0;--color-red-1000:64,2,0;--color-yellow-000:254,252,232;--color-yellow-100:254,249,195;--color-yellow-200:254,240,138;--color-yellow-300:253,224,71;--color-yellow-400:250,204,21;--color-yellow-500:234,179,8;--color-yellow-600:209,149,7;--color-yellow-700:196,132,4;--color-yellow-800:168,106,7;--color-yellow-900:143,87,13;--color-yellow-1000:125,75,17;--color-green-000:241,254,248;--color-green-100:191,238,215;--color-green-200:101,214,160;--color-green-300:60,194,129;--color-green-400:34,173,106;--color-green-500:5,148,79;--color-green-600:9,133,73;--color-green-700:0,109,56;--color-green-800:0,82,41;--color-green-900:0,57,26;--color-green-1000:0,33,13;--color-cyan-000:245,251,255;--color-cyan-100:220,243,255;--color-cyan-200:195,234,254;--color-cyan-300:170,224,253;--color-cyan-400:145,214,251;--color-cyan-500:89,186,240;--color-cyan-600:44,154,207;--color-cyan-700:0,127,176;--color-cyan-800:0,101,141;--color-cyan-900:0,76,107;--color-cyan-1000:0,52,75;--color-neutral-000:248,249,253;--color-neutral-100:247,248,249;--color-neutral-200:241,242,244;--color-neutral-300:220,223,228;--color-neutral-400:179,185,196;--color-neutral-500:133,144,162;--color-neutral-600:117,129,149;--color-neutral-700:98,111,134;--color-neutral-800:68,84,111;--color-neutral-900:44,62,93;--color-neutral-1000:23,43,77;--color-white:255,255,255;--color-black:0,0,0;--color-brand-sunken:var(--color-yellow-000);--color-brand-subtlest:var(--color-yellow-100);--color-brand-subtler:var(--color-yellow-200);--color-brand-subtle:var(--color-yellow-300);--color-brand-default:var(--color-yellow-400);--color-brand-bold:var(--color-yellow-500);--color-brand-bolder:var(--color-yellow-600);--color-brand-boldest:var(--color-yellow-700);--color-brand-strong:var(--color-yellow-800);--color-brand-stronger:var(--color-yellow-900);--color-brand-strongest:var(--color-yellow-1000);--color-accent-sunken:var(--color-black);--color-accent-subtlest:var(--color-black);--color-accent-subtler:var(--color-black);--color-accent-subtle:var(--color-black);--color-accent-default:var(--color-black);--color-accent-bold:var(--color-black);--color-accent-bolder:var(--color-black);--color-accent-boldest:var(--color-black);--color-accent-strong:var(--color-black);--color-accent-stronger:var(--color-black);--color-accent-strongest:var(--color-black);--color-error-sunken:var(--color-red-000);--color-error-subtlest:var(--color-red-100);--color-error-bold:var(--color-red-500);--color-warning-sunken:var(--color-yellow-000);--color-warning-subtlest:var(--color-yellow-100);--color-warning-bold:var(--color-yellow-500);--color-success-sunken:var(--color-green-000);--color-success-subtlest:var(--color-green-100);--color-success-bold:var(--color-green-500);--color-info-sunken:var(--color-cyan-000);--color-info-subtlest:var(--color-cyan-100);--color-info-bold:var(--color-cyan-500);--color-link-bold:1,86,206;--color-link-bolder:1,75,181;--color-link-boldest:1,65,155;--color-text-default:var(--color-black);--color-text-subtle:var(--color-neutral-700);--color-text-subtlest:var(--color-neutral-600);--color-text-disabled:var(--color-neutral-400);--color-text-inverse:var(--color-white);--color-text-onbrand:var(--color-white);--color-text-onaccent:var(--color-white);--color-text-brand-bold:var(--color-brand-bold);--color-text-brand-bolder:var(--color-brand-bolder);--color-text-brand-boldest:var(--color-brand-boldest);--color-text-accent-bold:var(--color-white);--color-text-accent-bolder:var(--color-white);--color-text-accent-boldest:var(--color-white);--color-text-link-bold:var(--color-link-bold);--color-text-link-bolder:var(--color-link-bolder);--color-text-link-boldest:var(--color-link-boldest);--color-text-link-subtle:var(--color-neutral-700);--color-text-error:var(--color-red-600);--color-text-warning:var(--color-yellow-600);--color-text-success:var(--color-green-600);--color-text-info:var(--color-cyan-600);--color-surface-subtle:var(--color-neutral-000);--color-surface-default:var(--color-white);--color-surface-inverse:var(--color-black);--color-surface-selected:var(--color-neutral-000);--color-surface-disabled:var(--color-neutral-200);--color-bg-brand-sunken:var(--color-brand-sunken);--color-bg-brand-subtlest:var(--color-brand-subtlest);--color-bg-brand-subtler:var(--color-brand-subtler);--color-bg-brand-subtle:var(--color-brand-subtle);--color-bg-brand-default:var(--color-brand-default);--color-bg-brand-bold:var(--color-brand-bold);--color-bg-brand-bolder:var(--color-brand-bolder);--color-bg-brand-boldest:var(--color-brand-boldest);--color-bg-brand-strong:var(--color-brand-strong);--color-bg-brand-stronger:var(--color-brand-stronger);--color-bg-brand-strongest:var(--color-brand-strongest);--color-bg-accent-sunken:var(--color-accent-sunken);--color-bg-accent-subtlest:var(--color-accent-subtlest);--color-bg-accent-subtler:var(--color-accent-subtler);--color-bg-accent-subtle:var(--color-accent-subtle);--color-bg-accent-default:var(--color-accent-default);--color-bg-accent-bold:var(--color-accent-bold);--color-bg-accent-bolder:var(--color-accent-bolder);--color-bg-accent-boldest:var(--color-accent-boldest);--color-bg-accent-strong:var(--color-accent-strong);--color-bg-accent-stronger:var(--color-accent-stronger);--color-bg-accent-strongest:var(--color-accent-strongest);--color-bg-content-sunken:var(--color-brand-sunken);--color-bg-content-subtlest:var(--color-brand-subtlest);--color-bg-content-subtler:var(--color-brand-subtler);--color-bg-content-subtle:var(--color-brand-subtle);--color-bg-content-default:var(--color-brand-default);--color-bg-content-bold:var(--color-brand-bold);--color-bg-content-bolder:var(--color-brand-bolder);--color-bg-content-boldest:var(--color-brand-boldest);--color-bg-content-inverse-subtler:var(--color-brand-strong);--color-bg-content-inverse-subtle:var(--color-brand-stronger);--color-bg-content-inverse:var(--color-brand-strongest);--color-bg-error-sunken:var(--color-error-sunken);--color-bg-error-subtlest:var(--color-error-subtlest);--color-bg-error-bold:var(--color-error-bold);--color-bg-warning-sunken:var(--color-warning-sunken);--color-bg-warning-subtlest:var(--color-warning-subtlest);--color-bg-warning-bold:var(--color-warning-bold);--color-bg-success-sunken:var(--color-success-sunken);--color-bg-success-subtlest:var(--color-success-subtlest);--color-bg-success-bold:var(--color-success-bold);--color-bg-info-sunken:var(--color-info-sunken);--color-bg-info-subtlest:var(--color-info-subtlest);--color-bg-info-bold:var(--color-info-bold);--color-border-default:var(--color-neutral-300);--color-border-bold:var(--color-neutral-400);--color-border-brand:var(--color-brand-bold);--color-border-selected:var(--color-brand-bold);--color-border-error:var(--color-error-bold);--color-border-warning:var(--color-warning-bold);--color-border-success:var(--color-success-bold);--color-border-info:var(--color-info-bold);--spacing-xs:0.25rem;--spacing-sm:0.5rem;--spacing-md:1rem;--spacing-lg:1.5rem;--spacing-xl:2rem;--spacing-2xl:2.5rem;--spacing-3xl:3rem;--spacing-4xl:3.5rem;--spacing-5xl:4rem;--spacing-6xl:4.5rem;--spacing-7xl:5rem;--spacing-8xl:5.5rem;--spacing-9xl:6rem;--spacing-10xl:6.5rem;--h1-lg-size:3.75rem;--h1-md-size:3rem;--h1-sm-size:2.25rem;--h2-lg-size:3rem;--h2-md-size:2.25rem;--h2-sm-size:1.875rem;--h3-lg-size:2.375rem;--h3-md-size:1.875rem;--h3-sm-size:1.5rem;--h4-lg-size:1.875rem;--h4-md-size:1.5rem;--h4-sm-size:1.25rem;--h5-lg-size:1.25rem;--h5-md-size:1.125rem;--h5-sm-size:1rem;--h6-lg-size:1.125rem;--h6-md-size:1rem;--h6-sm-size:0.875rem;--h1-lg-line-height:1;--h1-md-line-height:1;--h1-sm-line-height:1.11;--h2-lg-line-height:1.2;--h2-md-line-height:1.11;--h2-sm-line-height:1.2;--h3-lg-line-height:1.3;--h3-md-line-height:1.2;--h3-sm-line-height:1.33;--h4-lg-line-height:1.3;--h4-md-line-height:1.33;--h4-sm-line-height:1.4;--h5-lg-line-height:1.5;--h5-md-line-height:1.55;--h5-sm-line-height:1.5;--h6-lg-line-height:1.55;--h6-md-line-height:1.5;--h6-sm-line-height:1.5}.m-switch{--color-brand-default:35,35,35;--color-bg-content-default:var(--color-neutral-400);--color-bg-content-bold:var(--color-neutral-500);--color-bg-content-bolder:var(--color-neutral-600);--color-brand-bold:var(--color-black);--color-brand-bolder:var(--color-black)}.m-checkbox{--color-brand-bold:0,0,0;--color-border-brand:0,0,0;--color-brand-default:0,0,0}.m-autocomplete,.m-select{--color-text-brand-bold:0,0,0;--color-text-brand-bolder:0,0,0}.m-range-slider{--color-brand-bold:0,0,0;--color-brand-bolder:0,0,0;--color-brand-strong:0,0,0;--color-bg-content-default:var(--color-border-default)}.m-tag{--color-text-brand-bold:0,0,0}.m-chip{--color-text-brand-bolder:0,0,0}.m-dropdown,.m-list,.m-notification,.m-tabs{--color-text-brand-bold:0,0,0}.m-tabs__header{--color-bg-content-subtle:var(--color-border-default)}.m-loader{--color-brand-bold:0,0,0;--color-brand-sunken:var(--color-neutral-100)}.m-search-select{--color-surface-selected:var(--color-brand-default);--color-surface-subtle:var(--color-white);--color-text-brand-bold:var(--color-black)}.m-button-group>.m-button--active{--color-brand-strong:var(--color-black);--color-text-on-brand:var(--color-white)}.m-radio-group{--color-border-brand:0,0,0;--color-brand-bold:0,0,0;--color-brand-bolder:0,0,0;--color-brand-boldest:0,0,0}.m-stepper{--color-surface-selected:var(--color-bg-brand-boldest);--color-text-brand-bold:var(--color-black);--color-brand-bold:var(--color-bg-brand-subtler);--color-white:var(--color-text-subtle);--color-brand-default:var(--color-bg-brand-subtlest);--color-text-default:var(--color-text-subtle)}.m-stepper__line{--color-brand-bold:var(--color-black);--color-bg-content-default:var(--color-border-bold)}.m-feature{--color-text-brand-bolder:var(--color-brand-default)}*,:after,:before{--tw-border-spacing-x:0;--tw-border-spacing-y:0;--tw-translate-x:0;--tw-translate-y:0;--tw-rotate:0;--tw-skew-x:0;--tw-skew-y:0;--tw-scale-x:1;--tw-scale-y:1;--tw-pan-x: ;--tw-pan-y: ;--tw-pinch-zoom: ;--tw-scroll-snap-strictness:proximity;--tw-gradient-from-position: ;--tw-gradient-via-position: ;--tw-gradient-to-position: ;--tw-ordinal: ;--tw-slashed-zero: ;--tw-numeric-figure: ;--tw-numeric-spacing: ;--tw-numeric-fraction: ;--tw-ring-inset: ;--tw-ring-offset-width:0px;--tw-ring-offset-color:#fff;--tw-ring-color:rgba(59,130,246,.5);--tw-ring-offset-shadow:0 0 #0000;--tw-ring-shadow:0 0 #0000;--tw-shadow:0 0 #0000;--tw-shadow-colored:0 0 #0000;--tw-blur: ;--tw-brightness: ;--tw-contrast: ;--tw-grayscale: ;--tw-hue-rotate: ;--tw-invert: ;--tw-saturate: ;--tw-sepia: ;--tw-drop-shadow: ;--tw-backdrop-blur: ;--tw-backdrop-brightness: ;--tw-backdrop-contrast: ;--tw-backdrop-grayscale: ;--tw-backdrop-hue-rotate: ;--tw-backdrop-invert: ;--tw-backdrop-opacity: ;--tw-backdrop-saturate: ;--tw-backdrop-sepia: }::backdrop{--tw-border-spacing-x:0;--tw-border-spacing-y:0;--tw-translate-x:0;--tw-translate-y:0;--tw-rotate:0;--tw-skew-x:0;--tw-skew-y:0;--tw-scale-x:1;--tw-scale-y:1;--tw-pan-x: ;--tw-pan-y: ;--tw-pinch-zoom: ;--tw-scroll-snap-strictness:proximity;--tw-gradient-from-position: ;--tw-gradient-via-position: ;--tw-gradient-to-position: ;--tw-ordinal: ;--tw-slashed-zero: ;--tw-numeric-figure: ;--tw-numeric-spacing: ;--tw-numeric-fraction: ;--tw-ring-inset: ;--tw-ring-offset-width:0px;--tw-ring-offset-color:#fff;--tw-ring-color:rgba(59,130,246,.5);--tw-ring-offset-shadow:0 0 #0000;--tw-ring-shadow:0 0 #0000;--tw-shadow:0 0 #0000;--tw-shadow-colored:0 0 #0000;--tw-blur: ;--tw-brightness: ;--tw-contrast: ;--tw-grayscale: ;--tw-hue-rotate: ;--tw-invert: ;--tw-saturate: ;--tw-sepia: ;--tw-drop-shadow: ;--tw-backdrop-blur: ;--tw-backdrop-brightness: ;--tw-backdrop-contrast: ;--tw-backdrop-grayscale: ;--tw-backdrop-hue-rotate: ;--tw-backdrop-invert: ;--tw-backdrop-opacity: ;--tw-backdrop-saturate: ;--tw-backdrop-sepia: }.container{width:100%}@media (min-width:576px){.container{max-width:576px}}@media (min-width:768px){.container{max-width:768px}}@media (min-width:1024px){.container{max-width:1024px}}@media (min-width:1280px){.container{max-width:1280px}}@media (min-width:1440px){.container{max-width:1440px}}@media (min-width:1920px){.container{max-width:1920px}}.prose{color:var(--tw-prose-body);max-width:65ch}.prose :where(p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where([class~=lead]):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-lead);font-size:1.25em;line-height:1.6;margin-bottom:1.2em;margin-top:1.2em}.prose :where(a):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-links);font-weight:500;text-decoration:underline}.prose :where(strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-bold);font-weight:600}.prose :where(a strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(ol):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol[type=A]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=A s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-alpha}.prose :where(ol[type=a s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-alpha}.prose :where(ol[type=I]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type=I s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:upper-roman}.prose :where(ol[type=i s]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:lower-roman}.prose :where(ol[type="1"]):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:decimal}.prose :where(ul):not(:where([class~=not-prose],[class~=not-prose] *)){list-style-type:disc;margin-bottom:1.25em;margin-top:1.25em;padding-inline-start:1.625em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-counters);font-weight:400}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *))::marker{color:var(--tw-prose-bullets)}.prose :where(dt):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;margin-top:1.25em}.prose :where(hr):not(:where([class~=not-prose],[class~=not-prose] *)){border-color:var(--tw-prose-hr);border-top-width:1px;margin-bottom:3em;margin-top:3em}.prose :where(blockquote):not(:where([class~=not-prose],[class~=not-prose] *)){border-inline-start-color:var(--tw-prose-quote-borders);border-inline-start-width:.25rem;color:var(--tw-prose-quotes);font-style:italic;font-weight:500;margin-bottom:1.6em;margin-top:1.6em;padding-inline-start:1em;quotes:"\201C""\201D""\2018""\2019"}.prose :where(blockquote p:first-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:open-quote}.prose :where(blockquote p:last-of-type):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:close-quote}.prose :where(h1):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:2.25em;font-weight:800;line-height:1.1111111;margin-bottom:.8888889em;margin-top:0}.prose :where(h1 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:900}.prose :where(h2):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.5em;font-weight:700;line-height:1.3333333;margin-bottom:1em;margin-top:2em}.prose :where(h2 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:800}.prose :where(h3):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-size:1.25em;font-weight:600;line-height:1.6;margin-bottom:.6em;margin-top:1.6em}.prose :where(h3 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(h4):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;line-height:1.5;margin-bottom:.5em;margin-top:1.5em}.prose :where(h4 strong):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-weight:700}.prose :where(img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(picture):not(:where([class~=not-prose],[class~=not-prose] *)){display:block;margin-bottom:2em;margin-top:2em}.prose :where(video):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(kbd):not(:where([class~=not-prose],[class~=not-prose] *)){border-radius:.3125rem;box-shadow:0 0 0 1px rgb(var(--tw-prose-kbd-shadows)/10%),0 3px 0 rgb(var(--tw-prose-kbd-shadows)/10%);color:var(--tw-prose-kbd);font-family:inherit;font-size:.875em;font-weight:500;padding-inline-end:.375em;padding-bottom:.1875em;padding-top:.1875em;padding-inline-start:.375em}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-code);font-size:.875em;font-weight:600}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:"`"}.prose :where(code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:"`"}.prose :where(a code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h1 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(h2 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.875em}.prose :where(h3 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit;font-size:.9em}.prose :where(h4 code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(blockquote code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(thead th code):not(:where([class~=not-prose],[class~=not-prose] *)){color:inherit}.prose :where(pre):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:var(--tw-prose-pre-bg);border-radius:.375rem;color:var(--tw-prose-pre-code);font-size:.875em;font-weight:400;line-height:1.7142857;margin-bottom:1.7142857em;margin-top:1.7142857em;overflow-x:auto;padding-inline-end:1.1428571em;padding-bottom:.8571429em;padding-top:.8571429em;padding-inline-start:1.1428571em}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)){background-color:transparent;border-radius:0;border-width:0;color:inherit;font-family:inherit;font-size:inherit;font-weight:inherit;line-height:inherit;padding:0}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):before{content:none}.prose :where(pre code):not(:where([class~=not-prose],[class~=not-prose] *)):after{content:none}.prose :where(table):not(:where([class~=not-prose],[class~=not-prose] *)){font-size:.875em;line-height:1.7142857;margin-bottom:2em;margin-top:2em;table-layout:auto;width:100%}.prose :where(thead):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-th-borders);border-bottom-width:1px}.prose :where(thead th):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-headings);font-weight:600;padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-inline-start:.5714286em;vertical-align:bottom}.prose :where(tbody tr):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-color:var(--tw-prose-td-borders);border-bottom-width:1px}.prose :where(tbody tr:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){border-bottom-width:0}.prose :where(tbody td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:baseline}.prose :where(tfoot):not(:where([class~=not-prose],[class~=not-prose] *)){border-top-color:var(--tw-prose-th-borders);border-top-width:1px}.prose :where(tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){vertical-align:top}.prose :where(th,td):not(:where([class~=not-prose],[class~=not-prose] *)){text-align:start}.prose :where(figure>*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(figcaption):not(:where([class~=not-prose],[class~=not-prose] *)){color:var(--tw-prose-captions);font-size:.875em;line-height:1.4285714;margin-top:.8571429em}.prose{--tw-prose-body:#374151;--tw-prose-headings:#111827;--tw-prose-lead:#4b5563;--tw-prose-links:#111827;--tw-prose-bold:#111827;--tw-prose-counters:#6b7280;--tw-prose-bullets:#d1d5db;--tw-prose-hr:#e5e7eb;--tw-prose-quotes:#111827;--tw-prose-quote-borders:#e5e7eb;--tw-prose-captions:#6b7280;--tw-prose-kbd:#111827;--tw-prose-kbd-shadows:17 24 39;--tw-prose-code:#111827;--tw-prose-pre-code:#e5e7eb;--tw-prose-pre-bg:#1f2937;--tw-prose-th-borders:#d1d5db;--tw-prose-td-borders:#e5e7eb;--tw-prose-invert-body:#d1d5db;--tw-prose-invert-headings:#fff;--tw-prose-invert-lead:#9ca3af;--tw-prose-invert-links:#fff;--tw-prose-invert-bold:#fff;--tw-prose-invert-counters:#9ca3af;--tw-prose-invert-bullets:#4b5563;--tw-prose-invert-hr:#374151;--tw-prose-invert-quotes:#f3f4f6;--tw-prose-invert-quote-borders:#374151;--tw-prose-invert-captions:#9ca3af;--tw-prose-invert-kbd:#fff;--tw-prose-invert-kbd-shadows:255 255 255;--tw-prose-invert-code:#fff;--tw-prose-invert-pre-code:#d1d5db;--tw-prose-invert-pre-bg:rgba(0,0,0,.5);--tw-prose-invert-th-borders:#4b5563;--tw-prose-invert-td-borders:#374151;font-size:1rem;line-height:1.75}.prose :where(picture>img):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0;margin-top:0}.prose :where(li):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.5em;margin-top:.5em}.prose :where(ol>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(ul>li):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:.375em}.prose :where(.prose>ul>li p):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(.prose>ul>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ul>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(.prose>ol>li>p:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:1.25em}.prose :where(.prose>ol>li>p:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em}.prose :where(ul ul,ul ol,ol ul,ol ol):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:.75em;margin-top:.75em}.prose :where(dl):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:1.25em;margin-top:1.25em}.prose :where(dd):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:.5em;padding-inline-start:1.625em}.prose :where(hr+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h2+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h3+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(h4+*):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(thead th:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(thead th:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(tbody td,tfoot td):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:.5714286em;padding-bottom:.5714286em;padding-top:.5714286em;padding-inline-start:.5714286em}.prose :where(tbody td:first-child,tfoot td:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-start:0}.prose :where(tbody td:last-child,tfoot td:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){padding-inline-end:0}.prose :where(figure):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:2em;margin-top:2em}.prose :where(.prose>:first-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-top:0}.prose :where(.prose>:last-child):not(:where([class~=not-prose],[class~=not-prose] *)){margin-bottom:0}.sr-only{height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px;clip:rect(0,0,0,0);border-width:0;white-space:nowrap}.pointer-events-none{pointer-events:none}.visible{visibility:visible}.invisible{visibility:hidden}.collapse{visibility:collapse}.static{position:static}.fixed{position:fixed}.\!absolute{position:absolute!important}.absolute{position:absolute}.relative{position:relative}.sticky{position:sticky}.inset-0{inset:0}.inset-y-0{bottom:0;top:0}.-top-px{top:-1px}.bottom-0{bottom:0}.bottom-1{bottom:.25rem}.bottom-1\.5{bottom:.375rem}.bottom-10{bottom:2.5rem}.bottom-24{bottom:6rem}.bottom-4{bottom:1rem}.bottom-6{bottom:1.5rem}.bottom-\[7\.5rem\]{bottom:7.5rem}.bottom-md{bottom:1rem;bottom:var(--spacing-md)}.left-0{left:0}.left-1\/2{left:50%}.left-12{left:3rem}.left-4{left:1rem}.left-6{left:1.5rem}.left-md{left:1rem;left:var(--spacing-md)}.right-0{right:0}.right-1{right:.25rem}.right-1\.5{right:.375rem}.right-12{right:3rem}.right-2{right:.5rem}.right-2\.5{right:.625rem}.right-4{right:1rem}.right-6{right:1.5rem}.right-8{right:2rem}.right-\[-10px\]{right:-10px}.right-\[-4px\]{right:-4px}.right-\[-8px\]{right:-8px}.right-\[1rem\]{right:1rem}.right-\[3\.125rem\]{right:3.125rem}.top-0{top:0}.top-1{top:.25rem}.top-1\/2{top:50%}.top-12{top:3rem}.top-14{top:3.5rem}.top-16{top:4rem}.top-20{top:5rem}.top-4{top:1rem}.top-6{top:1.5rem}.top-\[-4px\]{top:-4px}.top-\[-5\.875rem\]{top:-5.875rem}.top-\[4\.625rem\]{top:4.625rem}.top-\[48\%\]{top:48%}.top-\[calc\(50vh\+15rem\)\]{top:calc(50vh + 15rem)}.top-\[calc\(50vh\+6\.25rem\)\]{top:calc(50vh + 6.25rem)}.isolate{isolation:isolate}.-z-10{z-index:-10}.z-0{z-index:0}.z-1{z-index:1}.z-10{z-index:10}.z-20{z-index:20}.z-40{z-index:40}.z-50{z-index:50}.float-left{float:left}.clear-left{clear:left}.m-0{margin:0}.m-\[\.625rem\]{margin:.625rem}.m-auto{margin:auto}.m-md{margin:1rem;margin:var(--spacing-md)}.mx-auto{margin-left:auto;margin-right:auto}.mx-lg{margin-left:1.5rem;margin-left:var(--spacing-lg);margin-right:1.5rem;margin-right:var(--spacing-lg)}.mx-md{margin-left:1rem;margin-left:var(--spacing-md);margin-right:1rem;margin-right:var(--spacing-md)}.mx-sm{margin-left:.5rem;margin-left:var(--spacing-sm);margin-right:.5rem;margin-right:var(--spacing-sm)}.my-0{margin-bottom:0;margin-top:0}.my-2xl{margin-bottom:2.5rem;margin-bottom:var(--spacing-2xl);margin-top:2.5rem;margin-top:var(--spacing-2xl)}.my-4{margin-bottom:1rem;margin-top:1rem}.my-5xl{margin-bottom:4rem;margin-bottom:var(--spacing-5xl);margin-top:4rem;margin-top:var(--spacing-5xl)}.my-lg{margin-bottom:1.5rem;margin-bottom:var(--spacing-lg);margin-top:1.5rem;margin-top:var(--spacing-lg)}.my-md{margin-bottom:1rem;margin-bottom:var(--spacing-md);margin-top:1rem;margin-top:var(--spacing-md)}.my-sm{margin-bottom:.5rem;margin-bottom:var(--spacing-sm);margin-top:.5rem;margin-top:var(--spacing-sm)}.my-xl{margin-bottom:2rem;margin-bottom:var(--spacing-xl);margin-top:2rem;margin-top:var(--spacing-xl)}.-mr-0{margin-right:0}.-mr-0\.5{margin-right:-.125rem}.-mr-1{margin-right:-.25rem}.-mr-2{margin-right:-.5rem}.-mr-2\.5{margin-right:-.625rem}.-mt-xs{margin-top:-.25rem;margin-top:calc(var(--spacing-xs)*-1)}.mb-1{margin-bottom:.25rem}.mb-2{margin-bottom:.5rem}.mb-2xl{margin-bottom:2.5rem;margin-bottom:var(--spacing-2xl)}.mb-3{margin-bottom:.75rem}.mb-4{margin-bottom:1rem}.mb-6{margin-bottom:1.5rem}.mb-7xl{margin-bottom:5rem;margin-bottom:var(--spacing-7xl)}.mb-\[0\.25rem\]{margin-bottom:.25rem}.mb-lg{margin-bottom:1.5rem;margin-bottom:var(--spacing-lg)}.mb-md{margin-bottom:1rem;margin-bottom:var(--spacing-md)}.mb-sm{margin-bottom:.5rem;margin-bottom:var(--spacing-sm)}.mb-xl{margin-bottom:2rem;margin-bottom:var(--spacing-xl)}.mb-xs{margin-bottom:.25rem;margin-bottom:var(--spacing-xs)}.ml-2{margin-left:.5rem}.ml-2xl{margin-left:2.5rem;margin-left:var(--spacing-2xl)}.ml-\[-0\.0625rem\]{margin-left:-.0625rem}.ml-\[-0\.75rem\]{margin-left:-.75rem}.ml-\[0\.625rem\]{margin-left:.625rem}.ml-\[0\.75rem\]{margin-left:.75rem}.ml-auto{margin-left:auto}.ml-lg{margin-left:1.5rem;margin-left:var(--spacing-lg)}.ml-md{margin-left:1rem;margin-left:var(--spacing-md)}.ml-sm{margin-left:.5rem;margin-left:var(--spacing-sm)}.ml-xs{margin-left:.25rem;margin-left:var(--spacing-xs)}.mr-4{margin-right:1rem}.mr-5{margin-right:1.25rem}.mr-6{margin-right:1.5rem}.mr-\[\.125rem\]{margin-right:.125rem}.mr-\[\.625rem\]{margin-right:.625rem}.mr-\[0\.3125rem\]{margin-right:.3125rem}.mr-\[2\.3125rem\]{margin-right:2.3125rem}.mr-\[2\.375rem\]{margin-right:2.375rem}.mr-\[5\.625rem\]{margin-right:5.625rem}.mr-lg{margin-right:1.5rem;margin-right:var(--spacing-lg)}.mr-md{margin-right:1rem;margin-right:var(--spacing-md)}.mr-sm{margin-right:.5rem;margin-right:var(--spacing-sm)}.mr-xl{margin-right:2rem;margin-right:var(--spacing-xl)}.mr-xs{margin-right:.25rem;margin-right:var(--spacing-xs)}.mt-1{margin-top:.25rem}.mt-2xl{margin-top:2.5rem;margin-top:var(--spacing-2xl)}.mt-3xl{margin-top:3rem;margin-top:var(--spacing-3xl)}.mt-6{margin-top:1.5rem}.mt-\[-3rem\]{margin-top:-3rem}.mt-\[\.625rem\]{margin-top:.625rem}.mt-\[1\.25rem\]{margin-top:1.25rem}.mt-\[1rem\]{margin-top:1rem}.mt-lg{margin-top:1.5rem;margin-top:var(--spacing-lg)}.mt-md{margin-top:1rem;margin-top:var(--spacing-md)}.mt-sm{margin-top:.5rem;margin-top:var(--spacing-sm)}.mt-xl{margin-top:2rem;margin-top:var(--spacing-xl)}.mt-xs{margin-top:.25rem;margin-top:var(--spacing-xs)}.box-border{box-sizing:border-box}.line-clamp-1{-webkit-line-clamp:1}.line-clamp-1,.line-clamp-3{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.line-clamp-3{-webkit-line-clamp:3}.\!block{display:block!important}.block{display:block}.\!inline-block{display:inline-block!important}.inline-block{display:inline-block}.\!inline{display:inline!important}.inline{display:inline}.flex{display:flex}.\!inline-flex{display:inline-flex!important}.inline-flex{display:inline-flex}.table{display:table}.grid{display:grid}.contents{display:contents}.\!hidden{display:none!important}.hidden{display:none}.aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.aspect-\[1200\/630\]{aspect-ratio:1200/630}.aspect-\[381\/200\]{aspect-ratio:381/200}.aspect-\[4\/5\]{aspect-ratio:4/5}.aspect-square{aspect-ratio:1/1}.aspect-video{aspect-ratio:16/9}.\!h-6{height:1.5rem!important}.h-0{height:0}.h-0\.5{height:.125rem}.h-1{height:.25rem}.h-1\.5{height:.375rem}.h-10{height:2.5rem}.h-12{height:3rem}.h-14{height:3.5rem}.h-16{height:4rem}.h-2{height:.5rem}.h-20{height:5rem}.h-28{height:7rem}.h-3{height:.75rem}.h-32{height:8rem}.h-36{height:9rem}.h-4{height:1rem}.h-48{height:12rem}.h-5{height:1.25rem}.h-52{height:13rem}.h-6{height:1.5rem}.h-7{height:1.75rem}.h-8{height:2rem}.h-80{height:20rem}.h-9{height:2.25rem}.h-96{height:24rem}.h-\[\.25rem\]{height:.25rem}.h-\[0\.5rem\]{height:.5rem}.h-\[0\.9rem\]{height:.9rem}.h-\[1\.15em\]{height:1.15em}.h-\[1\.3rem\]{height:1.3rem}.h-\[1\.4rem\]{height:1.4rem}.h-\[1\.5rem\]{height:1.5rem}.h-\[1\.8125rem\]{height:1.8125rem}.h-\[1\.875rem\]{height:1.875rem}.h-\[100\%\]{height:100%}.h-\[100px\]{height:100px}.h-\[150px\]{height:150px}.h-\[160px\]{height:160px}.h-\[1rem\]{height:1rem}.h-\[2\.5rem\]{height:2.5rem}.h-\[24rem\]{height:24rem}.h-\[25\.25rem\]{height:25.25rem}.h-\[3\.625rem\]{height:3.625rem}.h-\[3\.75rem\]{height:3.75rem}.h-\[30rem\]{height:30rem}.h-\[35\.5rem\]{height:35.5rem}.h-\[4\.5rem\]{height:4.5rem}.h-\[50rem\]{height:50rem}.h-\[5rem\]{height:5rem}.h-\[6\.5rem\]{height:6.5rem}.h-\[6px\]{height:6px}.h-\[80vh\]{height:80vh}.h-\[auto\],.h-auto{height:auto}.h-fit{height:-moz-fit-content;height:fit-content}.h-full{height:100%}.h-px{height:1px}.max-h-60{max-height:15rem}.max-h-80{max-height:20rem}.min-h-\[1\.5rem\]{min-height:1.5rem}.min-h-\[100px\]{min-height:100px}.min-h-\[15vh\]{min-height:15vh}.min-h-\[45rem\]{min-height:45rem}.min-h-\[70vh\]{min-height:70vh}.min-h-full{min-height:100%}.\!w-2xl{width:2.5rem!important;width:var(--spacing-2xl)!important}.\!w-40{width:10rem!important}.\!w-fit{width:-moz-fit-content!important;width:fit-content!important}.\!w-full{width:100%!important}.w-1{width:.25rem}.w-1\.5{width:.375rem}.w-1\/2{width:50%}.w-1\/4{width:25%}.w-1\/5{width:20%}.w-10{width:2.5rem}.w-12{width:3rem}.w-14{width:3.5rem}.w-16{width:4rem}.w-2{width:.5rem}.w-20{width:5rem}.w-28{width:7rem}.w-3{width:.75rem}.w-3\/5{width:60%}.w-32{width:8rem}.w-36{width:9rem}.w-4{width:1rem}.w-4\/5{width:80%}.w-40{width:10rem}.w-4xl{width:3.5rem;width:var(--spacing-4xl)}.w-5{width:1.25rem}.w-6{width:1.5rem}.w-60{width:15rem}.w-7{width:1.75rem}.w-8{width:2rem}.w-80{width:20rem}.w-9{width:2.25rem}.w-96{width:24rem}.w-\[\.25rem\]{width:.25rem}.w-\[1\.15em\]{width:1.15em}.w-\[1\.4rem\]{width:1.4rem}.w-\[1\.5rem\]{width:1.5rem}.w-\[1\.6rem\]{width:1.6rem}.w-\[10\%\]{width:10%}.w-\[10\.25rem\]{width:10.25rem}.w-\[10\.625rem\]{width:10.625rem}.w-\[100\%\]{width:100%}.w-\[10rem\]{width:10rem}.w-\[13\.125rem\]{width:13.125rem}.w-\[13rem\]{width:13rem}.w-\[15\%\]{width:15%}.w-\[18rem\]{width:18rem}.w-\[1rem\]{width:1rem}.w-\[2\.5rem\]{width:2.5rem}.w-\[2\.75rem\]{width:2.75rem}.w-\[20\%\]{width:20%}.w-\[22px\]{width:22px}.w-\[25rem\]{width:25rem}.w-\[30\%\]{width:30%}.w-\[33\%\]{width:33%}.w-\[4\.5rem\]{width:4.5rem}.w-\[6\.5rem\]{width:6.5rem}.w-\[6\.75rem\]{width:6.75rem}.w-\[7\.5rem\]{width:7.5rem}.w-\[92\.5vw\]{width:92.5vw}.w-auto{width:auto}.w-fit{width:-moz-fit-content;width:fit-content}.w-full{width:100%}.w-max{width:-moz-max-content;width:max-content}.w-min{width:-moz-min-content;width:min-content}.w-px{width:1px}.w-screen{width:100vw}.\!min-w-0{min-width:0!important}.min-w-10{min-width:2.5rem}.min-w-12{min-width:3rem}.min-w-14{min-width:3.5rem}.min-w-28{min-width:7rem}.min-w-5{min-width:1.25rem}.min-w-6{min-width:1.5rem}.min-w-7{min-width:1.75rem}.min-w-8{min-width:2rem}.min-w-\[0\.5rem\]{min-width:.5rem}.min-w-\[0\.9rem\]{min-width:.9rem}.min-w-\[1\.3rem\]{min-width:1.3rem}.min-w-\[12\.5rem\]{min-width:12.5rem}.min-w-\[146px\]{min-width:146px}.min-w-\[156px\]{min-width:156px}.min-w-\[21rem\]{min-width:21rem}.min-w-\[3\.75rem\]{min-width:3.75rem}.min-w-\[4\.5rem\]{min-width:4.5rem}.min-w-\[6\.5rem\]{min-width:6.5rem}.min-w-fit{min-width:-moz-fit-content;min-width:fit-content}.max-w-\[100\%\]{max-width:100%}.max-w-\[20rem\]{max-width:20rem}.max-w-\[25rem\]{max-width:25rem}.max-w-\[28\.5rem\]{max-width:28.5rem}.max-w-\[30\%\]{max-width:30%}.max-w-\[5rem\]{max-width:5rem}.max-w-\[6px\]{max-width:6px}.max-w-\[80\%\]{max-width:80%}.max-w-\[90rem\]{max-width:90rem}.max-w-\[96\%\]{max-width:96%}.max-w-\[98vw\]{max-width:98vw}.max-w-full{max-width:100%}.max-w-prose{max-width:65ch}.max-w-sm{max-width:24rem}.max-w-xs{max-width:20rem}.\!flex-none{flex:none!important}.flex-1{flex:1 1 0%}.flex-\[1\]{flex:1}.flex-\[2\]{flex:2}.flex-\[3\]{flex:3}.flex-auto{flex:1 1 auto}.flex-none{flex:none}.flex-shrink-0,.shrink-0{flex-shrink:0}.shrink-\[14\]{flex-shrink:14}.grow{flex-grow:1}.grow-\[2\]{flex-grow:2}.basis-6{flex-basis:1.5rem}.origin-bottom{transform-origin:bottom}.origin-bottom-left{transform-origin:bottom left}.origin-bottom-right{transform-origin:bottom right}.origin-center{transform-origin:center}.origin-left{transform-origin:left}.origin-right{transform-origin:right}.origin-top{transform-origin:top}.origin-top-left{transform-origin:top left}.origin-top-right{transform-origin:top right}.-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-x-full{--tw-translate-x:-100%;transform:translate(-100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-2{--tw-translate-y:-0.5rem;transform:translate(var(--tw-translate-x),-.5rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-4{--tw-translate-y:-1rem;transform:translate(var(--tw-translate-x),-1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-\[calc\(100\%\+0\.25rem\)\]{--tw-translate-y:calc(-100% + -0.25rem);transform:translate(var(--tw-translate-x),calc(-100% + -.25rem)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.-translate-y-full{--tw-translate-y:-100%;transform:translate(var(--tw-translate-x),-100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0{--tw-translate-x:0px;transform:translateY(var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-0\.5{--tw-translate-x:0.125rem;transform:translate(.125rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-\[1\.375rem\]{--tw-translate-x:1.375rem;transform:translate(1.375rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-x-full{--tw-translate-x:100%;transform:translate(100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-0{--tw-translate-y:0px;transform:translate(var(--tw-translate-x)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-4{--tw-translate-y:1rem;transform:translate(var(--tw-translate-x),1rem) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.translate-y-full{--tw-translate-y:100%;transform:translate(var(--tw-translate-x),100%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-180{--tw-rotate:180deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(180deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.rotate-45{--tw-rotate:45deg;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(45deg) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-100{--tw-scale-x:1;--tw-scale-y:1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1) scaleY(1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-95{--tw-scale-x:.95;--tw-scale-y:.95;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(.95) scaleY(.95);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.scale-\[101\.5\%\]{--tw-scale-x:101.5%;--tw-scale-y:101.5%;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(101.5%) scaleY(101.5%)}.scale-\[101\.5\%\],.transform{transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}@keyframes spin{to{transform:rotate(1turn)}}.animate-spin{animation:spin 1s linear infinite}.cursor-default{cursor:default}.cursor-move{cursor:move}.cursor-not-allowed{cursor:not-allowed}.cursor-pointer{cursor:pointer}.select-none{-webkit-user-select:none;-moz-user-select:none;user-select:none}.resize-none{resize:none}.resize{resize:both}.\!list-inside{list-style-position:inside!important}.list-inside{list-style-position:inside}.list-decimal{list-style-type:decimal}.list-disc{list-style-type:disc}.appearance-none{-webkit-appearance:none;-moz-appearance:none;appearance:none}.grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.flex-row{flex-direction:row}.flex-row-reverse{flex-direction:row-reverse}.flex-col{flex-direction:column}.flex-col-reverse{flex-direction:column-reverse}.flex-wrap{flex-wrap:wrap}.place-content-center{place-content:center}.content-center{align-content:center}.items-start{align-items:flex-start}.items-end{align-items:flex-end}.items-center{align-items:center}.items-baseline{align-items:baseline}.\!justify-start{justify-content:flex-start!important}.justify-start{justify-content:flex-start}.justify-end{justify-content:flex-end}.justify-center{justify-content:center}.\!justify-between{justify-content:space-between!important}.justify-between{justify-content:space-between}.justify-around{justify-content:space-around}.\!gap-md{gap:1rem!important;gap:var(--spacing-md)!important}.gap-1{gap:.25rem}.gap-2{gap:.5rem}.gap-2\.5{gap:.625rem}.gap-3{gap:.75rem}.gap-4{gap:1rem}.gap-5{gap:1.25rem}.gap-6{gap:1.5rem}.gap-8{gap:2rem}.gap-\[0\.65em\]{gap:.65em}.gap-lg{gap:1.5rem;gap:var(--spacing-lg)}.gap-md{gap:1rem;gap:var(--spacing-md)}.gap-sm{gap:.5rem;gap:var(--spacing-sm)}.gap-xl{gap:2rem;gap:var(--spacing-xl)}.gap-xs{gap:.25rem;gap:var(--spacing-xs)}.gap-x-1{-moz-column-gap:.25rem;column-gap:.25rem}.gap-x-4{-moz-column-gap:1rem;column-gap:1rem}.gap-x-lg{-moz-column-gap:1.5rem;column-gap:1.5rem;-moz-column-gap:var(--spacing-lg);column-gap:var(--spacing-lg)}.gap-x-sm{-moz-column-gap:.5rem;column-gap:.5rem;-moz-column-gap:var(--spacing-sm);column-gap:var(--spacing-sm)}.gap-x-xs{-moz-column-gap:.25rem;column-gap:.25rem;-moz-column-gap:var(--spacing-xs);column-gap:var(--spacing-xs)}.gap-y-5{row-gap:1.25rem}.gap-y-lg{row-gap:1.5rem;row-gap:var(--spacing-lg)}.gap-y-md{row-gap:1rem;row-gap:var(--spacing-md)}.gap-y-sm{row-gap:.5rem;row-gap:var(--spacing-sm)}.gap-y-xl{row-gap:2rem;row-gap:var(--spacing-xl)}.gap-y-xs{row-gap:.25rem;row-gap:var(--spacing-xs)}.space-x-1>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:.25rem;margin-left:calc(.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(.25rem*var(--tw-space-x-reverse))}.space-x-5>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:1.25rem;margin-left:calc(1.25rem*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(1.25rem*var(--tw-space-x-reverse))}.space-y-1>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.25rem*var(--tw-space-y-reverse));margin-top:.25rem;margin-top:calc(.25rem*(1 - var(--tw-space-y-reverse)))}.space-y-2>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(.5rem*var(--tw-space-y-reverse));margin-top:.5rem;margin-top:calc(.5rem*(1 - var(--tw-space-y-reverse)))}.space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:2.5rem;margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.space-y-4>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(1rem*var(--tw-space-y-reverse));margin-top:1rem;margin-top:calc(1rem*(1 - var(--tw-space-y-reverse)))}.space-y-lg>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-lg)*var(--tw-space-y-reverse));margin-top:1.5rem;margin-top:calc(var(--spacing-lg)*(1 - var(--tw-space-y-reverse)))}.space-y-md>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-md)*var(--tw-space-y-reverse));margin-top:1rem;margin-top:calc(var(--spacing-md)*(1 - var(--tw-space-y-reverse)))}.space-y-sm>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-sm)*var(--tw-space-y-reverse));margin-top:.5rem;margin-top:calc(var(--spacing-sm)*(1 - var(--tw-space-y-reverse)))}.space-y-xs>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-xs)*var(--tw-space-y-reverse));margin-top:.25rem;margin-top:calc(var(--spacing-xs)*(1 - var(--tw-space-y-reverse)))}.divide-y>:not([hidden])~:not([hidden]){--tw-divide-y-reverse:0;border-bottom-width:0;border-bottom-width:calc(1px*var(--tw-divide-y-reverse));border-top-width:1px;border-top-width:calc(1px*(1 - var(--tw-divide-y-reverse)))}.divide-color-default>:not([hidden])~:not([hidden]){--tw-divide-opacity:1;border-color:#dcdfe4;border-color:rgba(var(--color-border-default),var(--tw-divide-opacity))}.self-center{align-self:center}.overflow-auto{overflow:auto}.\!overflow-hidden{overflow:hidden!important}.overflow-hidden{overflow:hidden}.\!overflow-visible{overflow:visible!important}.overflow-scroll{overflow:scroll}.overflow-x-auto{overflow-x:auto}.overflow-y-auto{overflow-y:auto}.overflow-y-hidden{overflow-y:hidden}.overflow-y-scroll{overflow-y:scroll}.overscroll-none{overscroll-behavior:none}.truncate{overflow:hidden;white-space:nowrap}.text-ellipsis,.truncate{text-overflow:ellipsis}.whitespace-nowrap{white-space:nowrap}.whitespace-pre{white-space:pre}.whitespace-pre-line{white-space:pre-line}.\!break-words{overflow-wrap:break-word!important}.break-words{overflow-wrap:break-word}.\!break-all{word-break:break-all!important}.break-all{word-break:break-all}.rounded{border-radius:.25rem}.rounded-2xl{border-radius:1rem}.rounded-3xl{border-radius:1.5rem}.rounded-\[0\.15em\]{border-radius:.15em}.rounded-\[100\%\]{border-radius:100%}.rounded-\[4px\]{border-radius:4px}.rounded-\[50\%\]{border-radius:50%}.rounded-full{border-radius:9999px}.rounded-lg{border-radius:.5rem}.rounded-md{border-radius:.375rem}.rounded-none{border-radius:0}.rounded-sm{border-radius:.125rem}.rounded-xl{border-radius:.75rem}.border{border-width:1px}.border-2{border-width:2px}.border-\[\.0625rem\]{border-width:.0625rem}.border-\[0\.15em\]{border-width:.15em}.border-x-0{border-left-width:0;border-right-width:0}.border-b{border-bottom-width:1px}.border-b-2{border-bottom-width:2px}.border-l{border-left-width:1px}.border-l-2{border-left-width:2px}.border-l-\[0\.0625rem\]{border-left-width:.0625rem}.border-l-\[0\.125rem\]{border-left-width:.125rem}.border-l-\[3px\]{border-left-width:3px}.border-r{border-right-width:1px}.border-t{border-top-width:1px}.border-t-0{border-top-width:0}.border-t-2{border-top-width:2px}.border-t-\[\.0625rem\]{border-top-width:.0625rem}.border-solid{border-style:solid}.border-dashed{border-style:dashed}.border-none{border-style:none}.\!border-color-bold{--tw-border-opacity:1!important;border-color:#b3b9c4!important;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))!important}.\!border-color-brand{--tw-border-opacity:1!important;border-color:#eab308!important;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))!important}.border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.border-\[\#DCDFE4\]{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgb(220 223 228/var(--tw-border-opacity))}.border-\[\#F8F9FD\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[\#FACC15\]{--tw-border-opacity:1;border-color:#facc15;border-color:rgb(250 204 21/var(--tw-border-opacity))}.border-\[\#FEF9C3\]{--tw-border-opacity:1;border-color:#fef9c3;border-color:rgb(254 249 195/var(--tw-border-opacity))}.border-\[\#b3b9c4\]{--tw-border-opacity:1;border-color:#b3b9c4;border-color:rgb(179 185 196/var(--tw-border-opacity))}.border-\[\#dcdfe6\]{--tw-border-opacity:1;border-color:#dcdfe6;border-color:rgb(220 223 230/var(--tw-border-opacity))}.border-\[\#f8f9fd\]{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.border-\[white\]{--tw-border-opacity:1;border-color:#fff;border-color:rgb(255 255 255/var(--tw-border-opacity))}.border-color-bold{--tw-border-opacity:1;border-color:#b3b9c4;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.border-color-brand{--tw-border-opacity:1;border-color:#eab308;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.border-color-default{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.border-color-error{--tw-border-opacity:1;border-color:#e11900;border-color:rgba(var(--color-border-error),var(--tw-border-opacity))}.border-color-info{--tw-border-opacity:1;border-color:#59baf0;border-color:rgba(var(--color-border-info),var(--tw-border-opacity))}.border-color-inherit{border-color:inherit}.border-color-success{--tw-border-opacity:1;border-color:#05944f;border-color:rgba(var(--color-border-success),var(--tw-border-opacity))}.border-color-transparent{border-color:transparent}.border-color-warning{--tw-border-opacity:1;border-color:#eab308;border-color:rgba(var(--color-border-warning),var(--tw-border-opacity))}.border-t-color-default{--tw-border-opacity:1;border-top-color:#dcdfe4;border-top-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.\!bg-black{--tw-bg-opacity:1!important;background-color:#000!important;background-color:rgba(var(--color-black),var(--tw-bg-opacity))!important}.\!bg-brand-bold{--tw-bg-opacity:1!important;background-color:#eab308!important;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))!important}.\!bg-brand-default{--tw-bg-opacity:1!important;background-color:#facc15!important;background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))!important}.\!bg-brand-subtler{--tw-bg-opacity:1!important;background-color:#fef08a!important;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))!important}.\!bg-brand-sunken{--tw-bg-opacity:1!important;background-color:#fefce8!important;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))!important}.\!bg-success-subtlest{--tw-bg-opacity:1!important;background-color:#bfeed7!important;background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))!important}.\!bg-surface-disabled{--tw-bg-opacity:1!important;background-color:#f1f2f4!important;background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))!important}.\!bg-surface-subtle{--tw-bg-opacity:1!important;background-color:#f8f9fd!important;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))!important}.\!bg-warning-bold{--tw-bg-opacity:1!important;background-color:#eab308!important;background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))!important}.bg-\[\#000000\],.bg-\[\#000\]{--tw-bg-opacity:1;background-color:#000;background-color:rgb(0 0 0/var(--tw-bg-opacity))}.bg-\[\#2867B2\]{--tw-bg-opacity:1;background-color:#2867b2;background-color:rgb(40 103 178/var(--tw-bg-opacity))}.bg-\[\#409eff\]{--tw-bg-opacity:1;background-color:#409eff;background-color:rgb(64 158 255/var(--tw-bg-opacity))}.bg-\[\#66b1ff\]{--tw-bg-opacity:1;background-color:#66b1ff;background-color:rgb(102 177 255/var(--tw-bg-opacity))}.bg-\[\#EAB308\]{--tw-bg-opacity:1;background-color:#eab308;background-color:rgb(234 179 8/var(--tw-bg-opacity))}.bg-\[\#F8F9FD\]{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgb(248 249 253/var(--tw-bg-opacity))}.bg-\[\#b3b9c4\]{--tw-bg-opacity:1;background-color:#b3b9c4;background-color:rgb(179 185 196/var(--tw-bg-opacity))}.bg-\[\#eaeaee\]{--tw-bg-opacity:1;background-color:#eaeaee;background-color:rgb(234 234 238/var(--tw-bg-opacity))}.bg-\[\#facc15\]{--tw-bg-opacity:1;background-color:#facc15;background-color:rgb(250 204 21/var(--tw-bg-opacity))}.bg-\[\#fff\]{--tw-bg-opacity:1;background-color:#fff;background-color:rgb(255 255 255/var(--tw-bg-opacity))}.bg-black{--tw-bg-opacity:1;background-color:#000;background-color:rgba(var(--color-black),var(--tw-bg-opacity))}.bg-black\/50{background-color:rgba(0,0,0,.5);background-color:rgba(var(--color-black),.5)}.bg-black\/60{background-color:rgba(0,0,0,.6);background-color:rgba(var(--color-black),.6)}.bg-black\/\[0\.12\]{background-color:rgba(0,0,0,.12);background-color:rgba(var(--color-black),.12)}.bg-brand-bold{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.bg-brand-boldest{--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.bg-brand-default{--tw-bg-opacity:1;background-color:#facc15;background-color:rgba(var(--color-brand-default),var(--tw-bg-opacity))}.bg-brand-subtler{--tw-bg-opacity:1;background-color:#fef08a;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.bg-brand-subtlest{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.bg-brand-sunken{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.bg-content-bolder{--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.bg-content-default{--tw-bg-opacity:1;background-color:#facc15;background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.bg-content-inverse-subtler{--tw-bg-opacity:1;background-color:#a86a07;background-color:rgba(var(--color-bg-content-inverse-subtler),var(--tw-bg-opacity))}.bg-content-subtle{--tw-bg-opacity:1;background-color:#fde047;background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.bg-content-subtler{--tw-bg-opacity:1;background-color:#fef08a;background-color:rgba(var(--color-bg-content-subtler),var(--tw-bg-opacity))}.bg-content-subtlest{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.bg-content-sunken{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.bg-error-bold{--tw-bg-opacity:1;background-color:#e11900;background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.bg-error-subtlest{--tw-bg-opacity:1;background-color:#ffdad4;background-color:rgba(var(--color-bg-error-subtlest),var(--tw-bg-opacity))}.bg-error-sunken{--tw-bg-opacity:1;background-color:#fffbff;background-color:rgba(var(--color-bg-error-sunken),var(--tw-bg-opacity))}.bg-info-bold{--tw-bg-opacity:1;background-color:#59baf0;background-color:rgba(var(--color-bg-info-bold),var(--tw-bg-opacity))}.bg-info-subtlest{--tw-bg-opacity:1;background-color:#dcf3ff;background-color:rgba(var(--color-bg-info-subtlest),var(--tw-bg-opacity))}.bg-info-sunken{--tw-bg-opacity:1;background-color:#f5fbff;background-color:rgba(var(--color-bg-info-sunken),var(--tw-bg-opacity))}.bg-inherit{background-color:inherit}.bg-success-bold{--tw-bg-opacity:1;background-color:#05944f;background-color:rgba(var(--color-bg-success-bold),var(--tw-bg-opacity))}.bg-success-subtlest{--tw-bg-opacity:1;background-color:#bfeed7;background-color:rgba(var(--color-bg-success-subtlest),var(--tw-bg-opacity))}.bg-success-sunken{--tw-bg-opacity:1;background-color:#f1fef8;background-color:rgba(var(--color-bg-success-sunken),var(--tw-bg-opacity))}.bg-surface-default{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.bg-surface-disabled{--tw-bg-opacity:1;background-color:#f1f2f4;background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))}.bg-surface-inverse{--tw-bg-opacity:1;background-color:#000;background-color:rgba(var(--color-surface-inverse),var(--tw-bg-opacity))}.bg-surface-selected{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.bg-surface-subtle{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.bg-transparent{background-color:transparent}.bg-warning-bold{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-bg-warning-bold),var(--tw-bg-opacity))}.bg-warning-subtlest{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-bg-warning-subtlest),var(--tw-bg-opacity))}.bg-warning-sunken{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-bg-warning-sunken),var(--tw-bg-opacity))}.bg-white{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-white),var(--tw-bg-opacity))}.bg-opacity-25{--tw-bg-opacity:0.25}.bg-opacity-75{--tw-bg-opacity:0.75}.bg-\[url\(\'\/img\/homepage\.png\'\)\]{background-image:url(/img/homepage.png)}.bg-gradient-to-r{background-image:linear-gradient(to right,var(--tw-gradient-stops))}.bg-none{background-image:none}.from-black\/70{--tw-gradient-from:rgba(var(--color-black),0.7) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-black),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.from-transparent{--tw-gradient-from:transparent var(--tw-gradient-from-position);--tw-gradient-to:transparent var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to)}.to-black\/5{--tw-gradient-to:rgba(var(--color-black),0.05) var(--tw-gradient-to-position)}.to-white{--tw-gradient-to:rgba(var(--color-white),1) var(--tw-gradient-to-position)}.bg-cover{background-size:cover}.bg-fixed{background-attachment:fixed}.bg-center{background-position:50%}.bg-no-repeat{background-repeat:no-repeat}.fill-brand-bold{fill:#eab308;fill:rgba(var(--color-brand-bold),1)}.fill-brand-sunken{fill:#fefce8;fill:rgba(var(--color-brand-sunken),1)}.object-cover{-o-object-fit:cover;object-fit:cover}.\!p-0{padding:0!important}.\!p-sm{padding:.5rem!important;padding:var(--spacing-sm)!important}.\!p-xs{padding:.25rem!important;padding:var(--spacing-xs)!important}.p-0{padding:0}.p-0\.5{padding:.125rem}.p-4{padding:1rem}.p-5{padding:1.25rem}.p-8{padding:2rem}.p-\[\.75rem\]{padding:.75rem}.p-lg{padding:1.5rem;padding:var(--spacing-lg)}.p-md{padding:1rem;padding:var(--spacing-md)}.p-px{padding:1px}.p-sm{padding:.5rem;padding:var(--spacing-sm)}.p-xl{padding:2rem;padding:var(--spacing-xl)}.\!px-0{padding-left:0!important;padding-right:0!important}.\!px-sm{padding-left:.5rem!important;padding-left:var(--spacing-sm)!important;padding-right:.5rem!important;padding-right:var(--spacing-sm)!important}.px-0{padding-left:0;padding-right:0}.px-10{padding-left:2.5rem;padding-right:2.5rem}.px-2{padding-left:.5rem;padding-right:.5rem}.px-4{padding-left:1rem;padding-right:1rem}.px-5{padding-left:1.25rem;padding-right:1.25rem}.px-8{padding-left:2rem;padding-right:2rem}.px-\[\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.px-\[0\.2rem\]{padding-left:.2rem;padding-right:.2rem}.px-\[0\.625rem\]{padding-left:.625rem;padding-right:.625rem}.px-lg{padding-left:1.5rem;padding-left:var(--spacing-lg);padding-right:1.5rem;padding-right:var(--spacing-lg)}.px-md{padding-left:1rem;padding-left:var(--spacing-md);padding-right:1rem;padding-right:var(--spacing-md)}.px-sm{padding-left:.5rem;padding-left:var(--spacing-sm);padding-right:.5rem;padding-right:var(--spacing-sm)}.px-xl{padding-left:2rem;padding-left:var(--spacing-xl);padding-right:2rem;padding-right:var(--spacing-xl)}.px-xs{padding-left:.25rem;padding-left:var(--spacing-xs);padding-right:.25rem;padding-right:var(--spacing-xs)}.py-0{padding-bottom:0;padding-top:0}.py-0\.5{padding-bottom:.125rem;padding-top:.125rem}.py-10{padding-bottom:2.5rem;padding-top:2.5rem}.py-2{padding-bottom:.5rem;padding-top:.5rem}.py-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl);padding-top:2.5rem;padding-top:var(--spacing-2xl)}.py-3{padding-bottom:.75rem;padding-top:.75rem}.py-3xl{padding-bottom:3rem;padding-bottom:var(--spacing-3xl);padding-top:3rem;padding-top:var(--spacing-3xl)}.py-4{padding-bottom:1rem;padding-top:1rem}.py-5xl{padding-bottom:4rem;padding-bottom:var(--spacing-5xl);padding-top:4rem;padding-top:var(--spacing-5xl)}.py-6{padding-bottom:1.5rem;padding-top:1.5rem}.py-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl);padding-top:5rem;padding-top:var(--spacing-7xl)}.py-\[\.3125rem\]{padding-bottom:.3125rem;padding-top:.3125rem}.py-\[0\.625rem\],.py-\[\.625rem\]{padding-bottom:.625rem;padding-top:.625rem}.py-\[1\.5rem\],.py-lg{padding-bottom:1.5rem;padding-top:1.5rem}.py-lg{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-lg)}.py-md{padding-bottom:1rem;padding-bottom:var(--spacing-md);padding-top:1rem;padding-top:var(--spacing-md)}.py-sm{padding-bottom:.5rem;padding-bottom:var(--spacing-sm);padding-top:.5rem;padding-top:var(--spacing-sm)}.py-xl{padding-bottom:2rem;padding-bottom:var(--spacing-xl);padding-top:2rem;padding-top:var(--spacing-xl)}.py-xs{padding-bottom:.25rem;padding-bottom:var(--spacing-xs);padding-top:.25rem;padding-top:var(--spacing-xs)}.\!pl-0{padding-left:0!important}.\!pl-sm{padding-left:.5rem!important;padding-left:var(--spacing-sm)!important}.\!pr-sm{padding-right:.5rem!important;padding-right:var(--spacing-sm)!important}.pb-0{padding-bottom:0}.pb-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl)}.pb-3{padding-bottom:.75rem}.pb-6{padding-bottom:1.5rem}.pb-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl)}.pb-\[\.5rem\]{padding-bottom:.5rem}.pb-\[1\.875rem\]{padding-bottom:1.875rem}.pb-lg{padding-bottom:1.5rem;padding-bottom:var(--spacing-lg)}.pb-md{padding-bottom:1rem;padding-bottom:var(--spacing-md)}.pb-sm{padding-bottom:.5rem;padding-bottom:var(--spacing-sm)}.pb-xl{padding-bottom:2rem;padding-bottom:var(--spacing-xl)}.pb-xs{padding-bottom:.25rem;padding-bottom:var(--spacing-xs)}.pl-0{padding-left:0}.pl-10,.pl-2xl{padding-left:2.5rem}.pl-2xl{padding-left:var(--spacing-2xl)}.pl-3{padding-left:.75rem}.pl-5{padding-left:1.25rem}.pl-8{padding-left:2rem}.pl-lg{padding-left:1.5rem;padding-left:var(--spacing-lg)}.pl-md{padding-left:1rem;padding-left:var(--spacing-md)}.pl-sm{padding-left:.5rem;padding-left:var(--spacing-sm)}.pl-xl{padding-left:2rem;padding-left:var(--spacing-xl)}.pl-xs{padding-left:.25rem;padding-left:var(--spacing-xs)}.pr-0{padding-right:0}.pr-2xl{padding-right:2.5rem;padding-right:var(--spacing-2xl)}.pr-3{padding-right:.75rem}.pr-lg{padding-right:1.5rem;padding-right:var(--spacing-lg)}.pr-md{padding-right:1rem;padding-right:var(--spacing-md)}.pr-sm{padding-right:.5rem;padding-right:var(--spacing-sm)}.pr-xl{padding-right:2rem;padding-right:var(--spacing-xl)}.pr-xs{padding-right:.25rem;padding-right:var(--spacing-xs)}.pt-12{padding-top:3rem}.pt-14{padding-top:3.5rem}.pt-2xl{padding-top:2.5rem;padding-top:var(--spacing-2xl)}.pt-3xl{padding-top:3rem;padding-top:var(--spacing-3xl)}.pt-5xl{padding-top:4rem;padding-top:var(--spacing-5xl)}.pt-6{padding-top:1.5rem}.pt-7xl{padding-top:5rem;padding-top:var(--spacing-7xl)}.pt-\[\.625rem\]{padding-top:.625rem}.pt-\[\.75rem\]{padding-top:.75rem}.pt-\[0\.125rem\]{padding-top:.125rem}.pt-\[1\.25rem\]{padding-top:1.25rem}.pt-\[1\.875rem\]{padding-top:1.875rem}.pt-\[1rem\]{padding-top:1rem}.pt-\[2rem\]{padding-top:2rem}.pt-\[5rem\]{padding-top:5rem}.pt-lg{padding-top:1.5rem;padding-top:var(--spacing-lg)}.pt-md{padding-top:1rem;padding-top:var(--spacing-md)}.pt-sm{padding-top:.5rem;padding-top:var(--spacing-sm)}.pt-xl{padding-top:2rem;padding-top:var(--spacing-xl)}.pt-xs{padding-top:.25rem;padding-top:var(--spacing-xs)}.text-left{text-align:left}.text-center{text-align:center}.text-right{text-align:right}.\!align-middle{vertical-align:middle!important}.align-middle{vertical-align:middle}.\!align-text-bottom{vertical-align:text-bottom!important}.\!text-base{font-size:1rem!important;line-height:1.5rem!important}.\!text-lg{font-size:1.125rem!important;line-height:1.75rem!important}.\!text-xs{font-size:.75rem!important;line-height:1rem!important}.text-2xl{font-size:1.5rem;line-height:2rem}.text-3xl{font-size:1.875rem;line-height:2.25rem}.text-4xl{font-size:2.25rem;line-height:2.5rem}.text-5xl{font-size:3rem;line-height:1}.text-\[\.4rem\]{font-size:.4rem}.text-\[\.75rem\]{font-size:.75rem}.text-\[\.875rem\]{font-size:.875rem}.text-\[0\.4rem\]{font-size:.4rem}.text-\[0\.575rem\]{font-size:.575rem}.text-\[1\.875rem\]{font-size:1.875rem}.text-\[2\.5rem\]{font-size:2.5rem}.text-base{font-size:1rem;line-height:1.5rem}.text-lg{font-size:1.125rem;line-height:1.75rem}.text-sm{font-size:.875rem;line-height:1.25rem}.text-xl{font-size:1.25rem;line-height:1.75rem}.text-xs{font-size:.75rem;line-height:1rem}.font-bold{font-weight:700}.font-light{font-weight:300}.font-medium{font-weight:500}.font-normal{font-weight:400}.font-semibold{font-weight:600}.uppercase{text-transform:uppercase}.lowercase{text-transform:lowercase}.italic{font-style:italic}.\!leading-\[0\]{line-height:0!important}.leading-10{line-height:2.5rem}.leading-6{line-height:1.5rem}.leading-\[0\]{line-height:0}.leading-\[1\.125rem\]{line-height:1.125rem}.leading-\[1\.1\]{line-height:1.1}.leading-\[1\.875rem\]{line-height:1.875rem}.leading-\[140\%\]{line-height:140%}.leading-none{line-height:1}.leading-normal{line-height:1.5}.\!text-color-black{--tw-text-opacity:1!important;color:#000!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.\!text-color-brand-bold{--tw-text-opacity:1!important;color:#eab308!important;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))!important}.\!text-color-default{--tw-text-opacity:1!important;color:#000!important;color:rgba(var(--color-text-default),var(--tw-text-opacity))!important}.\!text-color-disabled{--tw-text-opacity:1!important;color:#b3b9c4!important;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))!important}.\!text-color-link-bold{--tw-text-opacity:1!important;color:#0156ce!important;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))!important}.\!text-color-subtle{--tw-text-opacity:1!important;color:#626f86!important;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))!important}.\!text-color-white{--tw-text-opacity:1!important;color:#fff!important;color:rgba(var(--color-white),var(--tw-text-opacity))!important}.text-\[\#000\]{--tw-text-opacity:1;color:#000;color:rgb(0 0 0/var(--tw-text-opacity))}.text-\[\#0156CE\]{--tw-text-opacity:1;color:#0156ce;color:rgb(1 86 206/var(--tw-text-opacity))}.text-\[\#172B4D\]{--tw-text-opacity:1;color:#172b4d;color:rgb(23 43 77/var(--tw-text-opacity))}.text-\[\#626F86\]{--tw-text-opacity:1;color:#626f86;color:rgb(98 111 134/var(--tw-text-opacity))}.text-\[\#758195\]{--tw-text-opacity:1;color:#758195;color:rgb(117 129 149/var(--tw-text-opacity))}.text-\[\#EAB308\]{--tw-text-opacity:1;color:#eab308;color:rgb(234 179 8/var(--tw-text-opacity))}.text-\[\#F1F2F4\]{--tw-text-opacity:1;color:#f1f2f4;color:rgb(241 242 244/var(--tw-text-opacity))}.text-\[\#FACC15\]{--tw-text-opacity:1;color:#facc15;color:rgb(250 204 21/var(--tw-text-opacity))}.text-\[\#FFFFFF\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-\[\#b3b9c4\]{--tw-text-opacity:1;color:#b3b9c4;color:rgb(179 185 196/var(--tw-text-opacity))}.text-\[\#f00\]{--tw-text-opacity:1;color:red;color:rgb(255 0 0/var(--tw-text-opacity))}.text-\[\#fff\]{--tw-text-opacity:1;color:#fff;color:rgb(255 255 255/var(--tw-text-opacity))}.text-color-black{--tw-text-opacity:1;color:#000;color:rgba(var(--color-black),var(--tw-text-opacity))}.text-color-border-bold{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-border-bold),var(--tw-text-opacity))}.text-color-brand-bold{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.text-color-brand-bolder{--tw-text-opacity:1;color:#d19507;color:rgba(var(--color-text-brand-bolder),var(--tw-text-opacity))}.text-color-current{color:currentColor}.text-color-default{--tw-text-opacity:1;color:#000;color:rgba(var(--color-text-default),var(--tw-text-opacity))}.text-color-disabled{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.text-color-error{--tw-text-opacity:1;color:#d31c04;color:rgba(var(--color-text-error),var(--tw-text-opacity))}.text-color-info{--tw-text-opacity:1;color:#2c9acf;color:rgba(var(--color-text-info),var(--tw-text-opacity))}.text-color-inherit{color:inherit}.text-color-inverse{--tw-text-opacity:1;color:#fff;color:rgba(var(--color-white),var(--tw-text-opacity))}.text-color-link-bold{--tw-text-opacity:1;color:#0156ce;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.text-color-link-bolder{--tw-text-opacity:1;color:#014bb5;color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.text-color-link-subtle{--tw-text-opacity:1;color:#626f86;color:rgba(var(--color-text-link-subtle),var(--tw-text-opacity))}.text-color-on-brand{--tw-text-opacity:1;color:rgba(var(--color-text-on-brand),1);color:rgba(var(--color-text-on-brand),var(--tw-text-opacity))}.text-color-subtle{--tw-text-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.text-color-subtlest{--tw-text-opacity:1;color:#758195;color:rgba(var(--color-text-subtlest),var(--tw-text-opacity))}.text-color-success{--tw-text-opacity:1;color:#098549;color:rgba(var(--color-text-success),var(--tw-text-opacity))}.text-color-warning{--tw-text-opacity:1;color:#d19507;color:rgba(var(--color-text-warning),var(--tw-text-opacity))}.text-color-white{--tw-text-opacity:1;color:#fff;color:rgba(var(--color-white),var(--tw-text-opacity))}.underline{text-decoration-line:underline}.\!no-underline{text-decoration-line:none!important}.no-underline{text-decoration-line:none}.antialiased{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.placeholder-text-color-subtle::-moz-placeholder{--tw-placeholder-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-placeholder-opacity))}.placeholder-text-color-subtle::placeholder{--tw-placeholder-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-placeholder-opacity))}.opacity-0{opacity:0}.opacity-100{opacity:1}.opacity-25{opacity:.25}.opacity-40{opacity:.4}.shadow{--tw-shadow:0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);--tw-shadow-colored:0 1px 3px 0 var(--tw-shadow-color),0 1px 2px -1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-\[4px_8px_10px_rgba\(214\2c 217\2c 222\2c 0\.8\)\]{--tw-shadow:4px 8px 10px rgba(214,217,222,.8);--tw-shadow-colored:4px 8px 10px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,4px 8px 10px rgba(214,217,222,.8);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-lg{--tw-shadow:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);--tw-shadow-colored:0 10px 15px -3px var(--tw-shadow-color),0 4px 6px -4px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-md{--tw-shadow:0 4px 6px -1px rgba(0,0,0,.1),0 2px 4px -2px rgba(0,0,0,.1);--tw-shadow-colored:0 4px 6px -1px var(--tw-shadow-color),0 2px 4px -2px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 4px 6px -1px rgba(0,0,0,.1),0 2px 4px -2px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider{--tw-shadow:0.5px 0.5px 2px 1px rgba(0,0,0,.32);--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px rgba(0,0,0,.32);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-slider-active{--tw-shadow:0.5px 0.5px 2px 1px rgba(0,0,0,.42);--tw-shadow-colored:0.5px 0.5px 2px 1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,.5px .5px 2px 1px rgba(0,0,0,.42);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-sm{--tw-shadow:0 1px 2px 0 rgba(0,0,0,.05);--tw-shadow-colored:0 1px 2px 0 var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 2px 0 rgba(0,0,0,.05);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.shadow-xl{--tw-shadow:0 20px 25px -5px rgba(0,0,0,.1),0 8px 10px -6px rgba(0,0,0,.1);--tw-shadow-colored:0 20px 25px -5px var(--tw-shadow-color),0 8px 10px -6px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 20px 25px -5px rgba(0,0,0,.1),0 8px 10px -6px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.outline-none{outline:2px solid transparent;outline-offset:2px}.outline{outline-style:solid}.outline-2{outline-width:2px}.outline-offset-2{outline-offset:2px}.outline-\[\#EAB308\]{outline-color:#eab308}.outline-color-bold{outline-color:#b3b9c4;outline-color:rgba(var(--color-border-bold),1)}.outline-color-brand{outline-color:#eab308;outline-color:rgba(var(--color-border-brand),1)}.ring-0{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.blur{--tw-blur:blur(8px);filter:blur(8px) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.grayscale{--tw-grayscale:grayscale(100%);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(100%) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.filter,.grayscale{filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.transition{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,-webkit-backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke,opacity,box-shadow,transform,filter,backdrop-filter,-webkit-backdrop-filter;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-all{transition-duration:.15s;transition-property:all;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-colors{transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-height{transition-duration:.15s;transition-property:height;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-opacity{transition-duration:.15s;transition-property:opacity;transition-timing-function:cubic-bezier(.4,0,.2,1)}.transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.duration-100{transition-duration:.1s}.duration-150{transition-duration:.15s}.duration-200{transition-duration:.2s}.duration-300{transition-duration:.3s}.duration-75{transition-duration:75ms}.duration-\[350ms\]{transition-duration:.35s}.ease-in{transition-timing-function:cubic-bezier(.4,0,1,1)}.ease-in-out{transition-timing-function:cubic-bezier(.4,0,.2,1)}.ease-out{transition-timing-function:cubic-bezier(0,0,.2,1)}.content-\[\'\'\]{--tw-content:"";content:"";content:var(--tw-content)}.cursor-grab{cursor:grab}.cursor-grabbing{cursor:grabbing}.touch-none{touch-action:none}.tap-highlight-transparent{-webkit-tap-highlight-color:rgba(0,0,0,0)}.touch-callout-none{-webkit-touch-callout:none}.transform-origin-0{transform-origin:0 0}.transform-style-flat{transform-style:flat}.cursor-ew-resize{cursor:ew-resize}.arrow-left:before{border:5px solid transparent;border-right-color:inherit;left:-10px}.arrow-left:before,.arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.arrow-right:before{border:5px solid transparent;border-left-color:inherit;right:-10px}.text-body{font-size:.875rem;line-height:1.25rem}@media (min-width:768px){.text-body{font-size:1rem;line-height:1.5rem}}.\[appearance\:textfield\]{-webkit-appearance:textfield;-moz-appearance:textfield;appearance:textfield}@media (max-width:64rem){.phone-drawer{z-index:20}.phone-drawer .w-screen{padding:0;width:75vw}.phone-drawer .user-info-nav li{line-height:1.5rem;margin-bottom:.9375rem;padding:.5rem 0 .5rem 2.375rem}.phone-drawer .user-info-nav li:hover{cursor:pointer}.phone-drawer .user-info-nav .active-nav{background-color:#f7f8f9}}.comment-drawer .m-drawer__panel{padding:1rem;padding:var(--spacing-md)}@media (min-width:1024px){.comment-drawer .m-drawer__panel{max-width:none;padding:1.5rem;padding:var(--spacing-lg);width:50.25rem}}.m-checkbox:active,.m-checkbox:target{--tw-text-opacity:1;color:#eab308;color:rgb(234 179 8/var(--tw-text-opacity))}body,html{scroll-behavior:auto!important}.mfp-mask{-webkit-backface-visibility:hidden;background-color:rgba(0,0,0,.85);display:none;outline:0!important;overflow:hidden auto;position:fixed;z-index:99}.mfp-mask,.mfp-mask .mfp-dialog{height:100%;left:0;top:0;width:100%}.mfp-mask .mfp-dialog{box-sizing:border-box;padding:0 8px;position:absolute;text-align:center}.mfp-mask .mfp-dialog .mfp-dialog-content{align-items:center;display:inline-block;display:flex;justify-content:center;margin:0 auto;min-height:100vh;position:relative;text-align:left;vertical-align:middle;z-index:100}.mfp-mask .mfp-dialog .mfp-dialog-content .html-fig_show{background:#fff;max-width:600px;overflow:auto;padding:20px;position:relative;width:auto}.mfp-mask .mfp-dialog .mfp-dialog-content .html-table_show{background:#fff;margin-bottom:40px;margin-top:40px;overflow:auto;padding:20px;position:relative;width:auto}@media (max-width:64rem){.mfp-mask .mfp-dialog .mfp-dialog-content .html-table_show{background:#fff;margin-bottom:40px;margin-top:40px;overflow:auto;padding:20px;position:relative;width:100%}}.mfp-mask .mfp-dialog .mfp-dialog-content .html-table_foot{max-width:650px}.mfp-mask .mfp-close{background:none;border:none;color:#000;cursor:pointer;font-size:16px;overflow:hidden;padding:10px 20px;position:absolute;right:10px;top:10px;z-index:999}.mfp-mask .mfp-close:before{bottom:0;content:"✖";height:20px;left:0;margin:auto;position:absolute;right:0;top:0;width:20px}.heading-with-anchor{scroll-margin-top:4rem}.global-search .m-drawer__panel{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.global-search .m-drawer__body,.global-search .m-drawer__header{margin-left:auto;margin-right:auto;width:90%}.MJX-TEX{font-family:Suisse Int\'l,ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji!important}mark{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.before\:absolute:before{content:var(--tw-content);position:absolute}.before\:-inset-2:before{content:var(--tw-content);inset:-.5rem}.after\:absolute:after{content:var(--tw-content);position:absolute}.after\:hidden:after{content:var(--tw-content);display:none}.after\:h-1\/2:after{content:var(--tw-content);height:50%}.after\:w-1\/2:after{content:var(--tw-content);width:50%}.after\:rounded-full:after{border-radius:9999px;content:var(--tw-content)}.after\:bg-brand-bold:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.after\:bg-content-default:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#facc15;background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.first\:pt-0:first-child{padding-top:0}.focus-within\:outline-none:focus-within{outline:2px solid transparent;outline-offset:2px}.focus-within\:outline:focus-within{outline-style:solid}.hover\:rounded-2xl:hover{border-radius:1rem}.hover\:border-2:hover{border-width:2px}.hover\:border-\[\#0156CE\]:hover{--tw-border-opacity:1;border-color:#0156ce;border-color:rgb(1 86 206/var(--tw-border-opacity))}.hover\:border-\[\#F8F9FD\]:hover{--tw-border-opacity:1;border-color:#f8f9fd;border-color:rgb(248 249 253/var(--tw-border-opacity))}.hover\:border-color-brand:hover{--tw-border-opacity:1;border-color:#eab308;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity))}.hover\:\!bg-surface-selected:hover{--tw-bg-opacity:1!important;background-color:#f8f9fd!important;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))!important}.hover\:\!bg-transparent:hover{background-color:transparent!important}.hover\:bg-brand-bolder:hover{--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.hover\:bg-brand-subtlest:hover{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.hover\:bg-brand-sunken:hover{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-brand-sunken),var(--tw-bg-opacity))}.hover\:bg-content-bold:hover{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-bg-content-bold),var(--tw-bg-opacity))}.hover\:bg-content-sunken:hover{--tw-bg-opacity:1;background-color:#fefce8;background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.hover\:bg-surface-default:hover{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.hover\:bg-surface-selected:hover{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.hover\:pl-sm:hover{padding-left:.5rem;padding-left:var(--spacing-sm)}.hover\:font-semibold:hover{font-weight:600}.hover\:\!text-color-black:hover{--tw-text-opacity:1!important;color:#000!important;color:rgba(var(--color-black),var(--tw-text-opacity))!important}.hover\:text-color-black:hover{--tw-text-opacity:1;color:#000;color:rgba(var(--color-black),var(--tw-text-opacity))}.hover\:text-color-brand-bold:hover{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.hover\:text-color-link-bold:hover{--tw-text-opacity:1;color:#0156ce;color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.hover\:text-color-link-bolder:hover{--tw-text-opacity:1;color:#014bb5;color:rgba(var(--color-text-link-bolder),var(--tw-text-opacity))}.hover\:text-color-subtle:hover{--tw-text-opacity:1;color:#626f86;color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.hover\:underline:hover{text-decoration-line:underline}.hover\:grayscale-0:hover{--tw-grayscale:grayscale(0);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) grayscale(0) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow);filter:var(--tw-blur) var(--tw-brightness) var(--tw-contrast) var(--tw-grayscale) var(--tw-hue-rotate) var(--tw-invert) var(--tw-saturate) var(--tw-sepia) var(--tw-drop-shadow)}.focus\:bg-brand-strong:focus{--tw-bg-opacity:1;background-color:#a86a07;background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.focus\:outline-none:focus{outline:2px solid transparent;outline-offset:2px}.focus\:outline-color-brand:focus{outline-color:#eab308;outline-color:rgba(var(--color-border-brand),1)}.focus\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus\:ring-text-color-border-selected:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-border-selected),var(--tw-ring-opacity))}.focus-visible\:bg-brand-bold:focus-visible{--tw-bg-opacity:1;background-color:#eab308;background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.focus-visible\:bg-brand-boldest:focus-visible{--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.focus-visible\:bg-error-bold:focus-visible{--tw-bg-opacity:1;background-color:#e11900;background-color:rgba(var(--color-bg-error-bold),var(--tw-bg-opacity))}.focus-visible\:bg-surface-default:focus-visible{--tw-bg-opacity:1;background-color:#fff;background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.focus-visible\:bg-surface-selected:focus-visible{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity))}.focus-visible\:outline-none:focus-visible{outline:2px solid transparent;outline-offset:2px}.focus-visible\:outline:focus-visible{outline-style:solid}.focus-visible\:outline-2:focus-visible{outline-width:2px}.focus-visible\:outline-color-selected:focus-visible{outline-color:#eab308;outline-color:rgba(var(--color-border-selected),1)}.focus-visible\:ring-2:focus-visible{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.focus-visible\:ring-offset-2:focus-visible{--tw-ring-offset-width:2px}.focus-visible\:ring-offset-brand-bold:focus-visible{--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.focus-visible\:ring-offset-white:focus-visible{--tw-ring-offset-color:rgba(var(--color-white),1)}.active\:\!bg-brand-subtlest:active{--tw-bg-opacity:1!important;background-color:#fef9c3!important;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))!important}.active\:\!bg-inherit:active{background-color:inherit!important}.active\:\!bg-transparent:active{background-color:transparent!important}.active\:bg-brand-boldest:active{--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.active\:bg-brand-strong:active{--tw-bg-opacity:1;background-color:#a86a07;background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.active\:bg-brand-subtler:active{--tw-bg-opacity:1;background-color:#fef08a;background-color:rgba(var(--color-brand-subtler),var(--tw-bg-opacity))}.active\:bg-brand-subtlest:active{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-brand-subtlest),var(--tw-bg-opacity))}.active\:bg-content-bolder:active{--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-bg-content-bolder),var(--tw-bg-opacity))}.active\:bg-content-subtlest:active{--tw-bg-opacity:1;background-color:#fef9c3;background-color:rgba(var(--color-bg-content-subtlest),var(--tw-bg-opacity))}.active\:text-color-brand-boldest:active{--tw-text-opacity:1;color:#c48404;color:rgba(var(--color-text-brand-boldest),var(--tw-text-opacity))}.disabled\:border-color-default:disabled{--tw-border-opacity:1;border-color:#dcdfe4;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.disabled\:bg-surface-subtle:disabled{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.disabled\:text-color-disabled:disabled{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.group:hover .group-hover\:after\:bg-brand-bolder:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#d19507;background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.group:active .group-active\:after\:bg-brand-boldest:after{content:var(--tw-content);--tw-bg-opacity:1;background-color:#c48404;background-color:rgba(var(--color-brand-boldest),var(--tw-bg-opacity))}.aria-disabled\:pointer-events-none[aria-disabled=true]{pointer-events:none}.aria-disabled\:cursor-default[aria-disabled=true]{cursor:default}.aria-disabled\:text-color-disabled[aria-disabled=true]{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.ui-open\:text-color-brand-bold[data-headlessui-state~=open]{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}:where([data-headlessui-state~=open]) .ui-open\:text-color-brand-bold{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.ui-disabled\:pointer-events-none[data-headlessui-state~=disabled]{pointer-events:none}.ui-disabled\:cursor-default[data-headlessui-state~=disabled]{cursor:default}.ui-disabled\:text-color-disabled[data-headlessui-state~=disabled]{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-state~=disabled]) .ui-disabled\:pointer-events-none{pointer-events:none}:where([data-headlessui-state~=disabled]) .ui-disabled\:cursor-default{cursor:default}:where([data-headlessui-state~=disabled]) .ui-disabled\:text-color-disabled{--tw-text-opacity:1;color:#b3b9c4;color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:outline-color-brand:focus{outline-color:#eab308;outline-color:rgba(var(--color-border-brand),1)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-2:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-brand-bold:focus{--tw-ring-opacity:1;--tw-ring-color:rgba(var(--color-brand-bold),var(--tw-ring-opacity))}:where([data-headlessui-focus-visible]) .ui-focus-visible\:ring-opacity-75:focus{--tw-ring-opacity:0.75}.slider-horizontal .h\:-right-2{right:-.5rem}.slider-horizontal .h\:-top-1{top:-.25rem}.slider-horizontal .h\:-top-1\.5{top:-.375rem}.slider-horizontal .h\:left-1\/2{left:50%}.slider-horizontal .h\:h-0{height:0}.slider-horizontal .h\:h-4{height:1rem}.slider-horizontal .h\:w-4{width:1rem}.slider-horizontal .h\:-translate-x-1\/2{--tw-translate-x:-50%;transform:translate(-50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal .h\:arrow-bottom:before{border:5px solid transparent;border-top-color:inherit;bottom:-10px}.slider-horizontal .h\:arrow-bottom:before,.slider-horizontal .h\:arrow-top:before{content:"";height:0;left:50%;position:absolute;transform:translate(-50%);width:0}.slider-horizontal .h\:arrow-top:before{border:5px solid transparent;border-bottom-color:inherit;top:-10px}.slider-vertical .v\:-right-1{right:-.25rem}.slider-vertical .v\:-right-1\.25{right:-.3125rem}.slider-vertical .v\:-top-2{top:-.5rem}.slider-vertical .v\:-top-full{top:-100%}.slider-vertical .v\:top-1\/2{top:50%}.slider-vertical .v\:h-4{height:1rem}.slider-vertical .v\:w-0{width:0}.slider-vertical .v\:w-4{width:1rem}.slider-vertical .v\:-translate-y-1\/2{--tw-translate-y:-50%;transform:translate(var(--tw-translate-x),-50%) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .v\:cursor-ns-resize{cursor:ns-resize}.slider-vertical .v\:arrow-left:before{border:5px solid transparent;border-right-color:inherit;left:-10px}.slider-vertical .v\:arrow-left:before,.slider-vertical .v\:arrow-right:before{content:"";height:0;position:absolute;top:50%;transform:translateY(-50%);width:0}.slider-vertical .v\:arrow-right:before{border:5px solid transparent;border-left-color:inherit;right:-10px}.slider-horizontal .slider-origin>.merge-h\:bottom-3{bottom:.75rem}.slider-horizontal .slider-origin>.merge-h\:bottom-3\.5{bottom:.875rem}.slider-horizontal .slider-origin>.merge-h\:left-auto{left:auto}.slider-horizontal .slider-origin>.merge-h\:top-5{top:1.25rem}.slider-horizontal .slider-origin>.merge-h\:translate-x-1\/2{--tw-translate-x:50%;transform:translate(50%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-vertical .slider-origin>.merge-v\:left-7{left:1.75rem}.slider-vertical .slider-origin>.merge-v\:right-1{right:.25rem}.slider-vertical .slider-origin>.merge-v\:top-auto{top:auto}.slider-vertical .slider-origin>.merge-v\:-translate-x-4{--tw-translate-x:-1rem;transform:translate(-1rem,var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skewX(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:-left-2{left:-.5rem}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:left-0{left:0}.slider-horizontal.slider-txt-rtl .txt-rtl-h\:right-auto{right:auto}.slider-tap .tap\:transition-transform{transition-duration:.15s;transition-property:transform;transition-timing-function:cubic-bezier(.4,0,.2,1)}.slider-tap .tap\:duration-300{transition-duration:.3s}.slider-tooltip-focus:not(.slider-focused) .tt-focus\:hidden{display:none!important}.slider-tooltip-focus.slider-focused:not(.slider-tooltip-hidden) .tt-focused\:block{display:block!important}.slider-tooltip-drag:not(.slider-state-drag) .tt-drag\:hidden{display:none!important}.slider-tooltip-drag.slider-state-drag .tt-dragging\:block\:not\(\.slider-tooltip-hidden\){display:block!important}@media not all and (min-width:1280px){.max-xl\:w-full{width:100%}}@media not all and (min-width:1024px){.max-lg\:items-center{align-items:center}.max-lg\:gap-x-6{-moz-column-gap:1.5rem;column-gap:1.5rem}.max-lg\:pt-lg{padding-top:1.5rem;padding-top:var(--spacing-lg)}}@media (min-width:576px){.sm\:sticky{position:sticky}.sm\:top-20{top:5rem}.sm\:w-20{width:5rem}.sm\:w-2xl{width:2.5rem;width:var(--spacing-2xl)}.sm\:w-\[100\%\]{width:100%}.sm\:w-\[50\%\]{width:50%}.sm\:\!max-w-\[20\%\]{max-width:20%!important}.sm\:max-w-\[33\%\]{max-width:33%}.sm\:grid-cols-2{grid-template-columns:repeat(2,minmax(0,1fr))}.sm\:border-0{border-width:0}.sm\:border-t{border-top-width:1px}.sm\:border-\[\#000\]{--tw-border-opacity:1;border-color:#000;border-color:rgb(0 0 0/var(--tw-border-opacity))}.sm\:pr-md{padding-right:1rem;padding-right:var(--spacing-md)}.sm\:pt-0{padding-top:0}.sm\:pt-\[\.625rem\]{padding-top:.625rem}}@media (min-width:768px){.md\:h-9{height:2.25rem}.md\:w-9{width:2.25rem}.md\:w-\[100\%\]{width:100%}.md\:w-\[50\%\]{width:50%}.md\:flex-row{flex-direction:row}.md\:flex-row-reverse{flex-direction:row-reverse}}@media (min-width:1024px){.lg\:absolute{position:absolute}.lg\:sticky{position:sticky}.lg\:\!bottom-\[50vh\]{bottom:50vh!important}.lg\:bottom-xl{bottom:2rem;bottom:var(--spacing-xl)}.lg\:left-xl{left:2rem;left:var(--spacing-xl)}.lg\:top-7xl{top:5rem;top:var(--spacing-7xl)}.lg\:top-\[10\%\]{top:10%}.lg\:top-\[20\%\]{top:20%}.lg\:top-\[30\%\]{top:30%}.lg\:top-\[4\.5rem\]{top:4.5rem}.lg\:top-\[40\%\]{top:40%}.lg\:top-\[50\%\]{top:50%}.lg\:top-\[60\%\]{top:60%}.lg\:top-\[70\%\]{top:70%}.lg\:order-first{order:-9999}.lg\:m-0{margin:0}.lg\:m-lg{margin:1.5rem;margin:var(--spacing-lg)}.lg\:mx-auto{margin-left:auto;margin-right:auto}.lg\:my-0{margin-bottom:0;margin-top:0}.lg\:my-12{margin-bottom:3rem;margin-top:3rem}.lg\:my-7xl{margin-bottom:5rem;margin-bottom:var(--spacing-7xl);margin-top:5rem;margin-top:var(--spacing-7xl)}.lg\:my-\[18\.75rem\]{margin-bottom:18.75rem;margin-top:18.75rem}.lg\:-mt-4xl{margin-top:-3.5rem;margin-top:calc(var(--spacing-4xl)*-1)}.lg\:mb-0{margin-bottom:0}.lg\:mb-10xl{margin-bottom:6.5rem;margin-bottom:var(--spacing-10xl)}.lg\:mb-lg{margin-bottom:1.5rem;margin-bottom:var(--spacing-lg)}.lg\:ml-3xl{margin-left:3rem;margin-left:var(--spacing-3xl)}.lg\:ml-lg{margin-left:1.5rem;margin-left:var(--spacing-lg)}.lg\:ml-sm{margin-left:.5rem;margin-left:var(--spacing-sm)}.lg\:mr-8xl{margin-right:5.5rem;margin-right:var(--spacing-8xl)}.lg\:mr-\[4\.6875rem\]{margin-right:4.6875rem}.lg\:mr-lg{margin-right:1.5rem;margin-right:var(--spacing-lg)}.lg\:mr-xl{margin-right:2rem;margin-right:var(--spacing-xl)}.lg\:mt-0{margin-top:0}.lg\:mt-\[-3rem\]{margin-top:-3rem}.lg\:mt-lg{margin-top:1.5rem;margin-top:var(--spacing-lg)}.lg\:mt-md{margin-top:1rem;margin-top:var(--spacing-md)}.lg\:\!block{display:block!important}.lg\:block{display:block}.lg\:flex{display:flex}.lg\:\!inline-flex{display:inline-flex!important}.lg\:grid{display:grid}.lg\:\!hidden{display:none!important}.lg\:hidden{display:none}.lg\:aspect-\[1\/1\.414\]{aspect-ratio:1/1.414}.lg\:aspect-square{aspect-ratio:1/1}.lg\:h-12{height:3rem}.lg\:h-\[296px\]{height:296px}.lg\:h-\[7\.5rem\]{height:7.5rem}.lg\:max-h-\[100\%\]{max-height:100%}.lg\:max-h-\[30\%\]{max-height:30%}.lg\:max-h-\[40\%\]{max-height:40%}.lg\:max-h-\[50\%\]{max-height:50%}.lg\:max-h-\[60\%\]{max-height:60%}.lg\:max-h-\[70\%\]{max-height:70%}.lg\:max-h-\[80\%\]{max-height:80%}.lg\:max-h-\[90\%\]{max-height:90%}.lg\:min-h-screen{min-height:100vh}.lg\:\!w-\[20\%\]{width:20%!important}.lg\:\!w-\[75\%\]{width:75%!important}.lg\:\!w-fit{width:-moz-fit-content!important;width:fit-content!important}.lg\:w-1\/2{width:50%}.lg\:w-1\/4{width:25%}.lg\:w-1\/5{width:20%}.lg\:w-12{width:3rem}.lg\:w-2\/3{width:66.666667%}.lg\:w-4\/5{width:80%}.lg\:w-\[100\%\]{width:100%}.lg\:w-\[19\.0625rem\]{width:19.0625rem}.lg\:w-\[22\.5rem\]{width:22.5rem}.lg\:w-\[25\%\]{width:25%}.lg\:w-\[31\.25rem\]{width:31.25rem}.lg\:w-\[315px\]{width:315px}.lg\:w-\[32rem\]{width:32rem}.lg\:w-\[33\%\]{width:33%}.lg\:w-\[333px\]{width:333px}.lg\:w-\[360px\]{width:360px}.lg\:w-\[50\%\]{width:50%}.lg\:w-fit{width:-moz-fit-content;width:fit-content}.lg\:w-full{width:100%}.lg\:w-max{width:-moz-max-content;width:max-content}.lg\:\!min-w-\[40\%\]{min-width:40%!important}.lg\:max-w-2xl{max-width:42rem}.lg\:max-w-3xl{max-width:48rem}.lg\:max-w-4xl{max-width:56rem}.lg\:max-w-5xl{max-width:64rem}.lg\:max-w-6xl{max-width:72rem}.lg\:max-w-7xl{max-width:80rem}.lg\:max-w-\[28\.5rem\]{max-width:28.5rem}.lg\:max-w-\[30\%\]{max-width:30%}.lg\:max-w-\[32\%\]{max-width:32%}.lg\:max-w-\[80\%\]{max-width:80%}.lg\:max-w-lg{max-width:32rem}.lg\:max-w-md{max-width:28rem}.lg\:max-w-sm{max-width:24rem}.lg\:max-w-xl{max-width:36rem}.lg\:max-w-xs{max-width:20rem}.lg\:flex-1{flex:1 1 0%}.lg\:flex-auto{flex:1 1 auto}.lg\:flex-none{flex:none}.lg\:basis-1\/2{flex-basis:50%}.lg\:basis-1\/4{flex-basis:25%}.lg\:basis-\[15\.625rem\]{flex-basis:15.625rem}.lg\:list-disc{list-style-type:disc}.lg\:grid-cols-3{grid-template-columns:repeat(3,minmax(0,1fr))}.lg\:flex-row{flex-direction:row}.lg\:flex-row-reverse{flex-direction:row-reverse}.lg\:flex-col{flex-direction:column}.lg\:flex-wrap{flex-wrap:wrap}.lg\:flex-nowrap{flex-wrap:nowrap}.lg\:items-center{align-items:center}.lg\:justify-end{justify-content:flex-end}.lg\:justify-between{justify-content:space-between}.lg\:gap-0{gap:0}.lg\:gap-2xl{gap:2.5rem;gap:var(--spacing-2xl)}.lg\:gap-lg{gap:1.5rem;gap:var(--spacing-lg)}.lg\:gap-xl{gap:2rem;gap:var(--spacing-xl)}.lg\:gap-x-lg{-moz-column-gap:1.5rem;column-gap:1.5rem;-moz-column-gap:var(--spacing-lg);column-gap:var(--spacing-lg)}.lg\:gap-y-lg{row-gap:1.5rem;row-gap:var(--spacing-lg)}.lg\:\!space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0!important;margin-bottom:0!important;margin-bottom:calc(0px*var(--tw-space-y-reverse))!important;margin-top:0!important;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))!important}.lg\:space-x-lg>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:1.5rem;margin-left:calc(var(--spacing-lg)*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(var(--spacing-lg)*var(--tw-space-x-reverse))}.lg\:space-x-xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:2rem;margin-left:calc(var(--spacing-xl)*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(var(--spacing-xl)*var(--tw-space-x-reverse))}.lg\:space-y-0>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(0px*var(--tw-space-y-reverse));margin-top:0;margin-top:calc(0px*(1 - var(--tw-space-y-reverse)))}.lg\:space-y-2xl>:not([hidden])~:not([hidden]){--tw-space-y-reverse:0;margin-bottom:0;margin-bottom:calc(var(--spacing-2xl)*var(--tw-space-y-reverse));margin-top:2.5rem;margin-top:calc(var(--spacing-2xl)*(1 - var(--tw-space-y-reverse)))}.lg\:rounded-2xl{border-radius:1rem}.lg\:rounded-3xl{border-radius:1.5rem}.lg\:border{border-width:1px}.lg\:border-0{border-width:0}.lg\:border-b{border-bottom-width:1px}.lg\:border-l{border-left-width:1px}.lg\:border-t-0{border-top-width:0}.lg\:border-none{border-style:none}.lg\:bg-surface-subtle{--tw-bg-opacity:1;background-color:#f8f9fd;background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.lg\:p-0{padding:0}.lg\:p-2xl{padding:2.5rem;padding:var(--spacing-2xl)}.lg\:p-lg{padding:1.5rem;padding:var(--spacing-lg)}.lg\:px-0{padding-left:0;padding-right:0}.lg\:px-10{padding-left:2.5rem;padding-right:2.5rem}.lg\:px-4{padding-left:1rem;padding-right:1rem}.lg\:px-4xl{padding-left:3.5rem;padding-left:var(--spacing-4xl);padding-right:3.5rem;padding-right:var(--spacing-4xl)}.lg\:px-\[\.9375rem\]{padding-left:.9375rem;padding-right:.9375rem}.lg\:px-lg{padding-left:1.5rem;padding-left:var(--spacing-lg);padding-right:1.5rem;padding-right:var(--spacing-lg)}.lg\:py-0{padding-bottom:0;padding-top:0}.lg\:py-10xl{padding-bottom:6.5rem;padding-bottom:var(--spacing-10xl);padding-top:6.5rem;padding-top:var(--spacing-10xl)}.lg\:py-12{padding-bottom:3rem;padding-top:3rem}.lg\:py-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl);padding-top:2.5rem;padding-top:var(--spacing-2xl)}.lg\:py-32{padding-bottom:8rem;padding-top:8rem}.lg\:py-3xl{padding-bottom:3rem;padding-bottom:var(--spacing-3xl);padding-top:3rem;padding-top:var(--spacing-3xl)}.lg\:py-4xl{padding-bottom:3.5rem;padding-bottom:var(--spacing-4xl);padding-top:3.5rem;padding-top:var(--spacing-4xl)}.lg\:py-5xl{padding-bottom:4rem;padding-bottom:var(--spacing-5xl);padding-top:4rem;padding-top:var(--spacing-5xl)}.lg\:py-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl);padding-top:5rem;padding-top:var(--spacing-7xl)}.lg\:py-lg{padding-bottom:1.5rem;padding-bottom:var(--spacing-lg);padding-top:1.5rem;padding-top:var(--spacing-lg)}.lg\:py-xl{padding-bottom:2rem;padding-bottom:var(--spacing-xl);padding-top:2rem;padding-top:var(--spacing-xl)}.lg\:pb-0{padding-bottom:0}.lg\:pb-2xl{padding-bottom:2.5rem;padding-bottom:var(--spacing-2xl)}.lg\:pb-3xl{padding-bottom:3rem;padding-bottom:var(--spacing-3xl)}.lg\:pb-5xl{padding-bottom:4rem;padding-bottom:var(--spacing-5xl)}.lg\:pb-7xl{padding-bottom:5rem;padding-bottom:var(--spacing-7xl)}.lg\:pb-\[12\.5rem\]{padding-bottom:12.5rem}.lg\:pb-\[6\.3125rem\]{padding-bottom:6.3125rem}.lg\:pb-lg{padding-bottom:1.5rem;padding-bottom:var(--spacing-lg)}.lg\:pb-md{padding-bottom:1rem;padding-bottom:var(--spacing-md)}.lg\:pb-sm{padding-bottom:.5rem;padding-bottom:var(--spacing-sm)}.lg\:pl-10,.lg\:pl-2xl{padding-left:2.5rem}.lg\:pl-2xl{padding-left:var(--spacing-2xl)}.lg\:pl-lg{padding-left:1.5rem;padding-left:var(--spacing-lg)}.lg\:pl-sm{padding-left:.5rem;padding-left:var(--spacing-sm)}.lg\:pl-xl{padding-left:2rem;padding-left:var(--spacing-xl)}.lg\:pr-0{padding-right:0}.lg\:pr-lg{padding-right:1.5rem;padding-right:var(--spacing-lg)}.lg\:pr-xl{padding-right:2rem;padding-right:var(--spacing-xl)}.lg\:pt-0{padding-top:0}.lg\:pt-2xl{padding-top:2.5rem;padding-top:var(--spacing-2xl)}.lg\:pt-3xl{padding-top:3rem;padding-top:var(--spacing-3xl)}.lg\:pt-5xl{padding-top:4rem;padding-top:var(--spacing-5xl)}.lg\:pt-7xl{padding-top:5rem;padding-top:var(--spacing-7xl)}.lg\:pt-\[5rem\]{padding-top:5rem}.lg\:pt-\[7\.5rem\]{padding-top:7.5rem}.lg\:pt-\[8\.125rem\]{padding-top:8.125rem}.lg\:pt-lg{padding-top:1.5rem;padding-top:var(--spacing-lg)}.lg\:pt-md{padding-top:1rem;padding-top:var(--spacing-md)}.lg\:pt-xl{padding-top:2rem;padding-top:var(--spacing-xl)}.lg\:text-center{text-align:center}.lg\:\!text-3xl{font-size:1.875rem!important;line-height:2.25rem!important}}@media (min-width:1280px){.xl\:mr-7xl{margin-right:5rem;margin-right:var(--spacing-7xl)}.xl\:mr-lg{margin-right:1.5rem;margin-right:var(--spacing-lg)}.xl\:h-16{height:4rem}.xl\:w-16{width:4rem}.xl\:w-4{width:1rem}.xl\:w-\[100\%\]{width:100%}.xl\:w-\[25\%\]{width:25%}.xl\:w-\[27\.6875rem\]{width:27.6875rem}.xl\:w-\[33\%\]{width:33%}.xl\:w-\[50\%\]{width:50%}.xl\:space-x-3xl>:not([hidden])~:not([hidden]){--tw-space-x-reverse:0;margin-left:3rem;margin-left:calc(var(--spacing-3xl)*(1 - var(--tw-space-x-reverse)));margin-right:0;margin-right:calc(var(--spacing-3xl)*var(--tw-space-x-reverse))}}@media (min-width:1440px){.xxl\:w-\[33\%\]{width:33%}}.\[\&\:\:-webkit-inner-spin-button\]\:appearance-none::-webkit-inner-spin-button,.\[\&\:\:-webkit-outer-spin-button\]\:appearance-none::-webkit-outer-spin-button{-webkit-appearance:none;appearance:none}.\[\&\>a\]\:block>a{display:block}.\[\&\>a\]\:w-full>a{width:100%}.\[\&\>a\]\:px-2>a{padding-left:.5rem;padding-right:.5rem}.\[\&\>a\]\:px-4>a{padding-left:1rem;padding-right:1rem}.\[\&\>a\]\:py-md>a{padding-bottom:1rem;padding-bottom:var(--spacing-md);padding-top:1rem;padding-top:var(--spacing-md)}.\[\&\>div\]\:z-1>div{z-index:1}.\[\&\>div\]\:z-10>div{z-index:10}.\[\&\>div\]\:w-fit>div{width:-moz-fit-content;width:fit-content}.\[\&\>ol\>li\]\:truncate>ol>li{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&\>span\]\:overflow-hidden>span{overflow:hidden}.\[\&\>span\]\:truncate>span{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.\[\&_input\]\:\!w-\[1\.15em\] input{width:1.15em!important}.\[\&_input\]\:text-center input{text-align:center}.\[\&_span\]\:hover\:text-color-brand-bold:hover span,.\[\&_span\]\:text-color-brand-bold span{--tw-text-opacity:1;color:#eab308;color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}</style> <style>html{scroll-behavior:smooth}.common-field{display:flex;flex-direction:column;font-size:.875rem;gap:.25rem;line-height:1.25rem;position:relative;width:100%}.common-field--success .common-field__dropdown-input,.common-field--success .common-field__input,.common-field--success .common-field__textarea{--tw-text-opacity:1;color:rgba(var(--color-text-success),1);color:rgba(var(--color-text-success),var(--tw-text-opacity));outline-color:rgba(var(--color-border-success),1);outline-style:solid}.common-field--success>.common-field__hint{--tw-text-opacity:1;color:rgba(var(--color-text-success),1);color:rgba(var(--color-text-success),var(--tw-text-opacity))}.common-field--error .common-field__dropdown-input,.common-field--error .common-field__input,.common-field--error .common-field__textarea{--tw-text-opacity:1;color:rgba(var(--color-text-error),1);color:rgba(var(--color-text-error),var(--tw-text-opacity));outline-color:rgba(var(--color-border-error),1);outline-style:solid}.common-field--error>.common-field__hint{--tw-text-opacity:1;color:rgba(var(--color-text-error),1);color:rgba(var(--color-text-error),var(--tw-text-opacity))}.common-field.common-field--readonly .common-field__dropdown-input,.common-field.common-field--readonly .common-field__input,.common-field.common-field--readonly .common-field__textarea,.common-field.common-field--readonly input,.common-field.common-field--readonly textarea{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.common-field input::-moz-placeholder,.common-field textarea::-moz-placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.common-field input::placeholder,.common-field textarea::placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.common-field__wrapper{width:100%}.common-field__label{display:block;font-size:.75rem;line-height:1rem;margin-bottom:var(--spacing-xs);white-space:nowrap}.common-field__hint{font-size:.75rem;line-height:1rem;--tw-text-opacity:1;color:rgba(var(--color-text-subtlest),1);color:rgba(var(--color-text-subtlest),var(--tw-text-opacity));margin-top:var(--spacing-xs)}.common-field__options{border-radius:.25rem;border-width:1px;max-height:15rem;min-width:-moz-fit-content;min-width:fit-content;overflow:auto;position:absolute;width:100%;z-index:20;--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity));--tw-bg-opacity:1;background-color:rgba(var(--color-white),1);background-color:rgba(var(--color-white),var(--tw-bg-opacity));font-size:.875rem;line-height:1.25rem;padding:.25rem;--tw-shadow:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);--tw-shadow-colored:0 10px 15px -3px var(--tw-shadow-color),0 4px 6px -4px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -4px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}.common-field__options:focus{outline:2px solid transparent;outline-offset:2px}.common-field__input{width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));outline-color:rgba(var(--color-border-brand),1);outline-offset:-1px;outline-width:2px}.common-field__dropdown-input{align-items:center;border-radius:.25rem;display:flex;gap:.5rem;justify-content:space-between;margin-bottom:2px;padding-right:var(--spacing-sm);white-space:nowrap}.common-field__dropdown-input,.common-field__textarea{width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));outline-color:rgba(var(--color-border-brand),1);outline-offset:-1px;outline-width:2px;padding-left:var(--spacing-md)}.common-field__textarea{padding-right:var(--spacing-md)}.common-field input,.common-field textarea{width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.common-field--outlined .common-field__dropdown-input,.common-field--outlined .common-field__input,.common-field--outlined .common-field__textarea{border-width:1px;--tw-border-opacity:1;background-color:transparent;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.common-field--outlined input,.common-field--outlined textarea{background-color:transparent}.common-field--fit-content{max-width:-moz-fit-content;max-width:fit-content}.common-field--inline .common-field__wrapper{align-items:center;display:flex;flex-direction:row;gap:.5rem}.common-field--inline .common-field__wrapper .common-field__label{margin-bottom:0}.common-field--disabled,.common-field--disabled .common-field__dropdown-input,.common-field--disabled .common-field__hint,.common-field--disabled .common-field__placeholder,.common-field--disabled input,.common-field--disabled textarea{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.common-field--disabled input::-moz-placeholder,.common-field--disabled textarea::-moz-placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.common-field--disabled input::placeholder,.common-field--disabled textarea::placeholder{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.m-button-group .m-button.m-button--primary:not(.m-button--active){--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}.m-button-group .m-button.m-button--primary:not(.m-button--active):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button-group .m-button.m-button--active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity))}.m-button{align-items:center;display:flex;font-size:.875rem;font-weight:400;line-height:1.25rem;outline-color:rgba(var(--color-border-brand),1);position:relative;transition-duration:.1s;transition-timing-function:cubic-bezier(0,0,.2,1);width:-moz-fit-content;width:fit-content}.m-button--sm{height:var(--spacing-lg)}.m-button--md,.m-button--sm{padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.m-button--md{height:var(--spacing-xl)}.m-button--lg{height:var(--spacing-2xl);padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.m-button--disabled{pointer-events:none;--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.m-button--tonal{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-sunken),1);background-color:rgba(var(--color-bg-content-sunken),var(--tw-bg-opacity))}.m-button--tonal:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtler),1);background-color:rgba(var(--color-bg-content-subtler),var(--tw-bg-opacity))}.m-button--tonal:not(.m-button--disabled).m-button--active,.m-button--tonal:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.m-button--tonal.m-button--disabled,.m-button--tonal:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-disabled),1);background-color:rgba(var(--color-surface-disabled),var(--tw-bg-opacity))}.m-button--primary{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-on-brand),1);color:rgba(var(--color-text-on-brand),var(--tw-text-opacity))}.m-button--primary:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bolder),1);background-color:rgba(var(--color-brand-bolder),var(--tw-bg-opacity))}.m-button--primary:not(.m-button--disabled).m-button--active,.m-button--primary:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-strong),1);background-color:rgba(var(--color-brand-strong),var(--tw-bg-opacity))}.m-button--primary.m-button--disabled,.m-button--primary:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button--accent{--tw-bg-opacity:1;background-color:rgba(var(--color-accent-bold),1);background-color:rgba(var(--color-accent-bold),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-on-accent),1);color:rgba(var(--color-text-on-accent),var(--tw-text-opacity));outline-color:rgba(var(--color-border-accent),1)}.m-button--accent:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-accent-bolder),1);background-color:rgba(var(--color-accent-bolder),var(--tw-bg-opacity))}.m-button--accent:not(.m-button--disabled).m-button--active,.m-button--accent:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-accent-strong),1);background-color:rgba(var(--color-accent-strong),var(--tw-bg-opacity))}.m-button--accent.m-button--disabled,.m-button--accent:disabled{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button--secondary{border-width:1px;--tw-border-opacity:1;border-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.m-button--secondary:not(.m-button--disabled):hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-button--secondary:not(.m-button--disabled).m-button--active,.m-button--secondary:not(.m-button--disabled):active{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity))}.m-button--secondary.m-button--disabled,.m-button--secondary:disabled{--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.m-button--tertiary{position:relative;--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity));height:var(--spacing-lg);outline-offset:2px;padding:0}.m-button--tertiary:after{background-image:linear-gradient(to right,rgba(var(--color-text-link-bold),1) var(--tw-gradient-from-position),rgba(var(--color-text-link-bold),1) var(--tw-gradient-to-position));background-image:linear-gradient(to right,var(--tw-gradient-stops));bottom:-.125rem;content:"";height:.125rem;left:0;position:absolute;right:0;--tw-gradient-from:rgba(var(--color-text-link-bold),1) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-text-link-bold),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to);--tw-gradient-to:rgba(var(--color-text-link-bold),1) var(--tw-gradient-to-position);opacity:0;transition-duration:.15s;transition-timing-function:cubic-bezier(0,0,.2,1)}.m-button--tertiary:not(.m-button--disabled):hover:after{content:var(--tw-content);opacity:1}.m-button--tertiary:not(.m-button--disabled):active{--tw-text-opacity:1;color:rgba(var(--color-text-link-boldest),1);color:rgba(var(--color-text-link-boldest),var(--tw-text-opacity))}.m-button--tertiary:not(.m-button--disabled).m-button--active{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.m-button--tertiary:not(.m-button--disabled).m-button--active:after{--tw-gradient-from:rgba(var(--color-text-link-bold),1) var(--tw-gradient-from-position);--tw-gradient-to:rgba(var(--color-text-link-bold),0) var(--tw-gradient-to-position);--tw-gradient-stops:var(--tw-gradient-from),var(--tw-gradient-to);--tw-gradient-to:rgba(var(--color-text-link-bold),1) var(--tw-gradient-to-position);opacity:1}.m-button--tertiary.m-button--disabled,.m-button--tertiary:disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity));opacity:.6}.m-button--tertiary-subtle{position:relative;--tw-text-opacity:1;color:rgba(var(--color-text-link-subtle),1);color:rgba(var(--color-text-link-subtle),var(--tw-text-opacity));height:var(--spacing-lg);outline-offset:2px;padding:0}.m-button--tertiary-subtle:not(.m-button--disabled):active,.m-button--tertiary-subtle:not(.m-button--disabled):hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.m-button--tertiary-subtle:not(.m-button--disabled).m-button--active{--tw-text-opacity:1;color:rgba(var(--color-text-link-boldest),1);color:rgba(var(--color-text-link-boldest),var(--tw-text-opacity))}.m-button--tertiary-subtle.m-button--disabled,.m-button--tertiary-subtle:disabled{--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity));opacity:.6}.m-button--full-width{width:100%}.m-button--full-width.m-button--link a{text-align:center;width:100%}.m-button--link{padding:0}.m-button--link a{align-items:center;color:inherit;display:flex;font-size:.875rem;gap:.5rem;height:100%;justify-content:center;line-height:1.25rem;width:100%}.m-button--link.m-button--lg a,.m-button--link.m-button--md a,.m-button--link.m-button--sm a{padding-left:var(--spacing-md);padding-right:var(--spacing-md)}.m-button--link.m-button--is-icon a{font-size:.875rem;line-height:1.25rem;padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.m-button--link.m-button--tertiary a,.m-button--link.m-button--tertiary-subtle a{padding:0}.m-button--link.m-button--is-link-icon a{padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.m-button--link.m-button--disabled a{pointer-events:none;--tw-text-opacity:1;color:rgba(var(--color-text-disabled),1);color:rgba(var(--color-text-disabled),var(--tw-text-opacity))}.m-button--is-icon{padding-left:var(--spacing-sm);padding-right:var(--spacing-sm)}.m-rich-text a{text-decoration-line:underline;transition-duration:.15s;transition-property:color,background-color,border-color,text-decoration-color,fill,stroke;transition-timing-function:cubic-bezier(.4,0,.2,1)}.m-rich-text a:hover{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}.m-rich-text ul{list-style-position:inside;list-style-type:disc;text-align:left}.m-rich-text ul li{margin-left:1.6em;text-indent:-1.35em}.m-rich-text ol{list-style-position:inside;list-style-type:decimal;text-align:left}@media screen and (max-width:768px){.m-rich-text ol li{margin-left:1.25em;text-indent:-1.22em}}.m-h1{font-size:var(--h1-sm-size);line-height:var(--h1-sm-line-height)}@media (min-width:768px){.m-h1{font-size:var(--h1-md-size);line-height:var(--h1-md-line-height)}}@media (min-width:1024px){.m-h1{font-size:var(--h1-lg-size);line-height:var(--h1-lg-line-height)}}.m-h2{font-size:var(--h2-sm-size);line-height:var(--h2-sm-line-height)}@media (min-width:768px){.m-h2{font-size:var(--h2-md-size);line-height:var(--h2-md-line-height)}}@media (min-width:1024px){.m-h2{font-size:var(--h2-lg-size);line-height:var(--h2-lg-line-height)}}.m-h3{font-size:var(--h3-sm-size);line-height:var(--h3-sm-line-height)}@media (min-width:768px){.m-h3{font-size:var(--h3-md-size);line-height:var(--h3-md-line-height)}}@media (min-width:1024px){.m-h3{font-size:var(--h3-lg-size);line-height:var(--h3-lg-line-height)}}.m-h4{font-size:var(--h4-sm-size);line-height:var(--h4-sm-line-height)}@media (min-width:768px){.m-h4{font-size:var(--h4-md-size);line-height:var(--h4-md-line-height)}}@media (min-width:1024px){.m-h4{font-size:var(--h4-lg-size);line-height:var(--h4-lg-line-height)}}.m-h5{font-size:var(--h5-sm-size);line-height:var(--h5-sm-line-height)}@media (min-width:768px){.m-h5{font-size:var(--h5-md-size);line-height:var(--h5-md-line-height)}}@media (min-width:1024px){.m-h5{font-size:var(--h5-lg-size);line-height:var(--h5-lg-line-height)}}.m-h6{font-size:var(--h6-sm-size);line-height:var(--h6-sm-line-height)}@media (min-width:768px){.m-h6{font-size:var(--h6-md-size);line-height:var(--h6-md-line-height)}}@media (min-width:1024px){.m-h6{font-size:var(--h6-lg-size);line-height:var(--h6-lg-line-height)}}.m-tabs__header:after{bottom:-.125rem;content:"";height:.125rem;left:0;position:absolute;right:0;z-index:-1;--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.m-icon-button{align-items:center;display:inline-flex;font-size:1rem;font-weight:400;gap:.5rem;justify-content:center;line-height:1.5rem;padding:.5rem;transition-duration:.1s;transition-timing-function:cubic-bezier(0,0,.2,1);white-space:nowrap;width:-moz-fit-content;width:fit-content}.m-icon-button:hover{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.m-icon-button:active{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-icon-button--disabled{color:rgba(var(--color-black),.5);pointer-events:none}.m-icon-button.m-icon-button--link{padding:0}.m-icon-button a{align-items:center;display:flex;justify-content:center;padding:.5rem}.m-card:hover .image-container{--tw-scale-x:1.1;--tw-scale-y:1.1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1.1) scaleY(1.1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.m-card .image-container{transition-duration:.2s;transition-property:all;transition-timing-function:cubic-bezier(.4,0,.2,1)}.m-tabs__tab.m-button{align-items:center;display:flex;font-size:.875rem;font-weight:400;line-height:1.25rem;outline:2px solid transparent;outline-offset:2px;position:relative;transition-duration:.1s;transition-timing-function:cubic-bezier(0,0,.2,1);width:-moz-fit-content;width:fit-content}:where([data-headlessui-focus-visible]) .m-tabs__tab.m-button:focus{outline-color:rgba(var(--color-border-brand),1)}.m-tabs__tab.m-button:after{bottom:-.125rem;content:"";height:.125rem;left:0;position:absolute;right:0;--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity));opacity:0;transition-duration:.15s;transition-timing-function:cubic-bezier(0,0,.2,1)}.m-tabs__tab.m-button.m-button--active{--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}.m-tabs__tab.m-button.m-button--active:after{--tw-bg-opacity:1;background-color:rgba(var(--color-brand-bold),1);background-color:rgba(var(--color-brand-bold),var(--tw-bg-opacity));opacity:1}.m-checkbox__control:focus-visible{outline:max(1px,.1em) solid rgba(var(--color-brand-default));outline-offset:max(2px,.15em)}.m-checkbox__control:checked:before{--tw-scale-x:1;--tw-scale-y:1;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(1) scaleY(1);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.m-checkbox__control:before{background-color:CanvasText;clip-path:polygon(16% 55%,24% 47%,38% 60%,73% 25%,81% 33%,38% 75%);content:"";height:1.2em;width:1.2em;--tw-scale-x:0;--tw-scale-y:0;background-color:currentColor;transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(0) scaleY(0);transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}.m-search-select__select[data-v-8ebcb524]{border-bottom-left-radius:.25rem;border-top-left-radius:.25rem}.m-search-select__select[data-v-8ebcb524] button{margin-bottom:0;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-selected),1);background-color:rgba(var(--color-surface-selected),var(--tw-bg-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-brand-bold),1);color:rgba(var(--color-text-brand-bold),var(--tw-text-opacity))}@media (min-width:1024px){.m-search-select__select[data-v-8ebcb524] button{border-bottom-right-radius:0;border-top-right-radius:0}.m-search-select__input[data-v-8ebcb524] .common-field__input{border-bottom-left-radius:0;border-left-width:0;border-top-left-radius:0}}.m-range-slider--disabled .m-range-slider__base{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-subtle),1);background-color:rgba(var(--color-bg-content-subtle),var(--tw-bg-opacity))}.m-range-slider--disabled .m-range-slider__connect,.m-range-slider--disabled .m-range-slider__handle{--tw-bg-opacity:1;background-color:rgba(var(--color-bg-content-default),1);background-color:rgba(var(--color-bg-content-default),var(--tw-bg-opacity))}.m-input__done-icon,.m-input__reset-button{display:none}.m-input__left-icon,.m-input__right-icon{--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}.m-input--filled:not(.m-input--filled.common-field--error):not(:focus-within) .m-input__done-icon{display:flex}.m-input--filled:focus-within .m-input__reset-button{display:flex}.m-input--filled .m-input__left-icon,.m-input--filled .m-input__right-icon{--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}.m-skeleton-item:after{height:100%;left:0;position:absolute;top:0;width:100%;--tw-translate-x:-100%;animation:shimmer 1.5s infinite;background-image:linear-gradient(90deg,hsla(0,0%,100%,0),hsla(0,0%,100%,.3),rgba(37,22,22,0));content:"";transform:translate(-100%,var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y));transform:translate(var(--tw-translate-x),var(--tw-translate-y)) rotate(var(--tw-rotate)) skew(var(--tw-skew-x)) skewY(var(--tw-skew-y)) scaleX(var(--tw-scale-x)) scaleY(var(--tw-scale-y))}@keyframes shimmer{to{transform:translate(100%)}}.vc-mui-brand{--vc-accent-50:rgba(var(--color-brand-sunken));--vc-accent-100:rgba(var(--color-brand-sunken));--vc-accent-200:rgba(var(--color-brand-subtlest));--vc-accent-300:rgba(var(--color-brand-subtle));--vc-accent-400:rgba(var(--color-brand-default));--vc-accent-500:rgba(var(--color-brand-bold));--vc-accent-600:rgba(var(--color-brand-bolder));--vc-accent-700:rgba(var(--color-brand-boldest));--vc-accent-800:rgba(var(--color-brand-strong));--vc-accent-900:rgba(var(--color-brand-stronger))}.m-date-picker-input-wrapper{display:flex;flex-direction:column;gap:.5rem;justify-content:space-between}.m-date-picker-input-wrapper__inline{align-items:center;flex-direction:row}.m-date-picker-input-wrapper__label{font-size:.75rem;line-height:1rem}.m-date-picker .vc-header{flex-grow:1;margin-bottom:.75rem;margin-top:.75rem}.m-date-picker .vc-title:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.m-date-picker .vc-title:focus-visible{--tw-ring-offset-width:2px;--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.m-date-picker .vc-arrow{border-style:solid;border-width:1px;--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity))}.m-date-picker .vc-pane{min-width:21.875rem}.m-date-picker .vc-popover-content{border-width:0}.m-date-picker .vc-popover-content .vc-nav-popover-container{min-width:13rem}.m-table--fixed-header th{position:sticky;top:0}.m-table--striped tr:nth-child(2n){--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-table--border-bottom tr{border-bottom-width:1px;--tw-border-opacity:1;border-bottom-color:rgba(var(--color-border-bold),var(--tw-border-opacity))}.m-table--hover-bg tr:hover{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity))}.m-table th{--tw-bg-opacity:1;background-color:rgba(var(--color-surface-default),1);background-color:rgba(var(--color-surface-default),var(--tw-bg-opacity));font-size:.75rem;font-weight:400;line-height:1rem;--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity));padding:.75rem 1rem}.m-table td{padding:.5rem 1rem}@media (min-width:1280px){.m-table td{padding-bottom:1rem;padding-top:1rem}}.m-container{--container-max-width:90rem;--container-ideal-width:94vw;max-width:90rem;max-width:var(--container-max-width);min-width:16rem;width:94vw;width:var(--container-ideal-width);width:clamp(16rem,94vw,90rem);width:clamp(16rem,var(--container-ideal-width),var(--container-max-width))}@media screen and (min-width:768px){.m-container{--container-ideal-width:92.5vw}}.m-container--percentages{--container-ideal-width:94%;min-width:10rem;width:clamp(10rem,94%,var(--container-max-width));width:clamp(10rem,var(--container-ideal-width),var(--container-max-width))}@media screen and (min-width:768px){.m-container--percentages{--container-ideal-width:92.5%}}.m-calendar{border-style:none}.m-calendar .vc-header{flex-grow:1;margin-bottom:.75rem;margin-top:.75rem}.m-calendar .vc-title:focus{--tw-ring-offset-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);--tw-ring-shadow:var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color);box-shadow:var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color),var(--tw-ring-inset) 0 0 0 calc(2px + var(--tw-ring-offset-width)) var(--tw-ring-color),0 0 #0000;box-shadow:var(--tw-ring-offset-shadow),var(--tw-ring-shadow),var(--tw-shadow,0 0 #0000)}.m-calendar .vc-title:focus-visible{--tw-ring-offset-width:2px;--tw-ring-offset-color:rgba(var(--color-brand-bold),1)}.m-calendar .vc-arrow{border-style:solid;border-width:1px;--tw-border-opacity:1;border-color:rgba(var(--color-border-default),var(--tw-border-opacity));padding:.75rem}.m-calendar .vc-arrows-container{padding-left:0;padding-right:0}.m-calendar .vc-pane,.m-calendar .vc-popover-content{min-width:350px}.vc-base-icon{display:inline-block;stroke:currentColor;stroke-width:2;fill:none}.vc-header{display:grid;grid-gap:4px;align-items:center;height:30px;margin-top:10px;padding-left:10px;padding-right:10px}.vc-header.is-lg{font-size:18px;font-size:var(--vc-text-lg)}.vc-header.is-xl{font-size:20px;font-size:var(--vc-text-xl)}.vc-header.is-2xl{font-size:24px;font-size:var(--vc-text-2xl)}.vc-header .vc-next,.vc-header .vc-prev,.vc-header .vc-title{align-items:center;border:0;border-radius:.25rem;border-radius:var(--vc-rounded);cursor:pointer;display:flex;grid-row:1;pointer-events:auto;-webkit-user-select:none;-moz-user-select:none;user-select:none}.vc-header .vc-title{color:var(--vc-header-title-color);font-weight:600;font-weight:var(--vc-font-semibold);grid-column:title;line-height:30px;margin:0;padding:0 8px;white-space:nowrap}.vc-header .vc-title:hover{opacity:.75}.vc-header .vc-arrow{align-items:center;color:var(--vc-header-arrow-color);display:flex;height:30px;justify-content:center;margin:0;padding:0;width:28px}.vc-header .vc-arrow:hover{background:var(--vc-header-arrow-hover-bg)}.vc-header .vc-arrow:disabled{opacity:.25;pointer-events:none}.vc-header .vc-prev{grid-column:prev}.vc-header .vc-next{grid-column:next}.vc-day{min-height:32px;position:relative;z-index:1}.vc-monthly .is-not-in-month *{opacity:0;pointer-events:none}.vc-day-layer{bottom:0;left:0;pointer-events:none;position:absolute;right:0;top:0}.vc-day-box-center-center{align-items:center;display:flex;justify-content:center;transform-origin:50% 50%}.vc-day-box-left-center{align-items:center;display:flex;justify-content:flex-start;transform-origin:0 50%}.vc-day-box-right-center{align-items:center;display:flex;justify-content:flex-end;transform-origin:100% 50%}.vc-day-box-center-bottom{align-items:flex-end;display:flex;justify-content:center}.vc-day-content{align-items:center;border-radius:9999px;border-radius:var(--vc-rounded-full);cursor:pointer;display:flex;font-size:14px;font-size:var(--vc-text-sm);font-weight:500;font-weight:var(--vc-font-medium);height:28px;justify-content:center;line-height:28px;-webkit-user-select:none;-moz-user-select:none;user-select:none;width:28px}.vc-day-content:hover{background-color:var(--vc-day-content-hover-bg)}.vc-day-content.vc-disabled{color:var(--vc-day-content-disabled-color)}.vc-content:not(.vc-base){color:var(--vc-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-highlights{overflow:hidden;pointer-events:none;z-index:-1}.vc-highlight{height:28px;width:28px}.vc-highlight.vc-highlight-base-start{border-radius:0!important;border-right-width:0!important;width:50%!important}.vc-highlight.vc-highlight-base-end{border-left-width:0!important;border-radius:0!important;width:50%!important}.vc-highlight.vc-highlight-base-middle{border-left-width:0!important;border-radius:0!important;border-right-width:0!important;margin:0 -1px;width:100%}.vc-highlight-bg-none,.vc-highlight-bg-outline{background-color:var(--vc-highlight-outline-bg);border:2px solid;border-color:var(--vc-highlight-outline-border);border-radius:9999px;border-radius:var(--vc-rounded-full)}.vc-highlight-bg-light{background-color:var(--vc-highlight-light-bg)}.vc-highlight-bg-light,.vc-highlight-bg-solid{border-radius:9999px;border-radius:var(--vc-rounded-full)}.vc-highlight-bg-solid{background-color:var(--vc-highlight-solid-bg)}.vc-highlight-content-none,.vc-highlight-content-outline{color:var(--vc-highlight-outline-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-highlight-content-light{color:var(--vc-highlight-light-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-highlight-content-solid{color:var(--vc-highlight-solid-content-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-dots{align-items:center;display:flex;justify-content:center}.vc-dot{border-radius:9999px;height:5px;transition:all .13s ease-in;transition:var(--vc-day-content-transition);width:5px}.vc-dot:not(:last-child){margin-right:3px}.vc-bars{align-items:center;display:flex;justify-content:flex-start;width:75%}.vc-bar{flex-grow:1;height:3px;transition:all .13s ease-in;transition:var(--vc-day-content-transition)}.vc-dot{background-color:var(--vc-dot-bg)}.vc-bar{background-color:var(--vc-bar-bg)}.vc-pane{min-width:250px}.vc-weeknumber{align-items:center;display:flex;justify-content:center;position:absolute}.vc-weeknumber.is-left{left:-26px;left:calc(var(--vc-weeknumber-offset-inside)*-1)}.vc-weeknumber.is-right{right:-26px;right:calc(var(--vc-weeknumber-offset-inside)*-1)}.vc-weeknumber.is-left-outside{left:-34px;left:calc(var(--vc-weeknumber-offset-outside)*-1)}.vc-weeknumber.is-right-outside{right:-34px;right:calc(var(--vc-weeknumber-offset-outside)*-1)}.vc-weeknumber-content{align-items:center;color:var(--vc-weeknumber-color);display:flex;font-size:12px;font-size:var(--vc-text-xs);font-style:italic;font-weight:500;font-weight:var(--vc-font-medium);height:28px;justify-content:center;margin-top:2px;-webkit-user-select:none;-moz-user-select:none;user-select:none;width:28px}.vc-weeks{position:relative;-webkit-overflow-scrolling:touch;min-width:232px;padding:6px}.vc-weeks.vc-show-weeknumbers-left{margin-left:26px;margin-left:var(--vc-weeknumber-offset-inside)}.vc-weeks.vc-show-weeknumbers-right{margin-right:26px;margin-right:var(--vc-weeknumber-offset-inside)}.vc-weekday{color:var(--vc-weekday-color);cursor:default;font-size:14px;font-size:var(--vc-text-sm);font-weight:700;font-weight:var(--vc-font-bold);line-height:14px;padding-bottom:8px;padding-top:4px;text-align:center;-webkit-user-select:none;-moz-user-select:none;user-select:none}.vc-week,.vc-weekdays{display:grid;grid-template-columns:repeat(7,1fr);position:relative}.vc-popover-content-wrapper{--popover-horizontal-content-offset:8px;--popover-vertical-content-offset:10px;--popover-caret-horizontal-offset:18px;--popover-caret-vertical-offset:8px;display:block;outline:none;position:absolute;z-index:10}.vc-popover-content-wrapper:not(.is-interactive){pointer-events:none}.vc-popover-content{background-color:var(--vc-popover-content-bg);border:1px solid;border-color:var(--vc-popover-content-border);border-radius:.5rem;border-radius:var(--vc-rounded-lg);box-shadow:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -2px rgba(0,0,0,.05);box-shadow:var(--vc-shadow-lg);color:var(--vc-popover-content-color);font-weight:500;font-weight:var(--vc-font-medium);outline:none;padding:4px;position:relative;z-index:10}.vc-popover-content.direction-bottom{margin-top:var(--popover-vertical-content-offset)}.vc-popover-content.direction-top{margin-bottom:var(--popover-vertical-content-offset)}.vc-popover-content.direction-left{margin-right:var(--popover-horizontal-content-offset)}.vc-popover-content.direction-right{margin-left:var(--popover-horizontal-content-offset)}.vc-popover-caret{background-color:inherit;border-left:inherit;border-top:inherit;content:"";display:block;height:12px;position:absolute;width:12px;z-index:-1}.vc-popover-caret.direction-bottom{top:0}.vc-popover-caret.direction-bottom.align-left{transform:translateY(-50%) rotate(45deg)}.vc-popover-caret.direction-bottom.align-center{transform:translate(-50%) translateY(-50%) rotate(45deg)}.vc-popover-caret.direction-bottom.align-right{transform:translateY(-50%) rotate(45deg)}.vc-popover-caret.direction-top{top:100%}.vc-popover-caret.direction-top.align-left{transform:translateY(-50%) rotate(-135deg)}.vc-popover-caret.direction-top.align-center{transform:translate(-50%) translateY(-50%) rotate(-135deg)}.vc-popover-caret.direction-top.align-right{transform:translateY(-50%) rotate(-135deg)}.vc-popover-caret.direction-left{left:100%}.vc-popover-caret.direction-left.align-top{transform:translate(-50%) rotate(135deg)}.vc-popover-caret.direction-left.align-middle{transform:translateY(-50%) translate(-50%) rotate(135deg)}.vc-popover-caret.direction-left.align-bottom{transform:translate(-50%) rotate(135deg)}.vc-popover-caret.direction-right{left:0}.vc-popover-caret.direction-right.align-top{transform:translate(-50%) rotate(-45deg)}.vc-popover-caret.direction-right.align-middle{transform:translateY(-50%) translate(-50%) rotate(-45deg)}.vc-popover-caret.direction-right.align-bottom{transform:translate(-50%) rotate(-45deg)}.vc-popover-caret.align-left{left:var(--popover-caret-horizontal-offset)}.vc-popover-caret.align-center{left:50%}.vc-popover-caret.align-right{right:var(--popover-caret-horizontal-offset)}.vc-popover-caret.align-top{top:var(--popover-caret-vertical-offset)}.vc-popover-caret.align-middle{top:50%}.vc-popover-caret.align-bottom{bottom:var(--popover-caret-vertical-offset)}.vc-nav-header{display:flex;justify-content:space-between}.vc-nav-arrow,.vc-nav-item,.vc-nav-title{border:0;border-radius:.25rem;border-radius:var(--vc-rounded);cursor:pointer;font-size:14px;font-size:var(--vc-text-sm);margin:0;-webkit-user-select:none;-moz-user-select:none;user-select:none;white-space:nowrap}.vc-nav-arrow:hover,.vc-nav-item:hover,.vc-nav-title:hover{background-color:var(--vc-nav-hover-bg)}.vc-nav-arrow:disabled,.vc-nav-item:disabled,.vc-nav-title:disabled{opacity:.25;pointer-events:none}.vc-nav-title{color:var(--vc-nav-title-color);font-weight:700;font-weight:var(--vc-font-bold);height:30px;line-height:1.375;line-height:var(--vc-leading-snug);padding:0 6px}.vc-nav-arrow{align-items:center;color:var(--vc-header-arrow-color);display:flex;height:30px;justify-content:center;padding:0;width:26px}.vc-nav-items{display:grid;grid-template-columns:repeat(3,1fr);grid-row-gap:2px;grid-column-gap:5px;margin-top:2px}.vc-nav-item{font-weight:600;font-weight:var(--vc-font-semibold);line-height:1.375;line-height:var(--vc-leading-snug);padding:6px 0;text-align:center;width:48px}.vc-nav-item.is-active{background-color:var(--vc-nav-item-active-bg);color:var(--vc-nav-item-active-color);font-weight:700;font-weight:var(--vc-font-bold)}.vc-nav-item.is-active:not(:focus){box-shadow:var(--vc-nav-item-active-box-shadow)}.vc-nav-item.is-current{color:var(--vc-nav-item-current-color)}.vc-day-popover-row{align-items:center;display:flex;transition:all .13s ease-in;transition:var(--vc-day-content-transition)}.vc-day-popover-row-indicator{align-items:center;display:flex;flex-grow:0;justify-content:center;width:15px}.vc-day-popover-row-indicator span{transition:all .13s ease-in;transition:var(--vc-day-content-transition)}.vc-day-popover-row-label{align-items:center;display:flex;flex-grow:1;flex-wrap:none;font-size:12px;font-size:var(--vc-text-xs);line-height:1.5;line-height:var(--vc-leading-normal);margin-left:4px;margin-right:4px;width:-moz-max-content;width:max-content}.vc-day-popover-row-highlight{border-radius:3px;height:5px;width:8px}.vc-day-popover-row-bar{height:3px;width:10px}.vc-pane-container{position:relative;width:100%}.vc-pane-container.in-transition{overflow:hidden}.vc-pane-layout{display:grid}.vc-pane-header-wrapper{pointer-events:none;position:absolute;top:0;width:100%}.vc-day-popover-container{font-size:12px;font-size:var(--vc-text-xs);font-weight:500;font-weight:var(--vc-font-medium)}.vc-day-popover-header{color:var(--vc-day-popover-header-color);font-size:12px;font-size:var(--vc-text-xs);font-weight:600;font-weight:var(--vc-font-semibold);text-align:center}.vc-base-select{position:relative}.vc-base-select select{-webkit-appearance:none;-moz-appearance:none;appearance:none;background-color:transparent;background-image:none;border-radius:.25rem;border-radius:var(--vc-rounded);color:var(--vc-select-color);cursor:pointer;display:block;font-size:16px;font-size:var(--vc-text-base);font-weight:500;font-weight:var(--vc-font-medium);height:30px;line-height:var(--leading-none);margin:0;padding:0 4px;text-align:center;text-indent:0;width:-moz-max-content;width:max-content}.vc-base-select select:hover{background-color:var(--vc-select-hover-bg)}.vc-base-select select.vc-has-icon{padding:0 24px 0 10px}.vc-base-select select.vc-small{font-size:14px;font-size:var(--vc-text-sm)}.vc-base-select select.vc-small.vc-has-icon{padding:0 20px 0 8}.vc-base-select select.vc-align-left{text-align:left}.vc-base-select select.vc-align-right{text-align:right}.vc-base-select .vc-base-icon{opacity:.6;pointer-events:none;position:absolute;right:4px;top:6px}.vc-time-picker{align-items:center;display:flex;flex-direction:column;padding:8px 4px}.vc-time-picker.vc-invalid{opacity:.5;pointer-events:none}.vc-time-picker.vc-attached{border-top:1px solid var(--vc-time-picker-border)}.vc-time-picker>*+*{margin-top:4px}.vc-time-header{align-items:center;display:flex;font-size:14px;font-size:var(--vc-text-sm);font-weight:600;font-weight:var(--vc-font-semibold);line-height:21px;margin-top:-4px;padding-left:4px;padding-right:4px;text-transform:uppercase}.vc-time-select-group{align-items:center;background:var(--vc-time-select-group-bg);border:1px solid var(--vc-time-select-group-border);border-radius:.375rem;border-radius:var(--vc-rounded-md);display:inline-flex;padding:0 4px}.vc-time-select-group .vc-base-icon{color:var(--vc-time-select-group-icon-color);margin-right:4px}.vc-time-weekday{color:var(--vc-time-weekday-color);letter-spacing:var(--tracking-wide)}.vc-time-month{color:var(--vc-time-month-color);margin-left:8px}.vc-time-day{color:var(--vc-time-day-color);margin-left:4px}.vc-time-year{color:var(--vc-time-year-color);margin-left:8px}.vc-time-colon{margin:0 1px 2px 2px}.vc-time-decimal{margin:0 0 0 1px}.vc-none-enter-active,.vc-none-leave-active{transition-duration:0s}.vc-fade-enter-active,.vc-fade-leave-active,.vc-slide-down-enter-active,.vc-slide-down-leave-active,.vc-slide-fade-enter-active,.vc-slide-fade-leave-active,.vc-slide-left-enter-active,.vc-slide-left-leave-active,.vc-slide-right-enter-active,.vc-slide-right-leave-active,.vc-slide-up-enter-active,.vc-slide-up-leave-active{backface-visibility:hidden;pointer-events:none;transition:transform .15s ease,opacity .15s ease;transition:transform var(--vc-slide-duration) var(--vc-slide-timing),opacity var(--vc-slide-duration) var(--vc-slide-timing)}.vc-fade-leave-active,.vc-none-leave-active,.vc-slide-down-leave-active,.vc-slide-left-leave-active,.vc-slide-right-leave-active,.vc-slide-up-leave-active{position:absolute!important;width:100%}.vc-fade-enter-from,.vc-fade-leave-to,.vc-none-enter-from,.vc-none-leave-to,.vc-slide-down-enter-from,.vc-slide-down-leave-to,.vc-slide-fade-enter-from,.vc-slide-fade-leave-to,.vc-slide-left-enter-from,.vc-slide-left-leave-to,.vc-slide-right-enter-from,.vc-slide-right-leave-to,.vc-slide-up-enter-from,.vc-slide-up-leave-to{opacity:0}.vc-slide-fade-enter-from.direction-left,.vc-slide-fade-leave-to.direction-left,.vc-slide-left-enter-from,.vc-slide-right-leave-to{transform:translate(22px);transform:translate(var(--vc-slide-translate))}.vc-slide-fade-enter-from.direction-right,.vc-slide-fade-leave-to.direction-right,.vc-slide-left-leave-to,.vc-slide-right-enter-from{transform:translate(-22px);transform:translate(calc(var(--vc-slide-translate)*-1))}.vc-slide-down-leave-to,.vc-slide-fade-enter-from.direction-top,.vc-slide-fade-leave-to.direction-top,.vc-slide-up-enter-from{transform:translateY(22px);transform:translateY(var(--vc-slide-translate))}.vc-slide-down-enter-from,.vc-slide-fade-enter-from.direction-bottom,.vc-slide-fade-leave-to.direction-bottom,.vc-slide-up-leave-to{transform:translateY(-22px);transform:translateY(calc(var(--vc-slide-translate)*-1))}:root{--vc-white:#fff;--vc-black:#000;--vc-gray-50:#f8fafc;--vc-gray-100:#f1f5f9;--vc-gray-200:#e2e8f0;--vc-gray-300:#cbd5e1;--vc-gray-400:#94a3b8;--vc-gray-500:#64748b;--vc-gray-600:#475569;--vc-gray-700:#334155;--vc-gray-800:#1e293b;--vc-gray-900:#0f172a;--vc-font-family:BlinkMacSystemFont,-apple-system,"Segoe UI","Roboto","Oxygen","Ubuntu","Cantarell","Fira Sans","Droid Sans","Helvetica Neue","Helvetica","Arial",sans-serif;--vc-font-normal:400;--vc-font-medium:500;--vc-font-semibold:600;--vc-font-bold:700;--vc-text-2xs:10px;--vc-text-xs:12px;--vc-text-sm:14px;--vc-text-base:16px;--vc-text-lg:18px;--vc-text-xl:20px;--vc-text-2xl:24px;--vc-leading-none:1;--vc-leading-tight:1.25;--vc-leading-snug:1.375;--vc-leading-normal:1.5;--vc-rounded:.25rem;--vc-rounded-md:.375rem;--vc-rounded-lg:.5rem;--vc-rounded-full:9999px;--vc-shadow:0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px 0 rgba(0,0,0,.06);--vc-shadow-lg:0 10px 15px -3px rgba(0,0,0,.1),0 4px 6px -2px rgba(0,0,0,.05);--vc-shadow-inner:inset 0 2px 4px 0 rgba(0,0,0,.06);--vc-slide-translate:22px;--vc-slide-duration:.15s;--vc-slide-timing:ease;--vc-day-content-transition:all .13s ease-in;--vc-weeknumber-offset-inside:26px;--vc-weeknumber-offset-outside:34px}.vc-gray{--vc-accent-50:var(--vc-gray-50);--vc-accent-100:var(--vc-gray-100);--vc-accent-200:var(--vc-gray-200);--vc-accent-300:var(--vc-gray-300);--vc-accent-400:var(--vc-gray-400);--vc-accent-500:var(--vc-gray-500);--vc-accent-600:var(--vc-gray-600);--vc-accent-700:var(--vc-gray-700);--vc-accent-800:var(--vc-gray-800);--vc-accent-900:var(--vc-gray-900)}.vc-red{--vc-accent-50:#fef2f2;--vc-accent-100:#fee2e2;--vc-accent-200:#fecaca;--vc-accent-300:#fca5a5;--vc-accent-400:#f87171;--vc-accent-500:#ef4444;--vc-accent-600:#dc2626;--vc-accent-700:#b91c1c;--vc-accent-800:#991b1b;--vc-accent-900:#7f1d1d}.vc-orange{--vc-accent-50:#fff7ed;--vc-accent-100:#ffedd5;--vc-accent-200:#fed7aa;--vc-accent-300:#fdba74;--vc-accent-400:#fb923c;--vc-accent-500:#f97316;--vc-accent-600:#ea580c;--vc-accent-700:#c2410c;--vc-accent-800:#9a3412;--vc-accent-900:#7c2d12}.vc-yellow{--vc-accent-50:#fefce8;--vc-accent-100:#fef9c3;--vc-accent-200:#fef08a;--vc-accent-300:#fde047;--vc-accent-400:#facc15;--vc-accent-500:#eab308;--vc-accent-600:#ca8a04;--vc-accent-700:#a16207;--vc-accent-800:#854d0e;--vc-accent-900:#713f12}.vc-green{--vc-accent-50:#f0fdf4;--vc-accent-100:#dcfce7;--vc-accent-200:#bbf7d0;--vc-accent-300:#86efac;--vc-accent-400:#4ade80;--vc-accent-500:#22c55e;--vc-accent-600:#16a34a;--vc-accent-700:#15803d;--vc-accent-800:#166534;--vc-accent-900:#14532d}.vc-teal{--vc-accent-50:#f0fdfa;--vc-accent-100:#ccfbf1;--vc-accent-200:#99f6e4;--vc-accent-300:#5eead4;--vc-accent-400:#2dd4bf;--vc-accent-500:#14b8a6;--vc-accent-600:#0d9488;--vc-accent-700:#0f766e;--vc-accent-800:#115e59;--vc-accent-900:#134e4a}.vc-blue{--vc-accent-50:#eff6ff;--vc-accent-100:#dbeafe;--vc-accent-200:#bfdbfe;--vc-accent-300:#93c5fd;--vc-accent-400:#60a5fa;--vc-accent-500:#3b82f6;--vc-accent-600:#2563eb;--vc-accent-700:#1d4ed8;--vc-accent-800:#1e40af;--vc-accent-900:#1e3a8a}.vc-indigo{--vc-accent-50:#eef2ff;--vc-accent-100:#e0e7ff;--vc-accent-200:#c7d2fe;--vc-accent-300:#a5b4fc;--vc-accent-400:#818cf8;--vc-accent-500:#6366f1;--vc-accent-600:#4f46e5;--vc-accent-700:#4338ca;--vc-accent-800:#3730a3;--vc-accent-900:#312e81}.vc-purple{--vc-accent-50:#faf5ff;--vc-accent-100:#f3e8ff;--vc-accent-200:#e9d5ff;--vc-accent-300:#d8b4fe;--vc-accent-400:#c084fc;--vc-accent-500:#a855f7;--vc-accent-600:#9333ea;--vc-accent-700:#7e22ce;--vc-accent-800:#6b21a8;--vc-accent-900:#581c87}.vc-pink{--vc-accent-50:#fdf2f8;--vc-accent-100:#fce7f3;--vc-accent-200:#fbcfe8;--vc-accent-300:#f9a8d4;--vc-accent-400:#f472b6;--vc-accent-500:#ec4899;--vc-accent-600:#db2777;--vc-accent-700:#be185d;--vc-accent-800:#9d174d;--vc-accent-900:#831843}.vc-focus:focus-within{box-shadow:var(--vc-focus-ring);outline:0}.vc-light{--vc-color:var(--vc-gray-900);--vc-bg:var(--vc-white);--vc-border:var(--vc-gray-300);--vc-hover-bg:rgba(204,214,224,.3);--vc-focus-ring:0 0 0 2px rgba(59,131,246,.4);--vc-header-arrow-color:var(--vc-gray-500);--vc-header-arrow-hover-bg:var(--vc-gray-200);--vc-header-title-color:var(--vc-gray-900);--vc-weekday-color:var(--vc-gray-500);--vc-weeknumber-color:var(--vc-gray-400);--vc-nav-hover-bg:var(--vc-gray-200);--vc-nav-title-color:var(--vc-gray-900);--vc-nav-item-hover-box-shadow:none;--vc-nav-item-active-color:var(--vc-white);--vc-nav-item-active-bg:var(--vc-accent-500);--vc-nav-item-active-box-shadow:var(--vc-shadow);--vc-nav-item-current-color:var(--vc-accent-600);--vc-day-popover-container-color:var(--vc-white);--vc-day-popover-container-bg:var(--vc-gray-800);--vc-day-popover-container-border:var(--vc-gray-700);--vc-day-popover-header-color:var(--vc-gray-700);--vc-popover-content-color:var(--vc-gray-900);--vc-popover-content-bg:var(--vc-gray-50);--vc-popover-content-border:var(--vc-gray-300);--vc-time-picker-border:var(--vc-gray-300);--vc-time-weekday-color:var(--vc-gray-700);--vc-time-month-color:var(--vc-accent-600);--vc-time-day-color:var(--vc-accent-600);--vc-time-year-color:var(--vc-gray-500);--vc-time-select-group-bg:var(--vc-gray-50);--vc-time-select-group-border:var(--vc-gray-300);--vc-time-select-group-icon-color:var(--vc-accent-500);--vc-select-color:var(--vc-gray-900);--vc-select-bg:var(--vg-gray-50);--vc-select-hover-bg:var(--vc-gray-100);--vc-select-border:var(--vc-gray-300);--vc-day-content-hover-bg:var(--vc-hover-bg);--vc-day-content-disabled-color:var(--vc-gray-400)}.vc-light .vc-attr,.vc-light.vc-attr{--vc-content-color:var(--vc-accent-600);--vc-highlight-outline-bg:var(--vc-white);--vc-highlight-outline-border:var(--vc-accent-600);--vc-highlight-outline-content-color:var(--vc-accent-700);--vc-highlight-light-bg:var(--vc-accent-200);--vc-highlight-light-content-color:var(--vc-accent-900);--vc-highlight-solid-bg:var(--vc-accent-600);--vc-highlight-solid-content-color:var(--vc-white);--vc-dot-bg:var(--vc-accent-600);--vc-bar-bg:var(--vc-accent-600)}.vc-dark{--vc-color:var(--vc-white);--vc-bg:var(--vc-gray-900);--vc-border:var(--vc-gray-700);--vc-hover-bg:rgba(114,129,151,.3);--vc-focus-ring:0 0 0 2px rgba(59,130,246,.7);--vc-header-arrow-color:var(--vc-gray-300);--vc-header-arrow-hover-bg:var(--vc-gray-800);--vc-header-title-color:var(--vc-gray-100);--vc-weekday-color:var(--vc-accent-200);--vc-weeknumber-color:var(--vc-gray-500);--vc-nav-hover-bg:var(--vc-gray-700);--vc-nav-title-color:var(--vc-gray-100);--vc-nav-item-hover-box-shadow:none;--vc-nav-item-active-color:var(--vc-white);--vc-nav-item-active-bg:var(--vc-accent-500);--vc-nav-item-active-box-shadow:none;--vc-nav-item-current-color:var(--vc-accent-400);--vc-day-popover-container-color:var(--vc-gray-800);--vc-day-popover-container-bg:var(--vc-white);--vc-day-popover-container-border:var(--vc-gray-100);--vc-day-popover-header-color:var(--vc-gray-300);--vc-popover-content-color:var(--vc-white);--vc-popover-content-bg:var(--vc-gray-800);--vc-popover-content-border:var(--vc-gray-700);--vc-time-picker-border:var(--vc-gray-700);--vc-time-weekday-color:var(--vc-gray-400);--vc-time-month-color:var(--vc-accent-400);--vc-time-day-color:var(--vc-accent-400);--vc-time-year-color:var(--vc-gray-500);--vc-time-select-group-bg:var(--vc-gray-700);--vc-time-select-group-border:var(--vc-gray-500);--vc-time-select-group-icon-color:var(--vc-accent-400);--vc-select-color:var(--vc-gray-200);--vc-select-bg:var(--vc-gray-700);--vc-select-hover-bg:var(--vc-gray-600);--vc-select-border:var(--vc-gray-500);--vc-day-content-hover-bg:var(--vc-hover-bg);--vc-day-content-disabled-color:var(--vc-gray-600)}.vc-dark .vc-attr,.vc-dark.vc-attr{--vc-content-color:var(--vc-accent-500);--vc-highlight-outline-bg:var(--vc-gray-900);--vc-highlight-outline-border:var(--vc-accent-300);--vc-highlight-outline-content-color:var(--vc-accent-200);--vc-highlight-light-bg:var(--vc-accent-800);--vc-highlight-light-content-color:var(--vc-accent-100);--vc-highlight-solid-bg:var(--vc-accent-500);--vc-highlight-solid-content-color:var(--vc-white);--vc-dot-bg:var(--vc-accent-500);--vc-bar-bg:var(--vc-accent-500)}.vc-container{background-color:var(--vc-bg);color:var(--vc-color);display:inline-flex;font-family:BlinkMacSystemFont,-apple-system,Segoe UI,Roboto,Oxygen,Ubuntu,Cantarell,Fira Sans,Droid Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-family:var(--vc-font-family);height:-moz-max-content;height:max-content;position:relative;width:-moz-max-content;width:max-content;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;-webkit-tap-highlight-color:transparent}.vc-container,.vc-container *{box-sizing:border-box}.vc-container :focus,.vc-container:focus{outline:none}.vc-container .vc-container{border:none}.vc-bordered{border:1px solid;border-color:var(--vc-border);border-radius:.5rem;border-radius:var(--vc-rounded-lg)}.vc-expanded{min-width:100%}.vc-transparent{background-color:transparent}.vc-date-picker-content{background-color:var(--vc-bg);padding:0}.vc-date-picker-content .vc-container{border:0}</style> <style>@font-face{font-family:swiper-icons;font-style:normal;font-weight:400;src:url("data:application/font-woff;charset=utf-8;base64, d09GRgABAAAAAAZgABAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGRlRNAAAGRAAAABoAAAAci6qHkUdERUYAAAWgAAAAIwAAACQAYABXR1BPUwAABhQAAAAuAAAANuAY7+xHU1VCAAAFxAAAAFAAAABm2fPczU9TLzIAAAHcAAAASgAAAGBP9V5RY21hcAAAAkQAAACIAAABYt6F0cBjdnQgAAACzAAAAAQAAAAEABEBRGdhc3AAAAWYAAAACAAAAAj//wADZ2x5ZgAAAywAAADMAAAD2MHtryVoZWFkAAABbAAAADAAAAA2E2+eoWhoZWEAAAGcAAAAHwAAACQC9gDzaG10eAAAAigAAAAZAAAArgJkABFsb2NhAAAC0AAAAFoAAABaFQAUGG1heHAAAAG8AAAAHwAAACAAcABAbmFtZQAAA/gAAAE5AAACXvFdBwlwb3N0AAAFNAAAAGIAAACE5s74hXjaY2BkYGAAYpf5Hu/j+W2+MnAzMYDAzaX6QjD6/4//Bxj5GA8AuRwMYGkAPywL13jaY2BkYGA88P8Agx4j+/8fQDYfA1AEBWgDAIB2BOoAeNpjYGRgYNBh4GdgYgABEMnIABJzYNADCQAACWgAsQB42mNgYfzCOIGBlYGB0YcxjYGBwR1Kf2WQZGhhYGBiYGVmgAFGBiQQkOaawtDAoMBQxXjg/wEGPcYDDA4wNUA2CCgwsAAAO4EL6gAAeNpj2M0gyAACqxgGNWBkZ2D4/wMA+xkDdgAAAHjaY2BgYGaAYBkGRgYQiAHyGMF8FgYHIM3DwMHABGQrMOgyWDLEM1T9/w8UBfEMgLzE////P/5//f/V/xv+r4eaAAeMbAxwIUYmIMHEgKYAYjUcsDAwsLKxc3BycfPw8jEQA/gZBASFhEVExcQlJKWkZWTl5BUUlZRVVNXUNTQZBgMAAMR+E+gAEQFEAAAAKgAqACoANAA+AEgAUgBcAGYAcAB6AIQAjgCYAKIArAC2AMAAygDUAN4A6ADyAPwBBgEQARoBJAEuATgBQgFMAVYBYAFqAXQBfgGIAZIBnAGmAbIBzgHsAAB42u2NMQ6CUAyGW568x9AneYYgm4MJbhKFaExIOAVX8ApewSt4Bic4AfeAid3VOBixDxfPYEza5O+Xfi04YADggiUIULCuEJK8VhO4bSvpdnktHI5QCYtdi2sl8ZnXaHlqUrNKzdKcT8cjlq+rwZSvIVczNiezsfnP/uznmfPFBNODM2K7MTQ45YEAZqGP81AmGGcF3iPqOop0r1SPTaTbVkfUe4HXj97wYE+yNwWYxwWu4v1ugWHgo3S1XdZEVqWM7ET0cfnLGxWfkgR42o2PvWrDMBSFj/IHLaF0zKjRgdiVMwScNRAoWUoH78Y2icB/yIY09An6AH2Bdu/UB+yxopYshQiEvnvu0dURgDt8QeC8PDw7Fpji3fEA4z/PEJ6YOB5hKh4dj3EvXhxPqH/SKUY3rJ7srZ4FZnh1PMAtPhwP6fl2PMJMPDgeQ4rY8YT6Gzao0eAEA409DuggmTnFnOcSCiEiLMgxCiTI6Cq5DZUd3Qmp10vO0LaLTd2cjN4fOumlc7lUYbSQcZFkutRG7g6JKZKy0RmdLY680CDnEJ+UMkpFFe1RN7nxdVpXrC4aTtnaurOnYercZg2YVmLN/d/gczfEimrE/fs/bOuq29Zmn8tloORaXgZgGa78yO9/cnXm2BpaGvq25Dv9S4E9+5SIc9PqupJKhYFSSl47+Qcr1mYNAAAAeNptw0cKwkAAAMDZJA8Q7OUJvkLsPfZ6zFVERPy8qHh2YER+3i/BP83vIBLLySsoKimrqKqpa2hp6+jq6RsYGhmbmJqZSy0sraxtbO3sHRydnEMU4uR6yx7JJXveP7WrDycAAAAAAAH//wACeNpjYGRgYOABYhkgZgJCZgZNBkYGLQZtIJsFLMYAAAw3ALgAeNolizEKgDAQBCchRbC2sFER0YD6qVQiBCv/H9ezGI6Z5XBAw8CBK/m5iQQVauVbXLnOrMZv2oLdKFa8Pjuru2hJzGabmOSLzNMzvutpB3N42mNgZGBg4GKQYzBhYMxJLMlj4GBgAYow/P/PAJJhLM6sSoWKfWCAAwDAjgbRAAB42mNgYGBkAIIbCZo5IPrmUn0hGA0AO8EFTQAA")}:root{--swiper-theme-color:#007aff}:host{display:block;margin-left:auto;margin-right:auto;position:relative;z-index:1}.swiper{display:block;list-style:none;margin-left:auto;margin-right:auto;overflow:hidden;overflow:clip;padding:0;position:relative;z-index:1}.swiper-vertical>.swiper-wrapper{flex-direction:column}.swiper-wrapper{box-sizing:content-box;display:flex;height:100%;position:relative;transition-property:transform;transition-timing-function:ease;transition-timing-function:var(--swiper-wrapper-transition-timing-function,initial);width:100%;z-index:1}.swiper-android .swiper-slide,.swiper-ios .swiper-slide,.swiper-wrapper{transform:translateZ(0)}.swiper-horizontal{touch-action:pan-y}.swiper-vertical{touch-action:pan-x}.swiper-slide{display:block;flex-shrink:0;height:100%;position:relative;transition-property:transform;width:100%}.swiper-slide-invisible-blank{visibility:hidden}.swiper-autoheight,.swiper-autoheight .swiper-slide{height:auto}.swiper-autoheight .swiper-wrapper{align-items:flex-start;transition-property:transform,height}.swiper-backface-hidden .swiper-slide{backface-visibility:hidden;transform:translateZ(0)}.swiper-3d.swiper-css-mode .swiper-wrapper{perspective:1200px}.swiper-3d .swiper-wrapper{transform-style:preserve-3d}.swiper-3d{perspective:1200px}.swiper-3d .swiper-cube-shadow,.swiper-3d .swiper-slide{transform-style:preserve-3d}.swiper-css-mode>.swiper-wrapper{overflow:auto;scrollbar-width:none;-ms-overflow-style:none}.swiper-css-mode>.swiper-wrapper::-webkit-scrollbar{display:none}.swiper-css-mode>.swiper-wrapper>.swiper-slide{scroll-snap-align:start start}.swiper-css-mode.swiper-horizontal>.swiper-wrapper{scroll-snap-type:x mandatory}.swiper-css-mode.swiper-vertical>.swiper-wrapper{scroll-snap-type:y mandatory}.swiper-css-mode.swiper-free-mode>.swiper-wrapper{scroll-snap-type:none}.swiper-css-mode.swiper-free-mode>.swiper-wrapper>.swiper-slide{scroll-snap-align:none}.swiper-css-mode.swiper-centered>.swiper-wrapper:before{content:"";flex-shrink:0;order:9999}.swiper-css-mode.swiper-centered>.swiper-wrapper>.swiper-slide{scroll-snap-align:center center;scroll-snap-stop:always}.swiper-css-mode.swiper-centered.swiper-horizontal>.swiper-wrapper>.swiper-slide:first-child{margin-inline-start:var(--swiper-centered-offset-before)}.swiper-css-mode.swiper-centered.swiper-horizontal>.swiper-wrapper:before{height:100%;min-height:1px;width:var(--swiper-centered-offset-after)}.swiper-css-mode.swiper-centered.swiper-vertical>.swiper-wrapper>.swiper-slide:first-child{margin-block-start:var(--swiper-centered-offset-before)}.swiper-css-mode.swiper-centered.swiper-vertical>.swiper-wrapper:before{height:var(--swiper-centered-offset-after);min-width:1px;width:100%}.swiper-3d .swiper-slide-shadow,.swiper-3d .swiper-slide-shadow-bottom,.swiper-3d .swiper-slide-shadow-left,.swiper-3d .swiper-slide-shadow-right,.swiper-3d .swiper-slide-shadow-top{height:100%;left:0;pointer-events:none;position:absolute;top:0;width:100%;z-index:10}.swiper-3d .swiper-slide-shadow{background:rgba(0,0,0,.15)}.swiper-3d .swiper-slide-shadow-left{background-image:linear-gradient(270deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-right{background-image:linear-gradient(90deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-top{background-image:linear-gradient(0deg,rgba(0,0,0,.5),transparent)}.swiper-3d .swiper-slide-shadow-bottom{background-image:linear-gradient(180deg,rgba(0,0,0,.5),transparent)}.swiper-lazy-preloader{border:4px solid #007aff;border:4px solid var(--swiper-preloader-color,var(--swiper-theme-color));border-radius:50%;border-top:4px solid transparent;box-sizing:border-box;height:42px;left:50%;margin-left:-21px;margin-top:-21px;position:absolute;top:50%;transform-origin:50%;width:42px;z-index:10}.swiper-watch-progress .swiper-slide-visible .swiper-lazy-preloader,.swiper:not(.swiper-watch-progress) .swiper-lazy-preloader{animation:swiper-preloader-spin 1s linear infinite}.swiper-lazy-preloader-white{--swiper-preloader-color:#fff}.swiper-lazy-preloader-black{--swiper-preloader-color:#000}@keyframes swiper-preloader-spin{0%{transform:rotate(0deg)}to{transform:rotate(1turn)}}</style> <style>.swiper .swiper-notification{left:0;opacity:0;pointer-events:none;position:absolute;top:0;z-index:-1000}</style> <style>.swiper-cards{overflow:visible}.swiper-cards .swiper-slide{backface-visibility:hidden;overflow:hidden;transform-origin:center bottom}</style> <style>.swiper-creative .swiper-slide{backface-visibility:hidden;overflow:hidden;transition-property:transform,opacity,height}</style> <style>.swiper-cube{overflow:visible}.swiper-cube .swiper-slide{backface-visibility:hidden;height:100%;pointer-events:none;transform-origin:0 0;visibility:hidden;width:100%;z-index:1}.swiper-cube .swiper-slide .swiper-slide{pointer-events:none}.swiper-cube.swiper-rtl .swiper-slide{transform-origin:100% 0}.swiper-cube .swiper-slide-active,.swiper-cube .swiper-slide-active .swiper-slide-active{pointer-events:auto}.swiper-cube .swiper-slide-active,.swiper-cube .swiper-slide-next,.swiper-cube .swiper-slide-prev{pointer-events:auto;visibility:visible}.swiper-cube .swiper-cube-shadow{bottom:0;height:100%;left:0;opacity:.6;position:absolute;width:100%;z-index:0}.swiper-cube .swiper-cube-shadow:before{background:#000;bottom:0;content:"";filter:blur(50px);left:0;position:absolute;right:0;top:0}.swiper-cube .swiper-slide-next+.swiper-slide{pointer-events:auto;visibility:visible}.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-bottom,.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-left,.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-right,.swiper-cube .swiper-slide-shadow-cube.swiper-slide-shadow-top{backface-visibility:hidden;z-index:0}</style> <style>.swiper-fade.swiper-free-mode .swiper-slide{transition-timing-function:ease-out}.swiper-fade .swiper-slide{pointer-events:none;transition-property:opacity}.swiper-fade .swiper-slide .swiper-slide{pointer-events:none}.swiper-fade .swiper-slide-active,.swiper-fade .swiper-slide-active .swiper-slide-active{pointer-events:auto}</style> <style>.swiper-flip{overflow:visible}.swiper-flip .swiper-slide{backface-visibility:hidden;pointer-events:none;z-index:1}.swiper-flip .swiper-slide .swiper-slide{pointer-events:none}.swiper-flip .swiper-slide-active,.swiper-flip .swiper-slide-active .swiper-slide-active{pointer-events:auto}.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-bottom,.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-left,.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-right,.swiper-flip .swiper-slide-shadow-flip.swiper-slide-shadow-top{backface-visibility:hidden;z-index:0}</style> <style>.swiper-free-mode>.swiper-wrapper{margin:0 auto;transition-timing-function:ease-out}</style> <style>.swiper-grid>.swiper-wrapper{flex-wrap:wrap}.swiper-grid-column>.swiper-wrapper{flex-direction:column;flex-wrap:wrap}</style> <style>:root{--swiper-navigation-size:44px}.swiper-button-next,.swiper-button-prev{align-items:center;color:var(--swiper-navigation-color,var(--swiper-theme-color));cursor:pointer;display:flex;height:44px;height:var(--swiper-navigation-size);justify-content:center;margin-top:-22px;margin-top:calc(0px - var(--swiper-navigation-size)/2);position:absolute;top:50%;top:var(--swiper-navigation-top-offset,50%);width:27px;width:calc(var(--swiper-navigation-size)/44*27);z-index:10}.swiper-button-next.swiper-button-disabled,.swiper-button-prev.swiper-button-disabled{cursor:auto;opacity:.35;pointer-events:none}.swiper-button-next.swiper-button-hidden,.swiper-button-prev.swiper-button-hidden{cursor:auto;opacity:0;pointer-events:none}.swiper-navigation-disabled .swiper-button-next,.swiper-navigation-disabled .swiper-button-prev{display:none!important}.swiper-button-next svg,.swiper-button-prev svg{height:100%;-o-object-fit:contain;object-fit:contain;transform-origin:center;width:100%}.swiper-rtl .swiper-button-next svg,.swiper-rtl .swiper-button-prev svg{transform:rotate(180deg)}.swiper-button-prev,.swiper-rtl .swiper-button-next{left:10px;left:var(--swiper-navigation-sides-offset,10px);right:auto}.swiper-button-lock{display:none}.swiper-button-next:after,.swiper-button-prev:after{font-family:swiper-icons;font-size:44px;font-size:var(--swiper-navigation-size);font-variant:normal;letter-spacing:0;line-height:1;text-transform:none!important}.swiper-button-prev:after,.swiper-rtl .swiper-button-next:after{content:"prev"}.swiper-button-next,.swiper-rtl .swiper-button-prev{left:auto;right:10px;right:var(--swiper-navigation-sides-offset,10px)}.swiper-button-next:after,.swiper-rtl .swiper-button-prev:after{content:"next"}</style> <style>.swiper-pagination{position:absolute;text-align:center;transform:translateZ(0);transition:opacity .3s;z-index:10}.swiper-pagination.swiper-pagination-hidden{opacity:0}.swiper-pagination-disabled>.swiper-pagination,.swiper-pagination.swiper-pagination-disabled{display:none!important}.swiper-horizontal>.swiper-pagination-bullets,.swiper-pagination-bullets.swiper-pagination-horizontal,.swiper-pagination-custom,.swiper-pagination-fraction{bottom:8px;bottom:var(--swiper-pagination-bottom,8px);left:0;top:auto;top:var(--swiper-pagination-top,auto);width:100%}.swiper-pagination-bullets-dynamic{font-size:0;overflow:hidden}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{position:relative;transform:scale(.33)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active,.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-main{transform:scale(1)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-prev{transform:scale(.66)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-prev-prev{transform:scale(.33)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-next{transform:scale(.66)}.swiper-pagination-bullets-dynamic .swiper-pagination-bullet-active-next-next{transform:scale(.33)}.swiper-pagination-bullet{background:#000;background:var(--swiper-pagination-bullet-inactive-color,#000);border-radius:50%;border-radius:var(--swiper-pagination-bullet-border-radius,50%);display:inline-block;height:8px;height:var(--swiper-pagination-bullet-height,var(--swiper-pagination-bullet-size,8px));opacity:.2;opacity:var(--swiper-pagination-bullet-inactive-opacity,.2);width:8px;width:var(--swiper-pagination-bullet-width,var(--swiper-pagination-bullet-size,8px))}button.swiper-pagination-bullet{-webkit-appearance:none;-moz-appearance:none;appearance:none;border:none;box-shadow:none;margin:0;padding:0}.swiper-pagination-clickable .swiper-pagination-bullet{cursor:pointer}.swiper-pagination-bullet:only-child{display:none!important}.swiper-pagination-bullet-active{background:var(--swiper-pagination-color,var(--swiper-theme-color));opacity:1;opacity:var(--swiper-pagination-bullet-opacity,1)}.swiper-pagination-vertical.swiper-pagination-bullets,.swiper-vertical>.swiper-pagination-bullets{left:auto;left:var(--swiper-pagination-left,auto);right:8px;right:var(--swiper-pagination-right,8px);top:50%;transform:translate3d(0,-50%,0)}.swiper-pagination-vertical.swiper-pagination-bullets .swiper-pagination-bullet,.swiper-vertical>.swiper-pagination-bullets .swiper-pagination-bullet{display:block;margin:6px 0;margin:var(--swiper-pagination-bullet-vertical-gap,6px) 0}.swiper-pagination-vertical.swiper-pagination-bullets.swiper-pagination-bullets-dynamic,.swiper-vertical>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic{top:50%;transform:translateY(-50%);width:8px}.swiper-pagination-vertical.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet,.swiper-vertical>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{display:inline-block;transition:transform .2s,top .2s}.swiper-horizontal>.swiper-pagination-bullets .swiper-pagination-bullet,.swiper-pagination-horizontal.swiper-pagination-bullets .swiper-pagination-bullet{margin:0 4px;margin:0 var(--swiper-pagination-bullet-horizontal-gap,4px)}.swiper-horizontal>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic,.swiper-pagination-horizontal.swiper-pagination-bullets.swiper-pagination-bullets-dynamic{left:50%;transform:translateX(-50%);white-space:nowrap}.swiper-horizontal>.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet,.swiper-pagination-horizontal.swiper-pagination-bullets.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{transition:transform .2s,left .2s}.swiper-horizontal.swiper-rtl>.swiper-pagination-bullets-dynamic .swiper-pagination-bullet{transition:transform .2s,right .2s}.swiper-pagination-fraction{color:inherit;color:var(--swiper-pagination-fraction-color,inherit)}.swiper-pagination-progressbar{background:rgba(0,0,0,.25);background:var(--swiper-pagination-progressbar-bg-color,rgba(0,0,0,.25));position:absolute}.swiper-pagination-progressbar .swiper-pagination-progressbar-fill{background:var(--swiper-pagination-color,var(--swiper-theme-color));height:100%;left:0;position:absolute;top:0;transform:scale(0);transform-origin:left top;width:100%}.swiper-rtl .swiper-pagination-progressbar .swiper-pagination-progressbar-fill{transform-origin:right top}.swiper-horizontal>.swiper-pagination-progressbar,.swiper-pagination-progressbar.swiper-pagination-horizontal,.swiper-pagination-progressbar.swiper-pagination-vertical.swiper-pagination-progressbar-opposite,.swiper-vertical>.swiper-pagination-progressbar.swiper-pagination-progressbar-opposite{height:4px;height:var(--swiper-pagination-progressbar-size,4px);left:0;top:0;width:100%}.swiper-horizontal>.swiper-pagination-progressbar.swiper-pagination-progressbar-opposite,.swiper-pagination-progressbar.swiper-pagination-horizontal.swiper-pagination-progressbar-opposite,.swiper-pagination-progressbar.swiper-pagination-vertical,.swiper-vertical>.swiper-pagination-progressbar{height:100%;left:0;top:0;width:4px;width:var(--swiper-pagination-progressbar-size,4px)}.swiper-pagination-lock{display:none}</style> <style>.swiper-scrollbar{background:rgba(0,0,0,.1);background:var(--swiper-scrollbar-bg-color,rgba(0,0,0,.1));border-radius:10px;border-radius:var(--swiper-scrollbar-border-radius,10px);position:relative;touch-action:none}.swiper-scrollbar-disabled>.swiper-scrollbar,.swiper-scrollbar.swiper-scrollbar-disabled{display:none!important}.swiper-horizontal>.swiper-scrollbar,.swiper-scrollbar.swiper-scrollbar-horizontal{bottom:4px;bottom:var(--swiper-scrollbar-bottom,4px);height:4px;height:var(--swiper-scrollbar-size,4px);left:1%;left:var(--swiper-scrollbar-sides-offset,1%);position:absolute;top:auto;top:var(--swiper-scrollbar-top,auto);width:98%;width:calc(100% - var(--swiper-scrollbar-sides-offset, 1%)*2);z-index:50}.swiper-scrollbar.swiper-scrollbar-vertical,.swiper-vertical>.swiper-scrollbar{height:98%;height:calc(100% - var(--swiper-scrollbar-sides-offset, 1%)*2);left:auto;left:var(--swiper-scrollbar-left,auto);position:absolute;right:4px;right:var(--swiper-scrollbar-right,4px);top:1%;top:var(--swiper-scrollbar-sides-offset,1%);width:4px;width:var(--swiper-scrollbar-size,4px);z-index:50}.swiper-scrollbar-drag{background:rgba(0,0,0,.5);background:var(--swiper-scrollbar-drag-bg-color,rgba(0,0,0,.5));border-radius:10px;border-radius:var(--swiper-scrollbar-border-radius,10px);height:100%;left:0;position:relative;top:0;width:100%}.swiper-scrollbar-cursor-drag{cursor:move}.swiper-scrollbar-lock{display:none}</style> <style>.swiper-virtual .swiper-slide{-webkit-backface-visibility:hidden;transform:translateZ(0)}.swiper-virtual.swiper-css-mode .swiper-wrapper:after{content:"";left:0;pointer-events:none;position:absolute;top:0}.swiper-virtual.swiper-css-mode.swiper-horizontal .swiper-wrapper:after{height:1px;width:var(--swiper-virtual-size)}.swiper-virtual.swiper-css-mode.swiper-vertical .swiper-wrapper:after{height:var(--swiper-virtual-size);width:1px}</style> <style>.swiper-zoom-container{align-items:center;display:flex;height:100%;justify-content:center;text-align:center;width:100%}.swiper-zoom-container>canvas,.swiper-zoom-container>img,.swiper-zoom-container>svg{max-height:100%;max-width:100%;-o-object-fit:contain;object-fit:contain}.swiper-slide-zoomed{cursor:move;touch-action:none}</style> <style>.router-link-exact-active[data-v-ae15e636]{border-bottom-width:2px;--tw-border-opacity:1;border-color:rgba(var(--color-border-brand),var(--tw-border-opacity));--tw-text-opacity:1;color:rgba(var(--color-text-default),1);color:rgba(var(--color-text-default),var(--tw-text-opacity))}</style> <style>.download-btn[data-v-cd407ea8]{gap:var(--spacing-lg);width:100%}@media (min-width:1024px){.download-btn[data-v-cd407ea8]{width:-moz-fit-content;width:fit-content}}</style> <style>[data-v-23aab8ce] h2{font-size:revert;font-weight:600}[data-v-23aab8ce] h1{font-size:revert;font-weight:600}[data-v-23aab8ce] .publication-text ol{list-style-type:decimal;padding-left:var(--spacing-lg)}[data-v-23aab8ce] .publication-text ul{list-style-type:disc;padding-left:var(--spacing-lg)}</style> <style>[data-v-0016287f] .m-accordion__item span{font-size:.875rem;font-weight:600;line-height:1.25rem}</style> <style>.clamp-1{-webkit-line-clamp:1}.clamp-1,.clamp-2{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.clamp-2{-webkit-line-clamp:2}.clamp-3{-webkit-line-clamp:3}.clamp-3,.clamp-4{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical}.clamp-4{-webkit-line-clamp:4}.clamp-5{display:-webkit-box;overflow:hidden;-webkit-box-orient:vertical;-webkit-line-clamp:5}</style> <style>.m-tooltip[data-v-d8c082ee] .text-color-white{font-size:.75rem;font-weight:400;line-height:1rem;width:10rem;--tw-text-opacity:1;color:rgba(var(--color-text-subtle),1);color:rgba(var(--color-text-subtle),var(--tw-text-opacity))}</style> <style>.m-input[data-v-03f1a75d]{height:2.5rem;width:100%;--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));font-size:.875rem;line-height:1.25rem;padding-left:var(--spacing-md);padding-right:var(--spacing-md)}</style> <style>.m-tag[data-v-3ce94018]{border-radius:.25rem;height:1.5rem;margin-right:var(--spacing-xs);--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));font-size:.75rem;padding-left:var(--spacing-sm);--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}</style> <style>[data-v-6afb3413] h2{font-size:1.125rem;font-weight:600;line-height:1.75rem;margin-top:-3rem;padding-bottom:var(--spacing-sm);padding-top:var(--spacing-7xl)}[data-v-6afb3413] h4{font-size:1rem;font-weight:600;line-height:1.5rem;padding-bottom:var(--spacing-sm)}[data-v-6afb3413] .html-p{font-size:1rem;line-height:1.5rem;padding-bottom:var(--spacing-lg)}[data-v-6afb3413] .html-fig_img img,[data-v-6afb3413] .html-table_wrap_td img{cursor:pointer;height:auto;margin:0 auto;width:100%}@media (min-width:1024px){[data-v-6afb3413] .html-fig_img img,[data-v-6afb3413] .html-table_wrap_td img{max-width:28.5rem}}[data-v-6afb3413] .html-fig-wrap{padding-bottom:var(--spacing-lg);padding-top:var(--spacing-sm)}[data-v-6afb3413] .html-fig_description,[data-v-6afb3413] .html-table_wrap_discription{text-align:center}[data-v-6afb3413] .html-disp-formula-info{display:flex;padding-bottom:var(--spacing-md);padding-top:var(--spacing-sm);width:100%}[data-v-6afb3413] .html-disp-formula-info .f{width:80%}[data-v-6afb3413] .html-disp-formula-info .l{text-align:right;width:20%}[data-v-6afb3413] #html-references_list ol,[data-v-6afb3413] #html-references_list ul{list-style-type:decimal;padding-left:var(--spacing-md)}[data-v-6afb3413] .mfp-content{display:none}[data-v-6afb3413] .html-figpopup{margin:0 auto;max-width:28.5rem;position:relative}[data-v-6afb3413] .html-bibr{position:relative}[data-v-6afb3413] .mfp-popover{border-radius:1rem;height:auto;overflow-wrap:break-word;position:absolute;top:-5.875rem;width:24rem;z-index:10;--tw-bg-opacity:1;background-color:rgba(var(--color-white),1);background-color:rgba(var(--color-white),var(--tw-bg-opacity));font-size:.875rem;font-weight:400;line-height:1.25rem;padding:var(--spacing-md);--tw-shadow:0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);--tw-shadow-colored:0 1px 3px 0 var(--tw-shadow-color),0 1px 2px -1px var(--tw-shadow-color);box-shadow:0 0 #0000,0 0 #0000,0 1px 3px 0 rgba(0,0,0,.1),0 1px 2px -1px rgba(0,0,0,.1);box-shadow:var(--tw-ring-offset-shadow,0 0 #0000),var(--tw-ring-shadow,0 0 #0000),var(--tw-shadow)}[data-v-6afb3413] .html-p dt{clear:left;float:left;padding-right:var(--spacing-md);text-align:right}[data-v-6afb3413] .html-bullet .html-p{padding-bottom:0}[data-v-6afb3413] .html-p{padding-bottom:0}[data-v-6afb3413] .html-p li{list-style-type:none}.m-tag[data-v-6afb3413]{border-radius:.25rem;height:1.5rem;margin-right:var(--spacing-xs);--tw-bg-opacity:1;background-color:rgba(var(--color-surface-subtle),1);background-color:rgba(var(--color-surface-subtle),var(--tw-bg-opacity));font-size:.75rem;padding-left:var(--spacing-sm);--tw-text-opacity:1;color:rgba(var(--color-black),1);color:rgba(var(--color-black),var(--tw-text-opacity))}.container[data-v-6afb3413]{margin-top:var(--spacing-lg)!important;--tw-bg-opacity:1!important;background-color:rgba(var(--color-white),1)!important;background-color:rgba(var(--color-white),var(--tw-bg-opacity))!important;padding-bottom:var(--spacing-sm)!important;padding-top:var(--spacing-sm)!important}.container[data-v-6afb3413] svg{display:none!important}.container[data-v-6afb3413] .m-button{height:1.8125rem}[data-v-6afb3413] .html-fig_show{display:none}[data-v-6afb3413] .html-table_show{display:none}.cite-container[data-v-6afb3413]{--tw-bg-opacity:1!important;background-color:rgba(var(--color-white),1)!important;background-color:rgba(var(--color-white),var(--tw-bg-opacity))!important;padding-bottom:var(--spacing-sm)!important;padding-top:var(--spacing-sm)!important}.cite-container[data-v-6afb3413] svg{display:none!important}[data-v-6afb3413] .html-italic{padding-top:var(--spacing-sm)}[data-v-6afb3413] .m-accordion__item span{font-size:.875rem;font-weight:600;line-height:1.25rem}[data-v-6afb3413] .heading-with-anchor{word-break:break-all}[data-v-6afb3413] #html-copyright{display:none}[data-v-6afb3413] .cross-ref,[data-v-6afb3413] .google-scholar,[data-v-6afb3413] .html-fig,[data-v-6afb3413] .html-table{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}[data-v-6afb3413] .cross-ref:hover,[data-v-6afb3413] .google-scholar:hover,[data-v-6afb3413] .html-fig:hover,[data-v-6afb3413] .html-table:hover{text-decoration-line:underline}[data-v-6afb3413] a.html-bibr{--tw-text-opacity:1;color:rgba(var(--color-text-link-bold),1);color:rgba(var(--color-text-link-bold),var(--tw-text-opacity))}[data-v-6afb3413] a.html-bibr:hover{text-decoration-line:underline}</style> <style>[data-v-cdceca3c] .m-accordion__item span{font-size:.875rem;font-weight:600;line-height:1.25rem}</style> <link rel="stylesheet" href="/_nuxt/swiper-vue.B8Qtp0_B.css"> <link rel="stylesheet" href="/_nuxt/page.ChZXZrEc.css"> <link rel="stylesheet" href="/_nuxt/CommonReadmore.Cfzbs3YM.css"> <link rel="stylesheet" href="/_nuxt/imagePreview.BhKeW-wZ.css"> <link rel="stylesheet" href="/_nuxt/ScrollLoading.CtBH3zbC.css"> <link rel="stylesheet" href="/_nuxt/AppTurnstileWidget.BrwyvPaT.css"> <link rel="stylesheet" href="/_nuxt/ScrollTop.B6N0Xde5.css"> <link rel="preload" as="style" href="https://pub.mdpi-res.com/assets/fonts/suisse/fonts.css"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/B4Y_OlXI.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/4rkk1glR.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CpD4OH8c.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DnE1hzts.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DKZZWLr-.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DlAUqK2U.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BvZgwNX-.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/bRFCaPyp.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Dw7xpaDw.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BaC8YmpO.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CsnXxeeo.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BxDtFnZv.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BeYvC8Ej.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D15uM1gO.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/C97ly3nD.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DJzggNNK.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BVnInYB2.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CSqXYI7Y.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BA0R1I4i.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BHXPGA6m.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/YuxR3Pu0.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Dnb9tpsV.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/IhFN7WPO.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BeERHNxo.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/vv2Rmwly.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/25gsj14P.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/D3_cLRFw.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/C4ia9CZc.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/C88fzhO7.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/-0HJ6hsB.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CO7npeQl.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/ClBcmG0H.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Co3ROtqo.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BVZpVD9N.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CxQEnrWS.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CSgRo-f1.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BSjYI-4H.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BCHjbcVH.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/5shs4Kzv.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CtLjPlDy.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DwvWvz4Z.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/RbTjnPA0.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DWlQ7dfc.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/h5QvUJzN.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CQ3kbovN.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/6B-6tC2E.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DJGN3rr3.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BS13LEYi.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BTCqNyt1.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/BlIUE5gg.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/3J4IzCdP.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/I5K4TjES.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/B79UeM0F.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DVceCaI2.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/tJ218FbO.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/B1WVniK0.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/0a31jahS.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CwdE_BjT.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/DcFF90da.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/CVOIiGAr.js"> <link rel="modulepreload" as="script" crossorigin href="/_nuxt/Dr0Xo78Y.js"> <script src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js" id="shenembed" defer></script> <script src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js" defer></script> <link rel="prefetch" as="image" type="image/png" href="/_nuxt/error.BAMwz5-m.png"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BQ-gdOEV.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Ql2Gozh3.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CK-QzR5y.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Bnc8eKdt.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/-0RQxo4s.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DN9q_llG.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/D4a4YD5W.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Dos1GGJ9.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/LiU1OIO-.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CK_JGJSs.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CnGzm6i8.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Baw0G1dr.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DgxOYFVj.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BoCaA7fE.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Cz0uY-V7.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BXxmsLx-.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BU1Sp9fE.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BNwr-0dD.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CRwXHNAs.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BN_PgFv5.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BuusxfIA.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CxiH3eDj.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DcadoL-f.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Clrg3oO3.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DkHEuRhV.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/4qFUwYMd.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/zp1Ehazu.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/p72cMDF0.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/ZJOvY0QR.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/xmUo5QM8.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BgOv3bBt.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Q_LanJep.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/FHKYfJ4h.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BLVzj3D9.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CXgzajPJ.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DxAaI48Q.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BH_bRCS-.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BsunCq2Z.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/TCR9rPHb.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DeNvfX9m.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CeuNYKas.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BDdjtZCQ.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Lxw6F3px.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DZXzdi48.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BGGKrkjN.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DhlKeXUn.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CTLDYD93.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/yB5ntX5u.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DEKqxevd.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Dt2gJurl.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BqoUL2WH.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DVBor1AT.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BAAO-HPi.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CfdAD2qZ.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/pjvZO3_0.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BPSjn-Rk.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DRnD7xjb.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/B1CzeeGV.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CZ6zNvXh.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/U2hZUFTO.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/-g-RYn5F.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BTdTZDFa.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/C5xbkdwD.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DD_lbEHi.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BzugMJ6r.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Dyl0agHQ.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CfUBowUH.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/C-rGYvCa.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/nMfVDJp4.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DMlvEtAZ.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Dm13aCZX.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Cb5RzvJV.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BIywy_3u.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BHoSTW_F.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Br9qLDMg.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Cst9X0r4.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CgyWq1qU.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/CkhrpX7a.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/DobsHNUi.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/BSWTxwKH.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/C7dJj9iW.js"> <link rel="prefetch" as="script" crossorigin href="/_nuxt/Uz_vF5tM.js"> <link rel="prefetch" as="image" type="image/png" href="/_nuxt/preprints.C_f_-Qxj.png"> <link rel="prefetch" as="image" type="image/png" href="/_nuxt/publicAccount.3LRUWsx7.png"> <meta name="robots" content="index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1"> <script>window.loadTurnstile = new Promise(resolve => { window.onloadTurnstileCallback = function () { resolve(); delete window.onloadTurnstileCallback; delete window.loadTurnstile; } })</script> <script type="module" src="/_nuxt/B4Y_OlXI.js" crossorigin></script></head><body class="antialiased duration-300 transition-colors text-gray-800 dark:text-gray-200 bg-white dark:bg-gray-900"><!----><!--teleport anchor--><div id="__nuxt"><!--[--><div class="nuxt-loading-indicator" style="position:fixed;top:0;right:0;left:0;pointer-events:none;width:auto;height:3px;opacity:0;background:rgb(var(--color-brand-default));background-size:Infinity% auto;transform:scaleX(0%);transform-origin:left;transition:transform 0.1s, height 0.4s, opacity 0.4s;z-index:999999;"></div><div class="page-warpper"><header class="sticky top-0 w-full bg-[#fff] border-b border-color-default" style="z-index:10;"><div class="mx-auto flex max-w-mobile-fluid items-center justify-between lg:max-w-desktop-fluid max-w-[96%] py-sm lg:py-0"><div class="flex items-center"><a href="/" class="font-bold text-lg text-primary-500 py-2 lg:mr-xl xl:mr-7xl"><div class="w-36 h-auto"><img src="/_nuxt/preprints.C_f_-Qxj.png" alt="Prerpints.org logo" class="w-36 h-auto"></div></a><nav class="hidden lg:flex" data-v-ae15e636><ul class="flex flex-row lg:space-x-xl xl:space-x-3xl text-sm" data-v-ae15e636><!--[--><li class="flex h-full items-center" data-v-ae15e636><a href="/instructions-for-authors" class="py-lg" data-v-ae15e636>Instructions for Authors</a></li><li class="flex h-full items-center" data-v-ae15e636><a href="/about" class="py-lg" data-v-ae15e636>About</a></li><li class="flex h-full items-center" data-v-ae15e636><a href="/faq" class="py-lg" data-v-ae15e636>FAQ</a></li><li class="flex h-full items-center" data-v-ae15e636><a href="/blog" class="py-lg" data-v-ae15e636>Blog and News</a></li><!--]--></ul></nav></div><div class="flex"><span></span></div></div></header><div class="w-full" style="min-height:var(--layout-page-content-min-height);"><!--[--><!--[--><div data-v-cd407ea8><div data-v-cd407ea8><div data-v-cd407ea8><div class="bg-surface-subtle" data-v-cd407ea8><div class="m-container mx-auto w-full pb-xl lg:pb-3xl" style="--container-ideal-width:92.5vw;" data-v-cd407ea8><!--[--><nav aria-label="Breadcrumbs" class="m-breadcrumb py-sm my-md lg:my-0 lg:py-xl lg:pt-3xl lg:pb-2xl overflow-x-auto" data-v-cd407ea8><ol class="m-breadcrumb__items flex items-center space-x-1 whitespace-pre text-xs text-color-subtle"><li class="flex items-center gap-1"><!--[--><a href="/" class="m-breadcrumb__item hover:text-color-link-bolder flex text-color-black lg:hidden" data-v-cd407ea8><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="home" class="lg:hidden" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a><a href="/" class="m-breadcrumb__item hover:text-color-link-bolder hidden lg:block" data-v-cd407ea8>Home</a><!--]--><!----><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="chevron_right" style="" width="16" height="16" viewBox="0 0 16 16"></svg></li><li class="flex items-center gap-1"><!----><a href="/subject" class="m-breadcrumb__item hover:text-color-link-bolder" data-v-cd407ea8>Environmental and Earth Sciences</a><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="chevron_right" style="" width="16" height="16" viewBox="0 0 16 16"></svg></li><li class="flex items-center gap-1"><!----><a href="/subject/browse/Remote_Sensing?name=Environmental+and+Earth+Sciences&id=113" class="m-breadcrumb__item hover:text-color-link-bolder" data-v-cd407ea8>Remote Sensing</a><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="chevron_right" style="" width="16" height="16" viewBox="0 0 16 16"></svg></li><li class="flex items-center gap-1"><!----><a aria-current="page" href="/manuscript/202310.2060/v1" class="router-link-active router-link-exact-active m-breadcrumb__item text-color-link-bold hover:text-color-link-bolder" data-v-cd407ea8>DOI:10.20944/preprints202310.2060.v1 <!----></a><!----></li></ol></nav><div class="lg:flex justify-between pt-sm" data-v-cd407ea8><div data-v-cd407ea8><div class="flex items-center" data-v-cd407ea8><div class="m-tag flex items-center gap-2 rounded py-0.5 h-6 bg-content-inverse-subtler text-color-inverse px-2 mr-sm px-md !bg-surface-disabled !text-xs !text-color-default" data-v-cd407ea8><!--[--><!----><!--]--><span class="flex items-center whitespace-nowrap text-xs leading-normal"><!--[-->Preprint<!--]--></span><!--[--><!----><!--]--><!----></div><div class="m-tag flex items-center gap-2 rounded py-0.5 h-6 bg-content-inverse-subtler text-color-inverse px-2 mr-sm px-md !bg-surface-disabled !text-xs !text-color-default" data-v-cd407ea8>Article</div></div><div class="flex items-center pt-sm" data-v-cd407ea8><!----><h4 class="m-heading text-inherit m-h4 font-normal" data-v-cd407ea8>Production of High-Resolution Map of Biomass Carbon over Forests in Malaysia Estimated using Aboveground Carbon Density Indicator (ACDI) and a Collection of 12 Years Inventory Data</h4></div></div><div class="w-full max-w-xs lg:ml-3xl flex-none" data-v-cd407ea8><div class="flex justify-between items-end border-b border-color-default" data-v-cd407ea8><p class="m-text text-sm py-sm" data-v-cd407ea8><!--[-->Altmetrics<!--]--></p><div class="altmetric-embed" data-badge-type="donut" data-badge-popover="left" data-link-target="_blank" data-doi="10.20944/preprints202310.2060.v1" data-v-cd407ea8></div></div><div class="flex justify-between py-sm border-b border-color-default" data-v-cd407ea8><p class="m-text text-sm" data-v-cd407ea8><!--[-->Downloads<!--]--></p><p class="m-text text-sm" data-v-cd407ea8><!--[-->351<!--]--></p></div><div class="flex justify-between py-sm border-b border-color-default" data-v-cd407ea8><p class="m-text text-sm" data-v-cd407ea8><!--[-->Views<!--]--></p><p class="m-text text-sm" data-v-cd407ea8><!--[-->335<!--]--></p></div><div class="flex justify-between py-sm border-b border-color-default" data-v-cd407ea8><p class="m-text text-sm" data-v-cd407ea8><!--[-->Comments<!--]--></p><p class="m-text text-sm" data-v-cd407ea8><!--[-->1<!--]--></p></div></div></div><!--]--></div></div><div class="m-container mx-auto w-full py-section-mobile pb-7xl max-w-mobile-fluid lg:max-w-desktop-fluid" style="--container-ideal-width:92.5vw;" data-v-cd407ea8><!--[--><!----><div class="lg:hidden" data-v-cd407ea8><div class="w-full lg:ml-lg flex-none lg:hidden" data-v-cd407ea8><div class="pt-md"><div class="flex justify-end mb-md"><button class="m-button m-button--md m-button--tonal rounded mr-sm !bg-surface-subtle !text-color-default" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="format_quote" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[--><span class="hidden lg:block">Cite</span><!--]--><!----><!----><!--[--><!----><!--]--></span></button><button class="m-button m-button--md m-button--tonal rounded mr-sm !bg-surface-subtle !text-color-default" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="mode_comment" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[--> <span class="hidden lg:block">Comments</span><!--]--><!----><!----><!--[--><!----><!--]--></span></button><button class="m-button m-button--md m-button--tonal rounded !bg-surface-subtle !text-color-default" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="share" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[--><span class="hidden lg:block">Share</span><!--]--><!----><!----><!--[--><!----><!--]--></span></button></div><div data-v-23aab8ce><!----></div><div><!----></div></div><!----><div class="w-ull"><button class="m-button m-button--lg m-button--primary m-button--full-width rounded" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="download" style="" width="24" height="24" viewBox="0 0 16 16"></svg><!--]--><!--[-->Download PDF<!--]--><!----><!----><!--[--><!----><!--]--></span></button></div><div data-v-0016287f><div class="m-accordion mx-auto flex w-full flex-col gap-3 rounded-2xl bg-white" data-v-0016287f><!--[--><div class="m-accordion__item border-b border-color-default" data-v-0016287f><button id="accordion-button-expand-0" aria-controls="accordion-panel-0" class="relative mb-xs flex w-full cursor-pointer py-md text-sm outline-offset-2" aria-expanded="true"><!--[--><span class="text-sm">Supplementary Material</span><!--]--><div class="absolute right-0 top-1/2 -translate-y-1/2"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" class="origin-center transition duration-150 rotate-180" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--></div></button><div id="accordion-panel-0" aria-labelledby="accordion-button-expand-0" role="region" class="m-accordion__body overflow-hidden transition-height duration-150"><div class="break-words pb-md"><!--[--><div class="flex items-center" data-v-0016287f><p class="m-text text-sm text-color-link-bold cursor-pointer pr-xs" data-v-0016287f><!--[-->supplementary.rar (58.69MB )<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="link" class="text-color-link-bold cursor-pointer" style="" width="16" height="16" viewBox="0 0 16 16" data-v-0016287f></svg></div><!--]--></div></div></div><!--]--></div></div><div><!----><div class="pb-md border-b border-color-default pt-sm"><div class="w-full relative overflow-hidden"><div><div class="clamp-3"><!--[--><!--[--><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/statics/img/design/default-user.png"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/208691" target="_blank" rel="noopener noreferrer">Hamdan Omar</a></span><sup> *</sup><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0002-8565-1122" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute('data-error', 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/statics/img/design/default-user.png"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/273696" target="_blank" rel="noopener noreferrer">Muhamad Afizzul Misman</a></span><!----><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0002-3351-6543" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute('data-error', 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><!----><span><a href="https://sciprofiles.com/profile/author/SFlqV1JXU2k1NDlRRE9sMHRxQ0c4RmhEalIzNTNFNGdPZkZpQkd3QlpRYz0=" target="_blank" rel="noopener noreferrer">Valeria Linggok</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><!----><span><a href="https://sciprofiles.com/profile/author/aFJGclVFUm9XRUV3TS92QWk4VVNSSFlMTWcyejByRWFXelhuMDM4ektrMD0=" target="_blank" rel="noopener noreferrer">Suhaini Haron</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><!----><span><a href="https://sciprofiles.com/profile/author/Z0s0OUwxdmZ6Vll2eURNSHk0MzFhU3hHOTlQck1oOE1Od1doTnQrVHlTWT0=" target="_blank" rel="noopener noreferrer">Ahmad Ashrin Mohd Bohari</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/3268532/Mohammad_Nor_Firdaus_Haji_Sariee.jpg"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/3268532" target="_blank" rel="noopener noreferrer">Mohammad Nor Firdaus Haji Sariee</a></span><!----><!----><!----><!--]--></span></span><!--]--><!--]--></div><div class="invisible absolute"><!--[--><!--[--><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/statics/img/design/default-user.png"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/208691" target="_blank" rel="noopener noreferrer">Hamdan Omar</a></span><sup> *</sup><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0002-8565-1122" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute('data-error', 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/statics/img/design/default-user.png"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/273696" target="_blank" rel="noopener noreferrer">Muhamad Afizzul Misman</a></span><!----><div class="m-icon-custom text-color-inherit pl-xs inline-block"><!--[--><a href="https://orcid.org/0000-0002-3351-6543" rel="noopener noreferrer" target="_blank"><img src="/_ipx/_/img/articleorcid.webp" onerror="this.setAttribute('data-error', 1)" data-nuxt-img srcset="/_ipx/_/img/articleorcid.webp 1x, /_ipx/_/img/articleorcid.webp 2x" class="w-4"></a><!--]--></div><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><!----><span><a href="https://sciprofiles.com/profile/author/SFlqV1JXU2k1NDlRRE9sMHRxQ0c4RmhEalIzNTNFNGdPZkZpQkd3QlpRYz0=" target="_blank" rel="noopener noreferrer">Valeria Linggok</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><!----><span><a href="https://sciprofiles.com/profile/author/aFJGclVFUm9XRUV3TS92QWk4VVNSSFlMTWcyejByRWFXelhuMDM4ektrMD0=" target="_blank" rel="noopener noreferrer">Suhaini Haron</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><!----><span><a href="https://sciprofiles.com/profile/author/Z0s0OUwxdmZ6Vll2eURNSHk0MzFhU3hHOTlQck1oOE1Od1doTnQrVHlTWT0=" target="_blank" rel="noopener noreferrer">Ahmad Ashrin Mohd Bohari</a></span><!----><!----><span>,</span><!--]--></span></span><span class="pr-sm"><span class="m-text text-sm"><!--[--><div class="m-avatar flex items-center justify-center overflow-hidden rounded-full bg-brand-bold font-medium text-color-on-brand h-5 w-5 min-w-5 text-[0.575rem] !inline-block align-middle mr-xs" data-testid="m-avatar"><!--[--><img src="/img/user_image/3268532/Mohammad_Nor_Firdaus_Haji_Sariee.jpg"><!--]--><span class="sr-only"></span></div><span><a href="https://sciprofiles.com/profile/3268532" target="_blank" rel="noopener noreferrer">Mohammad Nor Firdaus Haji Sariee</a></span><!----><!----><!----><!--]--></span></span><!--]--><!--]--></div></div><div style="display:none;" class="mt-sm"><!----><button class="m-button m-button--sm m-button--tertiary rounded !inline-flex after:hidden bg-white" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><!----><!--]--><!--[-->Show more <!--]--><!----><!----><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--></span></button></div></div><!----><p class="m-text text-sm text-color-error pt-sm"><!--[-->This version is not peer-reviewed<!--]--></p></div><!----><div class="m-accordion mx-auto flex w-full flex-col gap-3 rounded-2xl bg-white"><!--[--><div class="m-accordion__item border-b border-color-default"><button id="accordion-button-expand-0" aria-controls="accordion-panel-0" class="relative mb-xs flex w-full cursor-pointer py-md text-sm outline-offset-2" aria-expanded="true"><!--[--><span class="text-sm">This preprints belongs to the Collection</span><!--]--><div class="absolute right-0 top-1/2 -translate-y-1/2"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" class="origin-center transition duration-150 rotate-180" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--></div></button><div id="accordion-panel-0" aria-labelledby="accordion-button-expand-0" role="region" class="m-accordion__body overflow-hidden transition-height duration-150"><div class="break-words pb-md"><!--[--><!--[--><div class="flex items-center"><p class="m-text text-sm text-color-link-bold cursor-pointer"><!--[-->Preprints.org 2023 Most Popular Preprints Award Winner Collection<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="arrow_right_alt" class="text-color-link-bold cursor-pointer" style="" width="16" height="16" viewBox="0 0 16 16"></svg></div><!--]--><!--]--></div></div></div><!--]--></div></div><div class="py-md border-b border-color-default"><div class="m-select common-field bg-white"><!--[--><div class="common-field__wrapper" data-headlessui-state><!----><div class="relative w-full cursor-default"><div class="flex items-center"><button id="headlessui-listbox-button-mui-45421" type="button" aria-haspopup="listbox" aria-expanded="false" data-headlessui-state data-testid="select-activator" class="common-field__dropdown-input [&>span]:overflow-hidden h-10"><span class="flex w-full items-center gap-1 [&>span]:truncate"><!----><span>Version 1</span></span><div class="flex"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" class="duration-400 transition-transform" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></button><!----></div><!----></div></div><!--]--><!----></div><div class="pt-sm"><div class="flex"><p class="m-text text-xs"><!--[-->Submitted:<!--]--></p><p class="m-text text-xs pl-xs"><!--[-->31 October 2023<!--]--></p></div><div class="flex pt-sm"><p class="m-text text-xs"><!--[-->Posted: <!--]--></p><p class="m-text text-xs pl-xs"><!--[-->31 October 2023<!--]--></p></div><!----></div><div class="pt-sm"><div><p class="m-text text-xs"><!--[-->You are already at the latest version <!--]--></p></div></div><div><!----></div></div><!--[--><div class="py-md border-b border-color-default flex items-center justify-between" data-v-d8c082ee><div class="flex-none flex items-center" data-v-d8c082ee><span class="m-text text-xs pr-xs font-semibold flex-none" data-v-d8c082ee><!--[-->Alerts<!--]--></span><span data-v-d8c082ee></span></div><div class="m-switch flex items-center gap-2" data-v-d8c082ee><!----><!--[--><!----><button class="relative inline-flex h-[1.4rem] w-[2.75rem] shrink-0 cursor-pointer items-center rounded-full border-2 border-color-transparent transition-colors duration-150 ease-out ui-focus-visible:ring-2 ui-focus-visible:ring-brand-bold ui-focus-visible:ring-opacity-75 bg-content-default hover:bg-content-bold active:bg-content-bolder" aria-label="Switch on" id="headlessui-switch-mui-45422" role="switch" type="button" tabindex="0" aria-checked="false" data-headlessui-state><span aria-hidden="true" class="pointer-events-none inline-block h-[1rem] w-[1rem] transform rounded-full bg-white shadow-lg ring-0 transition duration-200 ease-in-out translate-x-0.5"></span></button><!--]--></div></div><div data-v-d8c082ee data-v-03f1a75d><!----></div><!--]--><div><h6 class="m-heading text-inherit m-h6 font-semibold pt-lg"><!--[-->Abstract<!--]--></h6><div class="">The accurate estimation of biomass carbon in forests is of paramount importance for effective forest management and mitigating climate change. This study presents a novel approach to produce a high-resolution map of biomass carbon over forests in Malaysia using the Aboveground Carbon Density Indicator (ACDI) and a comprehensive collection of 12 years of inventory data, i.e., from 2012 to 2023. The ACDI was derived based on several vegetation indices (VIs) that were produced from the original Landsat images to indicate the level of aboveground biomass carbon (AGC) stock in the forested areas. The VIs includes Normalised Difference Vegetation Index (NDVI), Normalised Burn Ratio (NBR), Shadow Index (SI), Soil-Adjusted Vegetation Index (SAVI), Iron Oxide Index (IO), Modified Normalised Difference Water Index (NDWI), and Enhanced Vegetation Index (EVI). The ACDI was then integrated with ground-based measurements, and serves as a robust indicator for estimating AGC. This calculation was conducted on Google Earth Engine (GEE) platform to match the date of field observation with the satellite imagery datasets. The production of seamless mosaic of the latest date of Landsat imagery and the forest type classification were also performed on GEE. The forested areas were classified into three major types, which are dry inland forest, mangrove forest, and peat swamp forest. Results indicated significant spatial variations in AGC across Malaysia's forests. The derived AGC prediction models based on the ACDI varied among the forest types. Based on the estimates, a 30-metre resolution, wall-to-wall map of AGC across the entire forested region of Malaysia has been created. The ACDI was calibrated and validated using a separate validation plots dataset to ensure the accuracy of the AGC estimates. The total AGC in all types of forests in Malaysia was estimated at 3.0 billion Mg C with an attainable accuracy of about 80%. These estimates were also divided into categories and reported to the AGC at the state level. This high-resolution map provides essential information for various stakeholders, with critical implications for carbon sequestration efforts, conservation priorities, and sustainable forest management. The presented methodology not only showcases the value of combining advanced remote sensing techniques with long-term inventory data but also underscores the potential for similar approaches in other tropical forest regions globally. Ultimately, this study contributes to the understanding of carbon dynamics in Malaysian forests and promotes effective strategies for mitigating climate change through better-informed forest conservation and management practices.</div><!--[--><!--]--></div><div data-v-3ce94018><div class="pt-lg" data-v-3ce94018><span class="m-text text-body font-semibold" data-v-3ce94018><!--[-->Keywords: <!--]--></span><span class="m-text text-body pt-sm" data-v-3ce94018><!--[--><!--]--></span></div></div><div class="flex-1 pt-lg mr-lg lg:pt-0" data-v-6afb3413><div class="pt-md" data-v-6afb3413><div class="flex flex-wrap lg:flex-nowrap items-center" data-v-6afb3413><span class="m-text text-body font-semibold" data-v-6afb3413><!--[-->Subject: <!--]--></span><span class="m-text text-body" data-v-6afb3413><!--[-->Environmental and Earth Sciences<!--]--></span><span class="" data-v-6afb3413> - </span><span class="m-text text-body" data-v-6afb3413><!--[-->Remote Sensing<!--]--></span></div></div><div class="content-container" id="articleRef" data-v-6afb3413><script type="text/x-mathjax-config"> MathJax.Hub.Config({ menuSettings: { CHTMLpreview: false }, "CHTML-preview":{ disabled: true }, "HTML-CSS": { scale: 90, availableFonts: [], preferredFont: null, preferredFonts: null, webFont:"Gyre-Pagella", imageFont:'TeX', undefinedFamily:"'Arial Unicode MS',serif", linebreaks: { automatic: false } }, "TeX": { extensions: ["noErrors.js"], noErrors: { inlineDelimiters: ["",""], multiLine: true, style: { "font-size": "90%", "text-align": "left", "color": "black", "padding": "1px 3px", "border": "1px solid" } } } }); </script><script type="text/javascript" async="" src="https://www.mdpi.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <section id="sec1-preprints-89235" type="intro"><h2 data-nested="1" id="preprints-h2-1"> 1. Introduction</h2> <div class="html-p">Malaysia is considered one of the highest forest carbon countries in the world due to its significant forested areas and the carbon-rich nature of its forests. Several factors contribute to Malaysia’s status as a country with substantial forest carbon, that include: home to vast tropical rainforests, high plant diversity, has extensive peat swamp forests and extensive mangrove ecosystems along its coastlines. While Malaysia’s forests are rich in carbon, they have faced challenges such as deforestation, habitat loss, and land-use change due to factors like palm oil production and logging [<a href="#B1-preprints-89235" class="html-bibr">1</a>]. Efforts to balance economic development with forest conservation are ongoing, and the preservation of these carbon-rich ecosystems is of global importance in the fight against climate change. Malaysia has implemented various conservation measures and forest management practices to protect its forests and their carbon stocks [<a href="#B2-preprints-89235" class="html-bibr">2</a>]. This includes establishing protected areas and national parks. Considering these circumstances, forests in Malaysia are highly diverse in terms of stand conditions and thus biomass carbon.</div> <div class="html-p">Malaysia, like many other countries, recognizes the importance of its forests in mitigating climate change. The country has made commitments under international agreements like the United Nations Framework Convention on Climate Change (UNFCCC) to reduce emissions from deforestation and forest degradation (REDD+) [<a href="#B3-preprints-89235" class="html-bibr">3</a>]. Malaysia has also been involved in carbon offset projects, where the country can earn carbon credits by reducing deforestation and forest degradation, as well as implementing reforestation and afforestation initiatives.</div> <div class="html-p">In addition to being an essential part of forest ecosystems, forest biomass is also important for mitigating climate change, storing carbon, and preserving biodiversity [<a href="#B4-preprints-89235" class="html-bibr">4</a>]. The integration of statistical data with geospatial information boosts the power of data, resulting in a much greater understanding of social, economic, and environmental issues, than viewing the statistical or geospatial information in isolation [<a href="#B5-preprints-89235" class="html-bibr">5</a>]. Accurate assessment and forecast of forest biomass are essential for understanding the effects of climate change, managing forests, and accounting for carbon emissions. Remote sensing technologies, like satellite data from Landsat have revolutionised the prediction of forest biomass by providing crucial insights into the characteristics of forests and changes in land cover.</div> <div class="html-p">Landsat satellites, launched by NASA and the U.S. Geological Survey, have been providing high-resolution and multispectral imagery of the Earth’s surface since 1972 [<a href="#B6-preprints-89235" class="html-bibr">6</a>]. Landsat data have been widely employed for various environmental and land use applications due to their long-term data archive, consistent data quality, and global coverage [<a href="#B7-preprints-89235" class="html-bibr">7</a>]. Landsat satellites capture data in different spectral bands, allowing researchers to analyse land cover, vegetation, and biomass across diverse landscapes. The entire historical Landsat archive has been opening for public access since 2008 [<a href="#B8-preprints-89235" class="html-bibr">8</a>]. As such, the Landsat archive has become one of the most valuable and cost-effective remotely sensed data sources supporting worldwide land/forest research and monitoring activities.</div> <div class="html-p">Among the advantages of using Landsat for biomass estimations are [<a href="#B9-preprints-89235" class="html-bibr">9</a>]: (i) large coverage from specific landscapes, regional to global scales, (ii) temporal and spatial scales; provide the advantage of temporal consistency, allowing for long-term biomass change monitoring in specific time-series, and (iii) sensitivity to environmental changes, which Landsat data can capture changes in forest biomass due to factors like disturbances (e.g., forest fires and logging) and climate-related stressors. This sensitivity enables better understanding of the impacts of these changes on forest ecosystems.</div> <div class="html-p">Although Landsat data is a valuable resource for monitoring and estimating forest biomass, it has some challenges when it comes to biomass estimation in tropical regions, especially Malaysia. Among the biggest challenges are cloud cover [<a href="#B10-preprints-89235" class="html-bibr">10</a>]. Estimating forest biomass from optical satellite data is also difficult due to several reasons. One of the main reasons is that optical sensors are sensitive to the amount of light reflected by the vegetation, which is influenced by the structure and density of the forest canopy. However, the relationship between the amount of light reflected and the biomass is not straightforward, as it can be affected by factors such as the species composition, age, and health of the trees [<a href="#B11-preprints-89235" class="html-bibr">11</a>]. Moreover, clouds and atmospheric conditions can interfere with the accuracy of optical data acquisition, which can lead to incomplete or inconsistent data [<a href="#B12-preprints-89235" class="html-bibr">12</a>]. Another important limiting factor to direct biomass carbon modelling lies in the lack of repeated and coincident field reference data at different times [<a href="#B13-preprints-89235" class="html-bibr">13</a>].</div> <div class="html-p">Several attempts have been placed to overcome these limitations and the approaches taken can be categorised into two, which are (i) diversifying uses of spectral and vegetation indices [<a href="#B14-preprints-89235" class="html-bibr">14</a>] and (ii) applying machine learning and statistical models [<a href="#B15-preprints-89235" class="html-bibr">15</a>]. These indices are used as predictor variables to estimate forest biomass, indirectly. Machine learning techniques [<a href="#B16-preprints-89235" class="html-bibr">16</a>,<a href="#B17-preprints-89235" class="html-bibr">17</a>], including Random Forest [<a href="#B18-preprints-89235" class="html-bibr">18</a>], Support Vector Machines (SVM), artificial neural network (ANN) [<a href="#B19-preprints-89235" class="html-bibr">19</a>], and regression models, have been combined with Landsat data to predict forest biomass. These models use spectral information, vegetation indices, and other environmental variables to establish relationships between the data and biomass estimates [<a href="#B20-preprints-89235" class="html-bibr">20</a>]. These techniques have demonstrated their efficiency in predicting forest biomass at various scales, from local to regional. Another popular solution is to combine Landsat-based data with datasets from other sensors [<a href="#B14-preprints-89235" class="html-bibr">14</a>], both optical and synthetic aperture radar (SAR) [<a href="#B21-preprints-89235" class="html-bibr">21</a>,<a href="#B22-preprints-89235" class="html-bibr">22</a>,<a href="#B23-preprints-89235" class="html-bibr">23</a>,<a href="#B24-preprints-89235" class="html-bibr">24</a>] and even integrate with light detection and ranging (LiDAR)-based data [<a href="#B25-preprints-89235" class="html-bibr">25</a>,<a href="#B26-preprints-89235" class="html-bibr">26</a>]. Eventually, each approach offers different levels of difficulties and challenges. </div> <div class="html-p">This study aimed at producing reliable AGC estimates at national scale, pixel-based, wall-to-wall at acceptable spatial resolution produced from a single satellite with consistent observations that is able to represent the forest types and physical conditions of the forests over time. Google Earth Engine (GEE) platform was used to derive the Aboveground Carbon Density Indicator (ACDI), to conduct the correlation, and to produce seamless mosaic images over Malaysia. The estimated AGC is mapped at 30-m pixel resolution for the entire forests across Malaysia. The map helps in quantifying the carbon stored as biomass at any location. It also aids in pin-pointing areas that have low AGC or degraded areas, which are becoming increasingly important for baseline development for carbon-related, nature-based solution approaches in dealing with various climate change mitigation initiatives such as nationally determined contribution (NDC) under Paris Agreement and carbon offsetting for industrial sectors. </div></section><section id="sec2-preprints-89235" type><h2 data-nested="1" id="preprints-h2-2"> 2. Materials and Methods</h2> <section id="sec2dot1-preprints-89235" type><h4 class="html-italic" data-nested="2"> 2.1. The Study Area</h4> <div class="html-p">This study was conducted over the entire forests in Malaysia. Malaysia is a country in Southeast Asia, located just north of the Equator. It is composed of two non-contiguous regions: Peninsular Malaysia and East Malaysia. The country has a total area of about 330,803 km<sup>2</sup>. Malaysia currently has about 18 million ha of forests [<a href="#B27-preprints-89235" class="html-bibr">27</a>]. These forests are rich with diverse flora and fauna species. Major forest types in Malaysia are lowland dipterocarp forest, hill dipterocarp forest, upper hill dipterocarp forest, oak-laurel forest, montane ericaceous forest, peat swamp forest and mangrove forest. In addition, there are also smaller areas of freshwater swamp forest, Melaleuca swamp forest, heath forest, transitional forest, forest on limestone and forest on quartz ridges. Considering the composition of these forests in Malaysia, the types can be generalised into three types, which are dry inland, peat swamp and mangrove forests.</div> <div class="html-p">Timber production is also one of the commodities in Malaysia where State Governments are depending greatly on the forest resources for generating and sustaining the economy [<a href="#B28-preprints-89235" class="html-bibr">28</a>]. Malaysia is practising sustainable forest management (SFM) to balance timber production with conservation efforts. This approach aims to maintain forest carbon stocks while allowing for responsible logging. Harvesting only for merchantable timbers at certain controlled cutting limits. There are also forest plantations, established with certain timber tree species, developed to support timber supplies and meet the industrial demands.</div></section><section id="sec2dot2-preprints-89235" type="methods"><h4 class="html-italic" data-nested="2"> 2.2. Methodology</h4> <div class="html-p">The framework of methodology was developed based on six major pillars, which are (i) collection of field datasets at sample plots, (ii) derivation of ACDI, (iii) correlation analysis, (iv) production of seamless mosaic images, (v) forest delineation and forest types classification, and (vi) map production. The first challenge was to match the field data collection date with the derived ACDI from the Landsat images. Google Earth Engine was used to execute this calculation. Cloud cover was another issue to deal with when working with Landsat data, as it can obscure the land surface and affect the quality of image analysis. To address the cloud cover problem in Landsat data over Malaysia, GEE was again used. GEE provides a powerful tool for mapping and analysing geospatial data, including the use of regression to identify trends in data and create ACDI. In brief, steps ii and iv above were performed on the GEE platform, while the remaining processes were conducted separately by using image processing and GIS software, i.e., ERDAS Imagine®, Exelis ENVI Software, and Esri’s ArcGIS Desktop.</div> <div class="html-fig-wrap" id="preprints-89235-f001"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f001"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png" alt="Preprints 89235 g001" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Flowchart of the methodology adopted in the study. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f001"> <div class="html-caption"> <b>Figure 1.</b> Flowchart of the methodology adopted in the study.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png" alt="Preprints 89235 g001" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png"></div> </div> </section><section id="sec2dot3-preprints-89235" type="methods"><h4 class="html-italic" data-nested="2"> 2.3 Collection of Field Inventory Data</h4> <div class="html-p">Sampling work has been started since 2012 at several locations focused on lowland and hill dipterocarp forests in Peninsular Malaysia [<a href="#B29-preprints-89235" class="html-bibr">29</a>]. The work was carried out occasionally depending on available research projects that have been undergoing since then until year 2023, covering all forest types in Malaysia (<a href="#preprints-89235-t001" class="html-table">Table 1</a>). The applied forest inventory design was stratified random, where sampling plots were distributed according to the forest types and covering all stands conditions of the forests (i.e., virgin forest, totally protected areas, logged forests, secondary forest, and degraded areas). This was considered to ensure all variations of biomass carbon are captured in the samples. Locations of the sample plots are depicted in <a href="#preprints-89235-f008" class="html-fig">Figure 8</a>.</div> <div class="html-p">The sampling design in this innovation was a modified sampling design according to the standard operating procedure (SOP) that has been developed by Winrock International [<a href="#B30-preprints-89235" class="html-bibr">30</a>], which follows the IPCC standards [<a href="#B31-preprints-89235" class="html-bibr">31</a>]. The design that produced the highest accuracy of the forestry parameters was then modified and developed for forest stands conditions suitable for Malaysia’s environment and management practices [<a href="#B32-preprints-89235" class="html-bibr">32</a>,<a href="#B33-preprints-89235" class="html-bibr">33</a>]. The sampling designs are divided into three, which are corresponding to dry inland forest, peat swamp forest and mangrove forest. The design of the sampling plots was done in clusters. In cluster sampling, a random sample of clusters is chosen after the population is split up into groups according to the types of forests and strata. Cluster sampling is a probability sampling method used when the population is large and geographically dispersed.</div> <section id="sec2dot3dot1-preprints-89235" type><h4 class data-nested="3"> 2.3.1. Design for dry inland forest</h4> <div class="html-p">A cluster comprises four sampling plots and the distance between plots is 100 m as shown in <a href="#preprints-89235-f002" class="html-fig">Figure 2</a>. The plot was designed in a circular shape with smaller nests inside. The biggest nest measures 20 m in radius, followed by the smaller nests measuring 12 m and 4 m (<a href="#preprints-89235-f003" class="html-fig">Figure 3</a>). The sizes of trees are measured according to the nest sizes, which is summarised in <a href="#preprints-89235-t002" class="html-table">Table 2</a>. Depending on the nest size, it indicates that not all stands are measured in a single plot. In addition to these nests, there is another small nest measuring 2 m in radius, which is used to count the saplings (i.e., trees measuring < 10 cm in diameter at breast height (dbh) and ≥ 1.3 m in height). The clustering of multiple plots at one sampling unit allows field crews to sample a larger area per sampling point. The sampling system is designed in a way to make the data collection processes easier, faster, reliable and representative for a forest stratum. The distance of the tree stand is controlled by using a Distance Measurement Equipment (DME) that utilises sonar waves to communicate with a transponder that is installed at centre of the plot. Therefore, in reality the nests with particular radius do not exist on the ground.</div></section><section id="sec2dot3dot2-preprints-89235" type><h4 class data-nested="3"> 2.3.2. Design for dry peat swamp forest</h4> <div class="html-p">Peat swamp forests are terrestrial wetland ecosystems with low nutrient levels and highly acidic soil (pH less than 4.0) [<a href="#B34-preprints-89235" class="html-bibr">34</a>]. Ecologically, peat swamp forests have organic soil horizons, or peat that can receive water and nutrients exclusively from flooding and groundwater or from rainfall. In the tropics, peat formation is influenced by high rainfall rates, minimal drainage, and high temperatures with little seasonal change. According to [<a href="#B35-preprints-89235" class="html-bibr">35</a>], peat swamp forests are typically submerged during the rainy season, which encourages anaerobic conditions that influence the rates and pathways of decomposition and accumulation. Peat soils are described as having at least 50 centimetres of thickness and a content of organic matter greater than 65% in tropical ecosystems [Rieley & Page]. The peat swamp forests ecosystem is uniquely different from inland and mangrove forests. Therefore, the sampling design of peat swamp forests is differently from that of other forests. However, the approach and concept for field data collection and sampling is similar. The sampling technique for peat swamp forest is adopted from [<a href="#B36-preprints-89235" class="html-bibr">36</a>] and the layout of sampling plots is depicted in <a href="#preprints-89235-f005" class="html-fig">Figure 5</a>. The sizes of trees are measured according to the nest sizes, which is summarised in <a href="#preprints-89235-t003" class="html-table">Table 3</a>.</div> <div class="html-fig-wrap" id="preprints-89235-f004"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f004"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png" alt="Preprints 89235 g004" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> Layout of a cluster for peat swamp forests. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f004"> <div class="html-caption"> <b>Figure 4.</b> Layout of a cluster for peat swamp forests.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png" alt="Preprints 89235 g004" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png"></div> </div> </section><section id="sec2dot3dot3-preprints-89235" type><h4 class data-nested="3"> 2.3.3. Design for dry peat swamp forest</h4> <div class="html-p">Mangroves are defined as an association of halophytic trees, shrubs and other plants growing in brackish to saline tidal waters of tropical and subtropical coastlines [<a href="#B37-preprints-89235" class="html-bibr">37</a>]. Mangroves are generally restricted to the tidal zone. As such, mangroves in fringe areas will be inundated by practically all high tides, while those at the higher topographic boundaries may be flooded only during the highest of tides (spring tides) or during storm surges. Mangroves are typically found along tropical and subtropical coastlines between about 25° N and 25° S.</div> <div class="html-p">Mangrove is another forest ecosystem that is totally different compared to inland and peat swamp forests. Mangrove forest has its own habitat, which is unique in terms of ecology, standing structure and species composition. Therefore, the sampling method for mangrove forest is designed specifically for the mangroves. However, the approach and concept of field data collection is similar to that of peat swamp forests. The sampling can be organised in a cluster, comprising 6 plots (<a href="#preprints-89235-f006" class="html-fig">Figure 6</a>). The sampling technique for mangrove forest is adopted from [<a href="#B38-preprints-89235" class="html-bibr">38</a>] and the layout of sampling plots is depicted in <a href="#preprints-89235-f007" class="html-fig">Figure 7</a>. The sizes of trees were measured according to the nest sizes, which is summarised in <a href="#preprints-89235-t004" class="html-table">Table 4</a>.</div> <div class="html-p">Estimation of biomass carbon was based on the published allometric equations found in the literature, suitable to the corresponding types of forests in Malaysia. Aboveground biomass (AGB) of the sampled trees in the sample plots were first estimated before the values were converted to AGC. The estimation of AGB that was calculated at tree-level was converted to the plot-level, where the measurement is reported in mass, in Megagram (Mg) or metric tonne per-hectare basis, Mg ha<sup>-1</sup>. This estimation was then converted into a biomass carbon unit of AGC by multiplying the AGB with 0.47, which is the constant carbon fraction [<a href="#B31-preprints-89235" class="html-bibr">31</a>], and reported in Mg C ha<sup>-1</sup>. </div> <div class="html-p">The estimation of AGB on dry inland forest was calculated based on an allometric equation that was developed by [<a href="#B39-preprints-89235" class="html-bibr">39</a>] for inland forest. The allometric equation is expressed as follow; <div class="html-disp-formula-info" id="FD1-preprints-89235"> <div class="f"> <math display="block"><semantics> <mrow> <mi>A</mi> <mi>G</mi> <mi>B</mi> <mo>=</mo> <mi>e</mi> <mi>x</mi> <mi>p</mi> <mo> </mo> <mo>[</mo> <mo>−</mo> <mn>1.803</mn> <mo>−</mo> <mn>0.976</mn> <mi>E</mi> <mo>+</mo> <mn>0.976</mn> <mi>l</mi> <mi>n</mi> <mo> </mo> <mi>l</mi> <mi>n</mi> <mo> </mo> <mfenced separators="|"> <mrow> <mi>ρ</mi> </mrow> </mfenced> <mo>+</mo> <mn>2.673</mn> <mi>l</mi> <mi>n</mi> <mo> </mo> <mi>l</mi> <mi>n</mi> <mo> </mo> <mfenced separators="|"> <mrow> <mi>D</mi> </mrow> </mfenced> <mo>−</mo> <mn>0.0299</mn> <msup> <mrow> <mfenced open="[" close="]" separators="|"> <mrow> <mi>l</mi> <mi>n</mi> <mo> </mo> <mi>l</mi> <mi>n</mi> <mo> </mo> <mfenced separators="|"> <mrow> <mi>D</mi> </mrow> </mfenced> <mo> </mo> </mrow> </mfenced> </mrow> <mrow> <mn>2</mn> </mrow> </msup> <mo> </mo> <mo>]</mo> </mrow> </semantics></math> </div> <div class="l"> <label>(1)</label> </div> </div> where AGB denotes the estimated biomass of a tree (kg tree<sup>-1</sup>), D is diameter at breast height (dbh) of each tree (cm), <span class="html-italic">ρ</span> is wood specific gravity or wood density (typical average value for all Southeast Asia’s tree species is 0.57 g cm<sup>-3</sup> [<a href="#B40-preprints-89235" class="html-bibr">40</a>]), and E is bioclimatic variable, which is available at <a href="http://chave.upstlse.fr/pantropicalallometry.htm" target="_blank">http://chave.upstlse.fr/pantropicalallometry.htm</a> </div> <div class="html-p">The allometric equation for the estimation of AGB in peat swamp forest can be referred to [<a href="#B36-preprints-89235" class="html-bibr">36</a>], which is expressed as <div class="html-disp-formula-info" id="FD2-preprints-89235"> <div class="f"> <math display="block"><semantics> <mrow> <mi>A</mi> <mi>G</mi> <mi>B</mi> <mo>=</mo> <mn>0.136</mn> <msup> <mrow> <mi>D</mi> </mrow> <mrow> <mn>2.51</mn> </mrow> </msup> </mrow> </semantics></math> </div> <div class="l"> <label>(2)</label> </div> </div> and the allometric equation adopted for the calculation of AGB in mangrove forest is expressed as [<a href="#B38-preprints-89235" class="html-bibr">38</a>] <div class="html-disp-formula-info" id="FD3-preprints-89235"> <div class="f"> <math display="block"><semantics> <mrow> <mi>A</mi> <mi>G</mi> <mi>B</mi> <mo>=</mo> <mn>0.251</mn> <msup> <mrow> <mi>ρ</mi> <mi>D</mi> </mrow> <mrow> <mn>2.46</mn> </mrow> </msup> </mrow> </semantics></math> </div> <div class="l"> <label>(3)</label> </div> </div> where <span class="html-italic">ρ</span> is wood specific gravity or wood density (average value for all mangroves tree species is 0.752 g cm<sup>-3</sup>).</div></section></section><section id="sec2dot4-preprints-89235" type><h4 class="html-italic" data-nested="2"> 2.4. Production of Seamless Mosaics, Cloud-Free Images over Malaysia</h4> <div class="html-p">The production of cloud free images at national level requires substantial amount of time and resources to achieve it. While conventional methods offer flexibility and control over processing, they are often time-consuming and may be impractical for large-scale projects. Google Earth Engine streamlines the entire process, making it efficient, scalable, and accessible for a wide range of users. The production of cloud-free images over Malaysia was done using GEE. In this study, a Top-of-Atmosphere’s (ToA) cloud-free mosaic image for Malaysia in the year 2023 was generated using Landsat 8 and Landsat 9 satellite imagery obtained from the "LANDSAT/LC08/C02/T1_TOA" and "LANDSAT/LC09/C02/ T1_TOA" collections. The use of Landsat-8 and -9 imagery is to reduce cloud cover since Malaysia is located at the equatorial region and always covered by the clouds all the time. </div> <div class="html-p">The first step in generating cloud-free images over Malaysia was selecting images specifically for the year 2023 that covers Malaysia from the Landsat-8 and -9 image collections. This step is to ensure that only relevant imagery over the study area for the year 2023 is considered. A cloud masking approach was applied to the selected images using the "QA_PIXEL" band. This band was used to mask pixels containing dilated clouds, cirrus clouds, and cloud shadows. This cloud masking process was crucial for excluding cloudy or obscured pixels, resulting in a cleaner and more accurate composite image. The composite image was generated using the median value for each pixel across the selected cloud-masked images. The median composite method was chosen because it is simple for calculation and its robustness against outliers and its ability to reduce the influence of noise and artifacts in the final image. Finally, the cloud-free mosaic image for Malaysia in the year 2023 was created by mosaicking the individual median composite images.</div></section><section id="sec2dot5-preprints-89235" type><h4 class="html-italic" data-nested="2"> 2.5. Forest Cover and Types Classifications</h4> <div class="html-p">Forest is defined as “a portion of land larger than 0.5 ha and has trees with a height of more than five (5) metres and has a tree canopy cover of more than 10 percent or with trees that can meet these criteria”. This definition is based on the UN Food and Agriculture Organization’s (FAO) definition of a forest, which is adopted by the Malaysian government Laws of Malaysia - National Forestry Act 1984 (Amended, 2006). However, there are different types of forests in Malaysia, such as inland mixed dipterocarp forest, peat swamp forest, and mangrove forest, which have different characteristics and functions. Therefore, the definition of a forest may vary depending on the context and the purpose of the classification. Inland mixed dipterocarp forest, which is divided into several layers according to the land elevations, i.e., lowland dipterocarp forest (< 300 m), hill dipterocarp forest (300 - 750 m), upper-hill dipterocarp forest (750 - 1200 m), oak-laurel forest (1200 – 1500 m), montane ericaceous forest (>1500 m), are dominant in Malaysia [<a href="#B41-preprints-89235" class="html-bibr">41</a>]. All dryland forests are included in this category. It includes all primary and secondary forests that meet the defined threshold. It would, thus, also include the dwarf Montane and Sub-Montane forests growing on the thin soils of mountain summits and ridges of the interior of the peninsula. The dry inland forest in Malaysia is mostly dominated by trees from the Dipterocarpaceae family, hence the term ‘dipterocarp’ forests. The dipterocarp forest occurs on dry land just above sea level to an altitude of about 900 m. The dipterocarp specifically refers to the fact that most of the largest trees in this forest belong to one plant family known as Dipterocarpaceae. It was so called because their fruits have seeds with two wings (di = two; ptero = wing; carp = seed) [<a href="#B42-preprints-89235" class="html-bibr">42</a>]. This forest is also generally referred to as inland forest.</div> <div class="html-p">The peat swamp forest refers to tropical and subtropical forest areas behind the swampy forest to the land where peatlands and less salty soils are present. This tropical swamp forest is a unique wetland ecosystem and is a combination of two peat swamp forests and a growing tropical rainforest for thousands of years. On the other hand, mangrove refers to coastal and estuarine areas where the forest is influenced by tidal waves. Tidal forest where the genera Rhizophora, Bruguiera and Avicennia are most common. Mangrove trees refer to plants living in swampy areas at the mouth of the river, between clashes of freshwater and seawater.</div> <div class="html-p">Smaller sections of casuarina/beach forest, freshwater swamp forest, melaleuca swamp forest, heath forest, limestone forest, and quartz ridge forest are also present. In Sabah, there is another type of vegetation zone, known as sub-alpine vegetation, which occurs only at the elevation of > 3500 m a.s.l., at the peak of Kinabalu Mount [<a href="#B32-preprints-89235" class="html-bibr">32</a>]. </div> <div class="html-p">In this study, forests are divided into three major ecosystem types: inland mixed dipterocarp forest, peat swamp forest, and mangrove forest. Before interpreting and classifying forests on the Landsat images, it is important to understand the situation and management practices of Malaysia’s forest sector. Having a variety of secondary data on hand is advantageous and can speed up the classification process. To ensure that the classification is done correctly, spatial information such as Permanent Reserve Forest (PRF) boundaries, management regimes, and locations of various ecosystems are necessary. In this case, the image classification was performed to delineate forests from other land features. Image classification was executed on the seamless mosaic image to delineate these forest types. The training areas were manually created based on visual interpretation aided by the sampling plots information. Maximum likelihood image classification algorithm was utilised to execute the classification. </div> <div class="html-p">The most difficult aspect of image classification was dealing with large amounts of data and producing classification results with minimum uncertainty [<a href="#B43-preprints-89235" class="html-bibr">43</a>]. Pixel format classification results have been converted to shapefile vector format (.shp) for further analysis and post-classification recognition processes. Further editing and refining were conducted manually over the shapefile to ensure that the classification results are clean and only cover the forested areas.</div></section><section id="sec2dot6-preprints-89235" type><h4 class="html-italic" data-nested="2"> 2.6. Development of ACDI</h4> <div class="html-p">The ACDI is a metric developed on the premise that there exists a direct correlation between the density of a forest’s canopy, or the amount of foliage and branches in its upper layers, and the quantity of carbon stored in the forest’s biomass. This relationship is rooted in the principle that a denser canopy typically implies a more extensive and carbon-rich vegetation structure. The ACDI is used to estimate the amount of carbon stored in a forest, which is important for evaluating forest carbon sink capacities. As such, the ACDI will serve as a valuable tool for estimating the amount of carbon sequestered in a forest ecosystem by analysing its AGC. The development of ACDI is based on the Forest Canopy Density (FCD) model that was established by [<a href="#B44-preprints-89235" class="html-bibr">44</a>] and modified by [<a href="#B45-preprints-89235" class="html-bibr">45</a>,<a href="#B46-preprints-89235" class="html-bibr">46</a>,<a href="#B47-preprints-89235" class="html-bibr">47</a>]. An inspection was conducted on this model and found that ambiguities exist at the grassland and the shrublands, especially burn scars areas where the FCD is found to have higher values than that of forested areas [<a href="#B48-preprints-89235" class="html-bibr">48</a>]. This effect needs to be eliminated and the only solution to this is by suppressing the values to a level that is representative to the actual physical condition on the ground. Therefore, this model is further modified in this study and the ACDI is thus developed, which can be expressed as <div class="html-disp-formula-info" id="FD4-preprints-89235"> <div class="f"> <math display="block"><semantics> <mrow> <mfenced open="[" close="]" separators="|"> <mrow> <mfrac> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> <mo>×</mo> <mi>N</mi> <mi>B</mi> <mi>R</mi> <mo>×</mo> <mi>S</mi> <mi>I</mi> </mrow> <mrow> <mi>S</mi> <mi>A</mi> <mi>V</mi> <mi>I</mi> <mo>×</mo> <mi>I</mi> <mi>O</mi> <mo>×</mo> <mi>M</mi> <mi>N</mi> <mi>D</mi> <mi>W</mi> <mi>I</mi> <mo>×</mo> <mi>S</mi> <mi>W</mi> <mi>I</mi> <mi>R</mi> <mo>×</mo> <mi>E</mi> <mi>V</mi> <mi>I</mi> </mrow> </mfrac> </mrow> </mfenced> <mo>×</mo> <mn>2</mn> </mrow> </semantics></math> </div> <div class="l"> <label>(4)</label> </div> </div> where each image variable is summarised in <a href="#preprints-89235-t005" class="html-table">Table 5</a>. The calculation was conducted by using Top of Atmosphere (ToA) reflectance values.</div> <div class="html-p">The vegetation indices used in the ACDI were chosen with care to highlight the forest areas, distinguish them from other features, and show how the forests vary under different circumstances. The Normalised Difference Vegetation Index (NDVI) is a widely-used metric for quantifying the health and density of vegetation using sensor data. The Shadow Index (SI) is used to derive information about various landscape phenomena, including vegetation health and land classifications. However, the specific purpose or application of the Shadow Index is for detecting and correcting for shadows in optical satellite imagery. On the other hand, the Normalised Burn Ratio (NBR) is a radiometric measure of burn severity that was originally developed using Landsat Thematic Mapper data. The NBR is a widely used index for monitoring environmental changes, particularly those related to fire intensity and burn severity.</div> <div class="html-p">The SAVI is a vegetation index that is designed to minimise the influence of soil brightness on the vegetation signal1. It is particularly useful in areas where vegetative cover is low. In contrast, the IO can be used to estimate the presence of iron oxide in various landscapes, such as wetlands. The ratio presented in IO is also used as a geological index used for identifying rock features that have experienced oxidation of iron-bearing sulphides. However, in this case the IO was included in the equation to differentiate forest cover especially in wetlands areas [<a href="#B56-preprints-89235" class="html-bibr">56</a>]. On the other hand, the MNDWI is a spectral index used for several purposes, such as enhancement of open water features that is particularly useful in built-up areas as it can reduce or even remove built-up land. It is also used to analyse water bodies such as rivers, lakes, and dams. In this case, the MNDWI was included to diminish built-up area features that are often correlated with open water in other indices. Finally, EVI was included in the equation as one of the multiplicative indicators in the denominator. This "optimised" vegetation index aims to improve vegetation monitoring by decoupling the canopy background signal and minimising atmospheric impacts, hence increasing the vegetation signal’s sensitivity in high biomass regions. It thus enhanced the vegetation health and density of vegetation.</div> <div class="html-p">The ACDI equation was then applied to the Landsat-8 Operational Land Imaging (OLI) for the year 2023. This process is similar to the production of a seamless mosaic of Landsat images over Malaysia as described earlier. However, an additional step was applied to include the ACDI formula to the image. This process was also conducted on the GEE platform.</div></section><section id="sec2dot7-preprints-89235" type><h4 class="html-italic" data-nested="2"> 2.7. Development of AGC Estimation Models</h4> <div class="html-p">The linear relationship between AGC and the ACDI is a fundamental connection in the assessment of carbon content in terrestrial ecosystems. AGC represents the total carbon stored in the aboveground biomass of trees. ACDI, on the other hand, is a metric used to express this carbon content relative to a unit of area, typically per hectare or square metre. The extraction process was conducted on the GEE platform where a specific program code was created to extract the ACDI values from Landsat data that match the date (or year) of the field inventory data. This is to ensure that the value of AGC is true at the specific time, because the forest can change over time. </div> <div class="html-p">The linear relationship between AGC and ACDI is straightforward: as the aboveground carbon content increases in a given area, the ACDI value for that area also increases proportionally. Simple linear regression is a statistical method used to estimate the relationship between two quantitative variables. It is preferred over other regression models to measure the strength of the relationship between AGC and ACDI. Simple linear regression is also preferred when only one independent variable, (i.e., ACDI) is available. In this case ACDI is the predictor for AGC, where the linear relationship between these two variables can be expressed as <div class="html-disp-formula-info" id> <div class="f"> <span class="html-italic">y</span> = <span class="html-italic">mx</span> </div> <div class="l"> <label>(5)</label> </div> </div> where y denotes AGC, m is the slope, and x is the ACDI. Both x and y variables intercept at 0, which means that the line passes through the origin (0, 0) of the plane, where ACDI is 0 when AGC is 0 or no vegetation (cleared land and water bodies).</div></section><section id="sec2dot8-preprints-89235" type><h4 class="html-italic" data-nested="2"> 2.8. Models Validation</h4> <div class="html-p">Some of the sample plots data were used separately for validation (<a href="#preprints-89235-t001" class="html-table">Table 1</a>). The validation plots are those measurements that have been conducted recently in the year 2023 to match the AGC map that was produced for the year 2023. To check the accuracy of the estimates, root mean square error (RMSE) was calculated. In this case, the accuracy is a measure of the error between a derived/predicted AGC from the ACDI and the actual AGC measured on the ground. The calculation can be expressed as follows:<div class="html-disp-formula-info" id="FD5-preprints-89235"> <div class="f"> <math display="block"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>=</mo> <mo> </mo> <msqrt> <mrow> <mo stretchy="false">∑</mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mrow> <mi>A</mi> <mi>G</mi> <mi>C</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> <mo>−</mo> <mo> </mo> <msub> <mrow> <mi>A</mi> <mi>G</mi> <mi>C</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> </mrow> </mfrac> </mrow> </mrow> </msqrt> </mrow> </semantics></math> </div> <div class="l"> <label>(6)</label> </div> </div> where RMSE is the root mean square error of the estimated AGC (± Mg C ha<sup>−1</sup>), <span class="html-italic">AGC<sub>p</sub></span> and <span class="html-italic">AGC<sub>r</sub></span> are the predicted and reference AGC, respectively, and <span class="html-italic">n</span> is the sample size (i.e., number of validation plots).</div> <div class="html-p">In additional to the RMSE, the accuracies of the estimates were also measured in terms symmetric mean absolute percentage error (SMAPE). SMAPE is a commonly used metric for measuring the percentage accuracy between forecasted and actual values. It is particularly used to assess the performance of a forecasting model, and it has a preference for symmetrical errors. The adjusted SMAPE values typically range from 0% to 100% [<a href="#B57-preprints-89235" class="html-bibr">57</a>]. A lower SMAPE indicates a better forecast accuracy, while a higher SMAPE indicates a less accurate forecast. SMAPE is calculated as follows:<div class="html-disp-formula-info" id="FD6-preprints-89235"> <div class="f"> <math display="block"><semantics> <mrow> <mi>S</mi> <mi>M</mi> <mi>A</mi> <mi>P</mi> <mi>E</mi> <mo>=</mo> <mo> </mo> <mfrac> <mrow> <mn>100</mn> </mrow> <mrow> <mi>n</mi> </mrow> </mfrac> <mrow> <msubsup> <mo stretchy="false">∑</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> </mrow> </msubsup> <mrow> <mfrac> <mrow> <mfenced open="|" close="|" separators="|"> <mrow> <msub> <mrow> <mi>A</mi> <mi>G</mi> <mi>C</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> <mo>−</mo> <msub> <mrow> <mi>A</mi> <mi>G</mi> <mi>C</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> </mrow> </mfenced> </mrow> <mrow> <mfenced open="|" close="|" separators="|"> <mrow> <msub> <mrow> <mi>A</mi> <mi>G</mi> <mi>C</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> </mrow> </mfenced> <mo>+</mo> <mfenced open="|" close="|" separators="|"> <mrow> <msub> <mrow> <mi>A</mi> <mi>G</mi> <mi>C</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </mfrac> </mrow> </mrow> </mrow> </semantics></math> </div> <div class="l"> <label>(7)</label> </div> </div> </div></section><section id="sec2dot9-preprints-89235" type><h4 class="html-italic" data-nested="2"> 2.9. Thematic Map Production</h4> <div class="html-p">The empirical equations that have been derived from the regression analysis were applied to the ACDI images. Each equation was applied to produce estimated AGC according to the forest types. Since the model produced is made according to the type of forest, each equation was applied three times, each for dry inland forest, peat swamp forest, and mangrove forest. Each resulting AGC image was then cropped to match the forest type. Then the three images were rejoined to produce a single image containing the AGC value according to the type of forest. The mosaiced product was a single-layer image with pixel values representing AGC at 30-m resolution. This image generated a wall-to-wall map of AGC throughout Malaysia. By using this map, AGC at any location can be determined and statistics of AGC within any polygon can be extracted.</div></section></section><section id="sec3-preprints-89235" type="results"><h2 data-nested="1" id="preprints-h2-3"> 3. Results and Discussion</h2> <section id="sec3dot1-preprints-89235" type><h4 class="html-italic" data-nested="2"> 3.1. Summary of the Sample Plots Data</h4> <div class="html-p">The field inventory work that has been conducted covered a wide range of forest types and conditions, from severely degraded areas to the highly pristine, virgin forest. Non-tree spots within the sampling areas, with AGC value of 0 were also included as samples. Statistics of the sample plots data are summarised in <a href="#preprints-89235-t006" class="html-table">Table 6</a> and represented in boxplots as shown in <a href="#preprints-89235-f009" class="html-fig">Figure 9</a>.</div> <div class="html-fig-wrap" id="preprints-89235-f008"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f008"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png" alt="Preprints 89235 g008" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f008"></a> </div> </div> <div class="html-fig_description"> <b>Figure 8.</b> Distribution of sampling points on the classified forest types map. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f008"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f008"> <div class="html-caption"> <b>Figure 8.</b> Distribution of sampling points on the classified forest types map.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png" alt="Preprints 89235 g008" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png"></div> </div> </section><section id="sec3dot2-preprints-89235" type><h4 class="html-italic" data-nested="2"> 3.2. Seamless Mosaics, Cloud-Free Images over Malaysia</h4> <div class="html-p">A seamless mosaic of Landsat images over Malaysia has been produced on the GEE platform. This mosaic was produced from the combination of images that were acquired from early years 2022 to 2023. This timeframe was set as a threshold to allow the GEE to mask and eliminate clouds from multiple individual Landsat images and come out with a clean, cloud-free image. A 2-year threshold was found the most optimal for the production of cloudless (at more than 99%), clear and continuous images over Malaysia. This product was then used for deriving the final ACDI image, as shown in <a href="#preprints-89235-f010" class="html-fig">Figure 10</a>.</div></section><section id="sec3dot3-preprints-89235" type><h4 class="html-italic" data-nested="2"> 3.3. The Classified Forest Cover and Types</h4> <div class="html-p">From the classification, it was found that the total area of forests in Malaysia in 2023 was about 18 million ha with dry inland forest being dominant at 93.3% (<a href="#preprints-89235-t007" class="html-table">Table 7</a>). The forest types classification results were produced in shapefile (.shp) format so that further analysis and statistical extractions can be done over the AGC map. <a href="#preprints-89235-f008" class="html-fig">Figure 8</a> shows the map of forest types that have been classified from the image.</div></section><section id="sec3dot4-preprints-89235" type><h4 class="html-italic" data-nested="2"> 3.4. Summary of the ACDI</h4> <div class="html-p">The ACDI that have been derived from the Landsat images for the year 2023 ranged from about 0 to 200. However, the values are mainly concentrated at values ranging from 0 to 50 (<a href="#preprints-89235-f011" class="html-fig">Figure 11</a>) and some minority pixels containing values exceeding 100. The statistic of ACDI is summarised in <a href="#preprints-89235-t008" class="html-table">Table 8</a> and the spatial distribution of ACDI is presented on map in <a href="#preprints-89235-f012" class="html-fig">Figure 12</a>. The histogram represents all terrestrial features in Malaysia, which includes all categories of land use/cover. While water bodies, bare lands and built-up areas have relatively low ACDI values, vegetation covers tend to have higher values. In this case, all vegetation including forests and agricultural lands are mixed and some of them are sharing the same values of ACDI. Therefore, the forest cover and types classification are crucial and took the first part in the image processing.</div></section><section id="sec3dot5-preprints-89235" type><h4 class="html-italic" data-nested="2"> 3.5. AGC Estimation Models</h4> <div class="html-p">Scatterplots of AGC against ACDI have been produced with linear correlations created for all forest types. Referring to the scatterplot it is obvious that the ACDI demonstrated different responses towards the AGC. The slope of the linear regression line, which is steeper than that of peat swamp and mangrove forest, indicates that dry inland forests exhibit a larger proportional relationship between ACDI and AGC. Mangrove forests, on the other hand, have the least gradient. This is because wetlands (i.e., peat swamps and mangrove forests) and dry inland forest have different soil properties [<a href="#B58-preprints-89235" class="html-bibr">58</a>]. The ACDI formula has normalised the impact on soil properties. In contrast, peat swamps and mangrove forests appear darker due to the reflectance in the infrared region that has been absorbed by the moisture as it interacts with the wetlands [<a href="#B59-preprints-89235" class="html-bibr">59</a>]. Mineral soil beneath dry inland forest tends to become brighter because the amount of reflectance mainly comes from the canopy of the trees [<a href="#B60-preprints-89235" class="html-bibr">60</a>]. The linear relationships between AGC and ACDI are depicted in <a href="#preprints-89235-f013" class="html-fig">Figure 13</a> and the derived AGC estimation models are summarised in <a href="#preprints-89235-t009" class="html-table">Table 9</a>. </div> <div class="html-p">It is desirable and expected that the AGC has a perfect linear relationship with ACDI. However, after the analysis was carried out, it was found that the relationship is still divergent and this happens due to several factors. The first factor is the coordinates of the location of the sampling plot which is not very accurate and the position of the plot which does not fall exactly on the actual position. Another factor is the use of allometric equations that do not relate forest canopy information in AGC calculations, whereas the information extracted from satellite data is based on forest canopy. In addition, the spatial resolution of Landsat data at 30-m accuracy includes many mixed features in a pixel when compared to the plot sizes used in the census, especially for peat swamp and mangrove forests where the plot sizes are smaller than the pixel resolution. Nonetheless, the correlations exhibit significance, with r2 values surpassing 0.5, and are deemed acceptable, given the huge amount of field data available to reveal the true relationship between AGC and the ACDI.</div></section><section id="sec3dot6-preprints-89235" type><h4 class="html-italic" data-nested="2"> 3.5. Statistics Extracted from the AGC Map</h4> <div class="html-p">The AGC map that has been produced from the estimation models contained pixel values ranging from about 0 to 450. The histogram shows that there are two distinct regions of distributions, creating two different peaks, which reflect the estimated AGC for forests and other vegetative covers (<a href="#preprints-89235-f014" class="html-fig">Figure 14</a>). Although the estimation is not valid for vegetation other than forests; all pixels contain AGC values once the model is applied to the ACDI image. The statistic of the AGC is summarised in <a href="#preprints-89235-t010" class="html-table">Table 10</a> and the spatial distribution of AGC is portrayed on map in <a href="#preprints-89235-f015" class="html-fig">Figure 15</a>. It was estimated that the total AGC in the entire forests in Malaysia was at 3.0 billion Mg C, which was a sum of 2.87 billion Mg C, 71.9 million Mg C, and 56.86 million Mg C from dry inland, peat swamp and mangrove forests, respectively (<a href="#preprints-89235-t011" class="html-table">Table 11</a>). Given the entire forests in Malaysia is divided into three types, the averages AGC estimated for dry inland, peat swamp and mangrove forests are 171.45 ± 67.00 Mg C ha<sup>−1</sup>, 109.51 ± 60.78 Mg C ha<sup>−1</sup>, and 91.50 ± 76.18 Mg C ha<sup>−1</sup>, respectively. Statistics are also calculated based on the forested areas found throughout the country by state using the AGC map that has been produced. Using this information, the carbon stock profile for each state in Malaysia has been determined. A summary of the AGC profile is given in <a href="#preprints-89235-t011" class="html-table">Table 11</a> and shown in <a href="#preprints-89235-f016" class="html-fig">Figure 16</a>, <a href="#preprints-89235-f017" class="html-fig">Figure 17</a> and <a href="#preprints-89235-f018" class="html-fig">Figure 18</a>. This information is very useful in determining the carbon stock capacity at the national, states, and project or site-specific levels.</div> <div class="html-p">The performance of the AGC map produced from this study was measured by extracting the profiles of AGC at different forest types and conditions. Twelve areas have been selected to demonstrate the variations of AGC distribution, which are summarised in <a href="#preprints-89235-f019" class="html-fig">Figure 19</a> and listed in <a href="#preprints-89235-t012" class="html-table">Table 12</a>. The spatial distribution of AGC over these areas are depicted in <a href="#preprints-89235-f020" class="html-fig">Figure 20</a>, <a href="#preprints-89235-f021" class="html-fig">Figure 21</a> and <a href="#preprints-89235-f022" class="html-fig">Figure 22</a>, which represent dry inland forest, mangrove forest and peat swamp forest, respectively. These areas are among areas that are known for their functions. </div> <div class="html-p">A comprehensive review on the aboveground carbon stock at various forests in Malaysia was reported by [<a href="#B61-preprints-89235" class="html-bibr">61</a>]. The values vary according to the forest types and conditions and most of the reported AGC values are agreeable with the values estimated in this study. Similar situation occurs in mangrove forest, where the range of AGC is agreeable to that of reported by [<a href="#B59-preprints-89235" class="html-bibr">59</a>,<a href="#B62-preprints-89235" class="html-bibr">62</a>]. </div> <div class="html-p">The total AGC in Malaysia over the year 2023 estimated by this study was at 3.0 billion Mg C (<a href="#preprints-89235-t011" class="html-table">Table 11</a>). This totals a sum of AGC reported for the entire state in Malaysia. [<a href="#B63-preprints-89235" class="html-bibr">63</a>] estimated that the total aboveground biomass carbon in 2015 was at 2.248 billion Mg C, with an average of 154.78 Mg C ha<sup>-1</sup>, within an estimated forested area of 18.278 million ha. This was somehow lower than that estimated by the current study. However [<a href="#B10-preprints-89235" class="html-bibr">10</a>] estimated that the total AGC in all forest types in Malaysia was at 3.15 billion Mg C over the year 2020. This is agreeable with that found in the current study. </div> <div class="html-p">It was reported that the total AGC in the lowland and hill dipterocarps forests in Peninsular Malaysia was at 775,884,956 Mg C over the year 2015 [<a href="#B64-preprints-89235" class="html-bibr">64</a>]. AGC in about 5.25 million ha of the dry inland forest, excluding montane forest, in Peninsular Malaysia was estimated at 855,970,674 Mg C [<a href="#B65-preprints-89235" class="html-bibr">65</a>] and 833,141,077 Mg C [<a href="#B66-preprints-89235" class="html-bibr">66</a>] over the year 2016. Current study found that the total AGC in the dry inland forest in Peninsular Malaysia was at 921,731,750 Mg C. The estimates were slightly higher because it includes montane forests, which has elevation > 1200 m a.s.l. </div> <div class="html-p">A study found the Totally Protected Areas (TPA) forest has among the highest carbon densities in Sabah, averaging 165 Mg C ha<sup>− 1</sup>, Maliau Basin with 220 ± 69 Mg C ha<sup>−1</sup>, and Danum Valley with 207 ± 71 Mg C ha<sup>−1</sup>. Other forest reserves that are in intact condition yielded even higher carbon densities, with Imbak Canyon producing the highest mean stock of 229 ± 81 Mg C ha<sup>−1</sup> [<a href="#B67-preprints-89235" class="html-bibr">67</a>]. These estimates are very close to that found in this study with an average of 215.72 Mg C ha<sup>−1</sup> in Maliau Basin forest landscape (<a href="#preprints-89235-t012" class="html-table">Table 12</a>-B). </div> <div class="html-p">It was estimated that AGC in Endau Rompin National Park in Johor wat at an average of 281 Mg C ha<sup>−1</sup> [<a href="#B68-preprints-89235" class="html-bibr">68</a>]. Assuming that forest condition in this area is similar to the Greater National Park, this study estimated the AGC in this kind of forest was at 203.61 Mg C ha<sup>−1</sup> (<a href="#preprints-89235-t012" class="html-table">Table 12</a>-A), which is lower than that was estimated by them. However, it was justified that the allometric equation that was used in the study is different from that of used by this study. This can contribute to the final AGC estimates. In contrast, [<a href="#B69-preprints-89235" class="html-bibr">69</a>] reported that the carbon stock in production forest at the production area ranged between 24.6 and 265.8 Mg C ha<sup>-1</sup> with the mean at 166.8 Mg C ha<sup>-1</sup>. This is comparable with that found in this study with an average at 192.55 Mg C ha<sup>-1</sup> (<a href="#preprints-89235-t012" class="html-table">Table 12</a>-D). </div> <div class="html-p">Another assessment looked into the aspect of chronosequence rehabilitated tropical forest stands in Malaysia. It compares the carbon stock of different age classes and forest types, and evaluates the effectiveness of forest rehabilitation. The rehabilitated forests have tree carbon ranging from 0.1 - 54.0 Mg C ha<sup>-1</sup>. In contrast to the natural regenerating secondary forest, tree carbon was at 61.0 Mg C ha<sup>-1</sup> [<a href="#B70-preprints-89235" class="html-bibr">70</a>].</div></section><section id="sec3dot7-preprints-89235" type><h4 class="html-italic" data-nested="2"> 3.6. AGC Map Accuracy</h4> <div class="html-p">The AGC map was validated by using separate sample plots that were allocated for validation purposes. The predicted AGC values were fitted against the actual values measured at validation plots. The validation scatter plot is a common tool used to measure the performance of a model. It is used to visualise the relationship between the predicted values and the actual values of a model. The scatter plot shows how well the model is able to predict the actual values, and how much variation there is between the predicted and actual values. The closer the points are to the line of perfect prediction, the better the model’s performance. This plot is particularly useful when evaluating regression models, as it allows to measure the performance of the models developed to predict continuous variables. The validation scatterplots are shown in <a href="#preprints-89235-f023" class="html-fig">Figure 23</a>. The accuracy of the model’s performance was also assessed by determining the RMSE and SMAPE. </div> <div class="html-p">The study found that the AGC predicted on mangrove forest attained the best accuracy at 84.85% with ±22.51 Mg C ha<sup>-1</sup>. Lower accuracies obtained for peat swamp and dry inland forests, with the attainable accuracies at 77.14% and 77.34%, respectively. <a href="#preprints-89235-t013" class="html-table">Table 13</a> summarises the overall accuracies of the predictions resulted from the models.</div></section></section><section id="sec4-preprints-89235" type="conclusions"><h2 data-nested="1" id="preprints-h2-4"> 4. Conclusions</h2> <div class="html-p">Based on the estimates, a 30-metre resolution, wall-to-wall map of AGC across the entire forested region of Malaysia has been produced from a single Landsat satellite image. The ACDI was calibrated and validated by using a collection of 12 years inventory data. Forest types were divided into three classes which are dry inland, peat swamp and mangrove forests. The total AGC in all types of forests in Malaysia was estimated at 3.0 billion Mg C. The accuracy of the estimates was assessed and the attainable overall accuracy was at about 80%. The statistics AGC for all forest types were presented covering the entire regions of Malaysia. These estimates were also divided into categories and reported to the AGC at the state level. Image classification that was carried out to delineate the forest covers produced a map that revealed that the forest cover in Malaysia was at about 18 million ha in 2023. The averages AGC estimated for dry inland, peat swamp and mangrove forests are 171.45 ± 67.00 Mg C ha<sup>−1</sup>, 109.51 ± 60.78 Mg C ha<sup>−1</sup>, and 91.50 ± 76.18 Mg C ha<sup>−1</sup>, respectively. It was also found that the ACDI have different responses towards the AGC.</div> <div class="html-p">Landsat data have proven to be a valuable resource for forest biomass prediction, offering insights into forest ecosystems and their response to environmental changes. The combination of Landsat data with advanced modelling techniques, the use of cloud-based platforms such as GEE and other advanced technologies has enhanced the ability to estimate biomass accurately. As technology and methodologies continue to evolve, Landsat data will likely remain a pivotal tool in monitoring and managing forest resources in the context of climate change and environmental conservation. Further research is needed to address challenges, refine methodologies, and improve the accuracy of forest biomass predictions using Landsat data.</div> <div class="html-p">The scrutiny against carbon project in the international voluntary markets, in recent years, demand for more accuracy and rigorous assessment of data to (i) support evidence of additionality through documented forest loss or degradation; (ii) support robustness and quantification of GHG emission where data is use to estimates the deforestation or degradation rates at project, subnational and national level; (iii) assess non-permanence risks including site susceptibility to natural hazards; and (iv) support evidence of co benefits, where in some cases geospatial data is used for biodiversity profiles.</div> <div class="html-p">The use of remote sensing and GIS analysis allows nature-based carbon project developers to assess the feasibility of their projects in a more cost-effective way. The use of Landsat data will allow project developers to identify degraded areas and design the remedial measures more effectively. This study can be expanded for generation of time-series assessment over at least a 2-year interval [<a href="#B71-preprints-89235" class="html-bibr">71</a>,<a href="#B72-preprints-89235" class="html-bibr">72</a>]. This data will also facilitate the subsequent carbon verification process and ensures the validity and accountability of emissions data, the success of emissions reduction projects, confirming that the emissions reductions are permanent and genuine.</div> <div class="html-p">This study can potentially be used for the national/subnational mitigation efforts including the REDD+ implementation. REDD+ is constructed on the principles of additionality against a baseline or reference emission level (FRL/FREL), with no displacement of emissions to neighbouring areas (leakage). A consistent monitoring and reporting system that works across scales is therefore important for operationalizing REDD+, ensuring no displacement in the emission and also to avoid potential double counting issues. The generation of subnational/jurisdictional level FRL and FREL will enable the Government to develop more effective mitigation measures in achieving the Malaysian Nationally Determined Contribution and offer the potential to scale up emissions reductions more rapidly with greater environmental integrity. More than 73 countries have implemented their carbon pricing instrument, CPI (emission trading scheme and/or carbon tax) as a means of bringing down emissions and driving investment into cleaner options [<a href="#B73-preprints-89235" class="html-bibr">73</a>]. The foundation of how allocation is determined under these instruments are based on historical intensity of emission from the targeted sectors. This study may potentially be used as a basis study to determine allocation for the forestry sector, if CPI is implemented in Malaysia.</div> <div class="html-p">Although the study has successfully provided estimates of AGC for the entire Malaysia, there are some limitations that are foreseen to have potentially be addressed in the future. Spatial resolution of Landsat data, which currently offers at 30-m resolution images can affect the accuracy of biomass predictions, particularly in heterogeneous landscapes. Integration with other data sources by combining Landsat data with other remote sensing platforms (e.g., LiDAR, SAR) can improve the accuracy of biomass predictions. Continuous calibration and validation of biomass prediction models are also crucial to ensure their accuracy and reliability and these processes are expected to become a requirement in the future, especially when dealing with carbon projects at a state- or project-level.</div> <div class="html-p">In conclusion, the availability of comprehensive inventory data is instrumental in unveiling the intricate correlation patterns between aboveground carbon levels and the image variables extracted from Landsat data [<a href="#B74-preprints-89235" class="html-bibr">74</a>]. This symbiotic relationship between ground-based measurements and remote sensing imagery enables better comprehension of the dynamics of terrestrial carbon sequestration. With a wealth of inventory data at the disposal, more holistic understanding is gained of how various ecological and environmental factors influence aboveground carbon stocks. This knowledge not only enriches our understanding of our planet’s carbon balance but also empowers us to make informed decisions for sustainable land management and climate change mitigation.</div></section> <section><section id="app1-preprints-89235" type><h2 data-nested="1" id="preprints-h2-5"> Supplementary Materials</h2> <div class="html-p">The following supporting information can be downloaded at the website of this paper posted on Preprints.org, Images of AGC over Malaysia at 100-m resolution in MrSID image format.</div></section></section><section class="html-notes"><h2 id="preprints-h2-6">Author Contributions</h2> <div class="html-p">Conceptualization and methodology, H.O.; software, M.A.M.; data curation, M.A.M.; writing—original draft preparation, H.O.; writing—review and editing, S.H.; project administration, V.L.; A.A.M.B.; M.N.F.S.; funding acquisition, H.O. All authors have read and agreed to the published version of the manuscript.</div></section><section class="html-notes"><h2 id="preprints-h2-7">Funding</h2> <div class="html-p">This study was funded by the Government of Malaysia through 12<sup>th</sup> Malaysian Plan.</div></section><section id="html-ack" class="html-ack"><h2 id="preprints-h2-8">Acknowledgments</h2> <div class="html-p">Thanks to: The Ministry of Natural Resources, Environment and Climate Change (NRECC), 10th (2011-2015), 11th (2016 – 2020) and 12th (2021 – 2025) Malaysia Plans, Forest Research Institute Malaysia (FRIM), Mangrove’s Technical, Research and Development Committee (JTRD), Forestry Department Peninsular Malaysia, States Forestry Department, Sabah Forestry Departments, Forest Department of Sarawak, Kumpulan Pengurusan Kayu Kayan Terengganu (KPKKT), Forestry and Forest Products Research Institute of Japan (FFPRI), International Tropical Timber Organization, Thematic Program Reducing Deforestation and Forest Degradation and Enhancing Environmental Services in Tropical Forests (ITTO-REDDES), WWF-Malaysia, and Malaysia Forest Fund (MFF). Thanks also to the USGS (<a href="https://earthexplorer.usgs.gov" target="_blank">https://earthexplorer.usgs.gov</a>) that provides free-access Landsat images for this study.</div></section><section class="html-notes"><h2 id="preprints-h2-9">Conflicts of Interest</h2> <div class="html-p">The authors declare no conflict of interest.</div></section><section id="html-references_list"><h2 id="preprints-h2-10">References</h2> <ol class="html-xx"> <li id="B1-preprints-89235" class="html-x" data-content="1.">Henson, I. E. An Assessment of Changes in Biomass Carbon Stocks in Tree Crops and Forests in Malaysia. <span class="html-italic">Journal of Tropical Forest Science</span> <b>2005</b>, 17(2), 279-296.</li> <li id="B2-preprints-89235" class="html-x" data-content="2.">Moktshim N. Forest management in Malaysia: The strategies undertaken towards achieving Sustainable Development Goals. <span class="html-italic">IOP Conf. Ser.: Earth Environ. Sci.</span> <b>2020</b>, 561, 012041. [<a href="https://doi.org/10.1088/1755-1315/561/1/012041" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B3-preprints-89235" class="html-x" data-content="3.">Ministry of Natural Resources, Environment and Climate Change Malaysia (NRECC). Available online: <a href="https://redd.nrecc.gov.my/malaysia-redd-plus-strategy/" target="_blank">https://redd.nrecc.gov.my/malaysia-redd-plus-strategy/</a> (accessed on 21 October 2023).</li> <li id="B4-preprints-89235" class="html-x" data-content="4.">Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. <span class="html-italic">J. Geophys. Res. Biogeosciences</span>, <b>2009</b>, 114, 1–13.</li> <li id="B5-preprints-89235" class="html-x" data-content="5.">Guillén, F.; Orozco, R.; Santaella, J.A. Measuring Climate Change: The importance of geospatial information with an application to carbon sequestration and storage in the System of Environmental-Economic Accounting — Ecosystem Accounting (SEEA EA) - 9<sup>th</sup> IMF Statistical Forum, United Nations, Rome (5 February 2021).</li> <li id="B6-preprints-89235" class="html-x" data-content="6.">U.S. Geological Survey. Landsat—Earth Observation Satellites. In Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2015; p. 4.</li> <li id="B7-preprints-89235" class="html-x" data-content="7.">Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. <span class="html-italic">Remote Sens. Environ</span> <b>2012</b>, 122, 2–10.</li> <li id="B8-preprints-89235" class="html-x" data-content="8.">Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. <span class="html-italic">Remote Sens</span> <b>2020</b>, 12, 426. [<a href="https://doi.org/10.3390/rs12030426" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B9-preprints-89235" class="html-x" data-content="9.">Lu, D. The potential and challenge of remote sensing-based biomass estimation, <span class="html-italic">Int. J. Remote Sens</span> <b>2006</b>, 27(7), 1297-1328. [<a href="https://doi.org/10.1080/01431160500486732" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B10-preprints-89235" class="html-xx" data-content="10.">Hamdan, O.; Thirupathi, R.N.; Norsheilla, M.J.C.; Nur Atikah, A.B.; Muhamad Afizzul, M. <span class="html-italic">Utilization of Remote Sensing Technology for Carbon Offset Identification in Malaysian Forests</span>. IntechOpen, 2021. [<a href="https://doi.org/10.5772/intechopen.98952" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B11-preprints-89235" class="html-xx" data-content="11.">Shao, Z.; Zhang, L. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China. <span class="html-italic">Sensors</span> <b>2016</b>, 16, 834. [<a href="https://doi.org/10.3390/s16060834" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B12-preprints-89235" class="html-xx" data-content="12.">Li, X.; Zhang, M.; Long, J.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. <span class="html-italic">Remote Sens</span> <b>2021</b>, 13, 3910. [<a href="https://doi.org/10.3390/rs13193910" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B13-preprints-89235" class="html-xx" data-content="13.">Puliti, S.; Breidenbach, J.; Schumacher, J.; Hauglin, M.; Klingenberg, T.F.; Astrup, R. Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat, <span class="html-italic">Remote Sens Environ</span> 2021, 265, 112644. [<a href="https://doi.org/10.1016/j.rse.2021.112644" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B14-preprints-89235" class="html-xx" data-content="14.">Lourenço, P. Biomass Estimation Using Satellite-Based Data, Forest Biomass - From Trees to Energy. IntechOpen, 2021. [<a href="https://doi.org/10.5772/intechopen.93603" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B15-preprints-89235" class="html-xx" data-content="15.">Giles, M.; FoodyDoreen, S.; BoydDoreen, S.; BoydMark, E. J.; CutlerMark, E. J.; Cutler. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. <span class="html-italic">Remote Sens. Environ</span> <b>2003</b>, 85(4), 463-474. [<a href="https://doi.org/10.1016/S0034-4257(03)00039-7" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B16-preprints-89235" class="html-xx" data-content="16.">Tavasoli, N.; Arefi, H. Comparison of Capability of SAR and Optical Data in Mapping Forest above Ground Biomass Based on Machine Learning. <span class="html-italic">Environ. Sci. Proc.</span> <b>2021</b>, 5, 13. [<a href="https://doi.org/10.3390/IECG2020-07916" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B17-preprints-89235" class="html-xx" data-content="17.">López-Serrano, P.M.; Cárdenas Domínguez, J.L.; Corral-Rivas, J.J.; Jiménez, E.; López-Sánchez, C.A.; Vega-Nieva, D.J. Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests. <span class="html-italic">Forests</span> <b>2020</b>, 11, 11. [<a href="https://doi.org/10.3390/f11010011" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B18-preprints-89235" class="html-xx" data-content="18.">Breiman, L. Random Forest. <span class="html-italic">Mach. Learn.</span> <b>2001</b>, 45, 5–32.</li> <li id="B19-preprints-89235" class="html-xx" data-content="19.">Xiaoli, Z.; Lu, L.; Yanfeng, L.; Yong, W.; Jing, T.; Weiheng, X.; Leiguang, W.; Guanglong, O. Improving the accuracy of forest aboveground biomass using Landsat 8 OLI images by quantile regression neural network for Pinus densata forests in southwestern China. <span class="html-italic">Front For Glob Change</span> <b>2023</b>, 6. [<a href="https://doi.org/10.3389/ffgc.2023.1162291" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B20-preprints-89235" class="html-xx" data-content="20.">Gizachew, B.; Solberg, S.; Næsset, E. et al. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. <span class="html-italic">Carbon Balance Manage</span> <b>2016</b>, 11, 13. [<a href="https://doi.org/10.1186/s13021-016-0055-8" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B21-preprints-89235" class="html-xx" data-content="21.">Shao, Z.; Zhang, L. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China. <span class="html-italic">Sensors</span> <b>2016</b>, 16(6), 834. [<a href="https://doi.org/10.3390/s16060834" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B22-preprints-89235" class="html-xx" data-content="22.">Mette, T.; Papathanassiou, K.P.; Hajnsek, I.; Zimmermann, R. Forest biomass estimation using polarimetric SAR interferometry. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002, 2, 817-819. [<a href="https://doi.org/10.1109/IGARSS.2002.1025695" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B23-preprints-89235" class="html-xx" data-content="23.">Purohit, S.; Aggarwal, S.P.; Patel, N.R. Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills. <span class="html-italic">Trop Ecol</span> <b>2021</b>, 62, 288–300. [<a href="https://doi.org/10.1007/s42965-021" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B24-preprints-89235" class="html-xx" data-content="24.">Luo, P.; Ye, H.; Huang, W.; Liao, J.; Jiao, Q.; Guo, A.; Qian, B. Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data. <span class="html-italic">Remote Sens</span> <b>2022</b>, 14(21), 5624. [<a href="https://doi.org/10.3390/rs14215624" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B25-preprints-89235" class="html-xx" data-content="25.">Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. <span class="html-italic">J For Res</span> <b>2012</b>, 436537. [<a href="https://doi.org/10.1155/2012/436537" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B26-preprints-89235" class="html-xx" data-content="26.">Li, Y.; Li, M.; Li, C. et al. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. <span class="html-italic">Sci Rep</span> <b>2020</b>, 10, 9952. [<a href="https://doi.org/10.1038/s41598-020-67024-3" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B27-preprints-89235" class="html-xx" data-content="27.">Ministry of Natural Resources, Environment and Climate Change (NRECC). Available online: <a href="https://www.nrecc.gov.my/ms-my/teras/hutan/Pages/Kawasan-Berhutan-di-Malaysia.aspx" target="_blank">https://www.nrecc.gov.my/ms-my/teras/hutan/Pages/Kawasan-Berhutan-di-Malaysia.aspx</a> (accessed on 18 October 2023).</li> <li id="B28-preprints-89235" class="html-xx" data-content="28.">Michinaka, T. Approximating Forest Resource Dynamics in Peninsular Malaysia Using Parametric and Nonparametric Models, and Its Implications for Establishing Forest Reference (Emission) Levels under REDD+. <span class="html-italic">Land</span> <b>2018</b>, 7, 70. [<a href="https://doi.org/10.3390/land7020070" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B29-preprints-89235" class="html-xx" data-content="29.">Sato, T.; Niiyama, K.; Toriyama, J.; Kiyono, Y. How to Estimate Forest Carbon Stocks? Application to Ground-Based Inventory. In Hamdan, O.; Khali Aziz, H.; Takao, G.; Sato, T.; Mohd Parid, M., Eds., Proceedings Workshop on REDD+ Research Project in Peninsular Malaysia, Forest Research Institute Malaysia, 2013.</li> <li id="B30-preprints-89235" class="html-xx" data-content="30.">Walker, S.M.; Pearson, T.R.H.; Casarim, F.M.; Harris, N.; Petrova, S.; Grais, A.; Swails, E.; Netzer, M.; Goslee, K.M.; Brown, S. Standard Operating Procedures for Terrestrial Carbon Measurement, Winrock International. 2012.</li> <li id="B31-preprints-89235" class="html-xx" data-content="31.">IPCC. Guidelines for National Greenhouse Gas Inventories—Volume 4: Agriculture, Land Use and Forestry (GL-AFOLU). Available online: www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_ Forest_Land.pdf (accessed on 15 October 2023).</li> <li id="B32-preprints-89235" class="html-xx" data-content="32.">Hamdan, O.; Valeria, L.; Muhamad Afizzul, M. Guide to the Development of Forest Resources Inventory of Sabah. In <span class="html-italic">FRIM Technical Handbook No</span>. 52. Forest Research Institute Malaysia. 2021.</li> <li id="B33-preprints-89235" class="html-xx" data-content="33.">Hamdan, O.; Muhamad Afizzul, M. Manual Kerja Lapangan Survei Karbon Hutan. In <span class="html-italic">FRIM Technical Information Handbook</span> No. 59. Forest Research Institute Malaysia. 2023.</li> <li id="B34-preprints-89235" class="html-xx" data-content="34.">Dwiyono, A.; Rachman, S. Management and conservation of tropical peat forest of Indonesia. In Proceedings of a Workshop on Integrated Planning and Management of Tropical Lowland Peatlands, Cisarua, Indonesia, (3–8 July 2006).</li> <li id="B35-preprints-89235" class="html-xx" data-content="35.">Rieley, J.O.; Page, S.E.; Eds. In <span class="html-italic">Wise Use Guidelines for Tropical Peatlands</span>. Wageningen, The Netherlands, Alterra, 2005, 237 p.</li> <li id="B36-preprints-89235" class="html-xx" data-content="36.">Kauffman, J.B.; Arifanti, V.B.; Basuki, I.; Kurnianto, S.; Novita, N.; Murdiyarso, D.; Donato, D.C.; Warren, M.W. Eds. In <span class="html-italic">Protocols for the measurement, monitoring, and reporting of structure, biomass, carbon stocks and greenhouse gas emissions in tropical peat swamp forests</span>. CIFOR, Bogor, Indonesia 2016, Working Paper 221.</li> <li id="B37-preprints-89235" class="html-xx" data-content="37.">Mitsch, W.J.; Gosselink, J.G. Eds, <span class="html-italic">Wetlands</span> (Fourth edition). John Wiley and Sons, Inc., New York, USA. 2007, 582p.</li> <li id="B38-preprints-89235" class="html-xx" data-content="38.">Kauffman, J.B.; Donato, D.C. Eds. In <span class="html-italic">Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests</span>. CIFOR, Bogor, Indonesia. 2012, Working Paper 86.</li> <li id="B39-preprints-89235" class="html-xx" data-content="39.">Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. <span class="html-italic">Glob Change Biol</span> <b>2014</b>, 12629, 14p.</li> <li id="B40-preprints-89235" class="html-xx" data-content="40.">Reyes, G.; Brown, S.; Chapman, J.; Lugo, A.E. Eds. In <span class="html-italic">Wood densities of tropical tree species</span>. General Technical Report SO-88, New Orleans, Louisiana, 1992.</li> <li id="B41-preprints-89235" class="html-xx" data-content="41.">Ashton, P. S. Dipterocarpaceae. <span class="html-italic">Flora Malesiana</span> <b>1982</b>, 9, 237 - 552.</li> <li id="B42-preprints-89235" class="html-xx" data-content="42.">Symington, C.F. Foresters’ Manual of Dipterocarps. <span class="html-italic">Malayan Forest Records</span> No.16, Penerbit Universiti Malaya, Kuala Lumpur, 1943, 244 pp.</li> <li id="B43-preprints-89235" class="html-xx" data-content="43.">Brown, S. Measuring carbon in forests: current status and future challenges. <span class="html-italic">Environ. Pollut</span> <b>2002</b>, 116, 363–372.</li> <li id="B44-preprints-89235" class="html-xx" data-content="44.">Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. <span class="html-italic">Trop Ecol</span> <b>2002</b>, 43(1), 39-47.</li> <li id="B45-preprints-89235" class="html-xx" data-content="45.">Azizi, Z.; Najafi, A.; Sohrabi, H. Forest Canopy Density estimating using satellite images, In <span class="html-italic">The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</span>, 2008, 1127-1130.</li> <li id="B46-preprints-89235" class="html-xx" data-content="46.">Li, C.; Li, Y.; Li, M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. <span class="html-italic">Forests</span> <b>2019</b>, 10, 104.</li> <li id="B47-preprints-89235" class="html-xx" data-content="47.">Huang, S.; Tang, L., Hupy, J.P.; et al. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. <span class="html-italic">J For Res</span> <b>2021</b>, 32, 1–6. [<a href="https://doi.org/10.1007/s11676-020-01155-1" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B48-preprints-89235" class="html-xx" data-content="48.">Li, C.; Li, M.; Li. Y. Improving estimation of forest aboveground biomass using Landsat 8 imagery by incorporating forest crown density as a dummy variable. <span class="html-italic">Can J For Res</span> <b>2020</b>, 50(4), 390-398. [<a href="https://doi.org/10.1139/cjfr-2019-0216" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B49-preprints-89235" class="html-xx" data-content="49.">Nathalie, P. NDVI from A to Z, The Normalized Difference Vegetation Index (Oxford, 2013; online ed, Oxford Academic, 8 May 2015). [<a href="https://doi.org/10.1093/acprof:osobl/9780199693160.003.0003" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B50-preprints-89235" class="html-xx" data-content="50.">García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. <span class="html-italic">Geocarto Int</span> <b>1991</b>, 6, 31–37.</li> <li id="B51-preprints-89235" class="html-xx" data-content="51.">Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. <span class="html-italic">Remote Sens Environ</span> <b>2012</b>, 118, 83–94.</li> <li id="B52-preprints-89235" class="html-xx" data-content="52.">Huete, A.R. A soil-adjusted vegetation index (SAVI). <span class="html-italic">Remote Sens Environ</span> 1988, 25, 3, 295-309. [<a href="https://doi.org/10.1016/0034-4257(88)90106-X" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B53-preprints-89235" class="html-xx" data-content="53.">Liu, J.G.; Mason, P.J. Eds. <span class="html-italic">Essential image processing and GIS for remote sensing</span> (1st Edition). 2009, Wiley Online Library. [<a href="https://doi.org/10.1002/9781118687963" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B54-preprints-89235" class="html-xx" data-content="54.">Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. <span class="html-italic">Int J Remote Sens</span> <b>2006</b>, 27, 14, 3025-3033. [<a href="https://doi.org/10.1080/01431160600589179" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B55-preprints-89235" class="html-xx" data-content="55.">Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. <span class="html-italic">Remote Sens Environ</span> <b>2002</b>, 83, 195-213. [<a href="https://doi.org/10.1016/S0034-4257(02)00096-2" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B56-preprints-89235" class="html-xx" data-content="56.">Arisanty, D.; Saputra, A.N.; Rahman, A.M.; Hastuti, K.P.; Rosadi, D. The Estimation of Iron Oxide Content in Soil based on Landsat 8 OLI TIRS Imagery in Wetland Areas. <span class="html-italic">Pertanika J Sci Technol</span> <b>2021</b>, 29(4), 2829 – 2843. [<a href="https://doi.org/10.47836/pjst.29.4.32" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B57-preprints-89235" class="html-xx" data-content="57.">Tofallis, C. A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation. <span class="html-italic">J Operational Research Society</span> <b>2015</b>, 66(8), 1352-1362.</li> <li id="B58-preprints-89235" class="html-xx" data-content="58.">Tran, T.V.; Reef, R.; Zhu, X. A Review of Spectral Indices for Mangrove Remote Sensing. <span class="html-italic">Remote Sens</span> <b>2022</b>, 14, 4868. [<a href="https://doi.org/10.3390/rs14194868" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B59-preprints-89235" class="html-xx" data-content="59.">Hamdan, O.; Khairunnisa, M.R.; Ammar, A.A.; Mohd Hasmadi, I.; Khali Aziz, H. Mangrove carbon stock assessment by optical satellite imagery. <span class="html-italic">J Trop For Sci</span> <b>2013</b>, 25(4), 554-565.</li> <li id="B60-preprints-89235" class="html-xx" data-content="60.">Rannestad, M.; Eid, T.; Bollandsås, O.M.; Gobakken, T.; Tetemke, B. Aboveground Biomass Prediction Model Using Landsat 8 Data: A Test on Possible Approaches for Seasonally Dry Forests of Northern Ethiopia. In: El-Askary, H.; Erguler, Z.A.; Karakus, M.; Chaminé, H.I. Eds. Research Developments in Geotechnics, Geo-Informatics and Remote Sensing. Springer, Cham, 2022. [<a href="https://doi.org/10.1007/978-3-030-72896-0_87" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B61-preprints-89235" class="html-xx" data-content="61.">Kho, L.K.; Jepsen, M.R. Carbon stock of oil palm plantations and tropical forests in Malaysia: A review. <span class="html-italic">Singap J Trop Geogr</span> <b>2015</b>, 36, 249–266.</li> <li id="B62-preprints-89235" class="html-xx" data-content="62.">Hamdan, O.; Khali Aziz, H.; Mohd Hasmadi, I. L-band ALOS PALSAR for biomass estimation of Matang Mangroves, Malaysia. <span class="html-italic">Remote Sens Environ</span> <b>2014</b>, 155: 69-78. [<a href="https://doi.org/10.1016/j.rse.2014.04.029" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B63-preprints-89235" class="html-xx" data-content="63.">Raihan, A.; Begum, R.A.; Mohd Said, M.N.; Pereira, J.J. Assessment of Carbon Stock in Forest Biomass and Emission Reduction Potential in Malaysia. <span class="html-italic">Forests</span> <b>2021</b>, 12, 1294. [<a href="https://doi.org/10.3390/f12101294" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B64-preprints-89235" class="html-xx" data-content="64.">Hamdan, O.; Mohd Hasmadi, I.; Khali Aziz, H., Norizah, K.; Helmi Zulhaidi, M.S. Determining L-Band Saturation Level for Aboveground Biomass Assessment of Dipterocarp Forests in Peninsular Malaysia. <span class="html-italic">J Trop For Sci</span> <b>2015</b>, 27(3), 388 – 399.</li> <li id="B65-preprints-89235" class="html-xx" data-content="65.">Hamdan, O.; Muhamad Afizzul, M.; Abd Rahman, K. Synergetic of PALSAR-2 and Sentinel-1A SAR Polarimetry for Retrieving Aboveground Biomass in Dipterocarp Forest of Malaysia. <span class="html-italic">Appl Sci</span> <b>2017</b>, 7, 675. [<a href="https://doi.org/10.3390/app7070675" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B66-preprints-89235" class="html-xx" data-content="66.">Hamdan, O.; Muhamad Afizzul, M. Time series maps of aboveground biomass in dipterocarps forests of Malaysia from PALSAR and PALSAR-2 polarimetric data. <span class="html-italic">Carbon Balance Manag</span> <b>2018</b>, 13, 19.</li> <li id="B67-preprints-89235" class="html-xx" data-content="67.">Asner, G.P.; Brodrick, G.; Philipson, C.; Nicolas, R.; Roberta, E.M.; Knapp, D.E.; Heckler, J.; Evans, L.J.; Jucker, T.; Goossens, B.; Stark, D.J.; Reynolds, G.; Ong, R.; Renneboog, N.; Kugan, F.; Coomes, D.A. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. <span class="html-italic">Biol Cons</span> <b>2018</b>, 217, 289-310. [<a href="https://doi.org/10.1016/j.biocon.2017.10.020" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B68-preprints-89235" class="html-xx" data-content="68.">Matthew, N.K.; Shuib, A.; Muhammad, I.; Muhd Ekhzarizal, M.E.; Ramachandran, S.; Syamsul Herman, M.A.; Zaiton, S. Carbon Stock and Sequestration Valuation in a Mixed Dipterocarp Forest of Malaysia. <span class="html-italic">Sains Malaysiana</span> 2018, 47(3), 447–455. [<a href="https://doi.org/10.17576/jsm-2018-4703-04" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B69-preprints-89235" class="html-xx" data-content="69.">Hamdan, O.; Mohd Hasmadi, I.; Khali Aziz, H.; Helmi Zulhaidi, M.A.; Norizah, K. Estimating Biomass in Logged Tropical Forest Using L-Band SAR (PALSAR) Data and GIS. <span class="html-italic">Sains Malaysiana</span> <b>2015</b>, 44(8), 1085–1093.</li> <li id="B70-preprints-89235" class="html-xx" data-content="70.">Roland, J.H.K.; Nik Muhamad, M.; Osumanu, H.A.; Gandaseca, S. Assessment of Carbon Stock in Chronosequence Rehabilitated Tropical Forest Stands in Malaysia. <span class="html-italic">J For Environ Sci</span> <b>2016</b>, 32, 3, 302-310. [<a href="https://doi.org/10.7747/JFES.2016.32.3.302" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B71-preprints-89235" class="html-xx" data-content="71.">Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data. <span class="html-italic">Int J Appl Earth Obs Geoinf</span> <b>2020</b>, 84, 101952. [<a href="https://doi.org/10.1016/j.jag.2019.101952" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B72-preprints-89235" class="html-xx" data-content="72.">Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Landsat Time-Series for Estimating Forest Aboveground Biomass and its Dynamics across Space and Time: A Review. <span class="html-italic">Remote Sens</span> <b>2020</b>, 12, 98. [<a href="https://doi.org/10.3390/rs12010098" class="cross-ref" target="_blank" rel="noopener noreferrer">CrossRef</a>]</li> <li id="B73-preprints-89235" class="html-xx" data-content="73.">World Bank. State and Trends of Carbon Pricing 2023. Available online: https://openknowledge.worldbank.org/entities/publication/58f2a409-9bb7-4ee6-899d-be47835c838f. (accessed on 29 October 2023).</li> <li id="B74-preprints-89235" class="html-xx" data-content="74.">Shobairi, O.; Usoltsev, V.A.; Chasovskikh, V.P.; Mingyang, L.I. Exploring forest aboveground biomass estimation using landsat, forest inventory and analysis data base. <span class="html-italic">Clim Chang</span> <b>2018</b>, 4(15), 1-10.</li> </ol></section><section id="FiguresandTables" type="display-objects"><div class="html-fig-wrap" id="preprints-89235-f002"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f002"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png" alt="Preprints 89235 g002" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Layout of a cluster for inland forest. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f002"> <div class="html-caption"> <b>Figure 2.</b> Layout of a cluster for inland forest.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png" alt="Preprints 89235 g002" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f003"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f003"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png" alt="Preprints 89235 g003" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> Layout of a sampling plot for inland forest. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f003"> <div class="html-caption"> <b>Figure 3.</b> Layout of a sampling plot for inland forest.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png" alt="Preprints 89235 g003" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f005"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f005"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png" alt="Preprints 89235 g005" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Layout of a sampling plot for peat swamp forests. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f005"> <div class="html-caption"> <b>Figure 5.</b> Layout of a sampling plot for peat swamp forests.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png" alt="Preprints 89235 g005" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f006"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f006"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png" alt="Preprints 89235 g006" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> Layout of a cluster for mangroves. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f006"> <div class="html-caption"> <b>Figure 6.</b> Layout of a cluster for mangroves.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png" alt="Preprints 89235 g006" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f007"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f007"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png" alt="Preprints 89235 g007" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f007"></a> </div> </div> <div class="html-fig_description"> <b>Figure 7.</b> Layout of a sampling plot for mangrove forest. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f007"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f007"> <div class="html-caption"> <b>Figure 7.</b> Layout of a sampling plot for mangrove forest.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png" alt="Preprints 89235 g007" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f009"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f009"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png" alt="Preprints 89235 g009" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f009"></a> </div> </div> <div class="html-fig_description"> <b>Figure 9.</b> Boxplots summarising the sample plots data. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f009"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f009"> <div class="html-caption"> <b>Figure 9.</b> Boxplots summarising the sample plots data.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png" alt="Preprints 89235 g009" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f010"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f010"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png" alt="Preprints 89235 g010" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f010"></a> </div> </div> <div class="html-fig_description"> <b>Figure 10.</b> Seamless mosaic, cloud-free imageof Landsat over Malaysia of year 2023. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f010"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f010"> <div class="html-caption"> <b>Figure 10.</b> Seamless mosaic, cloud-free imageof Landsat over Malaysia of year 2023.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png" alt="Preprints 89235 g010" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f011"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f011"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png" alt="Preprints 89235 g011" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f011"></a> </div> </div> <div class="html-fig_description"> <b>Figure 11.</b> Histogram of ACDI distribution over Malaysia. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f011"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f011"> <div class="html-caption"> <b>Figure 11.</b> Histogram of ACDI distribution over Malaysia.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png" alt="Preprints 89235 g011" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f012"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f012"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png" alt="Preprints 89235 g012" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f012"></a> </div> </div> <div class="html-fig_description"> <b>Figure 12.</b> Map showing spatial distribution of ACDI over Malaysia, derived from the Landsat mosaic images. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f012"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f012"> <div class="html-caption"> <b>Figure 12.</b> Map showing spatial distribution of ACDI over Malaysia, derived from the Landsat mosaic images.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png" alt="Preprints 89235 g012" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f013"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f013"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png" alt="Preprints 89235 g013" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f013"></a> </div> </div> <div class="html-fig_description"> <b>Figure 13.</b> Scatterplots of correlations between AGC and ACDI for all forest types. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f013"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f013"> <div class="html-caption"> <b>Figure 13.</b> Scatterplots of correlations between AGC and ACDI for all forest types.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png" alt="Preprints 89235 g013" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f014"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f014"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png" alt="Preprints 89235 g014" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f014"></a> </div> </div> <div class="html-fig_description"> <b>Figure 14.</b> Histogram of AGC distribution over Malaysia. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f014"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f014"> <div class="html-caption"> <b>Figure 14.</b> Histogram of AGC distribution over Malaysia.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png" alt="Preprints 89235 g014" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f015"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f015"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png" alt="Preprints 89235 g015" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f015"></a> </div> </div> <div class="html-fig_description"> <b>Figure 15.</b> Map showing spatial distribution of AGC over Malaysia for the year 2023. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f015"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f015"> <div class="html-caption"> <b>Figure 15.</b> Map showing spatial distribution of AGC over Malaysia for the year 2023.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png" alt="Preprints 89235 g015" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f016"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f016"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png" alt="Preprints 89235 g016" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f016"></a> </div> </div> <div class="html-fig_description"> <b>Figure 16.</b> Summary of AGC in dry inland forest within all states in Malaysia. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f016"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f016"> <div class="html-caption"> <b>Figure 16.</b> Summary of AGC in dry inland forest within all states in Malaysia.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png" alt="Preprints 89235 g016" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f017"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f017"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png" alt="Preprints 89235 g017" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f017"></a> </div> </div> <div class="html-fig_description"> <b>Figure 17.</b> Summary of AGC in mangrove forest within particular states in Malaysia. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f017"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f017"> <div class="html-caption"> <b>Figure 17.</b> Summary of AGC in mangrove forest within particular states in Malaysia.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png" alt="Preprints 89235 g017" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f018"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f018"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png" alt="Preprints 89235 g018" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f018"></a> </div> </div> <div class="html-fig_description"> <b>Figure 18.</b> Summary of AGC in peat swamp forest within particular states in Malaysia. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f018"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f018"> <div class="html-caption"> <b>Figure 18.</b> Summary of AGC in peat swamp forest within particular states in Malaysia.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png" alt="Preprints 89235 g018" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f019"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f019"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png" alt="Preprints 89235 g019" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f019"></a> </div> </div> <div class="html-fig_description"> <b>Figure 19.</b> Map showing locations of the selected areas. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f019"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f019"> <div class="html-caption"> <b>Figure 19.</b> Map showing locations of the selected areas.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png" alt="Preprints 89235 g019" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f020"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f020"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png" alt="Preprints 89235 g020" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f020"></a> </div> </div> <div class="html-fig_description"> <b>Figure 20.</b> Maps showing spatial distribution of AGC over selected dry inland forest landscapes. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f020"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f020"> <div class="html-caption"> <b>Figure 20.</b> Maps showing spatial distribution of AGC over selected dry inland forest landscapes.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png" alt="Preprints 89235 g020" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f021"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f021"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png" alt="Preprints 89235 g021" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f021"></a> </div> </div> <div class="html-fig_description"> <b>Figure 21.</b> Maps showing spatial distribution of AGC over selected mangrove forest landscapes. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f021"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f021"> <div class="html-caption"> <b>Figure 21.</b> Maps showing spatial distribution of AGC over selected mangrove forest landscapes.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png" alt="Preprints 89235 g021" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f022"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f022"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png" alt="Preprints 89235 g022" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f022"></a> </div> </div> <div class="html-fig_description"> <b>Figure 22.</b> Maps showing spatial distribution of AGC over selected peat swamp forest landscapes. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f022"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f022"> <div class="html-caption"> <b>Figure 22.</b> Maps showing spatial distribution of AGC over selected peat swamp forest landscapes.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png" alt="Preprints 89235 g022" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png"></div> </div> <div class="html-fig-wrap" id="preprints-89235-f023"> <div class="html-fig_img"> <div class="html-figpopup html-figpopup-link" href="#fig_body_display_preprints-89235-f023"> <img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png" alt="Preprints 89235 g023" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png"> <a class="html-expand html-figpopup" href="#fig_body_display_preprints-89235-f023"></a> </div> </div> <div class="html-fig_description"> <b>Figure 23.</b> Validation scatterplots for the assessment of models’ performance. <!-- <p><a class="html-figpopup" href="#fig_body_display_preprints-89235-f023"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_preprints-89235-f023"> <div class="html-caption"> <b>Figure 23.</b> Validation scatterplots for the assessment of models’ performance.</div> <div class="html-img"><img data-large="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png" data-original="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png" alt="Preprints 89235 g023" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png"></div> </div> <div class="html-table-wrap" id="preprints-89235-t001"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t001"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Summary of the total number of sample plots. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t001"> <div class="html-caption"> <b>Table 1.</b> Summary of the total number of sample plots.</div> <table> <tbody> <tr> <td rowspan="2" align="left" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Forest type</b></td> <td colspan="2" align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>No. of sample plots</b></td> <td rowspan="2" align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Total</b></td> </tr> <tr> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><b>Data used for modelling</b></td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><b>Data used for validation</b></td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Dry inland forest</td> <td align="center" valign="top" class="html-align-center">2,970</td> <td align="center" valign="top" class="html-align-center">350</td> <td align="center" valign="top" class="html-align-center">3,320</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Peat swamp forest</td> <td align="center" valign="top" class="html-align-center">1,125</td> <td align="center" valign="top" class="html-align-center">75</td> <td align="center" valign="top" class="html-align-center">1,200</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Mangrove forest</td> <td align="center" valign="top" class="html-align-center">1,750</td> <td align="center" valign="top" class="html-align-center">50</td> <td align="center" valign="top" class="html-align-center">1,800</td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left"><b>Total</b></td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><b>5,845</b></td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><b>475</b></td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><b>6,320</b></td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t002"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t002"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Summary living trees measurement in a plot in inland forest. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t002"> <div class="html-caption"> <b>Table 2.</b> Summary living trees measurement in a plot in inland forest.</div> <table> <tbody> <tr> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Nest radius (m)</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Size</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Tree size, dbh (cm)</b></td> </tr> <tr> <td align="center" valign="top" class="html-align-center">2</td> <td align="center" valign="top" class="html-align-center">Sapling</td> <td align="center" valign="top" class="html-align-center">< 5 cm (& ≥ 1.3 m in height)</td> </tr> <tr> <td align="center" valign="top" class="html-align-center">4</td> <td align="center" valign="top" class="html-align-center">Small</td> <td align="center" valign="top" class="html-align-center">5 – 14.9 cm</td> </tr> <tr> <td align="center" valign="top" class="html-align-center">12</td> <td align="center" valign="top" class="html-align-center">Medium</td> <td align="center" valign="top" class="html-align-center">15 – 29.9 cm</td> </tr> <tr> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">20</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">Large</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">≥ 30 cm</td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t003"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t003"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> Summary living trees measurement in a plot in peat swamp forests. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t003"> <div class="html-caption"> <b>Table 3.</b> Summary living trees measurement in a plot in peat swamp forests.</div> <table> <tbody> <tr> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Nest radius (m)</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Size</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Tree size, dbh (cm)</b></td> </tr> <tr> <td align="center" valign="top" class="html-align-center">2</td> <td align="center" valign="top" class="html-align-center">Sapling</td> <td align="center" valign="top" class="html-align-center">< 5 cm (& ≥ 1.3 m in height)</td> </tr> <tr> <td align="center" valign="top" class="html-align-center">4</td> <td align="center" valign="top" class="html-align-center">Small - Medium</td> <td align="center" valign="top" class="html-align-center">5 – 9.9 cm</td> </tr> <tr> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">10</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">Large</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">≥ 10 cm</td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t004"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t004"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t004"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 4.</b> Summary living trees measurement in a plot in mangrove forest. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t004"> <div class="html-caption"> <b>Table 4.</b> Summary living trees measurement in a plot in mangrove forest.</div> <table> <tbody> <tr> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Nest radius (m)</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Size</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Tree size, dbh (cm)</b></td> </tr> <tr> <td align="center" valign="top" class="html-align-center">2</td> <td align="center" valign="top" class="html-align-center">Sapling</td> <td align="center" valign="top" class="html-align-center">< 5 cm (& ≥ 1.3 m in height)</td> </tr> <tr> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">7</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">Small - Large</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">≥ 5 cm</td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t005"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t005"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t005"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 5.</b> Image variables that were used to develop ACDI. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t005"> <div class="html-caption"> <b>Table 5.</b> Image variables that were used to develop ACDI.</div> <table> <tbody> <tr> <td align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Image variable</b></td> <td align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Full name</b></td> <td align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Formula</b></td> <td align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Reference</b></td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">NDVI</td> <td align="left" valign="middle" class="html-align-left">Normalised Difference Vegetation Index </td> <td align="left" valign="middle" class="html-align-left">[(NIR – R)/(NIR + R)]</td> <td align="center" valign="middle" class="html-align-center">[<a href="#B49-preprints-89235" class="html-bibr">49</a>]</td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">NBR</td> <td align="left" valign="middle" class="html-align-left">Normalised Burn Ratio</td> <td align="left" valign="middle" class="html-align-left">[(NIR – SWIR)/(NIR + SWIR)]</td> <td align="center" valign="middle" class="html-align-center">[<a href="#B50-preprints-89235" class="html-bibr">50</a>]</td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">SI</td> <td align="left" valign="middle" class="html-align-left">Shadow Index</td> <td align="left" valign="middle" class="html-align-left">[(1 – B) (1 – G) (1 – R)]<sup>1/3</sup> </td> <td align="center" valign="middle" class="html-align-center">[<a href="#B51-preprints-89235" class="html-bibr">51</a>]</td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">SAVI</td> <td align="left" valign="middle" class="html-align-left">Soil-Adjusted Vegetation Index</td> <td align="left" valign="middle" class="html-align-left">[(NIR – R)/(NIR+R+L)]*[1+L]</td> <td align="center" valign="middle" class="html-align-center">[<a href="#B52-preprints-89235" class="html-bibr">52</a>]</td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">IO</td> <td align="left" valign="middle" class="html-align-left">Iron Oxide Index</td> <td align="left" valign="middle" class="html-align-left">R/B</td> <td align="center" valign="middle" class="html-align-center">[<a href="#B53-preprints-89235" class="html-bibr">53</a>]</td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">MNDWI</td> <td align="left" valign="middle" class="html-align-left">Modified Normalised Difference Water Index</td> <td align="left" valign="middle" class="html-align-left">[(G – SWIR)/(G + SWIR)]</td> <td align="center" valign="middle" class="html-align-center">[<a href="#B54-preprints-89235" class="html-bibr">54</a>]</td> </tr> <tr> <td align="left" valign="middle" style="border-bottom:solid thin" class="html-align-left">EVI</td> <td align="left" valign="middle" style="border-bottom:solid thin" class="html-align-left">Enhanced Vegetation Index </td> <td align="left" valign="middle" style="border-bottom:solid thin" class="html-align-left">GF× [(NIR – R)/(NIR + C<sub>1</sub> × R – C<sub>2</sub> × B + L)</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">[<a href="#B55-preprints-89235" class="html-bibr">55</a>]</td> </tr> </tbody> </table> <div class="html-table_foot html-p"> <div class="html-p" style="text-indent:0em;"><span class="html-fn-content"><span class="html-italic">B = blue wavelength channel, G = green wavelength channel, R = red wavelength channel, NIR = near infrared wavelength channel, SWIR = short wave infrared wavelength channel, GF = Gain Factor, L = the canopy background adjustment that addresses non-linear, differential NIR and red radiant transfer through a canopy. The coefficients adopted are: L=1, C1 = 6, C2 = 7.5, and GF = 2.5.</span></span></div> <div style="clear:both;"></div> </div> </div> <div class="html-table-wrap" id="preprints-89235-t006"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t006"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t006"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 6.</b> Basic statistics of the sample plots data. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t006"> <div class="html-caption"> <b>Table 6.</b> Basic statistics of the sample plots data.</div> <table> <tbody> <tr> <td rowspan="2" align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Forest type</b></td> <td rowspan="2" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>No. of samples (<span class="html-italic">n</span>)</b></td> <td colspan="7" align="center" valign="middle" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>AGC (Mg C ha<sup>-1</sup>)</b></td> </tr> <tr> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"><b>Min</b></td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"><b>Lower quartile</b></td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"><b>Median</b></td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"><b>Mean</b></td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"><b>Upper quartile</b></td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"><b>Max</b></td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center"><b>Out-liers</b></td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">Inland Forest</td> <td align="center" valign="middle" class="html-align-center">2,970</td> <td align="center" valign="middle" class="html-align-center">0.0</td> <td align="center" valign="middle" class="html-align-center">56.3</td> <td align="center" valign="middle" class="html-align-center">92.9</td> <td align="center" valign="middle" class="html-align-center">115.4</td> <td align="center" valign="middle" class="html-align-center">158.2</td> <td align="center" valign="middle" class="html-align-center">310.5</td> <td align="center" valign="middle" class="html-align-center">554.1</td> </tr> <tr> <td align="left" valign="middle" class="html-align-left">Peat Swamp Forest</td> <td align="center" valign="middle" class="html-align-center">1,125</td> <td align="center" valign="middle" class="html-align-center">0.0</td> <td align="center" valign="middle" class="html-align-center">30.2</td> <td align="center" valign="middle" class="html-align-center">65.1</td> <td align="center" valign="middle" class="html-align-center">80.3</td> <td align="center" valign="middle" class="html-align-center">107.7</td> <td align="center" valign="middle" class="html-align-center">222.9</td> <td align="center" valign="middle" class="html-align-center">525.7</td> </tr> <tr> <td align="left" valign="middle" style="border-bottom:solid thin" class="html-align-left">Mangrove Forest</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">1,750</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">0.0</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">18.8</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">43.8</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">60.0</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">85.5</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">184.6</td> <td align="center" valign="middle" style="border-bottom:solid thin" class="html-align-center">360.3</td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t007"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t007"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t007"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 7.</b> Extents of forests in Malaysia produced from image classification (2023). </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t007"> <div class="html-caption"> <b>Table 7.</b> Extents of forests in Malaysia produced from image classification (2023).</div> <table> <tbody> <tr> <td align="left" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Forest type</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Extent (ha)</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Percentage (%)</b></td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Dry inland forest </td> <td align="center" valign="top" class="html-align-center">16,859,417</td> <td align="center" valign="top" class="html-align-center">93.3</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Mangrove forest </td> <td align="center" valign="top" class="html-align-center">547,564</td> <td align="center" valign="top" class="html-align-center">3.0</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Peat swamp forest </td> <td align="center" valign="top" class="html-align-center">655,422</td> <td align="center" valign="top" class="html-align-center">3.6</td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left"><b>Total</b></td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><b>18,062,403</b></td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><b>100.0</b></td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t008"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t008"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t008"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 8.</b> Basic statistics of ACDI values over Malaysia for the year 2023. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t008"> <div class="html-caption"> <b>Table 8.</b> Basic statistics of ACDI values over Malaysia for the year 2023.</div> <table> <tbody> <tr> <td align="left" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Min</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Max</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Mean</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Median</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Mode</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Std. Dev.</b></td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">0.00</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">198.18</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">25.34</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">22.46</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">19.36</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">14.77</td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t009"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t009"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t009"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 9.</b> Summary of AGC estimation models derived from the regression analysis. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t009"> <div class="html-caption"> <b>Table 9.</b> Summary of AGC estimation models derived from the regression analysis.</div> <table> <tbody> <tr> <td align="left" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Forest Type</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Empirical Equation*</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Correlation Coefficient (<span class="html-italic">r</span><sup>2</sup>)</b></td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Overall forest types</td> <td align="center" valign="top" class="html-align-center"><span class="html-italic">AGC = 2.1187*ACDI</span></td> <td align="center" valign="top" class="html-align-center">0.4897</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Dry inland forest</td> <td align="center" valign="top" class="html-align-center"><span class="html-italic">AGC = 3.3763*ACDI</span></td> <td align="center" valign="top" class="html-align-center">0.6275</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Peat swamp forest</td> <td align="center" valign="top" class="html-align-center"><span class="html-italic">AGC = 2.3133*ACDI</span></td> <td align="center" valign="top" class="html-align-center">0.5787</td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">Mangrove Forest</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center"><span class="html-italic">AGC = 1.0815*ACDI</span></td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">0.6230</td> </tr> </tbody> </table> <div class="html-table_foot html-p"> <div class="html-p" style="text-indent:0em;"><span class="html-fn-content"><span class="html-italic">*All correlations are significant at p < 0.05.</span></span></div> <div style="clear:both;"></div> </div> </div> <div class="html-table-wrap" id="preprints-89235-t010"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t010"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t010"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 10.</b> Basic statistics of AGC values (Mg C ha<sup>-1</sup>) throughout Malaysia for the year 2023. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t010"> <div class="html-caption"> <b>Table 10.</b> Basic statistics of AGC values (Mg C ha<sup>-1</sup>) throughout Malaysia for the year 2023.</div> <table> <tbody> <tr> <td align="left" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-left"><b>Min</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Max</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Mean</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Median</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Mode</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Std. Dev.</b></td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">0.00</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">448.79</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">126.72</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">151.35</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">59.83</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">61.98</td> </tr> </tbody> </table> </div> <div class="html-table-wrap" id="preprints-89235-t011"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t011"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t011"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 11.</b> Summary of AGC in all states in Malaysia for the year 2023. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t011"> <div class="html-caption"> <b>Table 11.</b> Summary of AGC in all states in Malaysia for the year 2023.</div> <div class="html-table-img"><span class="html-graphic" id="preprints-89235-i001"><img alt="Preprints 89235 i001" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-i001.png"></span></div> <div class="html-table_foot html-p"> <div class="html-p" style="text-indent:0em;"><span class="html-fn-content"><span class="html-italic">n.a = Not available, which is not exist in certain states; n.a* = Insufficient information available. Forest plantations in Sabah and Sarawak are included in dry inland forest.</span></span></div> <div style="clear:both;"></div> </div> </div> <div class="html-table-wrap" id="preprints-89235-t012"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t012"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t012"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 12.</b> Summary of AGC in all states in selected area, representing various conditions and types of forests in Malaysia. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t012"> <div class="html-caption"> <b>Table 12.</b> Summary of AGC in all states in selected area, representing various conditions and types of forests in Malaysia.</div> <div class="html-table-img"><span class="html-graphic" id="preprints-89235-i002"><img alt="Preprints 89235 i002" src="https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-i002.png"></span></div> </div> <div class="html-table-wrap" id="preprints-89235-t013"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" href="#table_body_display_preprints-89235-t013"> <img src="https://pub.mdpi-res.com/img/table.png"> <a class="html-expand html-tablepopup" href="#table_body_display_preprints-89235-t013"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 13.</b> Accuracies of the AGC predictions. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_preprints-89235-t013"> <div class="html-caption"> <b>Table 13.</b> Accuracies of the AGC predictions.</div> <table> <tbody> <tr> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Forest Type</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> <b>RMSE</b><br><b>(±Mg C ha<sup>-1</sup>)</b> </td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"> <b>SMAPE</b><br><b>(%)</b> </td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Absolute accuracy (%)</b></td> <td align="center" valign="top" style="border-top:solid thin;border-bottom:solid thin" class="html-align-center"><b>Overall performance</b></td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Dry inland forest</td> <td align="center" valign="top" class="html-align-center">87.54</td> <td align="center" valign="top" class="html-align-center">22.66</td> <td align="center" valign="top" class="html-align-center">77.34</td> <td align="left" valign="top" class="html-align-left">Underestimate</td> </tr> <tr> <td align="left" valign="top" class="html-align-left">Mangrove Forest </td> <td align="center" valign="top" class="html-align-center">53.15 </td> <td align="center" valign="top" class="html-align-center">22.86</td> <td align="center" valign="top" class="html-align-center">77.14</td> <td align="left" valign="top" class="html-align-left">Overestimate</td> </tr> <tr> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">Peat swamp forest</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">22.51</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">15.15</td> <td align="center" valign="top" style="border-bottom:solid thin" class="html-align-center">84.85</td> <td align="left" valign="top" style="border-bottom:solid thin" class="html-align-left">Underestimate</td> </tr> </tbody> </table> </div> </section><section class="html-fn_group"><table><tr id> <td></td> <td><div class="html-p"> <b>Disclaimer/Publisher’s Note:</b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</div></td> </tr></table></section> <section id="html-copyright"><br>© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">http://creativecommons.org/licenses/by/4.0/</a>).</section> </div><div class="pt-lg" data-v-6afb3413><span class="m-text text-body font-semibold" data-v-6afb3413><!--[-->Copyright: <!--]--></span><span class="m-text text-body" data-v-6afb3413><!--[-->This open access article is published under a <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" data-v-6afb3413><span class="hover:underline cursor-pointer text-color-link-bold" data-v-6afb3413>Creative Commons CC BY 4.0 license</span></a>, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.<!--]--></span></div></div><div class="pt-md"><!----></div><div class="pt-md lg:pt-lg" data-v-cdceca3c><div class="m-accordion mx-auto flex w-full flex-col gap-3 rounded-2xl bg-white" data-v-cdceca3c><!--[--><div class="m-accordion__item border-b border-color-default" data-v-cdceca3c><button id="accordion-button-expand-0" aria-controls="accordion-panel-0" class="relative mb-xs flex w-full cursor-pointer py-md text-sm outline-offset-2" aria-expanded="true"><!--[--><span class="text-sm">Recommended Articles</span><!--]--><div class="absolute right-0 top-1/2 -translate-y-1/2"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="keyboard_arrow_down" class="origin-center transition duration-150 rotate-180" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--></div></button><div id="accordion-panel-0" aria-labelledby="accordion-button-expand-0" role="region" class="m-accordion__body overflow-hidden transition-height duration-150"><div class="break-words pb-md"><!--[--><div class="w-full" data-v-cdceca3c><!--[--><div class="mb-md"><a href="https://doi.org/10.20944/preprints202310.2060.v1" target="_blank"><div class="m-rich-text text-body font-semibold">Production of High-Resolution Map of Biomass Carbon over Forests in Malaysia Estimated using Aboveground Carbon Density Indicator (ACDI) and a Collection of 12 Years Inventory Data</div></a><div class="pt-xs flex"><div class="flex items-center pr-sm flex-wrap"><p class="m-text text-sm"><!--[-->Hamdan Omar<!--]--></p><p class="m-text text-xs pl-xs"><!--[-->et al.<!--]--></p><p class="m-text text-xs pl-xs italic"><!--[-->,<!--]--></p><p class="m-text text-sm ml-xs font-semibold"><!--[-->2023<!--]--></p></div></div></div><div class="mb-md"><a href="https://doi.org/10.20944/preprints202310.0755.v1" target="_blank"><div class="m-rich-text text-body font-semibold">Utilizing Innovative Earth Observation Technology for Strategic Degraded Forest Restoration: A Roadmap for Carbon Sequestration and Policy Implementation</div></a><div class="pt-xs flex"><div class="flex items-center pr-sm flex-wrap"><p class="m-text text-sm"><!--[-->Manjunatha Venkatappa<!--]--></p><p class="m-text text-xs pl-xs"><!--[-->et al.<!--]--></p><p class="m-text text-xs pl-xs italic"><!--[-->,<!--]--></p><p class="m-text text-sm ml-xs font-semibold"><!--[-->2023<!--]--></p></div></div></div><div class="mb-md"><a href="https://doi.org/10.20944/preprints202306.1776.v1" target="_blank"><div class="m-rich-text text-body font-semibold">Modeling of the Spatial Distribution of Forest Carbon Storage in a Tropical/Subtropical Island With Multiple Ecozones</div></a><div class="pt-xs flex"><div class="flex items-center pr-sm flex-wrap"><p class="m-text text-sm"><!--[-->Ting-Wei Chang<!--]--></p><p class="m-text text-xs pl-xs"><!--[-->et al.<!--]--></p><p class="m-text text-xs pl-xs italic"><!--[-->,<!--]--></p><p class="m-text text-sm ml-xs font-semibold"><!--[-->2023<!--]--></p></div></div></div><!--]--><!----></div><!--]--></div></div></div><!--]--></div></div></div></div><!--]--></div></div></div><!----></div><!--]--><!--]--><span></span></div><div class="border-t-[.0625rem] border-solid border-color-default"><div class="m-container mx-auto w-full flex-col-reverse py-section-mobile py-2xl lg:py-10xl bg-white" style="--container-ideal-width:92.5vw;"><!--[--><div class="h-[auto]"><div class="flex flex-wrap"><div class="w-[100%] lg:w-[25%] xl:w-[25%] lg:px-[.9375rem] pb-lg"><div class="w-36 h-auto mb-lg cursor-pointer"><a href="/"><img src="/_nuxt/preprints.C_f_-Qxj.png" alt="Prerpints.org logo" class="w-36 h-auto"></a></div><p class="m-text text-sm mb-lg"><!--[-->Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.<!--]--></p><div class="flex lg:items-center lg:block pb-0 items-start justify-between"><div class="flex lg:mb-lg"><!--[--><a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"><img src="/img/footerImg/facebook.svg" alt="facebook logo" class="w-6 h-6 mr-md"></a><a href="https://twitter.com/Preprints_org" target="_blank" rel="noopener noreferrer"><img src="/img/footerImg/twitter.svg" alt="twitter logo" class="w-6 h-6 mr-md"></a><a href="https://www.linkedin.com/showcase/preprints" target="_blank" rel="noopener noreferrer"><img src="/img/footerImg/linkedin.svg" alt="linkedin logo" class="w-6 h-6 mr-md"></a><!--]--><div class="w-40"><!--[--><!--[--><div class="relative" data-headlessui-state><!--[--><button id="headlessui-popover-button-mui-45416" type="button" aria-expanded="false" data-headlessui-state><!--[--><img src="data:image/svg+xml,%3csvg%20width='22'%20height='19'%20viewBox='0%200%2022%2019'%20fill='none'%20xmlns='http://www.w3.org/2000/svg'%3e%3cg%20id='Group'%3e%3cpath%20id='Vector'%20d='M15.0641%206.7834C13.1271%206.8846%2011.4427%207.4718%2010.0751%208.79844C8.69347%2010.1388%208.06283%2011.7812%208.23515%2013.8172C7.47803%2013.7234%206.78843%2013.6202%206.09491%2013.5618C5.85539%2013.5416%205.57115%2013.5703%205.36827%2013.6848C4.69483%2014.0648%204.04931%2014.4938%203.28403%2014.9722C3.42443%2014.3372%203.51531%2013.781%203.67619%2013.2462C3.79451%2012.8531%203.73971%2012.6344%203.37755%2012.3782C1.05227%2010.7365%200.0721108%208.27972%200.805631%205.7502C1.48427%203.4102%203.15083%201.99108%205.41531%201.25132C8.50619%200.241717%2011.9797%201.27156%2013.8591%203.72548C14.5379%204.61188%2014.9541%205.60676%2015.0641%206.7834ZM6.14915%205.99524C6.16699%205.5326%205.76611%205.1158%205.28995%205.10188C4.80243%205.08756%204.40147%205.46012%204.38723%205.94052C4.37283%206.4274%204.74523%206.81756%205.23627%206.83004C5.72307%206.84236%206.13115%206.46932%206.14915%205.99524ZM10.8004%205.10156C10.3225%205.11036%209.91867%205.5174%209.92715%205.98188C9.93587%206.46332%2010.332%206.83996%2010.8235%206.83404C11.3162%206.82812%2011.6899%206.44748%2011.6852%205.95588C11.6811%205.47332%2011.2868%205.09268%2010.8004%205.10156Z'%20fill='white'/%3e%3cpath%20id='Vector_2'%20d='M19.4168%2018.8594C18.8034%2018.5863%2018.2408%2018.1765%2017.6417%2018.114C17.045%2018.0516%2016.4177%2018.3959%2015.7934%2018.4597C13.8917%2018.6543%2012.188%2018.1243%2010.7832%2016.8252C8.11148%2014.3539%208.49324%2010.5648%2011.5844%208.53972C14.3316%206.73988%2018.3607%207.33988%2020.2976%209.83724C21.988%2012.0164%2021.7893%2014.9092%2019.7258%2016.74C19.1287%2017.2698%2018.9139%2017.7058%2019.297%2018.4043C19.3676%2018.5332%2019.3757%2018.6965%2019.4168%2018.8594ZM12.4348%2012.0995C12.8253%2012.0999%2013.1468%2011.7943%2013.1616%2011.4086C13.1772%2011.0003%2012.8488%2010.6578%2012.44%2010.6561C12.0351%2010.6543%2011.696%2011.0016%2011.7101%2011.4038C11.7234%2011.7881%2012.0472%2012.099%2012.4348%2012.0995ZM16.9357%2010.6577C16.5569%2010.6551%2016.2349%2010.9652%2016.2195%2011.348C16.2031%2011.7574%2016.5212%2012.0936%2016.9264%2012.0946C17.3182%2012.096%2017.6279%2011.7996%2017.642%2011.4096C17.6572%2010.9993%2017.3389%2010.6605%2016.9357%2010.6577Z'%20fill='white'/%3e%3c/g%3e%3c/svg%3e" class="w-6 h-6 bg-black rounded cursor-pointer" alt="weChat logo"><!--]--></button><!----><!--]--><!----></div><!--]--><div hidden style="position:fixed;top:1;left:1;width:1;height:0;padding:0;margin:-1;overflow:hidden;clip:rect(0, 0, 0, 0);white-space:nowrap;border-width:0;display:none;"></div><!--]--></div></div><div class="flex items-center flex-col w-min lg:gap-y-lg gap-y-md"><a class="inline-block" href="mailto:info@preprints.org"><button class="m-button m-button--md m-button--secondary rounded" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><!----><!--]--><!--[-->Contact Us<!--]--><!----><!----><!--[--><!----><!--]--></span></button></a><button class="m-button m-button--md m-button--secondary rounded !w-full" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="rss_feed" weight="400" style="" width="16" height="16" viewBox="0 0 16 16"></svg><!--]--><!--[-->RSS<!--]--><!----><!----><!--[--><!----><!--]--></span></button></div></div></div><div class="w-[100%] lg:w-[25%] xl:w-[25%] px-md pt-sm border-t border-color-black sm:pt-0 sm:border-0 sm:border-white"><div class="flex items-center justify-between lg:block"><h5 class="m-heading text-inherit m-h5 font-semibold pt-md lg:pt-0 pb-lg"><!--[--> MDPI Initiatives <!--]--></h5><div class="block lg:hidden"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="expand_more" weight="400" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></div><ul class="hidden lg:block"><!--[--><li class="pb-lg"><a target="_blank" href="https://sciprofiles.com/" class="flex items-center"><p class="m-text text-sm"><!--[-->SciProfiles<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://sciforum.net/" class="flex items-center"><p class="m-text text-sm"><!--[-->Sciforum<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://encyclopedia.pub/" class="flex items-center"><p class="m-text text-sm"><!--[-->Encyclopedia<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://www.mdpi.com/books" class="flex items-center"><p class="m-text text-sm"><!--[-->MDPI Books<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://www.scilit.net/" class="flex items-center"><p class="m-text text-sm"><!--[-->Scilit<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://www.mdpi.com/about/proceedings" class="flex items-center"><p class="m-text text-sm"><!--[-->Proceedings<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><li class="pb-lg"><a target="_blank" href="https://jams.pub/" class="flex items-center"><p class="m-text text-sm"><!--[-->JAMS<!--]--></p><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="open_in_new" class="align-middle ml-xs" style="" width="16" height="16" viewBox="0 0 16 16"></svg></a></li><!--]--></ul></div><div class="w-[100%] lg:w-[25%] xl:w-[25%] px-[.9375rem] pt-[.625rem] border-t border-[#000] sm:pt-[.625rem] sm:border-t sm:border-[#000] lg:pt-0 lg:border-0 lg:border-white"><div class="flex items-center justify-between lg:block"><h5 class="m-heading text-inherit m-h5 font-semibold pt-md lg:pt-0 pb-lg"><!--[--> Important Links <!--]--></h5><div class="block lg:hidden"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="expand_more" weight="400" class="block lg:hidden" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></div><ul class="cursor-pointer hidden lg:block"><!--[--><li class="pb-lg"><a href="/advisory-board" class=""><p class="m-text text-sm"><!--[-->Advisory Board<!--]--></p></a></li><li class="pb-lg"><a href="/activity/award/announcement" class=""><p class="m-text text-sm"><!--[-->Award<!--]--></p></a></li><li class="pb-lg"><a href="/collection" class=""><p class="m-text text-sm"><!--[-->Collections<!--]--></p></a></li><li class="pb-lg"><a href="/friendly-journals" class=""><p class="m-text text-sm"><!--[-->Friendly Journals<!--]--></p></a></li><li class="pb-lg"><a href="/about?scrollTo=works" class=""><p class="m-text text-sm"><!--[-->How It Works<!--]--></p></a></li><li class="pb-lg"><a href="/topics" class=""><p class="m-text text-sm"><!--[-->MDPI Topics<!--]--></p></a></li><li class="pb-lg"><a href="/statistics" class=""><p class="m-text text-sm"><!--[-->Statistics<!--]--></p></a></li><!--]--></ul></div><div class="w-[100%] lg:w-[25%] xl:w-[25%] px-[.9375rem] pt-[.625rem] border-t border-[#000] sm:pt-[.625rem] sm:border-t sm:border-[#000] lg:pt-0 lg:border-0 lg:border-white"><div class="flex items-center justify-between lg:block"><h5 class="m-heading text-inherit m-h5 font-semibold pt-md lg:pt-0 pb-lg"><!--[--> Subscribe <!--]--></h5><div class="block lg:hidden"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" data-testid="expand_more" weight="400" class="block lg:hidden" style="" width="24" height="24" viewBox="0 0 16 16"></svg></div></div><div class="hidden lg:block"><div class="pb-lg"><p class="m-text text-sm"><!--[-->Choose an area of interest and we will send you notifications of new preprints at your preferred frequency.<!--]--></p></div><a href="/user/notification/settings?scrollTo=subscribe" class=""><button class="m-button m-button--md m-button--tonal rounded !text-color-white !bg-black mr-5" type="button"><!----><span class="inline-flex h-full w-full items-center gap-2 whitespace-nowrap justify-center"><!--[--><!----><!--]--><!--[-->Subscribe<!--]--><!----><!----><!--[--><!----><!--]--></span></button></a></div></div></div></div><!--]--></div><div class="bg-black"><div class="m-container mx-auto w-full flex-col-reverse py-section-mobile" style="--container-ideal-width:92.5vw;"><!--[--><div class="text-color-white"><div class="flex justify-between items-center flex-wrap cursor-pointer"><p class="m-text text-sm py-lg hidden lg:block"><!--[-->© 2024 MDPI (Basel, Switzerland) unless otherwise stated<!--]--></p><div class="lg:flex items-center py-xl"><div class="flex items-center pr-xl pb-md lg:pb-0"><p class="m-text text-sm pr-xs"><!--[-->Disclaimer<!--]--></p><span></span></div><p class="m-text text-sm pr-xl pb-md lg:pb-0"><!--[--><a href="/terms-of-use?scrollTo=term-use" class="">Terms of Use</a><!--]--></p><p class="m-text text-sm"><!--[--><a href="/terms-of-use?scrollTo=privacy-policy" class="">Privacy Policy</a><!--]--></p></div><p class="m-text text-sm py-lg block lg:hidden"><!--[-->© 2024 MDPI (Basel, Switzerland) unless otherwise stated<!--]--></p></div></div><!--]--></div></div><!----></div></div><!----><!--teleport start--><!--teleport end--><!--]--></div><div id="teleports"></div><script type="application/json" id="__NUXT_DATA__" data-ssr="true">[["ShallowReactive",1],{"data":2,"state":396,"once":405,"_errors":406,"serverRendered":6,"path":408,"pinia":409},["ShallowReactive",3],{"blog-config":4,"strapi-config":39,"mgOlEjP40X":40,"Ya7hZzqdE7":45,"6uftXXvGk3":123,"eeWqPLMDDj":205},{"postsPerPage":5,"isInfinite":6,"cacheTime":7,"categories":8},9,true,1,[9,14,19,24,29,34],{"id":10,"title":11,"cacheKey":12,"href":13},288,"Learn about Preprints","288-posts","/blog/category/learn-about-preprints",{"id":15,"title":16,"cacheKey":17,"href":18},1383,"Platform Features","1383-posts","/blog/category/platform-features",{"id":20,"title":21,"cacheKey":22,"href":23},22,"Community Content","22-posts","/blog/category/community-content",{"id":25,"title":26,"cacheKey":27,"href":28},1351,"Featured Preprints","1351-posts","/blog/category/featured-preprints",{"id":30,"title":31,"cacheKey":32,"href":33},1380,"Preprints and Society","1380-posts","/blog/category/preprints-and-society",{"id":35,"title":36,"cacheKey":37,"href":38},1381,"News and Announcements","1381-posts","/blog/category/news-and-announcements",{"cacheTime":7},{"code":41,"msg":42,"data":43},0,"success",{"url":44},"https://www.preprints.org/rss",{"code":41,"msg":42,"data":46},[47,54,61,68,75,82,88,95,102,109,116],{"id":7,"name":48,"name_system":49,"parent_id":50,"image_banner":51,"description":52,"converted_name_system":53},"Arts and Humanities","arts_and_humanities",null,"https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/bb621e164c1f8a2a8bfd78d6ac510e15.jpg","Immerse yourself in a world of creativity and critical thinking with our preprints in arts and humanities. Uncover the depths of human expression, history, and thought across disciplines like archaeology, literature, and philosophy. Explore diverse perspectives that enrich our understanding of cultural heritage and the human experience.","arts-and-humanities",{"id":55,"name":56,"name_system":57,"parent_id":50,"image_banner":58,"description":59,"converted_name_system":60},16,"Biology and Life Sciences","biology_and_life_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/8d795777f5834c04ac4b98f9c94c4c6b.jpg","Journey into the intricate world of living organisms with our preprints. From molecular mechanisms to ecosystem interactions, discover the wonders of life and the natural world through cutting-edge research. Dive into the forefront of biological discovery and explore the complexities of our living world.","biology-and-life-sciences",{"id":62,"name":63,"name_system":64,"parent_id":50,"image_banner":65,"description":66,"converted_name_system":67},41,"Business, Economics and Management","business_economics_and_management","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/ab197ef385773a30f4650e40ae8f03d5.jpg","Explore the dynamic world of business operations, economic theories, and organizational leadership with our preprints. Uncover insights in business, economics, and management that shape global commerce and innovation. Stay informed on the latest trends and research driving the landscape of business and economics.","business-economics-and-management",{"id":69,"name":70,"name_system":71,"parent_id":50,"image_banner":72,"description":73,"converted_name_system":74},50,"Chemistry and Materials Science","chemistry_and_materials_science","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/cc2a7d5d84540df918315b4feb38028a.jpg","Unravel the mysteries of matter and its transformations with our preprints. From atomic structures to novel material synthesis, stay informed on the latest research in this fascinating field. Explore the diverse properties and applications of chemistry and materials science that shape our world.","chemistry-and-materials-science",{"id":76,"name":77,"name_system":78,"parent_id":50,"image_banner":79,"description":80,"converted_name_system":81},71,"Computer Science and Mathematics","computer_science_and_mathematics","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/5b0a41a25a67d1112cb8833b497bf7be.jpg","Embark on a journey through the foundational principles of algorithms, artificial intelligence, and mathematical theories with our preprints. Explore cutting-edge research in computational mathematics and data analysis that drives innovation in the digital age. Dive into a world of innovation and discovery in this exciting field.","computer-science-and-mathematics",{"id":83,"name":84,"name_system":85,"parent_id":50,"image_banner":86,"description":87,"converted_name_system":85},94,"Engineering","engineering","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/908d2aac5be9f3be128d20cc98154c17.jpg","Explore the diverse realms of engineering with our preprints, where innovation meets expertise across various disciplines. From industrial processes to energy technologies, delve into the forefront of engineering advancements. Stay updated on the latest research shaping the dynamic and ever-evolving field of engineering.",{"id":89,"name":90,"name_system":91,"parent_id":50,"image_banner":92,"description":93,"converted_name_system":94},113,"Environmental and Earth Sciences","environmental_and_earth_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/427574c3272a512b9412d12b3bfb3f51.jpg","Investigate the dynamic processes shaping our planet with our preprints. From atmospheric phenomena to oceanography, explore the interconnected systems of our planet and the innovative solutions shaping its future. Stay informed on research that impacts our environment and sustainability.","environmental-and-earth-sciences",{"id":96,"name":97,"name_system":98,"parent_id":50,"image_banner":99,"description":100,"converted_name_system":101},130,"Medicine and Pharmacology","medicine_and_pharmacology","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/98c86d1fdf40abfda51ca959f75f3499.jpg","Embark on a journey through the vast world of medicine and pharmacology with our preprints. Explore breakthroughs in healthcare, from cardiology to neurology, which improve human health outcomes. Delve into the frontiers of medical research and pharmaceutical development that enhance quality of life.","medicine-and-pharmacology",{"id":103,"name":104,"name_system":105,"parent_id":50,"image_banner":106,"description":107,"converted_name_system":108},166,"Physical Sciences","physical_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/c2d6e400b105b8c3d32ec59f26ab969d.jpg","Explore the fundamental laws governing matter and energy in the universe with our preprints. From quantum mechanics to cosmology, stay abreast of research that advances our understanding of the natural world. Dive into a world of scientific discovery that pushes the boundaries of knowledge.","physical-sciences",{"id":110,"name":111,"name_system":112,"parent_id":50,"image_banner":113,"description":114,"converted_name_system":115},185,"Public Health and Healthcare","public_health_and_healthcare","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-11-07/ef7c6de55fa117659c3b6090edc7c4ff.jpg","Examine critical issues in public health policy, epidemiology, and healthcare systems with our preprints. Stay updated on research into health disparities, infectious disease control, and healthcare management, which informs public health interventions. Explore the latest trends in healthcare that impact population well-being and equity.","public-health-and-healthcare",{"id":117,"name":118,"name_system":119,"parent_id":50,"image_banner":120,"description":121,"converted_name_system":122},193,"Social Sciences","social_sciences","https://www.preprints.org/media/cache/resolve/webp/upload/subject/2024-09-12/910c960e3a6808861523728f0f26b2df.png","Gain insights into human behavior, societies, and cultures with our preprints. Explore disciplines like psychology, sociology, and political science, which shape our world and inform public policy. Stay engaged with research that explores social issues, cultural dynamics, and economic systems, enriching our understanding of human interactions.","social-sciences",{"code":41,"msg":42,"data":124},{"temp_id":125,"version":7,"id":126,"hash_key":127,"doi":128,"article_abstract":129,"article_title":130,"keywords":131,"is_registering_doi":132,"mdpi_topic":50,"preprints_collections":133,"subject":138,"top_subject":141,"article_type":142,"submitted_at":145,"published_at":146,"last_edited_at":50,"authors":147,"ethical_approval":132,"ethical_approval_number":50,"ethical_approval_body":50,"ethical_approval_for_publication":132,"article_supplementary":184,"final_file":188,"graphic_abstract":192,"statistics":193,"is_peer_reviewed":132,"peer_reviewed_article_url":50,"almetric":196,"preserved_by_portico":6,"ms_xml":198,"versions":200,"citation":202,"peer_reviewed_citation":50,"version_changes":203,"updating_alert_registered":132,"preprints_process_url":50,"comments_count":7,"latest_version":7,"author_notes":204,"withdrawed_at":50,"is_withdrwan":132},89235,"202310.2060","c42e745e776f9eb35ad4fd3daa812d79","10.20944/preprints202310.2060.v1","The accurate estimation of biomass carbon in forests is of paramount importance for effective forest management and mitigating climate change. This study presents a novel approach to produce a high-resolution map of biomass carbon over forests in Malaysia using the Aboveground Carbon Density Indicator (ACDI) and a comprehensive collection of 12 years of inventory data, i.e., from 2012 to 2023. The ACDI was derived based on several vegetation indices (VIs) that were produced from the original Landsat images to indicate the level of aboveground biomass carbon (AGC) stock in the forested areas. The VIs includes Normalised Difference Vegetation Index (NDVI), Normalised Burn Ratio (NBR), Shadow Index (SI), Soil-Adjusted Vegetation Index (SAVI), Iron Oxide Index (IO), Modified Normalised Difference Water Index (NDWI), and Enhanced Vegetation Index (EVI). The ACDI was then integrated with ground-based measurements, and serves as a robust indicator for estimating AGC. This calculation was conducted on Google Earth Engine (GEE) platform to match the date of field observation with the satellite imagery datasets. The production of seamless mosaic of the latest date of Landsat imagery and the forest type classification were also performed on GEE. The forested areas were classified into three major types, which are dry inland forest, mangrove forest, and peat swamp forest. Results indicated significant spatial variations in AGC across Malaysia's forests. The derived AGC prediction models based on the ACDI varied among the forest types. Based on the estimates, a 30-metre resolution, wall-to-wall map of AGC across the entire forested region of Malaysia has been created. The ACDI was calibrated and validated using a separate validation plots dataset to ensure the accuracy of the AGC estimates. The total AGC in all types of forests in Malaysia was estimated at 3.0 billion Mg C with an attainable accuracy of about 80%. These estimates were also divided into categories and reported to the AGC at the state level. This high-resolution map provides essential information for various stakeholders, with critical implications for carbon sequestration efforts, conservation priorities, and sustainable forest management. The presented methodology not only showcases the value of combining advanced remote sensing techniques with long-term inventory data but also underscores the potential for similar approaches in other tropical forest regions globally. Ultimately, this study contributes to the understanding of carbon dynamics in Malaysian forests and promotes effective strategies for mitigating climate change through better-informed forest conservation and management practices.","Production of High-Resolution Map of Biomass Carbon over Forests in Malaysia Estimated using Aboveground Carbon Density Indicator (ACDI) and a Collection of 12 Years Inventory Data","Aboveground carbon stock; tropical forest; Landsat; Malaysia ecosystem; spectral indicators",false,[134],{"title":135,"id":136,"name_system":137},"Preprints.org 2023 Most Popular Preprints Award Winner Collection",2,"2023-Award",{"id":139,"name":140},124,"Remote Sensing",{"id":89,"name":90},{"id":143,"name":144},15,"Article","2023-10-31 07:48:10","2023-10-31 09:56:37",[148,156,163,168,173,178],{"id":149,"name":150,"email":151,"is_corresponding":6,"orcid_link":152,"author_mark":153,"sp_link":154,"avatar":155},418980,"Hamdan Omar","hamdanomar@frim.gov.my","https://orcid.org/0000-0002-8565-1122","*","https://sciprofiles.com/profile/208691","/statics/img/design/default-user.png",{"id":157,"name":158,"email":159,"is_corresponding":132,"orcid_link":160,"author_mark":161,"sp_link":162,"avatar":155},418981,"Muhamad Afizzul Misman","afizzul@frim.gov.my","https://orcid.org/0000-0002-3351-6543","","https://sciprofiles.com/profile/273696",{"id":164,"name":165,"email":166,"is_corresponding":132,"orcid_link":50,"author_mark":161,"sp_link":167,"avatar":50},418982,"Valeria Linggok","valeria.linggok@sabah.gov.my","https://sciprofiles.com/profile/author/SFlqV1JXU2k1NDlRRE9sMHRxQ0c4RmhEalIzNTNFNGdPZkZpQkd3QlpRYz0=",{"id":169,"name":170,"email":171,"is_corresponding":132,"orcid_link":50,"author_mark":161,"sp_link":172,"avatar":50},418983,"Suhaini Haron","suhaini@myforestfund.com.my","https://sciprofiles.com/profile/author/aFJGclVFUm9XRUV3TS92QWk4VVNSSFlMTWcyejByRWFXelhuMDM4ektrMD0=",{"id":174,"name":175,"email":176,"is_corresponding":132,"orcid_link":50,"author_mark":161,"sp_link":177,"avatar":50},418984,"Ahmad Ashrin Mohd Bohari","ahmadam@sarawak.gov.my","https://sciprofiles.com/profile/author/Z0s0OUwxdmZ6Vll2eURNSHk0MzFhU3hHOTlQck1oOE1Od1doTnQrVHlTWT0=",{"id":179,"name":180,"email":181,"is_corresponding":132,"orcid_link":50,"author_mark":161,"sp_link":182,"avatar":183},418985,"Mohammad Nor Firdaus Haji Sariee","mohdnorf@sarawak.gov.my","https://sciprofiles.com/profile/3268532","/img/user_image/3268532/Mohammad_Nor_Firdaus_Haji_Sariee.jpg",{"filename":185,"url":186,"filesize":187},"supplementary.rar","/frontend/manuscript/c42e745e776f9eb35ad4fd3daa812d79/download_pub/supplementary",61540602,{"filename":189,"url":190,"filesize":191},"final_file.pdf","/frontend/manuscript/c42e745e776f9eb35ad4fd3daa812d79/download_pub",7761678,[],{"viewed":194,"downloaded":195},"335","351",{"score":41,"detail_url":197},"https://preprints.altmetric.com/details/doi/10.20944/preprints202310.2060.v1",{"html_content":199},"\u003Cscript type=\"text/x-mathjax-config\">\n MathJax.Hub.Config({\n menuSettings: {\n CHTMLpreview: false\n },\n \"CHTML-preview\":{\n disabled: true\n },\n \"HTML-CSS\": {\n scale: 90,\n availableFonts: [],\n preferredFont: null,\n preferredFonts: null,\n webFont:\"Gyre-Pagella\",\n imageFont:'TeX',\n undefinedFamily:\"'Arial Unicode MS',serif\",\n linebreaks: { automatic: false }\n },\n \"TeX\": {\n extensions: [\"noErrors.js\"],\n noErrors: {\n inlineDelimiters: [\"\",\"\"],\n multiLine: true,\n style: {\n \"font-size\": \"90%\",\n \"text-align\": \"left\",\n \"color\": \"black\",\n \"padding\": \"1px 3px\",\n \"border\": \"1px solid\"\n }\n }\n }\n });\n \u003C/script>\u003Cscript type=\"text/javascript\" async=\"\" src=\"https://www.mdpi.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML\">\u003C/script>\n \u003Csection id=\"sec1-preprints-89235\" type=\"intro\">\u003Ch2 data-nested=\"1\" id=\"preprints-h2-1\"> 1. Introduction\u003C/h2>\n\u003Cdiv class=\"html-p\">Malaysia is considered one of the highest forest carbon countries in the world due to its significant forested areas and the carbon-rich nature of its forests. Several factors contribute to Malaysia’s status as a country with substantial forest carbon, that include: home to vast tropical rainforests, high plant diversity, has extensive peat swamp forests and extensive mangrove ecosystems along its coastlines. While Malaysia’s forests are rich in carbon, they have faced challenges such as deforestation, habitat loss, and land-use change due to factors like palm oil production and logging [\u003Ca href=\"#B1-preprints-89235\" class=\"html-bibr\">1\u003C/a>]. Efforts to balance economic development with forest conservation are ongoing, and the preservation of these carbon-rich ecosystems is of global importance in the fight against climate change. Malaysia has implemented various conservation measures and forest management practices to protect its forests and their carbon stocks [\u003Ca href=\"#B2-preprints-89235\" class=\"html-bibr\">2\u003C/a>]. This includes establishing protected areas and national parks. Considering these circumstances, forests in Malaysia are highly diverse in terms of stand conditions and thus biomass carbon.\u003C/div>\n\u003Cdiv class=\"html-p\">Malaysia, like many other countries, recognizes the importance of its forests in mitigating climate change. The country has made commitments under international agreements like the United Nations Framework Convention on Climate Change (UNFCCC) to reduce emissions from deforestation and forest degradation (REDD+) [\u003Ca href=\"#B3-preprints-89235\" class=\"html-bibr\">3\u003C/a>]. Malaysia has also been involved in carbon offset projects, where the country can earn carbon credits by reducing deforestation and forest degradation, as well as implementing reforestation and afforestation initiatives.\u003C/div>\n\u003Cdiv class=\"html-p\">In addition to being an essential part of forest ecosystems, forest biomass is also important for mitigating climate change, storing carbon, and preserving biodiversity [\u003Ca href=\"#B4-preprints-89235\" class=\"html-bibr\">4\u003C/a>]. The integration of statistical data with geospatial information boosts the power of data, resulting in a much greater understanding of social, economic, and environmental issues, than viewing the statistical or geospatial information in isolation [\u003Ca href=\"#B5-preprints-89235\" class=\"html-bibr\">5\u003C/a>]. Accurate assessment and forecast of forest biomass are essential for understanding the effects of climate change, managing forests, and accounting for carbon emissions. Remote sensing technologies, like satellite data from Landsat have revolutionised the prediction of forest biomass by providing crucial insights into the characteristics of forests and changes in land cover.\u003C/div>\n\u003Cdiv class=\"html-p\">Landsat satellites, launched by NASA and the U.S. Geological Survey, have been providing high-resolution and multispectral imagery of the Earth’s surface since 1972 [\u003Ca href=\"#B6-preprints-89235\" class=\"html-bibr\">6\u003C/a>]. Landsat data have been widely employed for various environmental and land use applications due to their long-term data archive, consistent data quality, and global coverage [\u003Ca href=\"#B7-preprints-89235\" class=\"html-bibr\">7\u003C/a>]. Landsat satellites capture data in different spectral bands, allowing researchers to analyse land cover, vegetation, and biomass across diverse landscapes. The entire historical Landsat archive has been opening for public access since 2008 [\u003Ca href=\"#B8-preprints-89235\" class=\"html-bibr\">8\u003C/a>]. As such, the Landsat archive has become one of the most valuable and cost-effective remotely sensed data sources supporting worldwide land/forest research and monitoring activities.\u003C/div>\n\u003Cdiv class=\"html-p\">Among the advantages of using Landsat for biomass estimations are [\u003Ca href=\"#B9-preprints-89235\" class=\"html-bibr\">9\u003C/a>]: (i) large coverage from specific landscapes, regional to global scales, (ii) temporal and spatial scales; provide the advantage of temporal consistency, allowing for long-term biomass change monitoring in specific time-series, and (iii) sensitivity to environmental changes, which Landsat data can capture changes in forest biomass due to factors like disturbances (e.g., forest fires and logging) and climate-related stressors. This sensitivity enables better understanding of the impacts of these changes on forest ecosystems.\u003C/div>\n\u003Cdiv class=\"html-p\">Although Landsat data is a valuable resource for monitoring and estimating forest biomass, it has some challenges when it comes to biomass estimation in tropical regions, especially Malaysia. Among the biggest challenges are cloud cover [\u003Ca href=\"#B10-preprints-89235\" class=\"html-bibr\">10\u003C/a>]. Estimating forest biomass from optical satellite data is also difficult due to several reasons. One of the main reasons is that optical sensors are sensitive to the amount of light reflected by the vegetation, which is influenced by the structure and density of the forest canopy. However, the relationship between the amount of light reflected and the biomass is not straightforward, as it can be affected by factors such as the species composition, age, and health of the trees [\u003Ca href=\"#B11-preprints-89235\" class=\"html-bibr\">11\u003C/a>]. Moreover, clouds and atmospheric conditions can interfere with the accuracy of optical data acquisition, which can lead to incomplete or inconsistent data [\u003Ca href=\"#B12-preprints-89235\" class=\"html-bibr\">12\u003C/a>]. Another important limiting factor to direct biomass carbon modelling lies in the lack of repeated and coincident field reference data at different times [\u003Ca href=\"#B13-preprints-89235\" class=\"html-bibr\">13\u003C/a>].\u003C/div>\n\u003Cdiv class=\"html-p\">Several attempts have been placed to overcome these limitations and the approaches taken can be categorised into two, which are (i) diversifying uses of spectral and vegetation indices [\u003Ca href=\"#B14-preprints-89235\" class=\"html-bibr\">14\u003C/a>] and (ii) applying machine learning and statistical models [\u003Ca href=\"#B15-preprints-89235\" class=\"html-bibr\">15\u003C/a>]. These indices are used as predictor variables to estimate forest biomass, indirectly. Machine learning techniques [\u003Ca href=\"#B16-preprints-89235\" class=\"html-bibr\">16\u003C/a>,\u003Ca href=\"#B17-preprints-89235\" class=\"html-bibr\">17\u003C/a>], including Random Forest [\u003Ca href=\"#B18-preprints-89235\" class=\"html-bibr\">18\u003C/a>], Support Vector Machines (SVM), artificial neural network (ANN) [\u003Ca href=\"#B19-preprints-89235\" class=\"html-bibr\">19\u003C/a>], and regression models, have been combined with Landsat data to predict forest biomass. These models use spectral information, vegetation indices, and other environmental variables to establish relationships between the data and biomass estimates [\u003Ca href=\"#B20-preprints-89235\" class=\"html-bibr\">20\u003C/a>]. These techniques have demonstrated their efficiency in predicting forest biomass at various scales, from local to regional. Another popular solution is to combine Landsat-based data with datasets from other sensors [\u003Ca href=\"#B14-preprints-89235\" class=\"html-bibr\">14\u003C/a>], both optical and synthetic aperture radar (SAR) [\u003Ca href=\"#B21-preprints-89235\" class=\"html-bibr\">21\u003C/a>,\u003Ca href=\"#B22-preprints-89235\" class=\"html-bibr\">22\u003C/a>,\u003Ca href=\"#B23-preprints-89235\" class=\"html-bibr\">23\u003C/a>,\u003Ca href=\"#B24-preprints-89235\" class=\"html-bibr\">24\u003C/a>] and even integrate with light detection and ranging (LiDAR)-based data [\u003Ca href=\"#B25-preprints-89235\" class=\"html-bibr\">25\u003C/a>,\u003Ca href=\"#B26-preprints-89235\" class=\"html-bibr\">26\u003C/a>]. Eventually, each approach offers different levels of difficulties and challenges. \u003C/div>\n\u003Cdiv class=\"html-p\">This study aimed at producing reliable AGC estimates at national scale, pixel-based, wall-to-wall at acceptable spatial resolution produced from a single satellite with consistent observations that is able to represent the forest types and physical conditions of the forests over time. Google Earth Engine (GEE) platform was used to derive the Aboveground Carbon Density Indicator (ACDI), to conduct the correlation, and to produce seamless mosaic images over Malaysia. The estimated AGC is mapped at 30-m pixel resolution for the entire forests across Malaysia. The map helps in quantifying the carbon stored as biomass at any location. It also aids in pin-pointing areas that have low AGC or degraded areas, which are becoming increasingly important for baseline development for carbon-related, nature-based solution approaches in dealing with various climate change mitigation initiatives such as nationally determined contribution (NDC) under Paris Agreement and carbon offsetting for industrial sectors. \u003C/div>\u003C/section>\u003Csection id=\"sec2-preprints-89235\" type>\u003Ch2 data-nested=\"1\" id=\"preprints-h2-2\"> 2. Materials and Methods\u003C/h2>\n\u003Csection id=\"sec2dot1-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.1. The Study Area\u003C/h4>\n\u003Cdiv class=\"html-p\">This study was conducted over the entire forests in Malaysia. Malaysia is a country in Southeast Asia, located just north of the Equator. It is composed of two non-contiguous regions: Peninsular Malaysia and East Malaysia. The country has a total area of about 330,803 km\u003Csup>2\u003C/sup>. Malaysia currently has about 18 million ha of forests [\u003Ca href=\"#B27-preprints-89235\" class=\"html-bibr\">27\u003C/a>]. These forests are rich with diverse flora and fauna species. Major forest types in Malaysia are lowland dipterocarp forest, hill dipterocarp forest, upper hill dipterocarp forest, oak-laurel forest, montane ericaceous forest, peat swamp forest and mangrove forest. In addition, there are also smaller areas of freshwater swamp forest, Melaleuca swamp forest, heath forest, transitional forest, forest on limestone and forest on quartz ridges. Considering the composition of these forests in Malaysia, the types can be generalised into three types, which are dry inland, peat swamp and mangrove forests.\u003C/div>\n\u003Cdiv class=\"html-p\">Timber production is also one of the commodities in Malaysia where State Governments are depending greatly on the forest resources for generating and sustaining the economy [\u003Ca href=\"#B28-preprints-89235\" class=\"html-bibr\">28\u003C/a>]. Malaysia is practising sustainable forest management (SFM) to balance timber production with conservation efforts. This approach aims to maintain forest carbon stocks while allowing for responsible logging. Harvesting only for merchantable timbers at certain controlled cutting limits. There are also forest plantations, established with certain timber tree species, developed to support timber supplies and meet the industrial demands.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot2-preprints-89235\" type=\"methods\">\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.2. Methodology\u003C/h4>\n\u003Cdiv class=\"html-p\">The framework of methodology was developed based on six major pillars, which are (i) collection of field datasets at sample plots, (ii) derivation of ACDI, (iii) correlation analysis, (iv) production of seamless mosaic images, (v) forest delineation and forest types classification, and (vi) map production. The first challenge was to match the field data collection date with the derived ACDI from the Landsat images. Google Earth Engine was used to execute this calculation. Cloud cover was another issue to deal with when working with Landsat data, as it can obscure the land surface and affect the quality of image analysis. To address the cloud cover problem in Landsat data over Malaysia, GEE was again used. GEE provides a powerful tool for mapping and analysing geospatial data, including the use of regression to identify trends in data and create ACDI. In brief, steps ii and iv above were performed on the GEE platform, while the remaining processes were conducted separately by using image processing and GIS software, i.e., ERDAS Imagine®, Exelis ENVI Software, and Esri’s ArcGIS Desktop.\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f001\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f001\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png\" alt=\"Preprints 89235 g001\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f001\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 1.\u003C/b>\n Flowchart of the methodology adopted in the study.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f001\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f001\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 1.\u003C/b>\n Flowchart of the methodology adopted in the study.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png\" alt=\"Preprints 89235 g001\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g001.png\">\u003C/div>\n\u003C/div>\n\u003C/section>\u003Csection id=\"sec2dot3-preprints-89235\" type=\"methods\">\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.3 Collection of Field Inventory Data\u003C/h4>\n\u003Cdiv class=\"html-p\">Sampling work has been started since 2012 at several locations focused on lowland and hill dipterocarp forests in Peninsular Malaysia [\u003Ca href=\"#B29-preprints-89235\" class=\"html-bibr\">29\u003C/a>]. The work was carried out occasionally depending on available research projects that have been undergoing since then until year 2023, covering all forest types in Malaysia (\u003Ca href=\"#preprints-89235-t001\" class=\"html-table\">Table 1\u003C/a>). The applied forest inventory design was stratified random, where sampling plots were distributed according to the forest types and covering all stands conditions of the forests (i.e., virgin forest, totally protected areas, logged forests, secondary forest, and degraded areas). This was considered to ensure all variations of biomass carbon are captured in the samples. Locations of the sample plots are depicted in \u003Ca href=\"#preprints-89235-f008\" class=\"html-fig\">Figure 8\u003C/a>.\u003C/div>\n\u003Cdiv class=\"html-p\">The sampling design in this innovation was a modified sampling design according to the standard operating procedure (SOP) that has been developed by Winrock International [\u003Ca href=\"#B30-preprints-89235\" class=\"html-bibr\">30\u003C/a>], which follows the IPCC standards [\u003Ca href=\"#B31-preprints-89235\" class=\"html-bibr\">31\u003C/a>]. The design that produced the highest accuracy of the forestry parameters was then modified and developed for forest stands conditions suitable for Malaysia’s environment and management practices [\u003Ca href=\"#B32-preprints-89235\" class=\"html-bibr\">32\u003C/a>,\u003Ca href=\"#B33-preprints-89235\" class=\"html-bibr\">33\u003C/a>]. The sampling designs are divided into three, which are corresponding to dry inland forest, peat swamp forest and mangrove forest. The design of the sampling plots was done in clusters. In cluster sampling, a random sample of clusters is chosen after the population is split up into groups according to the types of forests and strata. Cluster sampling is a probability sampling method used when the population is large and geographically dispersed.\u003C/div>\n\u003Csection id=\"sec2dot3dot1-preprints-89235\" type>\u003Ch4 class data-nested=\"3\"> 2.3.1. Design for dry inland forest\u003C/h4>\n\u003Cdiv class=\"html-p\">A cluster comprises four sampling plots and the distance between plots is 100 m as shown in \u003Ca href=\"#preprints-89235-f002\" class=\"html-fig\">Figure 2\u003C/a>. The plot was designed in a circular shape with smaller nests inside. The biggest nest measures 20 m in radius, followed by the smaller nests measuring 12 m and 4 m (\u003Ca href=\"#preprints-89235-f003\" class=\"html-fig\">Figure 3\u003C/a>). The sizes of trees are measured according to the nest sizes, which is summarised in \u003Ca href=\"#preprints-89235-t002\" class=\"html-table\">Table 2\u003C/a>. Depending on the nest size, it indicates that not all stands are measured in a single plot. In addition to these nests, there is another small nest measuring 2 m in radius, which is used to count the saplings (i.e., trees measuring < 10 cm in diameter at breast height (dbh) and ≥ 1.3 m in height). The clustering of multiple plots at one sampling unit allows field crews to sample a larger area per sampling point. The sampling system is designed in a way to make the data collection processes easier, faster, reliable and representative for a forest stratum. The distance of the tree stand is controlled by using a Distance Measurement Equipment (DME) that utilises sonar waves to communicate with a transponder that is installed at centre of the plot. Therefore, in reality the nests with particular radius do not exist on the ground.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot3dot2-preprints-89235\" type>\u003Ch4 class data-nested=\"3\"> 2.3.2. Design for dry peat swamp forest\u003C/h4>\n\u003Cdiv class=\"html-p\">Peat swamp forests are terrestrial wetland ecosystems with low nutrient levels and highly acidic soil (pH less than 4.0) [\u003Ca href=\"#B34-preprints-89235\" class=\"html-bibr\">34\u003C/a>]. Ecologically, peat swamp forests have organic soil horizons, or peat that can receive water and nutrients exclusively from flooding and groundwater or from rainfall. In the tropics, peat formation is influenced by high rainfall rates, minimal drainage, and high temperatures with little seasonal change. According to [\u003Ca href=\"#B35-preprints-89235\" class=\"html-bibr\">35\u003C/a>], peat swamp forests are typically submerged during the rainy season, which encourages anaerobic conditions that influence the rates and pathways of decomposition and accumulation. Peat soils are described as having at least 50 centimetres of thickness and a content of organic matter greater than 65% in tropical ecosystems [Rieley & Page]. The peat swamp forests ecosystem is uniquely different from inland and mangrove forests. Therefore, the sampling design of peat swamp forests is differently from that of other forests. However, the approach and concept for field data collection and sampling is similar. The sampling technique for peat swamp forest is adopted from [\u003Ca href=\"#B36-preprints-89235\" class=\"html-bibr\">36\u003C/a>] and the layout of sampling plots is depicted in \u003Ca href=\"#preprints-89235-f005\" class=\"html-fig\">Figure 5\u003C/a>. The sizes of trees are measured according to the nest sizes, which is summarised in \u003Ca href=\"#preprints-89235-t003\" class=\"html-table\">Table 3\u003C/a>.\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f004\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f004\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png\" alt=\"Preprints 89235 g004\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f004\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 4.\u003C/b>\n Layout of a cluster for peat swamp forests.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f004\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f004\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 4.\u003C/b>\n Layout of a cluster for peat swamp forests.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png\" alt=\"Preprints 89235 g004\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g004.png\">\u003C/div>\n\u003C/div>\n\u003C/section>\u003Csection id=\"sec2dot3dot3-preprints-89235\" type>\u003Ch4 class data-nested=\"3\"> 2.3.3. Design for dry peat swamp forest\u003C/h4>\n\u003Cdiv class=\"html-p\">Mangroves are defined as an association of halophytic trees, shrubs and other plants growing in brackish to saline tidal waters of tropical and subtropical coastlines [\u003Ca href=\"#B37-preprints-89235\" class=\"html-bibr\">37\u003C/a>]. Mangroves are generally restricted to the tidal zone. As such, mangroves in fringe areas will be inundated by practically all high tides, while those at the higher topographic boundaries may be flooded only during the highest of tides (spring tides) or during storm surges. Mangroves are typically found along tropical and subtropical coastlines between about 25° N and 25° S.\u003C/div>\n\u003Cdiv class=\"html-p\">Mangrove is another forest ecosystem that is totally different compared to inland and peat swamp forests. Mangrove forest has its own habitat, which is unique in terms of ecology, standing structure and species composition. Therefore, the sampling method for mangrove forest is designed specifically for the mangroves. However, the approach and concept of field data collection is similar to that of peat swamp forests. The sampling can be organised in a cluster, comprising 6 plots (\u003Ca href=\"#preprints-89235-f006\" class=\"html-fig\">Figure 6\u003C/a>). The sampling technique for mangrove forest is adopted from [\u003Ca href=\"#B38-preprints-89235\" class=\"html-bibr\">38\u003C/a>] and the layout of sampling plots is depicted in \u003Ca href=\"#preprints-89235-f007\" class=\"html-fig\">Figure 7\u003C/a>. The sizes of trees were measured according to the nest sizes, which is summarised in \u003Ca href=\"#preprints-89235-t004\" class=\"html-table\">Table 4\u003C/a>.\u003C/div>\n\u003Cdiv class=\"html-p\">Estimation of biomass carbon was based on the published allometric equations found in the literature, suitable to the corresponding types of forests in Malaysia. Aboveground biomass (AGB) of the sampled trees in the sample plots were first estimated before the values were converted to AGC. The estimation of AGB that was calculated at tree-level was converted to the plot-level, where the measurement is reported in mass, in Megagram (Mg) or metric tonne per-hectare basis, Mg ha\u003Csup>-1\u003C/sup>. This estimation was then converted into a biomass carbon unit of AGC by multiplying the AGB with 0.47, which is the constant carbon fraction [\u003Ca href=\"#B31-preprints-89235\" class=\"html-bibr\">31\u003C/a>], and reported in Mg C ha\u003Csup>-1\u003C/sup>. \u003C/div>\n\u003Cdiv class=\"html-p\">The estimation of AGB on dry inland forest was calculated based on an allometric equation that was developed by [\u003Ca href=\"#B39-preprints-89235\" class=\"html-bibr\">39\u003C/a>] for inland forest. The allometric equation is expressed as follow;\n \u003Cdiv class=\"html-disp-formula-info\" id=\"FD1-preprints-89235\">\n \u003Cdiv class=\"f\">\n \u003Cmath display=\"block\">\u003Csemantics>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>B\u003C/mi>\n \u003Cmo>=\u003C/mo>\n \u003Cmi>e\u003C/mi>\n \u003Cmi>x\u003C/mi>\n \u003Cmi>p\u003C/mi>\n \u003Cmo> \u003C/mo>\n \u003Cmo>[\u003C/mo>\n \u003Cmo>−\u003C/mo>\n \u003Cmn>1.803\u003C/mn>\n \u003Cmo>−\u003C/mo>\n \u003Cmn>0.976\u003C/mn>\n \u003Cmi>E\u003C/mi>\n \u003Cmo>+\u003C/mo>\n \u003Cmn>0.976\u003C/mn>\n \u003Cmi>l\u003C/mi>\n \u003Cmi>n\u003C/mi>\n \u003Cmo> \u003C/mo>\n \u003Cmi>l\u003C/mi>\n \u003Cmi>n\u003C/mi>\n \u003Cmo> \u003C/mo>\n \u003Cmfenced separators=\"|\">\n \u003Cmrow>\n \u003Cmi>ρ\u003C/mi>\n \u003C/mrow>\n \u003C/mfenced>\n \u003Cmo>+\u003C/mo>\n \u003Cmn>2.673\u003C/mn>\n \u003Cmi>l\u003C/mi>\n \u003Cmi>n\u003C/mi>\n \u003Cmo> \u003C/mo>\n \u003Cmi>l\u003C/mi>\n \u003Cmi>n\u003C/mi>\n \u003Cmo> \u003C/mo>\n \u003Cmfenced separators=\"|\">\n \u003Cmrow>\n \u003Cmi>D\u003C/mi>\n \u003C/mrow>\n \u003C/mfenced>\n \u003Cmo>−\u003C/mo>\n \u003Cmn>0.0299\u003C/mn>\n \u003Cmsup>\n \u003Cmrow>\n \u003Cmfenced open=\"[\" close=\"]\" separators=\"|\">\n \u003Cmrow>\n \u003Cmi>l\u003C/mi>\n \u003Cmi>n\u003C/mi>\n \u003Cmo> \u003C/mo>\n \u003Cmi>l\u003C/mi>\n \u003Cmi>n\u003C/mi>\n \u003Cmo> \u003C/mo>\n \u003Cmfenced separators=\"|\">\n \u003Cmrow>\n \u003Cmi>D\u003C/mi>\n \u003C/mrow>\n \u003C/mfenced>\n \u003Cmo> \u003C/mo>\n \u003C/mrow>\n \u003C/mfenced>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmn>2\u003C/mn>\n \u003C/mrow>\n \u003C/msup>\n \u003Cmo> \u003C/mo>\n \u003Cmo>]\u003C/mo>\n \u003C/mrow>\n\u003C/semantics>\u003C/math>\n \u003C/div>\n \u003Cdiv class=\"l\">\n \u003Clabel>(1)\u003C/label>\n \u003C/div>\n \u003C/div>\n where AGB denotes the estimated biomass of a tree (kg tree\u003Csup>-1\u003C/sup>), D is diameter at breast height (dbh) of each tree (cm), \u003Cspan class=\"html-italic\">ρ\u003C/span> is wood specific gravity or wood density (typical average value for all Southeast Asia’s tree species is 0.57 g cm\u003Csup>-3\u003C/sup> [\u003Ca href=\"#B40-preprints-89235\" class=\"html-bibr\">40\u003C/a>]), and E is bioclimatic variable, which is available at \u003Ca href=\"http://chave.upstlse.fr/pantropicalallometry.htm\" target=\"_blank\">http://chave.upstlse.fr/pantropicalallometry.htm\u003C/a>\n\u003C/div>\n\u003Cdiv class=\"html-p\">The allometric equation for the estimation of AGB in peat swamp forest can be referred to [\u003Ca href=\"#B36-preprints-89235\" class=\"html-bibr\">36\u003C/a>], which is expressed as\n \u003Cdiv class=\"html-disp-formula-info\" id=\"FD2-preprints-89235\">\n \u003Cdiv class=\"f\">\n \u003Cmath display=\"block\">\u003Csemantics>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>B\u003C/mi>\n \u003Cmo>=\u003C/mo>\n \u003Cmn>0.136\u003C/mn>\n \u003Cmsup>\n \u003Cmrow>\n \u003Cmi>D\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmn>2.51\u003C/mn>\n \u003C/mrow>\n \u003C/msup>\n \u003C/mrow>\n\u003C/semantics>\u003C/math>\n \u003C/div>\n \u003Cdiv class=\"l\">\n \u003Clabel>(2)\u003C/label>\n \u003C/div>\n \u003C/div>\n and the allometric equation adopted for the calculation of AGB in mangrove forest is expressed as [\u003Ca href=\"#B38-preprints-89235\" class=\"html-bibr\">38\u003C/a>]\n \u003Cdiv class=\"html-disp-formula-info\" id=\"FD3-preprints-89235\">\n \u003Cdiv class=\"f\">\n \u003Cmath display=\"block\">\u003Csemantics>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>B\u003C/mi>\n \u003Cmo>=\u003C/mo>\n \u003Cmn>0.251\u003C/mn>\n \u003Cmsup>\n \u003Cmrow>\n \u003Cmi>ρ\u003C/mi>\n \u003Cmi>D\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmn>2.46\u003C/mn>\n \u003C/mrow>\n \u003C/msup>\n \u003C/mrow>\n\u003C/semantics>\u003C/math>\n \u003C/div>\n \u003Cdiv class=\"l\">\n \u003Clabel>(3)\u003C/label>\n \u003C/div>\n \u003C/div>\n where \u003Cspan class=\"html-italic\">ρ\u003C/span> is wood specific gravity or wood density (average value for all mangroves tree species is 0.752 g cm\u003Csup>-3\u003C/sup>).\u003C/div>\u003C/section>\u003C/section>\u003Csection id=\"sec2dot4-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.4. Production of Seamless Mosaics, Cloud-Free Images over Malaysia\u003C/h4>\n\u003Cdiv class=\"html-p\">The production of cloud free images at national level requires substantial amount of time and resources to achieve it. While conventional methods offer flexibility and control over processing, they are often time-consuming and may be impractical for large-scale projects. Google Earth Engine streamlines the entire process, making it efficient, scalable, and accessible for a wide range of users. The production of cloud-free images over Malaysia was done using GEE. In this study, a Top-of-Atmosphere’s (ToA) cloud-free mosaic image for Malaysia in the year 2023 was generated using Landsat 8 and Landsat 9 satellite imagery obtained from the \"LANDSAT/LC08/C02/T1_TOA\" and \"LANDSAT/LC09/C02/ T1_TOA\" collections. The use of Landsat-8 and -9 imagery is to reduce cloud cover since Malaysia is located at the equatorial region and always covered by the clouds all the time. \u003C/div>\n\u003Cdiv class=\"html-p\">The first step in generating cloud-free images over Malaysia was selecting images specifically for the year 2023 that covers Malaysia from the Landsat-8 and -9 image collections. This step is to ensure that only relevant imagery over the study area for the year 2023 is considered. A cloud masking approach was applied to the selected images using the \"QA_PIXEL\" band. This band was used to mask pixels containing dilated clouds, cirrus clouds, and cloud shadows. This cloud masking process was crucial for excluding cloudy or obscured pixels, resulting in a cleaner and more accurate composite image. The composite image was generated using the median value for each pixel across the selected cloud-masked images. The median composite method was chosen because it is simple for calculation and its robustness against outliers and its ability to reduce the influence of noise and artifacts in the final image. Finally, the cloud-free mosaic image for Malaysia in the year 2023 was created by mosaicking the individual median composite images.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot5-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.5. Forest Cover and Types Classifications\u003C/h4>\n\u003Cdiv class=\"html-p\">Forest is defined as “a portion of land larger than 0.5 ha and has trees with a height of more than five (5) metres and has a tree canopy cover of more than 10 percent or with trees that can meet these criteria”. This definition is based on the UN Food and Agriculture Organization’s (FAO) definition of a forest, which is adopted by the Malaysian government Laws of Malaysia - National Forestry Act 1984 (Amended, 2006). However, there are different types of forests in Malaysia, such as inland mixed dipterocarp forest, peat swamp forest, and mangrove forest, which have different characteristics and functions. Therefore, the definition of a forest may vary depending on the context and the purpose of the classification. Inland mixed dipterocarp forest, which is divided into several layers according to the land elevations, i.e., lowland dipterocarp forest (< 300 m), hill dipterocarp forest (300 - 750 m), upper-hill dipterocarp forest (750 - 1200 m), oak-laurel forest (1200 – 1500 m), montane ericaceous forest (>1500 m), are dominant in Malaysia [\u003Ca href=\"#B41-preprints-89235\" class=\"html-bibr\">41\u003C/a>]. All dryland forests are included in this category. It includes all primary and secondary forests that meet the defined threshold. It would, thus, also include the dwarf Montane and Sub-Montane forests growing on the thin soils of mountain summits and ridges of the interior of the peninsula. The dry inland forest in Malaysia is mostly dominated by trees from the Dipterocarpaceae family, hence the term ‘dipterocarp’ forests. The dipterocarp forest occurs on dry land just above sea level to an altitude of about 900 m. The dipterocarp specifically refers to the fact that most of the largest trees in this forest belong to one plant family known as Dipterocarpaceae. It was so called because their fruits have seeds with two wings (di = two; ptero = wing; carp = seed) [\u003Ca href=\"#B42-preprints-89235\" class=\"html-bibr\">42\u003C/a>]. This forest is also generally referred to as inland forest.\u003C/div>\n\u003Cdiv class=\"html-p\">The peat swamp forest refers to tropical and subtropical forest areas behind the swampy forest to the land where peatlands and less salty soils are present. This tropical swamp forest is a unique wetland ecosystem and is a combination of two peat swamp forests and a growing tropical rainforest for thousands of years. On the other hand, mangrove refers to coastal and estuarine areas where the forest is influenced by tidal waves. Tidal forest where the genera Rhizophora, Bruguiera and Avicennia are most common. Mangrove trees refer to plants living in swampy areas at the mouth of the river, between clashes of freshwater and seawater.\u003C/div>\n\u003Cdiv class=\"html-p\">Smaller sections of casuarina/beach forest, freshwater swamp forest, melaleuca swamp forest, heath forest, limestone forest, and quartz ridge forest are also present. In Sabah, there is another type of vegetation zone, known as sub-alpine vegetation, which occurs only at the elevation of > 3500 m a.s.l., at the peak of Kinabalu Mount [\u003Ca href=\"#B32-preprints-89235\" class=\"html-bibr\">32\u003C/a>]. \u003C/div>\n\u003Cdiv class=\"html-p\">In this study, forests are divided into three major ecosystem types: inland mixed dipterocarp forest, peat swamp forest, and mangrove forest. Before interpreting and classifying forests on the Landsat images, it is important to understand the situation and management practices of Malaysia’s forest sector. Having a variety of secondary data on hand is advantageous and can speed up the classification process. To ensure that the classification is done correctly, spatial information such as Permanent Reserve Forest (PRF) boundaries, management regimes, and locations of various ecosystems are necessary. In this case, the image classification was performed to delineate forests from other land features. Image classification was executed on the seamless mosaic image to delineate these forest types. The training areas were manually created based on visual interpretation aided by the sampling plots information. Maximum likelihood image classification algorithm was utilised to execute the classification. \u003C/div>\n\u003Cdiv class=\"html-p\">The most difficult aspect of image classification was dealing with large amounts of data and producing classification results with minimum uncertainty [\u003Ca href=\"#B43-preprints-89235\" class=\"html-bibr\">43\u003C/a>]. Pixel format classification results have been converted to shapefile vector format (.shp) for further analysis and post-classification recognition processes. Further editing and refining were conducted manually over the shapefile to ensure that the classification results are clean and only cover the forested areas.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot6-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.6. Development of ACDI\u003C/h4>\n\u003Cdiv class=\"html-p\">The ACDI is a metric developed on the premise that there exists a direct correlation between the density of a forest’s canopy, or the amount of foliage and branches in its upper layers, and the quantity of carbon stored in the forest’s biomass. This relationship is rooted in the principle that a denser canopy typically implies a more extensive and carbon-rich vegetation structure. The ACDI is used to estimate the amount of carbon stored in a forest, which is important for evaluating forest carbon sink capacities. As such, the ACDI will serve as a valuable tool for estimating the amount of carbon sequestered in a forest ecosystem by analysing its AGC. The development of ACDI is based on the Forest Canopy Density (FCD) model that was established by [\u003Ca href=\"#B44-preprints-89235\" class=\"html-bibr\">44\u003C/a>] and modified by [\u003Ca href=\"#B45-preprints-89235\" class=\"html-bibr\">45\u003C/a>,\u003Ca href=\"#B46-preprints-89235\" class=\"html-bibr\">46\u003C/a>,\u003Ca href=\"#B47-preprints-89235\" class=\"html-bibr\">47\u003C/a>]. An inspection was conducted on this model and found that ambiguities exist at the grassland and the shrublands, especially burn scars areas where the FCD is found to have higher values than that of forested areas [\u003Ca href=\"#B48-preprints-89235\" class=\"html-bibr\">48\u003C/a>]. This effect needs to be eliminated and the only solution to this is by suppressing the values to a level that is representative to the actual physical condition on the ground. Therefore, this model is further modified in this study and the ACDI is thus developed, which can be expressed as\n \u003Cdiv class=\"html-disp-formula-info\" id=\"FD4-preprints-89235\">\n \u003Cdiv class=\"f\">\n \u003Cmath display=\"block\">\u003Csemantics>\n \u003Cmrow>\n \u003Cmfenced open=\"[\" close=\"]\" separators=\"|\">\n \u003Cmrow>\n \u003Cmfrac>\n \u003Cmrow>\n \u003Cmi>N\u003C/mi>\n \u003Cmi>D\u003C/mi>\n \u003Cmi>V\u003C/mi>\n \u003Cmi>I\u003C/mi>\n \u003Cmo>×\u003C/mo>\n \u003Cmi>N\u003C/mi>\n \u003Cmi>B\u003C/mi>\n \u003Cmi>R\u003C/mi>\n \u003Cmo>×\u003C/mo>\n \u003Cmi>S\u003C/mi>\n \u003Cmi>I\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>S\u003C/mi>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>V\u003C/mi>\n \u003Cmi>I\u003C/mi>\n \u003Cmo>×\u003C/mo>\n \u003Cmi>I\u003C/mi>\n \u003Cmi>O\u003C/mi>\n \u003Cmo>×\u003C/mo>\n \u003Cmi>M\u003C/mi>\n \u003Cmi>N\u003C/mi>\n \u003Cmi>D\u003C/mi>\n \u003Cmi>W\u003C/mi>\n \u003Cmi>I\u003C/mi>\n \u003Cmo>×\u003C/mo>\n \u003Cmi>S\u003C/mi>\n \u003Cmi>W\u003C/mi>\n \u003Cmi>I\u003C/mi>\n \u003Cmi>R\u003C/mi>\n \u003Cmo>×\u003C/mo>\n \u003Cmi>E\u003C/mi>\n \u003Cmi>V\u003C/mi>\n \u003Cmi>I\u003C/mi>\n \u003C/mrow>\n \u003C/mfrac>\n \u003C/mrow>\n \u003C/mfenced>\n \u003Cmo>×\u003C/mo>\n \u003Cmn>2\u003C/mn>\n \u003C/mrow>\n\u003C/semantics>\u003C/math>\n \u003C/div>\n \u003Cdiv class=\"l\">\n \u003Clabel>(4)\u003C/label>\n \u003C/div>\n \u003C/div>\n where each image variable is summarised in \u003Ca href=\"#preprints-89235-t005\" class=\"html-table\">Table 5\u003C/a>. The calculation was conducted by using Top of Atmosphere (ToA) reflectance values.\u003C/div>\n\u003Cdiv class=\"html-p\">The vegetation indices used in the ACDI were chosen with care to highlight the forest areas, distinguish them from other features, and show how the forests vary under different circumstances. The Normalised Difference Vegetation Index (NDVI) is a widely-used metric for quantifying the health and density of vegetation using sensor data. The Shadow Index (SI) is used to derive information about various landscape phenomena, including vegetation health and land classifications. However, the specific purpose or application of the Shadow Index is for detecting and correcting for shadows in optical satellite imagery. On the other hand, the Normalised Burn Ratio (NBR) is a radiometric measure of burn severity that was originally developed using Landsat Thematic Mapper data. The NBR is a widely used index for monitoring environmental changes, particularly those related to fire intensity and burn severity.\u003C/div>\n\u003Cdiv class=\"html-p\">The SAVI is a vegetation index that is designed to minimise the influence of soil brightness on the vegetation signal1. It is particularly useful in areas where vegetative cover is low. In contrast, the IO can be used to estimate the presence of iron oxide in various landscapes, such as wetlands. The ratio presented in IO is also used as a geological index used for identifying rock features that have experienced oxidation of iron-bearing sulphides. However, in this case the IO was included in the equation to differentiate forest cover especially in wetlands areas [\u003Ca href=\"#B56-preprints-89235\" class=\"html-bibr\">56\u003C/a>]. On the other hand, the MNDWI is a spectral index used for several purposes, such as enhancement of open water features that is particularly useful in built-up areas as it can reduce or even remove built-up land. It is also used to analyse water bodies such as rivers, lakes, and dams. In this case, the MNDWI was included to diminish built-up area features that are often correlated with open water in other indices. Finally, EVI was included in the equation as one of the multiplicative indicators in the denominator. This \"optimised\" vegetation index aims to improve vegetation monitoring by decoupling the canopy background signal and minimising atmospheric impacts, hence increasing the vegetation signal’s sensitivity in high biomass regions. It thus enhanced the vegetation health and density of vegetation.\u003C/div>\n\u003Cdiv class=\"html-p\">The ACDI equation was then applied to the Landsat-8 Operational Land Imaging (OLI) for the year 2023. This process is similar to the production of a seamless mosaic of Landsat images over Malaysia as described earlier. However, an additional step was applied to include the ACDI formula to the image. This process was also conducted on the GEE platform.\u003C/div>\u003C/section>\u003Csection id=\"sec2dot7-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.7. Development of AGC Estimation Models\u003C/h4>\n\u003Cdiv class=\"html-p\">The linear relationship between AGC and the ACDI is a fundamental connection in the assessment of carbon content in terrestrial ecosystems. AGC represents the total carbon stored in the aboveground biomass of trees. ACDI, on the other hand, is a metric used to express this carbon content relative to a unit of area, typically per hectare or square metre. The extraction process was conducted on the GEE platform where a specific program code was created to extract the ACDI values from Landsat data that match the date (or year) of the field inventory data. This is to ensure that the value of AGC is true at the specific time, because the forest can change over time. \u003C/div>\n\u003Cdiv class=\"html-p\">The linear relationship between AGC and ACDI is straightforward: as the aboveground carbon content increases in a given area, the ACDI value for that area also increases proportionally. Simple linear regression is a statistical method used to estimate the relationship between two quantitative variables. It is preferred over other regression models to measure the strength of the relationship between AGC and ACDI. Simple linear regression is also preferred when only one independent variable, (i.e., ACDI) is available. In this case ACDI is the predictor for AGC, where the linear relationship between these two variables can be expressed as\n \u003Cdiv class=\"html-disp-formula-info\" id>\n \u003Cdiv class=\"f\">\n \u003Cspan class=\"html-italic\">y\u003C/span> = \u003Cspan class=\"html-italic\">mx\u003C/span> \n \u003C/div>\n \u003Cdiv class=\"l\">\n \u003Clabel>(5)\u003C/label>\n \u003C/div>\n \u003C/div>\n where y denotes AGC, m is the slope, and x is the ACDI. Both x and y variables intercept at 0, which means that the line passes through the origin (0, 0) of the plane, where ACDI is 0 when AGC is 0 or no vegetation (cleared land and water bodies).\u003C/div>\u003C/section>\u003Csection id=\"sec2dot8-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.8. Models Validation\u003C/h4>\n\u003Cdiv class=\"html-p\">Some of the sample plots data were used separately for validation (\u003Ca href=\"#preprints-89235-t001\" class=\"html-table\">Table 1\u003C/a>). The validation plots are those measurements that have been conducted recently in the year 2023 to match the AGC map that was produced for the year 2023. To check the accuracy of the estimates, root mean square error (RMSE) was calculated. In this case, the accuracy is a measure of the error between a derived/predicted AGC from the ACDI and the actual AGC measured on the ground. The calculation can be expressed as follows:\u003Cdiv class=\"html-disp-formula-info\" id=\"FD5-preprints-89235\">\n \u003Cdiv class=\"f\">\n \u003Cmath display=\"block\">\u003Csemantics>\n \u003Cmrow>\n \u003Cmi>R\u003C/mi>\n \u003Cmi>M\u003C/mi>\n \u003Cmi>S\u003C/mi>\n \u003Cmi>E\u003C/mi>\n \u003Cmo>=\u003C/mo>\n \u003Cmo> \u003C/mo>\n \u003Cmsqrt>\n \u003Cmrow>\n \u003Cmo stretchy=\"false\">∑\u003C/mo>\n \u003Cmrow>\n \u003Cmfrac>\n \u003Cmrow>\n \u003Cmsup>\n \u003Cmrow>\n \u003Cmo>(\u003C/mo>\n \u003Cmsub>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>C\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>p\u003C/mi>\n \u003C/mrow>\n \u003C/msub>\n \u003Cmo>−\u003C/mo>\n \u003Cmo> \u003C/mo>\n \u003Cmsub>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>C\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>r\u003C/mi>\n \u003C/mrow>\n \u003C/msub>\n \u003Cmo>)\u003C/mo>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmn>2\u003C/mn>\n \u003C/mrow>\n \u003C/msup>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>n\u003C/mi>\n \u003C/mrow>\n \u003C/mfrac>\n \u003C/mrow>\n \u003C/mrow>\n \u003C/msqrt>\n \u003C/mrow>\n\u003C/semantics>\u003C/math>\n \u003C/div>\n \u003Cdiv class=\"l\">\n \u003Clabel>(6)\u003C/label>\n \u003C/div>\n \u003C/div>\n where RMSE is the root mean square error of the estimated AGC (± Mg C ha\u003Csup>−1\u003C/sup>), \u003Cspan class=\"html-italic\">AGC\u003Csub>p\u003C/sub>\u003C/span> and \u003Cspan class=\"html-italic\">AGC\u003Csub>r\u003C/sub>\u003C/span> are the predicted and reference AGC, respectively, and \u003Cspan class=\"html-italic\">n\u003C/span> is the sample size (i.e., number of validation plots).\u003C/div>\n\u003Cdiv class=\"html-p\">In additional to the RMSE, the accuracies of the estimates were also measured in terms symmetric mean absolute percentage error (SMAPE). SMAPE is a commonly used metric for measuring the percentage accuracy between forecasted and actual values. It is particularly used to assess the performance of a forecasting model, and it has a preference for symmetrical errors. The adjusted SMAPE values typically range from 0% to 100% [\u003Ca href=\"#B57-preprints-89235\" class=\"html-bibr\">57\u003C/a>]. A lower SMAPE indicates a better forecast accuracy, while a higher SMAPE indicates a less accurate forecast. SMAPE is calculated as follows:\u003Cdiv class=\"html-disp-formula-info\" id=\"FD6-preprints-89235\">\n \u003Cdiv class=\"f\">\n \u003Cmath display=\"block\">\u003Csemantics>\n \u003Cmrow>\n \u003Cmi>S\u003C/mi>\n \u003Cmi>M\u003C/mi>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>P\u003C/mi>\n \u003Cmi>E\u003C/mi>\n \u003Cmo>=\u003C/mo>\n \u003Cmo> \u003C/mo>\n \u003Cmfrac>\n \u003Cmrow>\n \u003Cmn>100\u003C/mn>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>n\u003C/mi>\n \u003C/mrow>\n \u003C/mfrac>\n \u003Cmrow>\n \u003Cmsubsup>\n \u003Cmo stretchy=\"false\">∑\u003C/mo>\n \u003Cmrow>\n \u003Cmi>n\u003C/mi>\n \u003Cmo>=\u003C/mo>\n \u003Cmn>1\u003C/mn>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>n\u003C/mi>\n \u003C/mrow>\n \u003C/msubsup>\n \u003Cmrow>\n \u003Cmfrac>\n \u003Cmrow>\n \u003Cmfenced open=\"|\" close=\"|\" separators=\"|\">\n \u003Cmrow>\n \u003Cmsub>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>C\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>p\u003C/mi>\n \u003C/mrow>\n \u003C/msub>\n \u003Cmo>−\u003C/mo>\n \u003Cmsub>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>C\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>r\u003C/mi>\n \u003C/mrow>\n \u003C/msub>\n \u003C/mrow>\n \u003C/mfenced>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmfenced open=\"|\" close=\"|\" separators=\"|\">\n \u003Cmrow>\n \u003Cmsub>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>C\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>r\u003C/mi>\n \u003C/mrow>\n \u003C/msub>\n \u003C/mrow>\n \u003C/mfenced>\n \u003Cmo>+\u003C/mo>\n \u003Cmfenced open=\"|\" close=\"|\" separators=\"|\">\n \u003Cmrow>\n \u003Cmsub>\n \u003Cmrow>\n \u003Cmi>A\u003C/mi>\n \u003Cmi>G\u003C/mi>\n \u003Cmi>C\u003C/mi>\n \u003C/mrow>\n \u003Cmrow>\n \u003Cmi>p\u003C/mi>\n \u003C/mrow>\n \u003C/msub>\n \u003C/mrow>\n \u003C/mfenced>\n \u003C/mrow>\n \u003C/mfrac>\n \u003C/mrow>\n \u003C/mrow>\n \u003C/mrow>\n\u003C/semantics>\u003C/math>\n \u003C/div>\n \u003Cdiv class=\"l\">\n \u003Clabel>(7)\u003C/label>\n \u003C/div>\n \u003C/div>\n\u003C/div>\u003C/section>\u003Csection id=\"sec2dot9-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 2.9. Thematic Map Production\u003C/h4>\n\u003Cdiv class=\"html-p\">The empirical equations that have been derived from the regression analysis were applied to the ACDI images. Each equation was applied to produce estimated AGC according to the forest types. Since the model produced is made according to the type of forest, each equation was applied three times, each for dry inland forest, peat swamp forest, and mangrove forest. Each resulting AGC image was then cropped to match the forest type. Then the three images were rejoined to produce a single image containing the AGC value according to the type of forest. The mosaiced product was a single-layer image with pixel values representing AGC at 30-m resolution. This image generated a wall-to-wall map of AGC throughout Malaysia. By using this map, AGC at any location can be determined and statistics of AGC within any polygon can be extracted.\u003C/div>\u003C/section>\u003C/section>\u003Csection id=\"sec3-preprints-89235\" type=\"results\">\u003Ch2 data-nested=\"1\" id=\"preprints-h2-3\"> 3. Results and Discussion\u003C/h2>\n\u003Csection id=\"sec3dot1-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.1. Summary of the Sample Plots Data\u003C/h4>\n\u003Cdiv class=\"html-p\">The field inventory work that has been conducted covered a wide range of forest types and conditions, from severely degraded areas to the highly pristine, virgin forest. Non-tree spots within the sampling areas, with AGC value of 0 were also included as samples. Statistics of the sample plots data are summarised in \u003Ca href=\"#preprints-89235-t006\" class=\"html-table\">Table 6\u003C/a> and represented in boxplots as shown in \u003Ca href=\"#preprints-89235-f009\" class=\"html-fig\">Figure 9\u003C/a>.\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f008\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f008\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png\" alt=\"Preprints 89235 g008\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f008\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 8.\u003C/b>\n Distribution of sampling points on the classified forest types map.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f008\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f008\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 8.\u003C/b>\n Distribution of sampling points on the classified forest types map.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png\" alt=\"Preprints 89235 g008\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g008.png\">\u003C/div>\n\u003C/div>\n\u003C/section>\u003Csection id=\"sec3dot2-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.2. Seamless Mosaics, Cloud-Free Images over Malaysia\u003C/h4>\n\u003Cdiv class=\"html-p\">A seamless mosaic of Landsat images over Malaysia has been produced on the GEE platform. This mosaic was produced from the combination of images that were acquired from early years 2022 to 2023. This timeframe was set as a threshold to allow the GEE to mask and eliminate clouds from multiple individual Landsat images and come out with a clean, cloud-free image. A 2-year threshold was found the most optimal for the production of cloudless (at more than 99%), clear and continuous images over Malaysia. This product was then used for deriving the final ACDI image, as shown in \u003Ca href=\"#preprints-89235-f010\" class=\"html-fig\">Figure 10\u003C/a>.\u003C/div>\u003C/section>\u003Csection id=\"sec3dot3-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.3. The Classified Forest Cover and Types\u003C/h4>\n\u003Cdiv class=\"html-p\">From the classification, it was found that the total area of forests in Malaysia in 2023 was about 18 million ha with dry inland forest being dominant at 93.3% (\u003Ca href=\"#preprints-89235-t007\" class=\"html-table\">Table 7\u003C/a>). The forest types classification results were produced in shapefile (.shp) format so that further analysis and statistical extractions can be done over the AGC map. \u003Ca href=\"#preprints-89235-f008\" class=\"html-fig\">Figure 8\u003C/a> shows the map of forest types that have been classified from the image.\u003C/div>\u003C/section>\u003Csection id=\"sec3dot4-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.4. Summary of the ACDI\u003C/h4>\n\u003Cdiv class=\"html-p\">The ACDI that have been derived from the Landsat images for the year 2023 ranged from about 0 to 200. However, the values are mainly concentrated at values ranging from 0 to 50 (\u003Ca href=\"#preprints-89235-f011\" class=\"html-fig\">Figure 11\u003C/a>) and some minority pixels containing values exceeding 100. The statistic of ACDI is summarised in \u003Ca href=\"#preprints-89235-t008\" class=\"html-table\">Table 8\u003C/a> and the spatial distribution of ACDI is presented on map in \u003Ca href=\"#preprints-89235-f012\" class=\"html-fig\">Figure 12\u003C/a>. The histogram represents all terrestrial features in Malaysia, which includes all categories of land use/cover. While water bodies, bare lands and built-up areas have relatively low ACDI values, vegetation covers tend to have higher values. In this case, all vegetation including forests and agricultural lands are mixed and some of them are sharing the same values of ACDI. Therefore, the forest cover and types classification are crucial and took the first part in the image processing.\u003C/div>\u003C/section>\u003Csection id=\"sec3dot5-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.5. AGC Estimation Models\u003C/h4>\n\u003Cdiv class=\"html-p\">Scatterplots of AGC against ACDI have been produced with linear correlations created for all forest types. Referring to the scatterplot it is obvious that the ACDI demonstrated different responses towards the AGC. The slope of the linear regression line, which is steeper than that of peat swamp and mangrove forest, indicates that dry inland forests exhibit a larger proportional relationship between ACDI and AGC. Mangrove forests, on the other hand, have the least gradient. This is because wetlands (i.e., peat swamps and mangrove forests) and dry inland forest have different soil properties [\u003Ca href=\"#B58-preprints-89235\" class=\"html-bibr\">58\u003C/a>]. The ACDI formula has normalised the impact on soil properties. In contrast, peat swamps and mangrove forests appear darker due to the reflectance in the infrared region that has been absorbed by the moisture as it interacts with the wetlands [\u003Ca href=\"#B59-preprints-89235\" class=\"html-bibr\">59\u003C/a>]. Mineral soil beneath dry inland forest tends to become brighter because the amount of reflectance mainly comes from the canopy of the trees [\u003Ca href=\"#B60-preprints-89235\" class=\"html-bibr\">60\u003C/a>]. The linear relationships between AGC and ACDI are depicted in \u003Ca href=\"#preprints-89235-f013\" class=\"html-fig\">Figure 13\u003C/a> and the derived AGC estimation models are summarised in \u003Ca href=\"#preprints-89235-t009\" class=\"html-table\">Table 9\u003C/a>. \u003C/div>\n\u003Cdiv class=\"html-p\">It is desirable and expected that the AGC has a perfect linear relationship with ACDI. However, after the analysis was carried out, it was found that the relationship is still divergent and this happens due to several factors. The first factor is the coordinates of the location of the sampling plot which is not very accurate and the position of the plot which does not fall exactly on the actual position. Another factor is the use of allometric equations that do not relate forest canopy information in AGC calculations, whereas the information extracted from satellite data is based on forest canopy. In addition, the spatial resolution of Landsat data at 30-m accuracy includes many mixed features in a pixel when compared to the plot sizes used in the census, especially for peat swamp and mangrove forests where the plot sizes are smaller than the pixel resolution. Nonetheless, the correlations exhibit significance, with r2 values surpassing 0.5, and are deemed acceptable, given the huge amount of field data available to reveal the true relationship between AGC and the ACDI.\u003C/div>\u003C/section>\u003Csection id=\"sec3dot6-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.5. Statistics Extracted from the AGC Map\u003C/h4>\n\u003Cdiv class=\"html-p\">The AGC map that has been produced from the estimation models contained pixel values ranging from about 0 to 450. The histogram shows that there are two distinct regions of distributions, creating two different peaks, which reflect the estimated AGC for forests and other vegetative covers (\u003Ca href=\"#preprints-89235-f014\" class=\"html-fig\">Figure 14\u003C/a>). Although the estimation is not valid for vegetation other than forests; all pixels contain AGC values once the model is applied to the ACDI image. The statistic of the AGC is summarised in \u003Ca href=\"#preprints-89235-t010\" class=\"html-table\">Table 10\u003C/a> and the spatial distribution of AGC is portrayed on map in \u003Ca href=\"#preprints-89235-f015\" class=\"html-fig\">Figure 15\u003C/a>. It was estimated that the total AGC in the entire forests in Malaysia was at 3.0 billion Mg C, which was a sum of 2.87 billion Mg C, 71.9 million Mg C, and 56.86 million Mg C from dry inland, peat swamp and mangrove forests, respectively (\u003Ca href=\"#preprints-89235-t011\" class=\"html-table\">Table 11\u003C/a>). Given the entire forests in Malaysia is divided into three types, the averages AGC estimated for dry inland, peat swamp and mangrove forests are 171.45 ± 67.00 Mg C ha\u003Csup>−1\u003C/sup>, 109.51 ± 60.78 Mg C ha\u003Csup>−1\u003C/sup>, and 91.50 ± 76.18 Mg C ha\u003Csup>−1\u003C/sup>, respectively. Statistics are also calculated based on the forested areas found throughout the country by state using the AGC map that has been produced. Using this information, the carbon stock profile for each state in Malaysia has been determined. A summary of the AGC profile is given in \u003Ca href=\"#preprints-89235-t011\" class=\"html-table\">Table 11\u003C/a> and shown in \u003Ca href=\"#preprints-89235-f016\" class=\"html-fig\">Figure 16\u003C/a>, \u003Ca href=\"#preprints-89235-f017\" class=\"html-fig\">Figure 17\u003C/a> and \u003Ca href=\"#preprints-89235-f018\" class=\"html-fig\">Figure 18\u003C/a>. This information is very useful in determining the carbon stock capacity at the national, states, and project or site-specific levels.\u003C/div>\n\u003Cdiv class=\"html-p\">The performance of the AGC map produced from this study was measured by extracting the profiles of AGC at different forest types and conditions. Twelve areas have been selected to demonstrate the variations of AGC distribution, which are summarised in \u003Ca href=\"#preprints-89235-f019\" class=\"html-fig\">Figure 19\u003C/a> and listed in \u003Ca href=\"#preprints-89235-t012\" class=\"html-table\">Table 12\u003C/a>. The spatial distribution of AGC over these areas are depicted in \u003Ca href=\"#preprints-89235-f020\" class=\"html-fig\">Figure 20\u003C/a>, \u003Ca href=\"#preprints-89235-f021\" class=\"html-fig\">Figure 21\u003C/a> and \u003Ca href=\"#preprints-89235-f022\" class=\"html-fig\">Figure 22\u003C/a>, which represent dry inland forest, mangrove forest and peat swamp forest, respectively. These areas are among areas that are known for their functions. \u003C/div>\n\u003Cdiv class=\"html-p\">A comprehensive review on the aboveground carbon stock at various forests in Malaysia was reported by [\u003Ca href=\"#B61-preprints-89235\" class=\"html-bibr\">61\u003C/a>]. The values vary according to the forest types and conditions and most of the reported AGC values are agreeable with the values estimated in this study. Similar situation occurs in mangrove forest, where the range of AGC is agreeable to that of reported by [\u003Ca href=\"#B59-preprints-89235\" class=\"html-bibr\">59\u003C/a>,\u003Ca href=\"#B62-preprints-89235\" class=\"html-bibr\">62\u003C/a>]. \u003C/div>\n\u003Cdiv class=\"html-p\">The total AGC in Malaysia over the year 2023 estimated by this study was at 3.0 billion Mg C (\u003Ca href=\"#preprints-89235-t011\" class=\"html-table\">Table 11\u003C/a>). This totals a sum of AGC reported for the entire state in Malaysia. [\u003Ca href=\"#B63-preprints-89235\" class=\"html-bibr\">63\u003C/a>] estimated that the total aboveground biomass carbon in 2015 was at 2.248 billion Mg C, with an average of 154.78 Mg C ha\u003Csup>-1\u003C/sup>, within an estimated forested area of 18.278 million ha. This was somehow lower than that estimated by the current study. However [\u003Ca href=\"#B10-preprints-89235\" class=\"html-bibr\">10\u003C/a>] estimated that the total AGC in all forest types in Malaysia was at 3.15 billion Mg C over the year 2020. This is agreeable with that found in the current study. \u003C/div>\n\u003Cdiv class=\"html-p\">It was reported that the total AGC in the lowland and hill dipterocarps forests in Peninsular Malaysia was at 775,884,956 Mg C over the year 2015 [\u003Ca href=\"#B64-preprints-89235\" class=\"html-bibr\">64\u003C/a>]. AGC in about 5.25 million ha of the dry inland forest, excluding montane forest, in Peninsular Malaysia was estimated at 855,970,674 Mg C [\u003Ca href=\"#B65-preprints-89235\" class=\"html-bibr\">65\u003C/a>] and 833,141,077 Mg C [\u003Ca href=\"#B66-preprints-89235\" class=\"html-bibr\">66\u003C/a>] over the year 2016. Current study found that the total AGC in the dry inland forest in Peninsular Malaysia was at 921,731,750 Mg C. The estimates were slightly higher because it includes montane forests, which has elevation > 1200 m a.s.l. \u003C/div>\n\u003Cdiv class=\"html-p\">A study found the Totally Protected Areas (TPA) forest has among the highest carbon densities in Sabah, averaging 165 Mg C ha\u003Csup>− 1\u003C/sup>, Maliau Basin with 220 ± 69 Mg C ha\u003Csup>−1\u003C/sup>, and Danum Valley with 207 ± 71 Mg C ha\u003Csup>−1\u003C/sup>. Other forest reserves that are in intact condition yielded even higher carbon densities, with Imbak Canyon producing the highest mean stock of 229 ± 81 Mg C ha\u003Csup>−1\u003C/sup> [\u003Ca href=\"#B67-preprints-89235\" class=\"html-bibr\">67\u003C/a>]. These estimates are very close to that found in this study with an average of 215.72 Mg C ha\u003Csup>−1\u003C/sup> in Maliau Basin forest landscape (\u003Ca href=\"#preprints-89235-t012\" class=\"html-table\">Table 12\u003C/a>-B). \u003C/div>\n\u003Cdiv class=\"html-p\">It was estimated that AGC in Endau Rompin National Park in Johor wat at an average of 281 Mg C ha\u003Csup>−1\u003C/sup> [\u003Ca href=\"#B68-preprints-89235\" class=\"html-bibr\">68\u003C/a>]. Assuming that forest condition in this area is similar to the Greater National Park, this study estimated the AGC in this kind of forest was at 203.61 Mg C ha\u003Csup>−1\u003C/sup> (\u003Ca href=\"#preprints-89235-t012\" class=\"html-table\">Table 12\u003C/a>-A), which is lower than that was estimated by them. However, it was justified that the allometric equation that was used in the study is different from that of used by this study. This can contribute to the final AGC estimates. In contrast, [\u003Ca href=\"#B69-preprints-89235\" class=\"html-bibr\">69\u003C/a>] reported that the carbon stock in production forest at the production area ranged between 24.6 and 265.8 Mg C ha\u003Csup>-1\u003C/sup> with the mean at 166.8 Mg C ha\u003Csup>-1\u003C/sup>. This is comparable with that found in this study with an average at 192.55 Mg C ha\u003Csup>-1\u003C/sup> (\u003Ca href=\"#preprints-89235-t012\" class=\"html-table\">Table 12\u003C/a>-D). \u003C/div>\n\u003Cdiv class=\"html-p\">Another assessment looked into the aspect of chronosequence rehabilitated tropical forest stands in Malaysia. It compares the carbon stock of different age classes and forest types, and evaluates the effectiveness of forest rehabilitation. The rehabilitated forests have tree carbon ranging from 0.1 - 54.0 Mg C ha\u003Csup>-1\u003C/sup>. In contrast to the natural regenerating secondary forest, tree carbon was at 61.0 Mg C ha\u003Csup>-1\u003C/sup> [\u003Ca href=\"#B70-preprints-89235\" class=\"html-bibr\">70\u003C/a>].\u003C/div>\u003C/section>\u003Csection id=\"sec3dot7-preprints-89235\" type>\u003Ch4 class=\"html-italic\" data-nested=\"2\"> 3.6. AGC Map Accuracy\u003C/h4>\n\u003Cdiv class=\"html-p\">The AGC map was validated by using separate sample plots that were allocated for validation purposes. The predicted AGC values were fitted against the actual values measured at validation plots. The validation scatter plot is a common tool used to measure the performance of a model. It is used to visualise the relationship between the predicted values and the actual values of a model. The scatter plot shows how well the model is able to predict the actual values, and how much variation there is between the predicted and actual values. The closer the points are to the line of perfect prediction, the better the model’s performance. This plot is particularly useful when evaluating regression models, as it allows to measure the performance of the models developed to predict continuous variables. The validation scatterplots are shown in \u003Ca href=\"#preprints-89235-f023\" class=\"html-fig\">Figure 23\u003C/a>. The accuracy of the model’s performance was also assessed by determining the RMSE and SMAPE. \u003C/div>\n\u003Cdiv class=\"html-p\">The study found that the AGC predicted on mangrove forest attained the best accuracy at 84.85% with ±22.51 Mg C ha\u003Csup>-1\u003C/sup>. Lower accuracies obtained for peat swamp and dry inland forests, with the attainable accuracies at 77.14% and 77.34%, respectively. \u003Ca href=\"#preprints-89235-t013\" class=\"html-table\">Table 13\u003C/a> summarises the overall accuracies of the predictions resulted from the models.\u003C/div>\u003C/section>\u003C/section>\u003Csection id=\"sec4-preprints-89235\" type=\"conclusions\">\u003Ch2 data-nested=\"1\" id=\"preprints-h2-4\"> 4. Conclusions\u003C/h2>\n\u003Cdiv class=\"html-p\">Based on the estimates, a 30-metre resolution, wall-to-wall map of AGC across the entire forested region of Malaysia has been produced from a single Landsat satellite image. The ACDI was calibrated and validated by using a collection of 12 years inventory data. Forest types were divided into three classes which are dry inland, peat swamp and mangrove forests. The total AGC in all types of forests in Malaysia was estimated at 3.0 billion Mg C. The accuracy of the estimates was assessed and the attainable overall accuracy was at about 80%. The statistics AGC for all forest types were presented covering the entire regions of Malaysia. These estimates were also divided into categories and reported to the AGC at the state level. Image classification that was carried out to delineate the forest covers produced a map that revealed that the forest cover in Malaysia was at about 18 million ha in 2023. The averages AGC estimated for dry inland, peat swamp and mangrove forests are 171.45 ± 67.00 Mg C ha\u003Csup>−1\u003C/sup>, 109.51 ± 60.78 Mg C ha\u003Csup>−1\u003C/sup>, and 91.50 ± 76.18 Mg C ha\u003Csup>−1\u003C/sup>, respectively. It was also found that the ACDI have different responses towards the AGC.\u003C/div>\n\u003Cdiv class=\"html-p\">Landsat data have proven to be a valuable resource for forest biomass prediction, offering insights into forest ecosystems and their response to environmental changes. The combination of Landsat data with advanced modelling techniques, the use of cloud-based platforms such as GEE and other advanced technologies has enhanced the ability to estimate biomass accurately. As technology and methodologies continue to evolve, Landsat data will likely remain a pivotal tool in monitoring and managing forest resources in the context of climate change and environmental conservation. Further research is needed to address challenges, refine methodologies, and improve the accuracy of forest biomass predictions using Landsat data.\u003C/div>\n\u003Cdiv class=\"html-p\">The scrutiny against carbon project in the international voluntary markets, in recent years, demand for more accuracy and rigorous assessment of data to (i) support evidence of additionality through documented forest loss or degradation; (ii) support robustness and quantification of GHG emission where data is use to estimates the deforestation or degradation rates at project, subnational and national level; (iii) assess non-permanence risks including site susceptibility to natural hazards; and (iv) support evidence of co benefits, where in some cases geospatial data is used for biodiversity profiles.\u003C/div>\n\u003Cdiv class=\"html-p\">The use of remote sensing and GIS analysis allows nature-based carbon project developers to assess the feasibility of their projects in a more cost-effective way. The use of Landsat data will allow project developers to identify degraded areas and design the remedial measures more effectively. This study can be expanded for generation of time-series assessment over at least a 2-year interval [\u003Ca href=\"#B71-preprints-89235\" class=\"html-bibr\">71\u003C/a>,\u003Ca href=\"#B72-preprints-89235\" class=\"html-bibr\">72\u003C/a>]. This data will also facilitate the subsequent carbon verification process and ensures the validity and accountability of emissions data, the success of emissions reduction projects, confirming that the emissions reductions are permanent and genuine.\u003C/div>\n\u003Cdiv class=\"html-p\">This study can potentially be used for the national/subnational mitigation efforts including the REDD+ implementation. REDD+ is constructed on the principles of additionality against a baseline or reference emission level (FRL/FREL), with no displacement of emissions to neighbouring areas (leakage). A consistent monitoring and reporting system that works across scales is therefore important for operationalizing REDD+, ensuring no displacement in the emission and also to avoid potential double counting issues. The generation of subnational/jurisdictional level FRL and FREL will enable the Government to develop more effective mitigation measures in achieving the Malaysian Nationally Determined Contribution and offer the potential to scale up emissions reductions more rapidly with greater environmental integrity. More than 73 countries have implemented their carbon pricing instrument, CPI (emission trading scheme and/or carbon tax) as a means of bringing down emissions and driving investment into cleaner options [\u003Ca href=\"#B73-preprints-89235\" class=\"html-bibr\">73\u003C/a>]. The foundation of how allocation is determined under these instruments are based on historical intensity of emission from the targeted sectors. This study may potentially be used as a basis study to determine allocation for the forestry sector, if CPI is implemented in Malaysia.\u003C/div>\n\u003Cdiv class=\"html-p\">Although the study has successfully provided estimates of AGC for the entire Malaysia, there are some limitations that are foreseen to have potentially be addressed in the future. Spatial resolution of Landsat data, which currently offers at 30-m resolution images can affect the accuracy of biomass predictions, particularly in heterogeneous landscapes. Integration with other data sources by combining Landsat data with other remote sensing platforms (e.g., LiDAR, SAR) can improve the accuracy of biomass predictions. Continuous calibration and validation of biomass prediction models are also crucial to ensure their accuracy and reliability and these processes are expected to become a requirement in the future, especially when dealing with carbon projects at a state- or project-level.\u003C/div>\n\u003Cdiv class=\"html-p\">In conclusion, the availability of comprehensive inventory data is instrumental in unveiling the intricate correlation patterns between aboveground carbon levels and the image variables extracted from Landsat data [\u003Ca href=\"#B74-preprints-89235\" class=\"html-bibr\">74\u003C/a>]. This symbiotic relationship between ground-based measurements and remote sensing imagery enables better comprehension of the dynamics of terrestrial carbon sequestration. With a wealth of inventory data at the disposal, more holistic understanding is gained of how various ecological and environmental factors influence aboveground carbon stocks. This knowledge not only enriches our understanding of our planet’s carbon balance but also empowers us to make informed decisions for sustainable land management and climate change mitigation.\u003C/div>\u003C/section>\n \n \u003Csection>\u003Csection id=\"app1-preprints-89235\" type>\u003Ch2 data-nested=\"1\" id=\"preprints-h2-5\"> Supplementary Materials\u003C/h2>\n\u003Cdiv class=\"html-p\">The following supporting information can be downloaded at the website of this paper posted on Preprints.org, Images of AGC over Malaysia at 100-m resolution in MrSID image format.\u003C/div>\u003C/section>\u003C/section>\u003Csection class=\"html-notes\">\u003Ch2 id=\"preprints-h2-6\">Author Contributions\u003C/h2>\n\u003Cdiv class=\"html-p\">Conceptualization and methodology, H.O.; software, M.A.M.; data curation, M.A.M.; writing—original draft preparation, H.O.; writing—review and editing, S.H.; project administration, V.L.; A.A.M.B.; M.N.F.S.; funding acquisition, H.O. All authors have read and agreed to the published version of the manuscript.\u003C/div>\u003C/section>\u003Csection class=\"html-notes\">\u003Ch2 id=\"preprints-h2-7\">Funding\u003C/h2>\n\u003Cdiv class=\"html-p\">This study was funded by the Government of Malaysia through 12\u003Csup>th\u003C/sup> Malaysian Plan.\u003C/div>\u003C/section>\u003Csection id=\"html-ack\" class=\"html-ack\">\u003Ch2 id=\"preprints-h2-8\">Acknowledgments\u003C/h2>\n\u003Cdiv class=\"html-p\">Thanks to: The Ministry of Natural Resources, Environment and Climate Change (NRECC), 10th (2011-2015), 11th (2016 – 2020) and 12th (2021 – 2025) Malaysia Plans, Forest Research Institute Malaysia (FRIM), Mangrove’s Technical, Research and Development Committee (JTRD), Forestry Department Peninsular Malaysia, States Forestry Department, Sabah Forestry Departments, Forest Department of Sarawak, Kumpulan Pengurusan Kayu Kayan Terengganu (KPKKT), Forestry and Forest Products Research Institute of Japan (FFPRI), International Tropical Timber Organization, Thematic Program Reducing Deforestation and Forest Degradation and Enhancing Environmental Services in Tropical Forests (ITTO-REDDES), WWF-Malaysia, and Malaysia Forest Fund (MFF). Thanks also to the USGS (\u003Ca href=\"https://earthexplorer.usgs.gov\" target=\"_blank\">https://earthexplorer.usgs.gov\u003C/a>) that provides free-access Landsat images for this study.\u003C/div>\u003C/section>\u003Csection class=\"html-notes\">\u003Ch2 id=\"preprints-h2-9\">Conflicts of Interest\u003C/h2>\n\u003Cdiv class=\"html-p\">The authors declare no conflict of interest.\u003C/div>\u003C/section>\u003Csection id=\"html-references_list\">\u003Ch2 id=\"preprints-h2-10\">References\u003C/h2>\n\u003Col class=\"html-xx\">\n\u003Cli id=\"B1-preprints-89235\" class=\"html-x\" data-content=\"1.\">Henson, I. E. An Assessment of Changes in Biomass Carbon Stocks in Tree Crops and Forests in Malaysia. \u003Cspan class=\"html-italic\">Journal of Tropical Forest Science\u003C/span> \u003Cb>2005\u003C/b>, 17(2), 279-296.\u003C/li>\n\u003Cli id=\"B2-preprints-89235\" class=\"html-x\" data-content=\"2.\">Moktshim N. Forest management in Malaysia: The strategies undertaken towards achieving Sustainable Development Goals. \u003Cspan class=\"html-italic\">IOP Conf. Ser.: Earth Environ. Sci.\u003C/span> \u003Cb>2020\u003C/b>, 561, 012041. [\u003Ca href=\"https://doi.org/10.1088/1755-1315/561/1/012041\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B3-preprints-89235\" class=\"html-x\" data-content=\"3.\">Ministry of Natural Resources, Environment and Climate Change Malaysia (NRECC). Available online: \u003Ca href=\"https://redd.nrecc.gov.my/malaysia-redd-plus-strategy/\" target=\"_blank\">https://redd.nrecc.gov.my/malaysia-redd-plus-strategy/\u003C/a> (accessed on 21 October 2023).\u003C/li>\n\u003Cli id=\"B4-preprints-89235\" class=\"html-x\" data-content=\"4.\">Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. \u003Cspan class=\"html-italic\">J. Geophys. Res. Biogeosciences\u003C/span>, \u003Cb>2009\u003C/b>, 114, 1–13.\u003C/li>\n\u003Cli id=\"B5-preprints-89235\" class=\"html-x\" data-content=\"5.\">Guillén, F.; Orozco, R.; Santaella, J.A. Measuring Climate Change: The importance of geospatial information with an application to carbon sequestration and storage in the System of Environmental-Economic Accounting — Ecosystem Accounting (SEEA EA) - 9\u003Csup>th\u003C/sup> IMF Statistical Forum, United Nations, Rome (5 February 2021).\u003C/li>\n\u003Cli id=\"B6-preprints-89235\" class=\"html-x\" data-content=\"6.\">U.S. Geological Survey. Landsat—Earth Observation Satellites. In Fact Sheet; U.S. Geological Survey: Reston, VA, USA, 2015; p. 4.\u003C/li>\n\u003Cli id=\"B7-preprints-89235\" class=\"html-x\" data-content=\"7.\">Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. \u003Cspan class=\"html-italic\">Remote Sens. Environ\u003C/span> \u003Cb>2012\u003C/b>, 122, 2–10.\u003C/li>\n\u003Cli id=\"B8-preprints-89235\" class=\"html-x\" data-content=\"8.\">Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. \u003Cspan class=\"html-italic\">Remote Sens\u003C/span> \u003Cb>2020\u003C/b>, 12, 426. [\u003Ca href=\"https://doi.org/10.3390/rs12030426\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B9-preprints-89235\" class=\"html-x\" data-content=\"9.\">Lu, D. The potential and challenge of remote sensing-based biomass estimation, \u003Cspan class=\"html-italic\">Int. J. Remote Sens\u003C/span> \u003Cb>2006\u003C/b>, 27(7), 1297-1328. [\u003Ca href=\"https://doi.org/10.1080/01431160500486732\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B10-preprints-89235\" class=\"html-xx\" data-content=\"10.\">Hamdan, O.; Thirupathi, R.N.; Norsheilla, M.J.C.; Nur Atikah, A.B.; Muhamad Afizzul, M. \u003Cspan class=\"html-italic\">Utilization of Remote Sensing Technology for Carbon Offset Identification in Malaysian Forests\u003C/span>. IntechOpen, 2021. [\u003Ca href=\"https://doi.org/10.5772/intechopen.98952\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B11-preprints-89235\" class=\"html-xx\" data-content=\"11.\">Shao, Z.; Zhang, L. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China. \u003Cspan class=\"html-italic\">Sensors\u003C/span> \u003Cb>2016\u003C/b>, 16, 834. [\u003Ca href=\"https://doi.org/10.3390/s16060834\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B12-preprints-89235\" class=\"html-xx\" data-content=\"12.\">Li, X.; Zhang, M.; Long, J.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. \u003Cspan class=\"html-italic\">Remote Sens\u003C/span> \u003Cb>2021\u003C/b>, 13, 3910. [\u003Ca href=\"https://doi.org/10.3390/rs13193910\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B13-preprints-89235\" class=\"html-xx\" data-content=\"13.\">Puliti, S.; Breidenbach, J.; Schumacher, J.; Hauglin, M.; Klingenberg, T.F.; Astrup, R. Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat, \u003Cspan class=\"html-italic\">Remote Sens Environ\u003C/span> 2021, 265, 112644. [\u003Ca href=\"https://doi.org/10.1016/j.rse.2021.112644\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B14-preprints-89235\" class=\"html-xx\" data-content=\"14.\">Lourenço, P. Biomass Estimation Using Satellite-Based Data, Forest Biomass - From Trees to Energy. IntechOpen, 2021. [\u003Ca href=\"https://doi.org/10.5772/intechopen.93603\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B15-preprints-89235\" class=\"html-xx\" data-content=\"15.\">Giles, M.; FoodyDoreen, S.; BoydDoreen, S.; BoydMark, E. J.; CutlerMark, E. J.; Cutler. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. \u003Cspan class=\"html-italic\">Remote Sens. Environ\u003C/span> \u003Cb>2003\u003C/b>, 85(4), 463-474. [\u003Ca href=\"https://doi.org/10.1016/S0034-4257(03)00039-7\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B16-preprints-89235\" class=\"html-xx\" data-content=\"16.\">Tavasoli, N.; Arefi, H. Comparison of Capability of SAR and Optical Data in Mapping Forest above Ground Biomass Based on Machine Learning. \u003Cspan class=\"html-italic\">Environ. Sci. Proc.\u003C/span> \u003Cb>2021\u003C/b>, 5, 13. [\u003Ca href=\"https://doi.org/10.3390/IECG2020-07916\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B17-preprints-89235\" class=\"html-xx\" data-content=\"17.\">López-Serrano, P.M.; Cárdenas Domínguez, J.L.; Corral-Rivas, J.J.; Jiménez, E.; López-Sánchez, C.A.; Vega-Nieva, D.J. Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests. \u003Cspan class=\"html-italic\">Forests\u003C/span> \u003Cb>2020\u003C/b>, 11, 11. [\u003Ca href=\"https://doi.org/10.3390/f11010011\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B18-preprints-89235\" class=\"html-xx\" data-content=\"18.\">Breiman, L. Random Forest. \u003Cspan class=\"html-italic\">Mach. Learn.\u003C/span> \u003Cb>2001\u003C/b>, 45, 5–32.\u003C/li>\n\u003Cli id=\"B19-preprints-89235\" class=\"html-xx\" data-content=\"19.\">Xiaoli, Z.; Lu, L.; Yanfeng, L.; Yong, W.; Jing, T.; Weiheng, X.; Leiguang, W.; Guanglong, O. Improving the accuracy of forest aboveground biomass using Landsat 8 OLI images by quantile regression neural network for Pinus densata forests in southwestern China. \u003Cspan class=\"html-italic\">Front For Glob Change\u003C/span> \u003Cb>2023\u003C/b>, 6. [\u003Ca href=\"https://doi.org/10.3389/ffgc.2023.1162291\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B20-preprints-89235\" class=\"html-xx\" data-content=\"20.\">Gizachew, B.; Solberg, S.; Næsset, E. et al. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. \u003Cspan class=\"html-italic\">Carbon Balance Manage\u003C/span> \u003Cb>2016\u003C/b>, 11, 13. [\u003Ca href=\"https://doi.org/10.1186/s13021-016-0055-8\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B21-preprints-89235\" class=\"html-xx\" data-content=\"21.\">Shao, Z.; Zhang, L. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China. \u003Cspan class=\"html-italic\">Sensors\u003C/span> \u003Cb>2016\u003C/b>, 16(6), 834. [\u003Ca href=\"https://doi.org/10.3390/s16060834\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B22-preprints-89235\" class=\"html-xx\" data-content=\"22.\">Mette, T.; Papathanassiou, K.P.; Hajnsek, I.; Zimmermann, R. Forest biomass estimation using polarimetric SAR interferometry. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002, 2, 817-819. [\u003Ca href=\"https://doi.org/10.1109/IGARSS.2002.1025695\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B23-preprints-89235\" class=\"html-xx\" data-content=\"23.\">Purohit, S.; Aggarwal, S.P.; Patel, N.R. Estimation of forest aboveground biomass using combination of Landsat 8 and Sentinel-1A data with random forest regression algorithm in Himalayan Foothills. \u003Cspan class=\"html-italic\">Trop Ecol\u003C/span> \u003Cb>2021\u003C/b>, 62, 288–300. [\u003Ca href=\"https://doi.org/10.1007/s42965-021\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B24-preprints-89235\" class=\"html-xx\" data-content=\"24.\">Luo, P.; Ye, H.; Huang, W.; Liao, J.; Jiao, Q.; Guo, A.; Qian, B. Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data. \u003Cspan class=\"html-italic\">Remote Sens\u003C/span> \u003Cb>2022\u003C/b>, 14(21), 5624. [\u003Ca href=\"https://doi.org/10.3390/rs14215624\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B25-preprints-89235\" class=\"html-xx\" data-content=\"25.\">Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. \u003Cspan class=\"html-italic\">J For Res\u003C/span> \u003Cb>2012\u003C/b>, 436537. [\u003Ca href=\"https://doi.org/10.1155/2012/436537\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B26-preprints-89235\" class=\"html-xx\" data-content=\"26.\">Li, Y.; Li, M.; Li, C. et al. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. \u003Cspan class=\"html-italic\">Sci Rep\u003C/span> \u003Cb>2020\u003C/b>, 10, 9952. [\u003Ca href=\"https://doi.org/10.1038/s41598-020-67024-3\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B27-preprints-89235\" class=\"html-xx\" data-content=\"27.\">Ministry of Natural Resources, Environment and Climate Change (NRECC). Available online: \u003Ca href=\"https://www.nrecc.gov.my/ms-my/teras/hutan/Pages/Kawasan-Berhutan-di-Malaysia.aspx\" target=\"_blank\">https://www.nrecc.gov.my/ms-my/teras/hutan/Pages/Kawasan-Berhutan-di-Malaysia.aspx\u003C/a> (accessed on 18 October 2023).\u003C/li>\n\u003Cli id=\"B28-preprints-89235\" class=\"html-xx\" data-content=\"28.\">Michinaka, T. Approximating Forest Resource Dynamics in Peninsular Malaysia Using Parametric and Nonparametric Models, and Its Implications for Establishing Forest Reference (Emission) Levels under REDD+. \u003Cspan class=\"html-italic\">Land\u003C/span> \u003Cb>2018\u003C/b>, 7, 70. [\u003Ca href=\"https://doi.org/10.3390/land7020070\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B29-preprints-89235\" class=\"html-xx\" data-content=\"29.\">Sato, T.; Niiyama, K.; Toriyama, J.; Kiyono, Y. How to Estimate Forest Carbon Stocks? Application to Ground-Based Inventory. In Hamdan, O.; Khali Aziz, H.; Takao, G.; Sato, T.; Mohd Parid, M., Eds., Proceedings Workshop on REDD+ Research Project in Peninsular Malaysia, Forest Research Institute Malaysia, 2013.\u003C/li>\n\u003Cli id=\"B30-preprints-89235\" class=\"html-xx\" data-content=\"30.\">Walker, S.M.; Pearson, T.R.H.; Casarim, F.M.; Harris, N.; Petrova, S.; Grais, A.; Swails, E.; Netzer, M.; Goslee, K.M.; Brown, S. Standard Operating Procedures for Terrestrial Carbon Measurement, Winrock International. 2012.\u003C/li>\n\u003Cli id=\"B31-preprints-89235\" class=\"html-xx\" data-content=\"31.\">IPCC. Guidelines for National Greenhouse Gas Inventories—Volume 4: Agriculture, Land Use and Forestry (GL-AFOLU). Available online: www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_ Forest_Land.pdf (accessed on 15 October 2023).\u003C/li>\n\u003Cli id=\"B32-preprints-89235\" class=\"html-xx\" data-content=\"32.\">Hamdan, O.; Valeria, L.; Muhamad Afizzul, M. Guide to the Development of Forest Resources Inventory of Sabah. In \u003Cspan class=\"html-italic\">FRIM Technical Handbook No\u003C/span>. 52. Forest Research Institute Malaysia. 2021.\u003C/li>\n\u003Cli id=\"B33-preprints-89235\" class=\"html-xx\" data-content=\"33.\">Hamdan, O.; Muhamad Afizzul, M. Manual Kerja Lapangan Survei Karbon Hutan. In \u003Cspan class=\"html-italic\">FRIM Technical Information Handbook\u003C/span> No. 59. Forest Research Institute Malaysia. 2023.\u003C/li>\n\u003Cli id=\"B34-preprints-89235\" class=\"html-xx\" data-content=\"34.\">Dwiyono, A.; Rachman, S. Management and conservation of tropical peat forest of Indonesia. In Proceedings of a Workshop on Integrated Planning and Management of Tropical Lowland Peatlands, Cisarua, Indonesia, (3–8 July 2006).\u003C/li>\n\u003Cli id=\"B35-preprints-89235\" class=\"html-xx\" data-content=\"35.\">Rieley, J.O.; Page, S.E.; Eds. In \u003Cspan class=\"html-italic\">Wise Use Guidelines for Tropical Peatlands\u003C/span>. Wageningen, The Netherlands, Alterra, 2005, 237 p.\u003C/li>\n\u003Cli id=\"B36-preprints-89235\" class=\"html-xx\" data-content=\"36.\">Kauffman, J.B.; Arifanti, V.B.; Basuki, I.; Kurnianto, S.; Novita, N.; Murdiyarso, D.; Donato, D.C.; Warren, M.W. Eds. In \u003Cspan class=\"html-italic\">Protocols for the measurement, monitoring, and reporting of structure, biomass, carbon stocks and greenhouse gas emissions in tropical peat swamp forests\u003C/span>. CIFOR, Bogor, Indonesia 2016, Working Paper 221.\u003C/li>\n\u003Cli id=\"B37-preprints-89235\" class=\"html-xx\" data-content=\"37.\">Mitsch, W.J.; Gosselink, J.G. Eds, \u003Cspan class=\"html-italic\">Wetlands\u003C/span> (Fourth edition). John Wiley and Sons, Inc., New York, USA. 2007, 582p.\u003C/li>\n\u003Cli id=\"B38-preprints-89235\" class=\"html-xx\" data-content=\"38.\">Kauffman, J.B.; Donato, D.C. Eds. In \u003Cspan class=\"html-italic\">Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests\u003C/span>. CIFOR, Bogor, Indonesia. 2012, Working Paper 86.\u003C/li>\n\u003Cli id=\"B39-preprints-89235\" class=\"html-xx\" data-content=\"39.\">Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. \u003Cspan class=\"html-italic\">Glob Change Biol\u003C/span> \u003Cb>2014\u003C/b>, 12629, 14p.\u003C/li>\n\u003Cli id=\"B40-preprints-89235\" class=\"html-xx\" data-content=\"40.\">Reyes, G.; Brown, S.; Chapman, J.; Lugo, A.E. Eds. In \u003Cspan class=\"html-italic\">Wood densities of tropical tree species\u003C/span>. General Technical Report SO-88, New Orleans, Louisiana, 1992.\u003C/li>\n\u003Cli id=\"B41-preprints-89235\" class=\"html-xx\" data-content=\"41.\">Ashton, P. S. Dipterocarpaceae. \u003Cspan class=\"html-italic\">Flora Malesiana\u003C/span> \u003Cb>1982\u003C/b>, 9, 237 - 552.\u003C/li>\n\u003Cli id=\"B42-preprints-89235\" class=\"html-xx\" data-content=\"42.\">Symington, C.F. Foresters’ Manual of Dipterocarps. \u003Cspan class=\"html-italic\">Malayan Forest Records\u003C/span> No.16, Penerbit Universiti Malaya, Kuala Lumpur, 1943, 244 pp.\u003C/li>\n\u003Cli id=\"B43-preprints-89235\" class=\"html-xx\" data-content=\"43.\">Brown, S. Measuring carbon in forests: current status and future challenges. \u003Cspan class=\"html-italic\">Environ. Pollut\u003C/span> \u003Cb>2002\u003C/b>, 116, 363–372.\u003C/li>\n\u003Cli id=\"B44-preprints-89235\" class=\"html-xx\" data-content=\"44.\">Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. \u003Cspan class=\"html-italic\">Trop Ecol\u003C/span> \u003Cb>2002\u003C/b>, 43(1), 39-47.\u003C/li>\n\u003Cli id=\"B45-preprints-89235\" class=\"html-xx\" data-content=\"45.\">Azizi, Z.; Najafi, A.; Sohrabi, H. Forest Canopy Density estimating using satellite images, In \u003Cspan class=\"html-italic\">The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\u003C/span>, 2008, 1127-1130.\u003C/li>\n\u003Cli id=\"B46-preprints-89235\" class=\"html-xx\" data-content=\"46.\">Li, C.; Li, Y.; Li, M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. \u003Cspan class=\"html-italic\">Forests\u003C/span> \u003Cb>2019\u003C/b>, 10, 104.\u003C/li>\n\u003Cli id=\"B47-preprints-89235\" class=\"html-xx\" data-content=\"47.\">Huang, S.; Tang, L., Hupy, J.P.; et al. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. \u003Cspan class=\"html-italic\">J For Res\u003C/span> \u003Cb>2021\u003C/b>, 32, 1–6. [\u003Ca href=\"https://doi.org/10.1007/s11676-020-01155-1\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B48-preprints-89235\" class=\"html-xx\" data-content=\"48.\">Li, C.; Li, M.; Li. Y. Improving estimation of forest aboveground biomass using Landsat 8 imagery by incorporating forest crown density as a dummy variable. \u003Cspan class=\"html-italic\">Can J For Res\u003C/span> \u003Cb>2020\u003C/b>, 50(4), 390-398. [\u003Ca href=\"https://doi.org/10.1139/cjfr-2019-0216\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B49-preprints-89235\" class=\"html-xx\" data-content=\"49.\">Nathalie, P. NDVI from A to Z, The Normalized Difference Vegetation Index (Oxford, 2013; online ed, Oxford Academic, 8 May 2015). [\u003Ca href=\"https://doi.org/10.1093/acprof:osobl/9780199693160.003.0003\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B50-preprints-89235\" class=\"html-xx\" data-content=\"50.\">García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. \u003Cspan class=\"html-italic\">Geocarto Int\u003C/span> \u003Cb>1991\u003C/b>, 6, 31–37.\u003C/li>\n\u003Cli id=\"B51-preprints-89235\" class=\"html-xx\" data-content=\"51.\">Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. \u003Cspan class=\"html-italic\">Remote Sens Environ\u003C/span> \u003Cb>2012\u003C/b>, 118, 83–94.\u003C/li>\n\u003Cli id=\"B52-preprints-89235\" class=\"html-xx\" data-content=\"52.\">Huete, A.R. A soil-adjusted vegetation index (SAVI). \u003Cspan class=\"html-italic\">Remote Sens Environ\u003C/span> 1988, 25, 3, 295-309. [\u003Ca href=\"https://doi.org/10.1016/0034-4257(88)90106-X\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B53-preprints-89235\" class=\"html-xx\" data-content=\"53.\">Liu, J.G.; Mason, P.J. Eds. \u003Cspan class=\"html-italic\">Essential image processing and GIS for remote sensing\u003C/span> (1st Edition). 2009, Wiley Online Library. [\u003Ca href=\"https://doi.org/10.1002/9781118687963\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B54-preprints-89235\" class=\"html-xx\" data-content=\"54.\">Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. \u003Cspan class=\"html-italic\">Int J Remote Sens\u003C/span> \u003Cb>2006\u003C/b>, 27, 14, 3025-3033. [\u003Ca href=\"https://doi.org/10.1080/01431160600589179\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B55-preprints-89235\" class=\"html-xx\" data-content=\"55.\">Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. \u003Cspan class=\"html-italic\">Remote Sens Environ\u003C/span> \u003Cb>2002\u003C/b>, 83, 195-213. [\u003Ca href=\"https://doi.org/10.1016/S0034-4257(02)00096-2\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B56-preprints-89235\" class=\"html-xx\" data-content=\"56.\">Arisanty, D.; Saputra, A.N.; Rahman, A.M.; Hastuti, K.P.; Rosadi, D. The Estimation of Iron Oxide Content in Soil based on Landsat 8 OLI TIRS Imagery in Wetland Areas. \u003Cspan class=\"html-italic\">Pertanika J Sci Technol\u003C/span> \u003Cb>2021\u003C/b>, 29(4), 2829 – 2843. [\u003Ca href=\"https://doi.org/10.47836/pjst.29.4.32\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B57-preprints-89235\" class=\"html-xx\" data-content=\"57.\">Tofallis, C. A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation. \u003Cspan class=\"html-italic\">J Operational Research Society\u003C/span> \u003Cb>2015\u003C/b>, 66(8), 1352-1362.\u003C/li>\n\u003Cli id=\"B58-preprints-89235\" class=\"html-xx\" data-content=\"58.\">Tran, T.V.; Reef, R.; Zhu, X. A Review of Spectral Indices for Mangrove Remote Sensing. \u003Cspan class=\"html-italic\">Remote Sens\u003C/span> \u003Cb>2022\u003C/b>, 14, 4868. [\u003Ca href=\"https://doi.org/10.3390/rs14194868\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B59-preprints-89235\" class=\"html-xx\" data-content=\"59.\">Hamdan, O.; Khairunnisa, M.R.; Ammar, A.A.; Mohd Hasmadi, I.; Khali Aziz, H. Mangrove carbon stock assessment by optical satellite imagery. \u003Cspan class=\"html-italic\">J Trop For Sci\u003C/span> \u003Cb>2013\u003C/b>, 25(4), 554-565.\u003C/li>\n\u003Cli id=\"B60-preprints-89235\" class=\"html-xx\" data-content=\"60.\">Rannestad, M.; Eid, T.; Bollandsås, O.M.; Gobakken, T.; Tetemke, B. Aboveground Biomass Prediction Model Using Landsat 8 Data: A Test on Possible Approaches for Seasonally Dry Forests of Northern Ethiopia. In: El-Askary, H.; Erguler, Z.A.; Karakus, M.; Chaminé, H.I. Eds. Research Developments in Geotechnics, Geo-Informatics and Remote Sensing. Springer, Cham, 2022. [\u003Ca href=\"https://doi.org/10.1007/978-3-030-72896-0_87\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B61-preprints-89235\" class=\"html-xx\" data-content=\"61.\">Kho, L.K.; Jepsen, M.R. Carbon stock of oil palm plantations and tropical forests in Malaysia: A review. \u003Cspan class=\"html-italic\">Singap J Trop Geogr\u003C/span> \u003Cb>2015\u003C/b>, 36, 249–266.\u003C/li>\n\u003Cli id=\"B62-preprints-89235\" class=\"html-xx\" data-content=\"62.\">Hamdan, O.; Khali Aziz, H.; Mohd Hasmadi, I. L-band ALOS PALSAR for biomass estimation of Matang Mangroves, Malaysia. \u003Cspan class=\"html-italic\">Remote Sens Environ\u003C/span> \u003Cb>2014\u003C/b>, 155: 69-78. [\u003Ca href=\"https://doi.org/10.1016/j.rse.2014.04.029\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B63-preprints-89235\" class=\"html-xx\" data-content=\"63.\">Raihan, A.; Begum, R.A.; Mohd Said, M.N.; Pereira, J.J. Assessment of Carbon Stock in Forest Biomass and Emission Reduction Potential in Malaysia. \u003Cspan class=\"html-italic\">Forests\u003C/span> \u003Cb>2021\u003C/b>, 12, 1294. [\u003Ca href=\"https://doi.org/10.3390/f12101294\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B64-preprints-89235\" class=\"html-xx\" data-content=\"64.\">Hamdan, O.; Mohd Hasmadi, I.; Khali Aziz, H., Norizah, K.; Helmi Zulhaidi, M.S. Determining L-Band Saturation Level for Aboveground Biomass Assessment of Dipterocarp Forests in Peninsular Malaysia. \u003Cspan class=\"html-italic\">J Trop For Sci\u003C/span> \u003Cb>2015\u003C/b>, 27(3), 388 – 399.\u003C/li>\n\u003Cli id=\"B65-preprints-89235\" class=\"html-xx\" data-content=\"65.\">Hamdan, O.; Muhamad Afizzul, M.; Abd Rahman, K. Synergetic of PALSAR-2 and Sentinel-1A SAR Polarimetry for Retrieving Aboveground Biomass in Dipterocarp Forest of Malaysia. \u003Cspan class=\"html-italic\">Appl Sci\u003C/span> \u003Cb>2017\u003C/b>, 7, 675. [\u003Ca href=\"https://doi.org/10.3390/app7070675\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B66-preprints-89235\" class=\"html-xx\" data-content=\"66.\">Hamdan, O.; Muhamad Afizzul, M. Time series maps of aboveground biomass in dipterocarps forests of Malaysia from PALSAR and PALSAR-2 polarimetric data. \u003Cspan class=\"html-italic\">Carbon Balance Manag\u003C/span> \u003Cb>2018\u003C/b>, 13, 19.\u003C/li>\n\u003Cli id=\"B67-preprints-89235\" class=\"html-xx\" data-content=\"67.\">Asner, G.P.; Brodrick, G.; Philipson, C.; Nicolas, R.; Roberta, E.M.; Knapp, D.E.; Heckler, J.; Evans, L.J.; Jucker, T.; Goossens, B.; Stark, D.J.; Reynolds, G.; Ong, R.; Renneboog, N.; Kugan, F.; Coomes, D.A. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. \u003Cspan class=\"html-italic\">Biol Cons\u003C/span> \u003Cb>2018\u003C/b>, 217, 289-310. [\u003Ca href=\"https://doi.org/10.1016/j.biocon.2017.10.020\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B68-preprints-89235\" class=\"html-xx\" data-content=\"68.\">Matthew, N.K.; Shuib, A.; Muhammad, I.; Muhd Ekhzarizal, M.E.; Ramachandran, S.; Syamsul Herman, M.A.; Zaiton, S. Carbon Stock and Sequestration Valuation in a Mixed Dipterocarp Forest of Malaysia. \u003Cspan class=\"html-italic\">Sains Malaysiana\u003C/span> 2018, 47(3), 447–455. [\u003Ca href=\"https://doi.org/10.17576/jsm-2018-4703-04\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B69-preprints-89235\" class=\"html-xx\" data-content=\"69.\">Hamdan, O.; Mohd Hasmadi, I.; Khali Aziz, H.; Helmi Zulhaidi, M.A.; Norizah, K. Estimating Biomass in Logged Tropical Forest Using L-Band SAR (PALSAR) Data and GIS. \u003Cspan class=\"html-italic\">Sains Malaysiana\u003C/span> \u003Cb>2015\u003C/b>, 44(8), 1085–1093.\u003C/li>\n\u003Cli id=\"B70-preprints-89235\" class=\"html-xx\" data-content=\"70.\">Roland, J.H.K.; Nik Muhamad, M.; Osumanu, H.A.; Gandaseca, S. Assessment of Carbon Stock in Chronosequence Rehabilitated Tropical Forest Stands in Malaysia. \u003Cspan class=\"html-italic\">J For Environ Sci\u003C/span> \u003Cb>2016\u003C/b>, 32, 3, 302-310. [\u003Ca href=\"https://doi.org/10.7747/JFES.2016.32.3.302\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B71-preprints-89235\" class=\"html-xx\" data-content=\"71.\">Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data. \u003Cspan class=\"html-italic\">Int J Appl Earth Obs Geoinf\u003C/span> \u003Cb>2020\u003C/b>, 84, 101952. [\u003Ca href=\"https://doi.org/10.1016/j.jag.2019.101952\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B72-preprints-89235\" class=\"html-xx\" data-content=\"72.\">Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Landsat Time-Series for Estimating Forest Aboveground Biomass and its Dynamics across Space and Time: A Review. \u003Cspan class=\"html-italic\">Remote Sens\u003C/span> \u003Cb>2020\u003C/b>, 12, 98. [\u003Ca href=\"https://doi.org/10.3390/rs12010098\" class=\"cross-ref\" target=\"_blank\" rel=\"noopener noreferrer\">CrossRef\u003C/a>]\u003C/li>\n\u003Cli id=\"B73-preprints-89235\" class=\"html-xx\" data-content=\"73.\">World Bank. State and Trends of Carbon Pricing 2023. Available online: https://openknowledge.worldbank.org/entities/publication/58f2a409-9bb7-4ee6-899d-be47835c838f. (accessed on 29 October 2023).\u003C/li>\n\u003Cli id=\"B74-preprints-89235\" class=\"html-xx\" data-content=\"74.\">Shobairi, O.; Usoltsev, V.A.; Chasovskikh, V.P.; Mingyang, L.I. Exploring forest aboveground biomass estimation using landsat, forest inventory and analysis data base. \u003Cspan class=\"html-italic\">Clim Chang\u003C/span> \u003Cb>2018\u003C/b>, 4(15), 1-10.\u003C/li>\n\u003C/ol>\u003C/section>\u003Csection id=\"FiguresandTables\" type=\"display-objects\">\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f002\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f002\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png\" alt=\"Preprints 89235 g002\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f002\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 2.\u003C/b>\n Layout of a cluster for inland forest.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f002\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f002\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 2.\u003C/b>\n Layout of a cluster for inland forest.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png\" alt=\"Preprints 89235 g002\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g002.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f003\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f003\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png\" alt=\"Preprints 89235 g003\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f003\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 3.\u003C/b>\n Layout of a sampling plot for inland forest.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f003\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f003\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 3.\u003C/b>\n Layout of a sampling plot for inland forest.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png\" alt=\"Preprints 89235 g003\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g003.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f005\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f005\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png\" alt=\"Preprints 89235 g005\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f005\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 5.\u003C/b>\n Layout of a sampling plot for peat swamp forests.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f005\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f005\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 5.\u003C/b>\n Layout of a sampling plot for peat swamp forests.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png\" alt=\"Preprints 89235 g005\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g005.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f006\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f006\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png\" alt=\"Preprints 89235 g006\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f006\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 6.\u003C/b>\n Layout of a cluster for mangroves.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f006\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f006\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 6.\u003C/b>\n Layout of a cluster for mangroves.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png\" alt=\"Preprints 89235 g006\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g006.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f007\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f007\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png\" alt=\"Preprints 89235 g007\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f007\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 7.\u003C/b>\n Layout of a sampling plot for mangrove forest.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f007\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f007\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 7.\u003C/b>\n Layout of a sampling plot for mangrove forest.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png\" alt=\"Preprints 89235 g007\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g007.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f009\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f009\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png\" alt=\"Preprints 89235 g009\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f009\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 9.\u003C/b>\n Boxplots summarising the sample plots data.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f009\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f009\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 9.\u003C/b>\n Boxplots summarising the sample plots data.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png\" alt=\"Preprints 89235 g009\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g009.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f010\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f010\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png\" alt=\"Preprints 89235 g010\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f010\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 10.\u003C/b>\n Seamless mosaic, cloud-free imageof Landsat over Malaysia of year 2023.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f010\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f010\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 10.\u003C/b>\n Seamless mosaic, cloud-free imageof Landsat over Malaysia of year 2023.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png\" alt=\"Preprints 89235 g010\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g010.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f011\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f011\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png\" alt=\"Preprints 89235 g011\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f011\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 11.\u003C/b>\n Histogram of ACDI distribution over Malaysia.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f011\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f011\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 11.\u003C/b>\n Histogram of ACDI distribution over Malaysia.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png\" alt=\"Preprints 89235 g011\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g011.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f012\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f012\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png\" alt=\"Preprints 89235 g012\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f012\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 12.\u003C/b>\n Map showing spatial distribution of ACDI over Malaysia, derived from the Landsat mosaic images.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f012\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f012\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 12.\u003C/b>\n Map showing spatial distribution of ACDI over Malaysia, derived from the Landsat mosaic images.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png\" alt=\"Preprints 89235 g012\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g012.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f013\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f013\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png\" alt=\"Preprints 89235 g013\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f013\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 13.\u003C/b>\n Scatterplots of correlations between AGC and ACDI for all forest types.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f013\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f013\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 13.\u003C/b>\n Scatterplots of correlations between AGC and ACDI for all forest types.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png\" alt=\"Preprints 89235 g013\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g013.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f014\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f014\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png\" alt=\"Preprints 89235 g014\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f014\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 14.\u003C/b>\n Histogram of AGC distribution over Malaysia.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f014\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f014\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 14.\u003C/b>\n Histogram of AGC distribution over Malaysia.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png\" alt=\"Preprints 89235 g014\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g014.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f015\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f015\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png\" alt=\"Preprints 89235 g015\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f015\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 15.\u003C/b>\n Map showing spatial distribution of AGC over Malaysia for the year 2023.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f015\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f015\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 15.\u003C/b>\n Map showing spatial distribution of AGC over Malaysia for the year 2023.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png\" alt=\"Preprints 89235 g015\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g015.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f016\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f016\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png\" alt=\"Preprints 89235 g016\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f016\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 16.\u003C/b>\n Summary of AGC in dry inland forest within all states in Malaysia.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f016\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f016\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 16.\u003C/b>\n Summary of AGC in dry inland forest within all states in Malaysia.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png\" alt=\"Preprints 89235 g016\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g016.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f017\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f017\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png\" alt=\"Preprints 89235 g017\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f017\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 17.\u003C/b>\n Summary of AGC in mangrove forest within particular states in Malaysia.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f017\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f017\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 17.\u003C/b>\n Summary of AGC in mangrove forest within particular states in Malaysia.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png\" alt=\"Preprints 89235 g017\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g017.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f018\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f018\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png\" alt=\"Preprints 89235 g018\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f018\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 18.\u003C/b>\n Summary of AGC in peat swamp forest within particular states in Malaysia.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f018\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f018\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 18.\u003C/b>\n Summary of AGC in peat swamp forest within particular states in Malaysia.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png\" alt=\"Preprints 89235 g018\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g018.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f019\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f019\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png\" alt=\"Preprints 89235 g019\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f019\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 19.\u003C/b>\n Map showing locations of the selected areas.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f019\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f019\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 19.\u003C/b>\n Map showing locations of the selected areas.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png\" alt=\"Preprints 89235 g019\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g019.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f020\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f020\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png\" alt=\"Preprints 89235 g020\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f020\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 20.\u003C/b>\n Maps showing spatial distribution of AGC over selected dry inland forest landscapes.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f020\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f020\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 20.\u003C/b>\n Maps showing spatial distribution of AGC over selected dry inland forest landscapes.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png\" alt=\"Preprints 89235 g020\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g020.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f021\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f021\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png\" alt=\"Preprints 89235 g021\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f021\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 21.\u003C/b>\n Maps showing spatial distribution of AGC over selected mangrove forest landscapes.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f021\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f021\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 21.\u003C/b>\n Maps showing spatial distribution of AGC over selected mangrove forest landscapes.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png\" alt=\"Preprints 89235 g021\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g021.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f022\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f022\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png\" alt=\"Preprints 89235 g022\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f022\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 22.\u003C/b>\n Maps showing spatial distribution of AGC over selected peat swamp forest landscapes.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f022\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f022\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 22.\u003C/b>\n Maps showing spatial distribution of AGC over selected peat swamp forest landscapes.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png\" alt=\"Preprints 89235 g022\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g022.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig-wrap\" id=\"preprints-89235-f023\">\n \u003Cdiv class=\"html-fig_img\">\n \u003Cdiv class=\"html-figpopup html-figpopup-link\" href=\"#fig_body_display_preprints-89235-f023\">\n \u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png\" alt=\"Preprints 89235 g023\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png\">\n \u003Ca class=\"html-expand html-figpopup\" href=\"#fig_body_display_preprints-89235-f023\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-fig_description\">\n \u003Cb>Figure 23.\u003C/b>\n Validation scatterplots for the assessment of models’ performance.\n\u003C!-- \u003Cp>\u003Ca class=\"html-figpopup\" href=\"#fig_body_display_preprints-89235-f023\">\n Click here to enlarge figure\n \u003C/a>\u003C/p> -->\n\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-fig_show mfp-hide\" id=\"fig_body_display_preprints-89235-f023\">\n \u003Cdiv class=\"html-caption\"> \u003Cb>Figure 23.\u003C/b>\n Validation scatterplots for the assessment of models’ performance.\u003C/div>\n \u003Cdiv class=\"html-img\">\u003Cimg data-large=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png\" data-original=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png\" alt=\"Preprints 89235 g023\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-g023.png\">\u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t001\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t001\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t001\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 1.\u003C/b>\n Summary of the total number of sample plots.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t001\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 1.\u003C/b>\n Summary of the total number of sample plots.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd rowspan=\"2\" align=\"left\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Forest type\u003C/b>\u003C/td>\n\u003Ctd colspan=\"2\" align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>No. of sample plots\u003C/b>\u003C/td>\n\u003Ctd rowspan=\"2\" align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Total\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Data used for modelling\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Data used for validation\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Dry inland forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">2,970\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">350\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">3,320\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Peat swamp forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">1,125\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">75\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">1,200\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Mangrove forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">1,750\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">50\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">1,800\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Total\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>5,845\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>475\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>6,320\u003C/b>\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t002\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t002\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t002\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 2.\u003C/b>\n Summary living trees measurement in a plot in inland forest.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t002\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 2.\u003C/b>\n Summary living trees measurement in a plot in inland forest.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Nest radius (m)\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Size\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Tree size, dbh (cm)\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">2\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">Sapling\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">< 5 cm (& ≥ 1.3 m in height)\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">4\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">Small\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">5 – 14.9 cm\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">12\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">Medium\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">15 – 29.9 cm\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">20\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">Large\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">≥ 30 cm\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t003\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t003\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t003\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 3.\u003C/b>\n Summary living trees measurement in a plot in peat swamp forests.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t003\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 3.\u003C/b>\n Summary living trees measurement in a plot in peat swamp forests.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Nest radius (m)\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Size\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Tree size, dbh (cm)\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">2\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">Sapling\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">< 5 cm (& ≥ 1.3 m in height)\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">4\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">Small - Medium\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">5 – 9.9 cm\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">10\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">Large\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">≥ 10 cm\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t004\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t004\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t004\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 4.\u003C/b>\n Summary living trees measurement in a plot in mangrove forest.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t004\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 4.\u003C/b>\n Summary living trees measurement in a plot in mangrove forest.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Nest radius (m)\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Size\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Tree size, dbh (cm)\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">2\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">Sapling\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">< 5 cm (& ≥ 1.3 m in height)\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">7\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">Small - Large\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">≥ 5 cm\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t005\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t005\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t005\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 5.\u003C/b>\n Image variables that were used to develop ACDI.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t005\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 5.\u003C/b>\n Image variables that were used to develop ACDI.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Image variable\u003C/b>\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Full name\u003C/b>\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Formula\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Reference\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">NDVI\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Normalised Difference Vegetation Index \u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">[(NIR – R)/(NIR + R)]\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">[\u003Ca href=\"#B49-preprints-89235\" class=\"html-bibr\">49\u003C/a>]\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">NBR\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Normalised Burn Ratio\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">[(NIR – SWIR)/(NIR + SWIR)]\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">[\u003Ca href=\"#B50-preprints-89235\" class=\"html-bibr\">50\u003C/a>]\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">SI\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Shadow Index\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">[(1 – B) (1 – G) (1 – R)]\u003Csup>1/3\u003C/sup>\n\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">[\u003Ca href=\"#B51-preprints-89235\" class=\"html-bibr\">51\u003C/a>]\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">SAVI\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Soil-Adjusted Vegetation Index\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">[(NIR – R)/(NIR+R+L)]*[1+L]\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">[\u003Ca href=\"#B52-preprints-89235\" class=\"html-bibr\">52\u003C/a>]\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">IO\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Iron Oxide Index\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">R/B\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">[\u003Ca href=\"#B53-preprints-89235\" class=\"html-bibr\">53\u003C/a>]\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">MNDWI\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Modified Normalised Difference Water Index\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">[(G – SWIR)/(G + SWIR)]\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">[\u003Ca href=\"#B54-preprints-89235\" class=\"html-bibr\">54\u003C/a>]\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-left\">EVI\u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Enhanced Vegetation Index \u003C/td>\n\u003Ctd align=\"left\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-left\">GF× [(NIR – R)/(NIR + C\u003Csub>1\u003C/sub> × R – C\u003Csub>2\u003C/sub> × B + L)\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">[\u003Ca href=\"#B55-preprints-89235\" class=\"html-bibr\">55\u003C/a>]\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\u003Cdiv class=\"html-table_foot html-p\">\n\u003Cdiv class=\"html-p\" style=\"text-indent:0em;\">\u003Cspan class=\"html-fn-content\">\u003Cspan class=\"html-italic\">B = blue wavelength channel, G = green wavelength channel, R = red wavelength channel, NIR = near infrared wavelength channel, SWIR = short wave infrared wavelength channel, GF = Gain Factor, L = the canopy background adjustment that addresses non-linear, differential NIR and red radiant transfer through a canopy. The coefficients adopted are: L=1, C1 = 6, C2 = 7.5, and GF = 2.5.\u003C/span>\u003C/span>\u003C/div>\n\u003Cdiv style=\"clear:both;\">\u003C/div>\n\u003C/div>\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t006\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t006\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t006\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 6.\u003C/b>\n Basic statistics of the sample plots data.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t006\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 6.\u003C/b>\n Basic statistics of the sample plots data.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd rowspan=\"2\" align=\"left\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Forest type\u003C/b>\u003C/td>\n\u003Ctd rowspan=\"2\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>No. of samples (\u003Cspan class=\"html-italic\">n\u003C/span>)\u003C/b>\u003C/td>\n\u003Ctd colspan=\"7\" align=\"center\" valign=\"middle\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>AGC (Mg C ha\u003Csup>-1\u003C/sup>)\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Min\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Lower quartile\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Median\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Mean\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Upper quartile\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Max\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Out-liers\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Inland Forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">2,970\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">0.0\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">56.3\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">92.9\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">115.4\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">158.2\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">310.5\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">554.1\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" class=\"html-align-left\">Peat Swamp Forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">1,125\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">0.0\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">30.2\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">65.1\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">80.3\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">107.7\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">222.9\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" class=\"html-align-center\">525.7\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Mangrove Forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">1,750\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">0.0\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">18.8\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">43.8\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">60.0\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">85.5\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">184.6\u003C/td>\n\u003Ctd align=\"center\" valign=\"middle\" style=\"border-bottom:solid thin\" class=\"html-align-center\">360.3\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t007\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t007\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t007\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 7.\u003C/b>\n Extents of forests in Malaysia produced from image classification (2023).\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t007\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 7.\u003C/b>\n Extents of forests in Malaysia produced from image classification (2023).\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Forest type\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Extent (ha)\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Percentage (%)\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Dry inland forest \u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">16,859,417\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">93.3\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Mangrove forest \u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">547,564\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">3.0\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Peat swamp forest \u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">655,422\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">3.6\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Total\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>18,062,403\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>100.0\u003C/b>\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t008\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t008\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t008\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 8.\u003C/b>\n Basic statistics of ACDI values over Malaysia for the year 2023.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t008\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 8.\u003C/b>\n Basic statistics of ACDI values over Malaysia for the year 2023.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Min\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Max\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Mean\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Median\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Mode\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Std. Dev.\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">0.00\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">198.18\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">25.34\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">22.46\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">19.36\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">14.77\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t009\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t009\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t009\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 9.\u003C/b>\n Summary of AGC estimation models derived from the regression analysis.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t009\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 9.\u003C/b>\n Summary of AGC estimation models derived from the regression analysis.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Forest Type\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Empirical Equation*\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Correlation Coefficient (\u003Cspan class=\"html-italic\">r\u003C/span>\u003Csup>2\u003C/sup>)\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Overall forest types\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">\u003Cspan class=\"html-italic\">AGC = 2.1187*ACDI\u003C/span>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">0.4897\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Dry inland forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">\u003Cspan class=\"html-italic\">AGC = 3.3763*ACDI\u003C/span>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">0.6275\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Peat swamp forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">\u003Cspan class=\"html-italic\">AGC = 2.3133*ACDI\u003C/span>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">0.5787\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Mangrove Forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">\u003Cspan class=\"html-italic\">AGC = 1.0815*ACDI\u003C/span>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">0.6230\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\u003Cdiv class=\"html-table_foot html-p\">\n\u003Cdiv class=\"html-p\" style=\"text-indent:0em;\">\u003Cspan class=\"html-fn-content\">\u003Cspan class=\"html-italic\">*All correlations are significant at p < 0.05.\u003C/span>\u003C/span>\u003C/div>\n\u003Cdiv style=\"clear:both;\">\u003C/div>\n\u003C/div>\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t010\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t010\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t010\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 10.\u003C/b>\n Basic statistics of AGC values (Mg C ha\u003Csup>-1\u003C/sup>) throughout Malaysia for the year 2023.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t010\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 10.\u003C/b>\n Basic statistics of AGC values (Mg C ha\u003Csup>-1\u003C/sup>) throughout Malaysia for the year 2023.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-left\">\u003Cb>Min\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Max\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Mean\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Median\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Mode\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Std. Dev.\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">0.00\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">448.79\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">126.72\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">151.35\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">59.83\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">61.98\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t011\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t011\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t011\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 11.\u003C/b>\n Summary of AGC in all states in Malaysia for the year 2023.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t011\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 11.\u003C/b>\n Summary of AGC in all states in Malaysia for the year 2023.\u003C/div>\n \u003Cdiv class=\"html-table-img\">\u003Cspan class=\"html-graphic\" id=\"preprints-89235-i001\">\u003Cimg alt=\"Preprints 89235 i001\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-i001.png\">\u003C/span>\u003C/div>\n\n\u003Cdiv class=\"html-table_foot html-p\">\n\u003Cdiv class=\"html-p\" style=\"text-indent:0em;\">\u003Cspan class=\"html-fn-content\">\u003Cspan class=\"html-italic\">n.a = Not available, which is not exist in certain states; n.a* = Insufficient information available. Forest plantations in Sabah and Sarawak are included in dry inland forest.\u003C/span>\u003C/span>\u003C/div>\n\u003Cdiv style=\"clear:both;\">\u003C/div>\n\u003C/div>\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t012\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t012\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t012\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 12.\u003C/b>\n Summary of AGC in all states in selected area, representing various conditions and types of forests in Malaysia.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t012\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 12.\u003C/b>\n Summary of AGC in all states in selected area, representing various conditions and types of forests in Malaysia.\u003C/div>\n \u003Cdiv class=\"html-table-img\">\u003Cspan class=\"html-graphic\" id=\"preprints-89235-i002\">\u003Cimg alt=\"Preprints 89235 i002\" src=\"https://www.preprints.org/frontend/picture/ms_xml/manuscript/c42e745e776f9eb35ad4fd3daa812d79/preprints-89235-i002.png\">\u003C/span>\u003C/div>\n\n\n\n\u003C/div>\n\u003Cdiv class=\"html-table-wrap\" id=\"preprints-89235-t013\">\n \u003Cdiv class=\"html-table_wrap_td\">\n \u003Cdiv class=\"html-tablepopup html-tablepopup-link\" href=\"#table_body_display_preprints-89235-t013\">\n \u003Cimg src=\"https://pub.mdpi-res.com/img/table.png\">\n \u003Ca class=\"html-expand html-tablepopup\" href=\"#table_body_display_preprints-89235-t013\">\u003C/a>\n \u003C/div>\n\n \u003C/div>\n \u003Cdiv class=\"html-table_wrap_discription\">\n \u003Cb>Table 13.\u003C/b>\n Accuracies of the AGC predictions.\n \u003C/div>\n\u003C/div>\n\u003Cdiv class=\"html-table_show mfp-hide \" id=\"table_body_display_preprints-89235-t013\">\n \n\n \u003Cdiv class=\"html-caption\">\n\u003Cb>Table 13.\u003C/b>\n Accuracies of the AGC predictions.\u003C/div>\n \u003Ctable>\n \u003Ctbody>\n\u003Ctr>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Forest Type\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\n\u003Cb>RMSE\u003C/b>\u003Cbr>\u003Cb>(±Mg C ha\u003Csup>-1\u003C/sup>)\u003C/b>\n\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\n\u003Cb>SMAPE\u003C/b>\u003Cbr>\u003Cb>(%)\u003C/b>\n\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Absolute accuracy (%)\u003C/b>\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-top:solid thin;border-bottom:solid thin\" class=\"html-align-center\">\u003Cb>Overall performance\u003C/b>\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Dry inland forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">87.54\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">22.66\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">77.34\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Underestimate\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Mangrove Forest \u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">53.15 \u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">22.86\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" class=\"html-align-center\">77.14\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" class=\"html-align-left\">Overestimate\u003C/td>\n\u003C/tr>\n\u003Ctr>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Peat swamp forest\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">22.51\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">15.15\u003C/td>\n\u003Ctd align=\"center\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-center\">84.85\u003C/td>\n\u003Ctd align=\"left\" valign=\"top\" style=\"border-bottom:solid thin\" class=\"html-align-left\">Underestimate\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n \u003C/table>\n\n\n\n\u003C/div>\n\u003C/section>\u003Csection class=\"html-fn_group\">\u003Ctable>\u003Ctr id>\n\u003Ctd>\u003C/td>\n\u003Ctd>\u003Cdiv class=\"html-p\">\n\u003Cb>Disclaimer/Publisher’s Note:\u003C/b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.\u003C/div>\u003C/td>\n\u003C/tr>\u003C/table>\u003C/section>\n \u003Csection id=\"html-copyright\">\u003Cbr>© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (\u003Ca href=\"http://creativecommons.org/licenses/by/4.0/\" target=\"_blank\">http://creativecommons.org/licenses/by/4.0/\u003C/a>).\u003C/section>\n ",[201],{"version":7,"hash_key":127,"id":126,"change":50},"Omar, H.; Misman, M. A.; Linggok, V.; Haron, S.; Bohari, A. A. M.; Haji Sariee, M. N. F. Production of High-Resolution Map of Biomass Carbon over Forests in Malaysia Estimated using Aboveground Carbon Density Indicator (ACDI) and a Collection of 12 Years Inventory Data. \u003Cem>Preprints\u003C/em> \u003Cb>2023\u003C/b>, 2023102060. https://doi.org/10.20944/preprints202310.2060.v1",[],[],{"code":41,"msg":42,"data":206},[207,218,243,259,279,289,317,336,358,374],{"doi":128,"title":130,"url":208,"authors":209,"published_at":216,"journal_name":50,"click_trigger_url_hash":217},"https://doi.org/10.20944/preprints202310.2060.v1",[210,211,212,213,214,215],{"name":150,"email":151},{"name":158,"email":159},{"name":165,"email":166},{"name":170,"email":171},{"name":175,"email":176},{"name":180,"email":181},"2023-10-31","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfhy7-PupNqc8dfzUbPB_kud-VN_FHF26JX2xyl-dvh-9TJibHSbRoiTHPwE5IdVVrA",{"doi":219,"title":220,"url":221,"authors":222,"published_at":241,"journal_name":50,"click_trigger_url_hash":242},"10.20944/preprints202310.0755.v1","Utilizing Innovative Earth Observation Technology for Strategic Degraded Forest Restoration: A Roadmap for Carbon Sequestration and Policy Implementation","https://doi.org/10.20944/preprints202310.0755.v1",[223,226,229,232,235,238],{"name":224,"email":225},"Manjunatha Venkatappa","manju@leetintel.com",{"name":227,"email":228},"Nophea Sasaki","nopheas@ait.ac.th",{"name":230,"email":231},"Stefan Olin","stefan.olin@nateko.lu.se",{"name":233,"email":234},"Soben Kim","kimsoben@gmail.com",{"name":236,"email":237},"Issei Abe","i_abe@koka.ac.jp",{"name":239,"email":240},"Benjamin Smith","ben.smith@westernsydney.edu.au","2023-10-12","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfo5kR0auEZdkg32ZVonQxKEb-hAA2wH4PnVdImMxMZH7bqEzankl5V0V99jJ94CHIQ",{"doi":244,"title":245,"url":246,"authors":247,"published_at":257,"journal_name":50,"click_trigger_url_hash":258},"10.20944/preprints202306.1776.v1","Modeling of the Spatial Distribution of Forest Carbon Storage in a Tropical/Subtropical Island With Multiple Ecozones","https://doi.org/10.20944/preprints202306.1776.v1",[248,251,254],{"name":249,"email":250},"Ting-Wei Chang","twchang@u-shizuoka-ken.ac.jp",{"name":252,"email":253},"Guan-Fu Chen","newman2100@gmail.com",{"name":255,"email":256},"Ken-Hui Chang","ken@airlab.yuntech.edu.tw","2023-06-26","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfrlc_Rxs1_aUAG5lTrjye2OdaQznFim8ZRVMdzYjrttziP1y9xODwF9w1dUaVp1O6A",{"doi":260,"title":261,"url":262,"authors":263,"published_at":277,"journal_name":50,"click_trigger_url_hash":278},"10.20944/preprints202103.0516.v1","Carbon Stock in Sub-National Level Forests in Nepal","https://doi.org/10.20944/preprints202103.0516.v1",[264,267,270,273,276],{"name":265,"email":266},"Bhoj Raj Ghimire","bghimire@nou.edu.np",{"name":268,"email":269},"Bhogendra Mishra","bmishra@sciencehub.org.np",{"name":271,"email":272},"Masahiko Nagai","nagaim@yamaguchi-u.ac.jp",{"name":274,"email":275},"Kitamoto Asanobu","kitamoto@nii.ac.jp",{"name":227,"email":228},"2021-03-22","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfmiKa8CtwIwxvIhP8IL6LXKSVjTxJDmB7HhjgPgV98Q3vB-ZPb9Z7TRn0QjnFYg3CQ",{"doi":280,"title":281,"url":282,"authors":283,"published_at":287,"journal_name":50,"click_trigger_url_hash":288},"10.20944/preprints202403.1434.v1","Valuation Of Carbon Storage in Telaga Warna National Park Indonesia","https://doi.org/10.20944/preprints202403.1434.v1",[284],{"name":285,"email":286},"Esap Mundi Hartono","esap@kemenkeu.go.id","2024-03-25","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfgRwNNfzc6N1OqzpYVB-zY4B17uwA9N_gbHa5VLfLlIz5IAsgWv9QlJbahK-eAUoEg",{"doi":290,"title":291,"url":292,"authors":293,"published_at":315,"journal_name":50,"click_trigger_url_hash":316},"10.20944/preprints202012.0752.v1","Random Forest Algorithm for Mapping Deforestation in the Ituri-Epulu-Aru Landscape (Democratic Republic of Congo)","https://doi.org/10.20944/preprints202012.0752.v1",[294,297,300,303,306,309,312],{"name":295,"email":296},"Joël Masimo Kabuanga","masimo.kabuang@student.unikis.ac.cd",{"name":298,"email":299},"Onésime Mubenga Kankonda","kankonda65@yahoo.fr",{"name":301,"email":302},"Ned Horning","horning@amnh.org",{"name":304,"email":305},"Mehdi Saqalli","mehdi.saqalli@univ-tlse2.fr",{"name":307,"email":308},"Nicolas Maestripieri","nicolas.maestripieri@terranis.fr",{"name":310,"email":311},"Fils Makanzu Imwangana","filsmakanzu@yahoo.fr",{"name":313,"email":314},"Landing Mané","lmane@osfac.net","2020-12-30","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfkEAOBdbfZT4BQRUMF_qGLHG2Ykft53onFgBEIXGg1YdY2MSeiHxZMhw1PYXXZTBeQ",{"doi":318,"title":319,"url":320,"authors":321,"published_at":334,"journal_name":50,"click_trigger_url_hash":335},"10.20944/preprints202401.0621.v1","CO\u003Csub>2\u003C/sub> Capture Capacity Measurement Using Multitemporal Analysis and Biophysical Variables in a Tropical Humid Forest in Colombian Andes","https://doi.org/10.20944/preprints202401.0621.v1",[322,325,328,331],{"name":323,"email":324},"Lina Patricia Vega","lina.vegag@usantoto.edu.co",{"name":326,"email":327},"Diego Felipe Garcia","diego.garciac@usantoto.edu.co",{"name":329,"email":330},"Ronal Sierra-Parada","ronalsierra@usta.edu.co",{"name":332,"email":333},"Ivan Pirazan","ivan.pirazan@usantoto.edu.co","2024-01-08","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPflwbZfgTkD0yvpwjVb3YaoC-xXLeUm0inr9jsmInZTkDXtbtD7cn92tfy42TZyr-YA",{"doi":337,"title":338,"url":339,"authors":340,"published_at":356,"journal_name":50,"click_trigger_url_hash":357},"10.20944/preprints202309.1263.v1","Deforestation Characteristic during a Period 2006 - 2020 over Tropical Forest in Central Kalimantan, Indonesia","https://doi.org/10.20944/preprints202309.1263.v1",[341,344,347,350,353],{"name":342,"email":343},"Hendrik Segah","segah@for.upr.ac.id",{"name":345,"email":346},"Afentina Afentina","afentina@for.upr.ac.id",{"name":348,"email":349},"Fatkhurohman Fatkhurohman","fatkhurohman@gmail.com",{"name":351,"email":352},"Yusuf Aguswan","yusuf.aguswan@for.upr.ac.id",{"name":354,"email":355},"Naru Takayama","naru.takayama@oit.ac.jp","2023-09-19","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfo3owTNX_8dopYhK6v3Y384mB0mF2CkZWhJStVNxH2P9Dh9Ckka2xfvbaML_SU9SVw",{"doi":359,"title":360,"url":361,"authors":362,"published_at":372,"journal_name":50,"click_trigger_url_hash":373},"10.20944/preprints201707.0058.v1","Regional Heat Capacity and Surface Temperature Changes Due to Oil Palm Plantation Development on 1994-2010 Based on Landsat-5 TM Satellite Data","https://doi.org/10.20944/preprints201707.0058.v1",[363,366,369],{"name":364,"email":365},"Idung Risdiyanto","idungris@ipb.ac.id",{"name":367,"email":368},"Winda Aryani","winda.aurorarayani@gmail.com",{"name":370,"email":371},"Odjat Sujatnika","odjat@aksenta.com","2017-07-20","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfkHg-xWEr6mhtjQ-XYQ9QPqX8j4vN3Ki7WH7ZrMVpmoAFlPi-dDe3LUQCDMjbOpAJA",{"doi":375,"title":376,"url":377,"authors":378,"published_at":394,"journal_name":50,"click_trigger_url_hash":395},"10.20944/preprints202212.0158.v2","ReUse: REgressive Unet for Carbon Storage and above Ground Biomass Estimation","https://doi.org/10.20944/preprints202212.0158.v2",[379,382,385,388,391],{"name":380,"email":381},"Antonio Elia Pascarella","antonioelia.pascarella@unina.it",{"name":383,"email":384},"Giovanni Giacco","giovanni.giacco@unina.it",{"name":386,"email":387},"Mattia Rigiroli","mattia.rigiroli@latitudo40.com",{"name":389,"email":390},"Stefano Marrone","stefano.marrone@unina.it",{"name":392,"email":393},"Carlo Sansone","carlo.sansone@unina.it","2023-02-15","6NDYF0rWYbBywNc0fWBhIR_LM-Lo0aEBMAFDd6KOeJaQX28ooemMJIsFhCW0_w0QDBAOPogDoZkeVmCoY2uPfnFOZiJ5qtIaAHmZrFv1pr7cMYu5Dpr0knwhqogo1rOa40yHeVF2ZubiOvmixdoMwQ",["Reactive",397],{"$scookieConsent":398,"$stoast-ui":399,"$ssite-config":401},{"necessary":6,"functional":132,"statistic":132,"marketing":132,"unclassified":132},{"showToast":132,"toastMessage":161,"toastVariant":400},"neutral",{"env":402,"name":403,"url":404},"production","nuxt-app","http://frontend.preprints.org/",["Set"],["ShallowReactive",407],{"6uftXXvGk3":50,"mgOlEjP40X":50,"Ya7hZzqdE7":50,"eeWqPLMDDj":50},"/manuscript/202310.2060/v1",["Reactive",410],{"auth":411,"share-modal":413,"useHeader":414},{"userInfo":412,"isLogin":132},{},{"isShareModalOpen":132,"item":50},{"height":41}]</script> <script>window.__NUXT__={};window.__NUXT__.config={public:{turnstile:{siteKey:"0x4AAAAAAAeRafIKjAzYS6R5"},strapiUrl:"",blog:"https://preprintsblog.wordpress.sciforum.net",envData:{USER:"www-data",SSH_CLIENT:"10.10.0.129 34078 22",npm_config_user_agent:"npm/8.19.2 node/v18.10.0 linux x64 workspaces/false",npm_node_execpath:"/usr/local/node/bin/node",CURRENT_USER:"weijun.yu@mdpi.com",SHLVL:"2",npm_config_noproxy:"",MOTD_SHOWN:"pam",HOME:"/home/www",OLDPWD:"/home/www",npm_package_json:"/var/www/sciprints.net-frontend/package.json",npm_config_userconfig:"/home/www/.npmrc",npm_config_local_prefix:"/var/www/sciprints.net-frontend",COLOR:"0",npm_config_metrics_registry:"https://registry.npmjs.org/",LOGNAME:"www-data",_:"/usr/bin/npm",npm_config_prefix:"/usr/local/node",npm_config_cache:"/home/www/.npm",npm_config_node_gyp:"/usr/local/node/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js",PATH:"/var/www/sciprints.net-frontend/node_modules/.bin:/var/www/node_modules/.bin:/var/node_modules/.bin:/node_modules/.bin:/usr/local/node/lib/node_modules/npm/node_modules/@npmcli/run-script/lib/node-gyp-bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin",NODE:"/usr/local/node/bin/node",npm_package_name:"nuxt-app",LANG:"en_US.UTF-8",PACFILE:".pac/config-prod.sh",npm_lifecycle_script:"nuxt build --logLevel=silent",SHELL:"/bin/bash",npm_lifecycle_event:"build",npm_config_globalconfig:"/usr/local/node/etc/npmrc",npm_config_init_module:"/home/www/.npm-init.js",PWD:"/var/www/sciprints.net-frontend",npm_execpath:"/usr/local/node/lib/node_modules/npm/bin/npm-cli.js",SSH_CONNECTION:"10.10.0.129 34078 10.1.0.124 22",npm_config_global_prefix:"/usr/local/node",npm_command:"run-script",INIT_CWD:"/var/www/sciprints.net-frontend",EDITOR:"vi",NODE_ENV:"production",NUXT_USING_SSR:"true",NUXT_APP_URL:"https://www.preprints.org",NUXT_LOGIN_URL:"/login",NUXT_IDP_URL:"https://login.mdpi.com",NUXT_FIREBASE_API_KEY:"AIzaSyAyKu1mWkkTnfv7HtCQcptOymDZ1w4Jzy0",NUXT_FIREBASE_AUTH_DOMAIN:"preprints-b6f4b.firebaseapp.com",NUXT_FIREBASE_PROJECT_ID:"preprints-b6f4b",NUXT_FIREBASE_STORAGE_BUCKET:"preprints-b6f4b.appspot.com",NUXT_FIREBASE_MESSAGING_SENDER_ID:"369406057228",NUXT_FIREBASE_APP_ID:"1:369406057228:web:4be3e02b94bc45be260729",NUXT_PUBLIC_TURNSTILE_SITE_KEY:"0x4AAAAAAAeRafIKjAzYS6R5",NUXT_PUBLIC_BLOG:"https://preprintsblog.wordpress.sciforum.net",NUXT_BLOG_USER:"lloyd.shu@mdpi.com",NUXT_BLOG_TOKEN:"B0K6 kfJs bPsY gVWZ ELn2 J6yw",NUXT_PUBLIC_SENTRY_DSN:"https://4594052328229da018023f50bcd17eb8@o4506621248798720.ingest.us.sentry.io/4508131538960384",NUXT_PUBLIC_SENTRY_ENVIRONMENT:"production"},gtm:{devtools:true,id:"GTM-NX2CT4D"},sentry:{dsn:"https://4594052328229da018023f50bcd17eb8@o4506621248798720.ingest.us.sentry.io/4508131538960384",environment:"production"},nuxtHighcharts:{pluginOptions:{},hcMods:["accessibility","annotations-advanced","annotations","arc-diagram","arrow-symbols","boost-canvas","boost","broken-axis","bullet","coloraxis","current-date-indicator","cylinder","data-tools","data","datagrouping","debugger","dependency-wheel","dotplot","drag-panes","draggable-points","drilldown","dumbbell","export-data","exporting","flowmap","full-screen","funnel","funnel3d","gantt","geoheatmap","grid-axis","heatmap","heikinashi","histogram-bellcurve","hollowcandlestick","item-series","lollipop","map","marker-clusters","mouse-wheel-zoom","navigator","networkgraph","no-data-to-display","offline-exporting","organization","overlapping-datalabels","parallel-coordinates","pareto","pathfinder","pattern-fill","pictorial","price-indicator","pyramid3d","sankey","series-label","series-on-point","solid-gauge","sonification","static-scale","stock-tools","stock","streamgraph","sunburst","tiledwebmap","tilemap","timeline","treegraph","treegrid","treemap","variable-pie","variwide","vector","venn","windbarb","wordcloud","xrange"]},cookieConsent:{consentMode:true,consentModeDefaults:true,provider:"cookiebot",init:true,dev:false,scripts:{necessary:[],functional:[],statistic:[],marketing:[],unclassified:[]},cbid:"6b5b25c6-89f0-4619-834a-8af9d1157dc1"},strapi:{url:"http://localhost:1337",prefix:"/api",admin:"/admin",version:"v4",cookie:{},auth:{},cookieName:"strapi_jwt",devtools:false}},app:{baseURL:"/",buildId:"610a75b3-72dd-4331-9fbf-1adb0ea5c45f",buildAssetsDir:"/_nuxt/",cdnURL:""}}</script></body></html>