CINXE.COM

Search results for: spark ignition engine

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spark ignition engine</title> <meta name="description" content="Search results for: spark ignition engine"> <meta name="keywords" content="spark ignition engine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spark ignition engine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spark ignition engine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 964</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spark ignition engine</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> Numerical Analysis of Heat Transfer in Water Channels of the Opposed-Piston Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Bialy">Michal Bialy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Szlachetka"> Marcin Szlachetka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Paszko"> Mateusz Paszko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the CFD results of heat transfer in water channels in the engine body. The research engine was a newly designed Diesel combustion engine. The engine has three cylinders with three pairs of opposed pistons inside. The engine will be able to generate 100 kW mechanical power at a crankshaft speed of 3,800-4,000 rpm. The water channels are in the engine body along the axis of the three cylinders. These channels are around the three combustion chambers. The water channels transfer combustion heat that occurs the cylinders to the external radiator. This CFD research was based on the ANSYS Fluent software and aimed to optimize the geometry of the water channels. These channels should have a maximum flow of heat from the combustion chamber or the external radiator. Based on the parallel simulation research, the boundary and initial conditions enabled us to specify average values of key parameters for our numerical analysis. Our simulation used the average momentum equations and turbulence model k-epsilon double equation. There was also used a real k-epsilon model with a function of a standard wall. The turbulence intensity factor was 10%. The working fluid mass flow rate was calculated for a single typical value, specified in line with the research into the flow rate of automotive engine cooling pumps used in engines of similar power. The research uses a series of geometric models which differ, for instance, in the shape of the cross-section of the channel along the axis of the cylinder. The results are presented as colourful distribution maps of temperature, speed fields and heat flow through the cylinder walls. Due to limitations of space, our paper presents the results on the most representative geometric model only. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansys%20fluent" title="Ansys fluent">Ansys fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20engine" title=" combustion engine"> combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20CFD" title=" computational fluid dynamics CFD"> computational fluid dynamics CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20system" title=" cooling system"> cooling system</a> </p> <a href="https://publications.waset.org/abstracts/81466/numerical-analysis-of-heat-transfer-in-water-channels-of-the-opposed-piston-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> Stabilization of Spent Engine Oil Contaminated Lateritic Soil Admixed with Cement Kiln Dust for Use as Road Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Rotimi%20Oluremi">Johnson Rotimi Oluremi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adedayo%20Adegbola"> A. Adedayo Adegbola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Samson%20Adediran"> A. Samson Adediran</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Solomon%20Oladapo"> O. Solomon Oladapo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spent engine oil contains heavy metals and polycyclic aromatic hydrocarbons which contribute to chronic health hazards, poor soil aeration, immobilisation of nutrients and lowering of pH in soil. It affects geotechnical properties of lateritic soil thereby constituting geotechnical and foundation problems. This study is therefore based on the stabilization of spent engine oil (SEO) contaminated lateritic soil using cement kiln dust (CKD) as a mean of restoring it to its pristine state. Geotechnical tests which include sieve analysis, atterberg limit, compaction, California bearing ratio and unconfined compressive strength tests were carried out on the natural, SEO contaminated and CKD stabilized SEO contaminated lateritic soil samples. The natural soil classified as A-2-7 (2) by AASHTO classification and GC according to the Unified Soil Classification System changed to A-4 non-plastic soil due to SEO contaminated even under the influence of CKD it remained unchanged. However, the maximum dry density (MDD) of the SEO contaminated soil increased while the optimum moisture content (OMC) behaved vice versa with the increase in the percentages of CKD. Similarly, the bearing strength of the stabilized SEO contaminated soil measured by California Bearing Ratio (CBR) increased with percentage increment in CKD. In conclusion, spent engine oil has a detrimental effect on the geotechnical properties of the lateritic soil sample but which can be remediated using 10% CKD as a stand alone admixture in stabilizing spent engine oil contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20engine%20oil" title="spent engine oil">spent engine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lateritic%20soil" title=" lateritic soil"> lateritic soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20kiln%20dust" title=" cement kiln dust"> cement kiln dust</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/71051/stabilization-of-spent-engine-oil-contaminated-lateritic-soil-admixed-with-cement-kiln-dust-for-use-as-road-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Mathematical Analysis of Variation in Inlet Shock Wave Angle on Specific Impulse of Scramjet Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Ghadage">Shrikant Ghadage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of shock waves generated in the Scramjet engine is typically restricted to pressure, temperature, density, entropy and Mach number variation across the shock wave. The present work discusses the impact of inlet shock wave angles on the specific impulse of the Scramjet engine. A mathematical analysis has done for the isentropic hypersonic flow of air flowing through a Scramjet with hydrogen fuel at an altitude of 30 km. Analysis has been done in order to get optimum shock wave angle to achieve maximum impulse. Since external drag has excluded from the analysis, the losses due to friction are not considered for the present analysis. When Mach number of the airflow at the entry of the nozzle reaches unity, then that flow is choked. This condition puts limitations on increasing the inlet shock wave angle. As inlet shock wave angle increases, speed of the flow entering into the nozzle decreases, which results in an increase in the specific impulse of the engine. When the speed of the flow at the entry of the nozzle reduces below sonic speed, then there is no further increase in the specific impulse of the engine. Here the Conclusion is the thrust and specific impulse of a scramjet engine, which increases gradually with an increase in inlet shock wave angle up to the condition when airflow speed reaches sonic velocity at the exit of the combustor. In addition to that, variation in drag force at the inlet of the scramjet and variation in hypersonic flow conditions at every stage of the scramjet also studied in order to understand variation on flow characteristics with respect to flow deflection angle. Essentially, it helps in designing inlet profile for the Scramjet engine to achieve optimum specific impulse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypersonic%20flow" title="hypersonic flow">hypersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=scramjet" title=" scramjet"> scramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20waves" title=" shock waves"> shock waves</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20impulse" title=" specific impulse"> specific impulse</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20analysis" title=" mathematical analysis"> mathematical analysis</a> </p> <a href="https://publications.waset.org/abstracts/104058/mathematical-analysis-of-variation-in-inlet-shock-wave-angle-on-specific-impulse-of-scramjet-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> Numerical Approach to Boost an Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20El%20Hameur">Mohamed Amine El Hameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyes%20Tarabet"> Lyes Tarabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoudh%20Cerdoun"> Mahfoudh Cerdoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Boubkr%20Zebiri"> Boubkr Zebiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Ferrara"> Giovanni Ferrara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the drastic environmental and energy regulations regarding the reduction of exhaust emissions and fuel consumption, added to the increasing demand for powerful performance, several automotive manufacturers are constantly obliged to redesign their existing products and/or develop novel powertrain techniques to respond to the aforementioned restrictions. In this aspect, an implemented approach is proposed in the present work to boost a 1.5 L, three-cylinder Diesel engine with a new turbocharger, based on 1D preliminary design codes, 3D design, and numerical assessment of a suitable radial turbine followed by an accurate selection procedure of an adequate centrifugal compressor. Furthermore, to investigate the effect of the turbine’s rotor position on the simulation convergence, stability, and calculation time; two combinations (rotor blade- volute) have been assessed. Consequently, significant results are obtained when comparing the original turbocharged engine and the new one at the engine’s full load and rated speed (@4500rpm) conditions. A maximum improvement in terms of brake-specific fuel consumption, thermal efficiency, total-to-static turbine efficiency, and total-to-total compressor efficiency equal 6.5% (corresponding to a decrease of 2.3 litre/hr in fuel consumption), 7%, 10.9%, and 19.9%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20investigation" title="CFD investigation">CFD investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20boosting" title=" engine boosting"> engine boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20design" title=" turbine design"> turbine design</a>, <a href="https://publications.waset.org/abstracts/search?q=turbocharger" title=" turbocharger"> turbocharger</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20blade%20positioning" title=" rotor blade positioning"> rotor blade positioning</a> </p> <a href="https://publications.waset.org/abstracts/158211/numerical-approach-to-boost-an-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> Dynamic Determination of Spare Engine Requirements for Air Fighters Integrating Feedback of Operational Information </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tae%20Bo%20Jeon">Tae Bo Jeon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Korean air force is undertaking a big project to replace prevailing hundreds of old air fighters such as F-4, F-5, KF-16 etc. The task is to develop and produce domestic fighters equipped with 2 complete-type engines each. A large number of engines, however, will be purchased as products from a foreign engine maker. In addition to the fighters themselves, secure the proper number of spare engines serves a significant role in maintaining combat readiness and effectively managing the national defense budget due to high cost. In this paper, we presented a model dynamically updating spare engine requirements. Currently, the military administration purchases all the fighters, engines, and spare engines at acquisition stage and does not have additional procurement processes during the life cycle, 30-40 years. With the assumption that procurement procedure during the operational stage is established, our model starts from the initial estimate of spare engine requirements based on limited information. The model then performs military missions and repair/maintenance works when necessary. During operation, detailed field information - aircraft repair and test, engine repair, planned maintenance, administration time, transportation pipeline between base, field, and depot etc., - should be considered for actual engine requirements. At the end of each year, the performance measure is recorded and proceeds to next year when it shows higher the threshold set. Otherwise, additional engine(s) will be bought and added to the current system. We repeat the process for the life cycle period and compare the results. The proposed model is seen to generate far better results appropriately adding spare engines thus avoiding possible undesirable situations. Our model may well be applied to future air force military operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DMSMS" title="DMSMS">DMSMS</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20availability" title=" operational availability"> operational availability</a>, <a href="https://publications.waset.org/abstracts/search?q=METRIC" title=" METRIC"> METRIC</a>, <a href="https://publications.waset.org/abstracts/search?q=PRS" title=" PRS "> PRS </a> </p> <a href="https://publications.waset.org/abstracts/90277/dynamic-determination-of-spare-engine-requirements-for-air-fighters-integrating-feedback-of-operational-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Shahzad">H. K. Shahzad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hussein"> M. A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Patel"> F. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Al-Aqeeli"> N. Al-Aqeeli</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Laoui"> T. Laoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20removal" title="heavy metal removal">heavy metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20membrane" title=" inorganic membrane"> inorganic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a> </p> <a href="https://publications.waset.org/abstracts/69249/porous-alumina-carbon-nanotubes-nanocomposite-membranes-processed-via-spark-plasma-sintering-for-heavy-metal-removal-from-contaminated-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hisham%20Elmouazen">Hisham Elmouazen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaobing%20Zhang"> Xiaobing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20CFD" title="computational fluid dynamics CFD">computational fluid dynamics CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative-cooled%20system" title=" regenerative-cooled system"> regenerative-cooled system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=V-rib%20cross-sections" title=" V-rib cross-sections"> V-rib cross-sections</a> </p> <a href="https://publications.waset.org/abstracts/163876/numerical-analysis-of-various-v-rib-cross-section-to-optimize-thermal-performance-of-the-rocket-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Experimental Study of an Isobaric Expansion Heat Engine with Hydraulic Power Output for Conversion of Low-Grade-Heat to Electricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxim%20Glushenkov">Maxim Glushenkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Kronberg"> Alexander Kronberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isobaric expansion (IE) process is an alternative to conventional gas/vapor expansion accompanied by a pressure decrease typical of all state-of-the-art heat engines. The elimination of the expansion stage accompanied by useful work means that the most critical and expensive parts of ORC systems (turbine, screw expander, etc.) are also eliminated. In many cases, IE heat engines can be more efficient than conventional expansion machines. In addition, IE machines have a very simple, reliable, and inexpensive design. They can also perform all the known operations of existing heat engines and provide usable energy in a very convenient hydraulic or pneumatic form. This paper reports measurement made with the engine operating as a heat-to-shaft-power or electricity converter and a comparison of the experimental results to a thermodynamic model. Experiments were carried out at heat source temperature in the range 30–85 °C and heat sink temperature around 20 °C; refrigerant R134a was used as the engine working fluid. The pressure difference generated by the engine varied from 2.5 bar at the heat source temperature 40 °C to 23 bar at the heat source temperature 85 °C. Using a differential piston, the generated pressure was quadrupled to pump hydraulic oil through a hydraulic motor that generates shaft power and is connected to an alternator. At the frequency of about 0.5 Hz, the engine operates with useful powers up to 1 kW and an oil pumping flowrate of 7 L/min. Depending on the temperature of the heat source, the obtained efficiency was 3.5 – 6 %. This efficiency looks very high, considering such a low temperature difference (10 – 65 °C) and low power (< 1 kW). The engine’s observed performance is in good agreement with the predictions of the model. The results are very promising, showing that the engine is a simple and low-cost alternative to ORC plants and other known energy conversion systems, especially at low temperatures (< 100 °C) and low power range (< 500 kW) where other known technologies are not economic. Thus low-grade solar, geothermal energy, biomass combustion, and waste heat with a temperature above 30 °C can be involved into various energy conversion processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isobaric%20expansion" title="isobaric expansion">isobaric expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=low-grade%20heat" title=" low-grade heat"> low-grade heat</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20engine" title=" heat engine"> heat engine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/140169/experimental-study-of-an-isobaric-expansion-heat-engine-with-hydraulic-power-output-for-conversion-of-low-grade-heat-to-electricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Misoc">Florian Misoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Okhio"> Cyril Okhio</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Tolbert"> Joshua Tolbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Carlin"> Nick Carlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ramey"> Thomas Ramey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine" title="stirling engine">stirling engine</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-thermal" title=" solar-thermal"> solar-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20inverter" title=" power inverter"> power inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=alternator" title=" alternator"> alternator</a> </p> <a href="https://publications.waset.org/abstracts/84756/solar-thermal-electric-stirling-engine-powered-system-for-residential-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Influence of Sintering Temperature on Microhardness and Tribological Properties of Equi-Atomic Ti-Al-Mo-Si-W Multicomponent Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20L.%20Kanyane">Rudolf L. Kanyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolaus%20Malatji"> Nicolaus Malatji</a>, <a href="https://publications.waset.org/abstracts/search?q=Patritia%20A.%20Popoola"> Patritia A. Popoola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tribological failure of materials during application can lead to catastrophic events which also carry economic penalties. High entropy alloys (HEAs) have shown outstanding tribological properties in applications such as mechanical parts were moving parts under high friction are required. This work aims to investigate the effect of sintering temperature on microhardness properties and tribological properties of novel equiatomic TiAlMoSiW HEAs fabricated via spark plasma sintering. The effect of Spark plasma sintering temperature on morphological evolution and phase formation was also investigated. The microstructure and the phases formed for the developed HEAs were examined using scanning electron microscopy (SEM) and X-ray diffractometry (XRD) respectively. The microhardness and tribological properties were studied using a diamond base microhardness tester Rtec tribometer. The developed HEAs showed improved mechanical properties as the sintering temperature increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sintering" title="sintering">sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloy" title=" high entropy alloy"> high entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/103173/influence-of-sintering-temperature-on-microhardness-and-tribological-properties-of-equi-atomic-ti-al-mo-si-w-multicomponent-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Numerical Analysis of Catalytic Combustion in a Tabular Reactor with Methane and Air Mixtures over Platinum Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promote desired chemical reactions. The objective of this work is to design and simulate a catalytic combustor by using CHEMKIN with detailed gas and surface chemistries. The simplified approach with single catalyst channel using plug flow reactor (PFR) can be used to predict reasonably well with the effect of various operating parameters such as the inlet temperature, velocity and fuel/air ratios. The numerical results are validated by comparing the surface chemistries in single channel catalytic combustor. The catalytic combustor operates at much lower temperature than the conventional combustor since lean-fuel mixture is used where the complete methane conversion is achieved. The coupling between gas and surface reactions in the catalyst bed is studied by investigating the commencement of flame ignition with respect to the surface site species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20combustion" title="catalytic combustion">catalytic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20monolith" title=" honeycomb monolith"> honeycomb monolith</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow%20reactor" title=" plug flow reactor"> plug flow reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20reactions" title=" surface reactions"> surface reactions</a> </p> <a href="https://publications.waset.org/abstracts/56232/numerical-analysis-of-catalytic-combustion-in-a-tabular-reactor-with-methane-and-air-mixtures-over-platinum-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> MCERTL: Mutation-Based Correction Engine for Register-Transfer Level Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Salah">Khaled Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present MCERTL (mutation-based correction engine for RTL designs) as an automatic error correction technique based on mutation analysis. A mutation-based correction methodology is proposed to automatically fix the erroneous RTL designs. The proposed strategy combines the processes of mutation and assertion-based localization. The erroneous statements are mutated to produce possible fixes for the failed RTL code. A concurrent mutation engine is proposed to mitigate the computational cost of running sequential mutants operators. The proposed methodology is evaluated against some benchmarks. The experimental results demonstrate that our proposed method enables us to automatically locate and correct multiple bugs at reasonable time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bug%20localization" title="bug localization">bug localization</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20correction" title=" error correction"> error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=mutants" title=" mutants"> mutants</a> </p> <a href="https://publications.waset.org/abstracts/80068/mcertl-mutation-based-correction-engine-for-register-transfer-level-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> Multi-Objective Optimization for Aircraft Fleet Management: A Parametric Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin-Yu%20Li">Xin-Yu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dung-Ying%20Lin"> Dung-Ying Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fleet availability is a crucial indicator for an aircraft fleet. However, in practice, fleet planning involves many resource and safety constraints, such as annual and monthly flight training targets and maximum engine usage limits. Due to safety considerations, engines must be removed for mandatory maintenance and replacement of key components. This situation is known as the "threshold." The annual number of thresholds is a key factor in maintaining fleet availability. However, the traditional method heavily relies on experience and manual planning, which may result in ineffective engine usage and affect the flight missions. This study aims to address the challenges of fleet planning and availability maintenance in aircraft fleets with resource and safety constraints. The goal is to effectively optimize engine usage and maintenance tasks. This study has four objectives: minimizing the number of engine thresholds, minimizing the monthly lack of flight hours, minimizing the monthly excess of flight hours, and minimizing engine disassembly frequency. To solve the resulting formulation, this study uses parametric programming techniques and ϵ-constraint method to reformulate multi-objective problems into single-objective problems, efficiently generating Pareto fronts. This method is advantageous when handling multiple conflicting objectives. It allows for an effective trade-off between these competing objectives. Empirical results and managerial insights will be provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20fleet" title="aircraft fleet">aircraft fleet</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20utilization%20planning" title=" engine utilization planning"> engine utilization planning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20method" title=" parametric method"> parametric method</a>, <a href="https://publications.waset.org/abstracts/search?q=Pareto%20optimality" title=" Pareto optimality"> Pareto optimality</a> </p> <a href="https://publications.waset.org/abstracts/192037/multi-objective-optimization-for-aircraft-fleet-management-a-parametric-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Study and Evaluation of Occupational Health and Safety in Power Plant in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saira%20Iqbal">Saira Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Occupational Health and Safety issues nowadays have become an important esteem in the context of Industrial Production. This study is designed to measure the workplace hazards at Kohinoor Energy Limited. Mainly focused hazards were Heat Stress, Noise Level, Light Level and Ergonomics. Measurements for parameters like Wet, Dry, Globe, WBGTi and RH% were taken directly by visiting the Study Area. The temperature in Degrees was recoded at Control Room and Engine Hall. Highest Temperature was recoded in Engine Hall which was about 380C. Efforts were made to record emissions of Noise Levels from the main area of concern like Engines in Engine hall, parking area, and mechanical workshop. Permissible level for measuring Noise is 85 and its Unit of Measurement is dB (A). In Engine Hall Noise was very high which was about 109.6 dB (A) and that level was exceeding the limits. Illumination Level was also recorded at different areas of Power Plant. The light level was though under permissible limits but in some areas like Engine Hall and Boiler Room, level of light was very low especially in Engine Hall where the level was 29 lx. Practices were performed for measuring hazards in context of ergonomics like extended reaching, deviated body postures, mechanical stress, and vibration exposures of the worker at different units of plants by just observing workers during working hours. Since KEL is ISO 8000 and 14000 certified, the researcher found no serious problems in the parameter Ergonomics however it was a common scenario that workers were reluctant to apply PPEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=workplace%20hazards" title="workplace hazards">workplace hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20hazard" title=" heat hazard"> heat hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20hazard" title=" noise hazard"> noise hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination" title=" illumination"> illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title=" ergonomics"> ergonomics</a> </p> <a href="https://publications.waset.org/abstracts/45671/study-and-evaluation-of-occupational-health-and-safety-in-power-plant-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cherry%20Dhiman">Cherry Dhiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayushi%20Paliwal"> Ayushi Paliwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Shahid%20Khan"> Mohd. Shahid Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Reddy"> M. N. Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Gupta"> Vinay Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Tomar"> Monika Tomar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title="surface plasmon resonance">surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-induced%20breakdown%20spectroscopy" title=" laser-induced breakdown spectroscopy"> laser-induced breakdown spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ICCD%20spectrometer" title=" ICCD spectrometer"> ICCD spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20oil" title=" engine oil"> engine oil</a> </p> <a href="https://publications.waset.org/abstracts/91914/detailed-sensitive-detection-of-impurities-in-waste-engine-oils-using-laser-induced-breakdown-spectroscopy-rotating-disk-electrode-optical-emission-spectroscopy-and-surface-plasmon-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Software Verification of Systematic Resampling for Optimization of Particle Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osiris%20Terry">Osiris Terry</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Hopkinson"> Kenneth Hopkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Humphrey"> Laura Humphrey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systematic resampling is the most popularly used resampling method in particle filters. This paper seeks to further the understanding of systematic resampling by defining a formula made up of variables from the sampling equation and the particle weights. The formula is then verified via SPARK, a software verification language. The verified systematic resampling formula states that the minimum/maximum number of possible samples taken of a particle is equal to the floor/ceiling value of particle weight divided by the sampling interval, respectively. This allows for the creation of a randomness spectrum that each resampling method can fall within. Methods on the lower end, e.g., systematic resampling, have less randomness and, thus, are quicker to reach an estimate. Although lower randomness allows for error by having a larger bias towards the size of the weight, having this bias creates vulnerabilities to the noise in the environment, e.g., jamming. Conclusively, this is the first step in characterizing each resampling method. This will allow target-tracking engineers to pick the best resampling method for their environment instead of choosing the most popularly used one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPARK" title="SPARK">SPARK</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20verification" title=" software verification"> software verification</a>, <a href="https://publications.waset.org/abstracts/search?q=resampling" title=" resampling"> resampling</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20resampling" title=" systematic resampling"> systematic resampling</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking"> tracking</a> </p> <a href="https://publications.waset.org/abstracts/175173/software-verification-of-systematic-resampling-for-optimization-of-particle-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Preliminary Design of an Aerodynamic Protection for the Scramjet Engine Inlet of the Brazilian Technological Demonstrator Scramjet 14-X S</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20J.%20Costa">Gustavo J. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20J.%20Costa"> Felipe J. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20L.%20%20Coelho"> Bruno L. Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20L.%20Cardoso"> Ronaldo L. Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20O.%20Santos"> Rafael O. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Israel%20S.%20R%C3%AAgo"> Israel S. Rêgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20S.%20Minucci"> Marco A. S. Minucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20C.%20%20Oliveira"> Antonio C. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20G.%20P.%20Toro"> Paulo G. P. Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Prof. Henry T. Nagamatsu Aerothermodynamics and Hipersonics Laboratory, of the Institute for Advanced Studies (IEAv) conducts research and development (R&D) of the Technological Demonstrator scramjet 14-X S, aiming atmospheric flight at 30 km altitude with the speed correspondent to Mach number 7, using scramjet technology providing hypersonic propulsion system based on supersonic combustion. Hypersonic aerospace vehicles with air-breathing supersonic propulsion system face extremal environments for super/hypersonic flights in terms of thermal and aerodynamic loads. Thus, it is necessary to use aerodynamic protection at the scramjet engine inlet to face the thermal and aerodynamic loads without compromising the efficiency of scramjet engine, taking into account: i) inlet design (boundary layer, oblique shockwave and reflected oblique shockwave); ii) wall temperature of the cowl and of the compression ramp; iii) supersonic flow into the combustion chamber. The aerodynamic protection of the scramjet engine inlet will act to prevent the engine unstart and match the predictions made by theoretical-analytical, numerical analysis and experimental research, during the atmospheric flight of the Technological Demonstrator scramjet 14-X S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=14-X" title="14-X">14-X</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic" title=" hypersonic"> hypersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=scramjet" title=" scramjet"> scramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a> </p> <a href="https://publications.waset.org/abstracts/59517/preliminary-design-of-an-aerodynamic-protection-for-the-scramjet-engine-inlet-of-the-brazilian-technological-demonstrator-scramjet-14-x-s" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> Research on Steam Injection Technology of Extended Range Engine Cylinder for Waste Heat Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Jia">Zhiyuan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuxiu%20Sun"> Xiuxiu Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Chen"> Yong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Hai"> Liu Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuangqing%20Li"> Shuangqing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The engine cooling water and exhaust gas contain a large amount of available energy. In order to improve energy efficiency, a steam injection technology based on waste heat recovery is proposed. The models of cooling water waste heat utilization, exhaust gas waste heat utilization, and exhaust gas-cooling water waste heat utilization were constructed, and the effects of the three modes on the performance of steam injection were analyzed, and then the feasibility of in-cylinder water injection steam technology based on waste heat recovery was verified. The research results show that when the injection water flow rate is 0.10 kg/s and the temperature is 298 K, at a cooling water temperature of 363 K, the maximum temperature of the injection water heated by the cooling water can reach 314.5 K; at an exhaust gas temperature of 973 K and an exhaust gas flow rate of 0.12 kg/s, the maximum temperature of the injection water heated by the exhaust gas can reach 430 K; Under the condition of cooling water temperature of 363 K, exhaust gas temperature of 973 K and exhaust gas flow rate of 0.12 kg/s, after cooling water and exhaust gas heating, the maximum temperature of the injection water can reach 463 K. When the engine is 1200 rpm, the water injection volume is 30 mg, and the water injection time is 36°CA, the engine power increases by 2% and the fuel consumption is reduced by 2.6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20water" title="cooling water">cooling water</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas" title=" exhaust gas"> exhaust gas</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20range%20engine" title=" extended range engine"> extended range engine</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20injection" title=" steam injection"> steam injection</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/128975/research-on-steam-injection-technology-of-extended-range-engine-cylinder-for-waste-heat-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> Technical and Environmental Improvement of LNG Carrier&#039;s Propulsion Machinery by Using Jatropha Biao Diesel Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20Hegazy">E. H. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mosaad"> M. A. Mosaad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Tawfik"> A. A. Tawfik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hassan"> A. A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbas"> M. Abbas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel%20diesel%20engine" title="dual fuel diesel engine">dual fuel diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20Methyl%20Easter" title=" Jatropha Methyl Easter"> Jatropha Methyl Easter</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20%20efficiency" title=" volumetric efficiency"> volumetric efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/20734/technical-and-environmental-improvement-of-lng-carriers-propulsion-machinery-by-using-jatropha-biao-diesel-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Impact of Iron Doping on Induction Heating during Spark Plasma Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hua%20Tan">Hua Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Salamon"> David Salamon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, γ-Al2O3 powders doped with various amounts of iron were sintered via SPS process. Two heating modes – auto and manual mode were applied to observe the role of electrical induction on heating. Temperature, electric current, and pulse pattern were experimented with grade iron γ-Al2O3 powders. Phase transformation of γ to α -Al2O3 serves as a direct indicator of internal temperature, independently on measured outside temperature. That pulsing in SPS is also able to induce internal heating due to its strong electromagnetic field when dopants are conductive metals (e.g., iron) is proofed during SPS. Density and microstructure were investigated to explain the mechanism of induction heating. In addition, the role of electric pulsing and strong electromagnetic field on internal heating (induction heating) were compared and discussed. Internal heating by iron doping within electrically nonconductive samples is able to decrease sintering temperature and save energy, furthermore it is one explanation for unique features of this material fabrication technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title="spark plasma sintering">spark plasma sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title=" induction heating"> induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/54836/impact-of-iron-doping-on-induction-heating-during-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galal%20Elkobrosy">Galal Elkobrosy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20Abdelrazek"> Amr M. Abdelrazek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassuny%20M.%20Elsouhily"> Bassuny M. Elsouhily</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Khidr"> Mohamed E. Khidr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3<sup>rd</sup> degree to 1<sup>st </sup>degree and suggested valid predictions and stable explanations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SI%20engine" title=" SI engine"> SI engine</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title=" statistical modeling"> statistical modeling</a> </p> <a href="https://publications.waset.org/abstracts/90228/optimization-of-slider-crank-mechanism-using-design-of-experiments-and-multi-linear-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Equbal">Azhar Equbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoop%20Kumar%20Sood"> Anoop Kumar Sood</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Asif%20Equbal"> M. Asif Equbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Israr%20Equbal"> M. Israr Equbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (T<sub>on</sub>) and spark off time (T<sub>off</sub>) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EDM" title="EDM">EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=MRR" title=" MRR"> MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a> </p> <a href="https://publications.waset.org/abstracts/64576/an-investigation-on-material-removal-rate-of-edm-process-a-response-surface-methodology-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Effect of Halo Protection Device on the Aerodynamic Performance of Formula Racecar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Lin">Mark Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Periklis%20Papadopoulos"> Periklis Papadopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the aerodynamics of the formula racecar when a &lsquo;halo&rsquo; driver-protection device is added to the chassis. The halo protection device was introduced at the start of the 2018 racing season as a safety measure against foreign object impacts that a driver may encounter when driving an open-wheel racecar. In the one-year since its introduction, the device has received wide acclaim for protecting the driver on two separate occasions. The benefit of such a safety device certainly cannot be disputed. However, by adding the halo device to a car, it changes the airflow around the vehicle, and most notably, to the engine air-intake and the rear wing. These negative effects in the air supply to the engine, and equally to the downforce created by the rear wing are studied in this paper using numerical technique, and the resulting CFD outputs are presented and discussed. Comparing racecar design prior to and after the introduction of the halo device, it is shown that the design of the air intake and the rear wing has not followed suit since the addition of the halo device. The reduction of engine intake mass flow due to the halo device is computed and presented for various speeds the car may be going. Because of the location of the halo device in relation to the air intake, airflow is directed away from the engine, making the engine perform less than optimal. The reduction is quantified in this paper to show the correspondence to reduce the engine output when compared to a similar car without the halo device. This paper shows that through aerodynamic arguments, the engine in a halo car will not receive unobstructed, clean airflow that a non-halo car does. Another negative effect is on the downforce created by the rear wing. Because the amount of downforce created by the rear wing is influenced by every component that comes before it, when a halo device is added upstream to the rear wing, airflow is obstructed, and less is available for making downforce. This reduction in downforce is especially dramatic as the speed is increased. This paper presents a graph of downforce over a range of speeds for a car with and without the halo device. Acknowledging that although driver safety is paramount, the negative effect of this safety device on the performance of the car should still be well understood so that any possible redesign to mitigate these negative effects can be taken into account in next year&rsquo;s rules regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20aerodynamics" title="automotive aerodynamics">automotive aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=halo%20device" title=" halo device"> halo device</a>, <a href="https://publications.waset.org/abstracts/search?q=downforce.%20engine%20intake" title=" downforce. engine intake"> downforce. engine intake</a> </p> <a href="https://publications.waset.org/abstracts/116953/effect-of-halo-protection-device-on-the-aerodynamic-performance-of-formula-racecar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Laser-Hole Boring into Overdense Targets: A Detailed Study on Laser and Target Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florian%20Wagner">Florian Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Schmidt"> Christoph Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Bagnoud"> Vincent Bagnoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the interaction of ultra-intense laser pulses with overcritical targets is of major interest for many applications such as laser-driven ion acceleration, fast ignition in the frame of inertial confinement fusion or high harmonic generation and the creation of attosecond pulses. One particular aspect of this interaction is the shift of the critical surface, where the laser pulse is stopped and the absorption is at maximum, due to the radiation pressure induced by the laser pulse, also referred to as laser hole boring. We investigate laser-hole boring experimentally by measuring the backscattered spectrum which is doppler-broadened because of the movement of the reflecting surface. Using the high-power, high-energy laser system PHELIX in Darmstadt, we gathered an extensive set of data for different laser intensities ranging from 10^18 W/cm2 to 10^21 W/cm2, two different levels of the nanosecond temporal contrast (10^6 vs. 10^11), elliptical and linear polarization and varying target configurations. In this contribution we discuss how the maximum velocity of the critical surface depends on these parameters. In particular we show that by increasing the temporal contrast the maximum hole boring velocity is decreased by more than a factor of three. Our experimental findings are backed by a basic analytical model based on momentum and mass conservation as well as particle in cell simulations. These results are of particular importance for fast ignition since they contribute to a better understanding of the transport of the ignitor pulse into the overdense region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser-hole%20boring" title="laser-hole boring">laser-hole boring</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20of%20ultra-intense%20lasers%20with%20overcritical%20targets" title=" interaction of ultra-intense lasers with overcritical targets"> interaction of ultra-intense lasers with overcritical targets</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20ignition" title=" fast ignition"> fast ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20laser%20motter%20interaction" title=" relativistic laser motter interaction"> relativistic laser motter interaction</a> </p> <a href="https://publications.waset.org/abstracts/45345/laser-hole-boring-into-overdense-targets-a-detailed-study-on-laser-and-target-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Adwaith">R. Adwaith</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gopinath"> J. Gopinath</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasantha%20Kohila%20B."> Vasantha Kohila B.</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Chandru"> R. Chandru</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Prakash%20R."> Arul Prakash R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbofan%20engine" title="turbofan engine">turbofan engine</a>, <a href="https://publications.waset.org/abstracts/search?q=bypass%20valve" title=" bypass valve"> bypass valve</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-cell%20tube" title=" multi-cell tube"> multi-cell tube</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a> </p> <a href="https://publications.waset.org/abstracts/30054/numerical-studies-on-bypass-thrust-augmentation-using-convective-heat-transfer-in-turbofan-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Amara">M. Amara</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tahar%20Abbes"> M. Tahar Abbes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dokkiche"> A. Dokkiche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benbrike"> M. Benbrike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EHD%20lubricated%20contacts" title="EHD lubricated contacts">EHD lubricated contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20of%20materials" title=" properties of materials"> properties of materials</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20performance" title=" tribological performance"> tribological performance</a> </p> <a href="https://publications.waset.org/abstracts/49879/enhancement-of-tribological-behavior-for-diesel-engine-piston-of-solid-skirt-by-an-optimal-choice-of-interface-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> Turbine Engine Performance Experimental Tests of Subscale UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haluk%20Altay">Haluk Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Y%C3%BCcel"> Bilal Yücel</a>, <a href="https://publications.waset.org/abstracts/search?q=Berkcan%20Ulcay"> Berkcan Ulcay</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%C3%BCcel%20Ayd%C4%B1n"> Yücel Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20engine" title="jet engine">jet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=loadcell" title=" loadcell"> loadcell</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/168678/turbine-engine-performance-experimental-tests-of-subscale-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Proposal of Innovative Risk Assessment of Ergonomic Factors in the Production of Jet Engines Using AHP (Analytic Hierarchy Process)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Cristiano%20Pereira">Jose Cristiano Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilson%20Brito%20Alves%20Lima"> Gilson Brito Alves Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ergonomics is a key factor affecting the operational safety and quality in the aircraft engine manufacturing industry and evidence shows that the lack of attention to it can increase the risk of accidents. In order to emphasize the importance of ergonomics, this paper systematically reviews the critical processes used in the aircraft engine production industry with focus on the ergonomic factors. about the subject to identify key ergonomic factors. Experts validated the factors and used AHP to rank the factors in order of significance. From the six key risk factors identified, the ones with the highest weight are psychological demand followed by understanding of operational side. These factors suggest that measures must be taken to improve ergonomic factors, quality and safety in the manufacturing of aircraft engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title="ergonomics">ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=aviation" title=" aviation"> aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine%20production" title=" aircraft engine production"> aircraft engine production</a> </p> <a href="https://publications.waset.org/abstracts/53194/proposal-of-innovative-risk-assessment-of-ergonomic-factors-in-the-production-of-jet-engines-using-ahp-analytic-hierarchy-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">756</span> Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza">Ali Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Latif"> Rizwan Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Adnan%20Qasim"> Syed Adnan Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Shafi"> Imran Shafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20fuel" title="diesel fuel">diesel fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase" title=" multiphase"> multiphase</a> </p> <a href="https://publications.waset.org/abstracts/75619/modeling-and-simulation-of-multiphase-evaporation-in-high-torque-low-speed-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">755</span> Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Doppler">Christian Doppler</a>, <a href="https://publications.waset.org/abstracts/search?q=Gernot%20Hirschl"> Gernot Hirschl</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Zsiga"> Gerhard Zsiga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%2Fwater-charge%20air%20cooler" title="air/water-charge air cooler">air/water-charge air cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=co-simulation" title=" co-simulation"> co-simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20working%20process" title=" diesel working process"> diesel working process</a>, <a href="https://publications.waset.org/abstracts/search?q=EURO%20VI%20fuel%20consumption" title=" EURO VI fuel consumption"> EURO VI fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/15699/investigations-on-the-influence-of-optimized-charge-air-cooling-for-a-diesel-passenger-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=6" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spark%20ignition%20engine&amp;page=8" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10