CINXE.COM

{"title":"Graphene\/h-BN Heterostructure Interconnects","authors":"Nikhil Jain, Yang Xu, Bin Yu","volume":93,"journal":"International Journal of Chemical and Molecular Engineering","pagesStart":1065,"pagesEnd":1069,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10003969","abstract":"The material behavior of graphene, a single layer of<br \/>\r\ncarbon lattice, is extremely sensitive to its dielectric environment. We<br \/>\r\ndemonstrate improvement in electronic performance of graphene<br \/>\r\nnanowire interconnects with full encapsulation by lattice-matching,<br \/>\r\nchemically inert, 2D layered insulator hexagonal boron nitride (h-<br \/>\r\nBN). A novel layer-based transfer technique is developed to construct<br \/>\r\nthe h-BN\/MLG\/h-BN heterostructures. The encapsulated graphene<br \/>\r\nwires are characterized and compared with that on SiO2 or h-BN<br \/>\r\nsubstrate without passivating h-BN layer. Significant improvements<br \/>\r\nin maximum current-carrying density, breakdown threshold, and<br \/>\r\npower density in encapsulated graphene wires are observed. These<br \/>\r\ncritical improvements are achieved without compromising the carrier<br \/>\r\ntransport characteristics in graphene. Furthermore, graphene wires<br \/>\r\nexhibit electrical behavior less insensitive to ambient conditions, as<br \/>\r\ncompared with the non-passivated ones. Overall, h-BN\/graphene\/h-<br \/>\r\nBN heterostructure presents a robust material platform towards the<br \/>\r\nimplementation of high-speed carbon-based interconnects.","references":"[1] W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, and M,\r\nEngelhardt, \u201cComprehensive study of the resistivity of copper wires\r\nwith lateral dimensions of 100 nm and smaller,\u201d Journal of Applied\r\nPhysics, 97, 023706\u2013023706\u20137, 2005.\r\n[2] G. Steinlesberger, M. Engelhardt, G. Schindler, W. Steinh\u00f6gl, A. Von\r\nGlasow, K. Mosig, and E. Bertagnolli, \u201cElectrical assessment of copper\r\ndamascene interconnects down to sub-50 nm feature sizes\r\nMicroelectronic Engineering, 64, 409\u201316, 2002.\r\n[3] J. A. Davis, R. Venkatesan A. Kaloyeros, M. Beylansky, S. J. Souri, K.\r\nBanerjee, K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meindl,\r\n\u201cInterconnect limits on gigascale integration (GSI) in the 21st century,\u201d\r\nProceedings of the IEEE, 89, 305\u201324, 2001.\r\n[4] P. C. Wang, and R. G. Filippi, \u201cElectromigration threshold in copper\r\ninterconnects,\u201d Applied Physics Letters, 78, 3598\u2013600, 2001.\r\n[5] A. K. Geim and K. S. Novoselov, \u201cThe rise of graphene,\u201d Nature\r\nMaterials, 6, 183\u201391, 2007.\r\n[6] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, \u201cIntrinsic\r\nand extrinsic performance limits of graphene devices on SiO2,\u201d Nature\r\nNanotechnology, 3, 206\u20139, 2008.\r\n[7] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K.\r\nWatanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, \u201cBoron\r\nnitride substrates for high-quality graphene electronics, Nature\r\nNanotechnology, 5, 722\u20136, 2010.\r\n[8] N. Jain, T. Bansal, C. Durcan, and B. Yu, \u201cGraphene-Based\r\nInterconnects on Hexagonal Boron Nitride Substrate,\u201d IEEE Electron\r\nDevice Letters, 33, 925\u20137, 2012.\r\n[9] X. Zhong , R. G. Amorim, R. H. Scheicher, R. Pandey, and S. P. Karna,\r\n\u201cElectronic structure and quantum transport properties of trilayers\r\nformed from graphene and boron nitride,\u201d Nano scale, 4, 5490\u20138, 2012.\r\n[10] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L.\r\nA. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T.\r\nTaniguchi, and A. K. Geim, \u201cMicrometer-Scale Ballistic Transport in\r\nEncapsulated Graphene at Room Temperature,\u201d Nano Letter, 11, 2396\u2013\r\n9, 2011.\r\n[11] H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P.\r\nJarillo-Herrero, and T. Palacios, \u201cBN\/Graphene\/BN Transistors for RF\r\nApplications,\u201d IEEE Electron Device Letters, 32 1209\u201311, 2011.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 93, 2014"}