CINXE.COM

Search results for: cord blood-derived hematopoietic stem cells (CB-CD34+)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cord blood-derived hematopoietic stem cells (CB-CD34+)</title> <meta name="description" content="Search results for: cord blood-derived hematopoietic stem cells (CB-CD34+)"> <meta name="keywords" content="cord blood-derived hematopoietic stem cells (CB-CD34+)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cord blood-derived hematopoietic stem cells (CB-CD34+)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cord blood-derived hematopoietic stem cells (CB-CD34+)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3846</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cord blood-derived hematopoietic stem cells (CB-CD34+)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3846</span> Usage of Cord Blood Stem Cells of Asphyxia Infants for Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shah%20Farhat">Ahmad Shah Farhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Prenatal asphyxia or birth asphyxia is the medical situation resulting from a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Human umbilical cord blood (UCB) is a well-established source of hematopoietic stem/progenitor cells (HSPCs) for allogeneic stem cell transplantation. These can be used clinically to care for children with malignant diseases. Low O2 can cause in proliferation and differentiation of stem cells. Method: the cord blood of 11 infants with 3-5 Apgar scores or need to cardiac pulmonary Resuscitation as an asphyxia group and ten normal infants with more than 8 Apgar scores as the normal group was collected, and after isolating hematopoietic stem cells, the cells were cultured in enriched media for 14 days to compare the numbers of colonies by microscope. Results: There was a significant difference in the number of RBC precursor colonies (red colonies) in cultured media with 107 cord blood hematopoietic stem cells of infants who were exposed to hypoxemia in two wells of palate. There was not a significant difference in the number of white cell colonies in the two groups in the two wells of the plate. Conclusion: Hypoxia in the perinatal period can cause the increase of hematopoietic stem cells of cord blood, special red precursor stem cells in vitro, like an increase of red blood cells in the body when exposed to low oxygen conditions. Thus, it will be usable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphyxia" title="asphyxia">asphyxia</a>, <a href="https://publications.waset.org/abstracts/search?q=neonre" title=" neonre"> neonre</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20cell" title=" red cell"> red cell</a> </p> <a href="https://publications.waset.org/abstracts/177379/usage-of-cord-blood-stem-cells-of-asphyxia-infants-for-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3845</span> Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20M.%20Lara">Ana M. Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Llano"> Manuela Llano</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Gait%C3%A1n"> Felipe Gaitán</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20H.%20Bustos"> Rosa H. Bustos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20Perdomo-Arciniegas"> Ana Maria Perdomo-Arciniegas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ximena%20Bonilla"> Ximena Bonilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ex-vivo%20expansion" title="ex-vivo expansion">ex-vivo expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20cells" title=" hematopoietic stem cells"> hematopoietic stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20cell%20transplantation" title=" hematopoietic stem cell transplantation"> hematopoietic stem cell transplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord%20blood" title=" umbilical cord blood"> umbilical cord blood</a> </p> <a href="https://publications.waset.org/abstracts/150887/cord-blood-hematopoietic-stem-cell-expansion-ability-of-mesenchymal-stem-cells-isolated-from-different-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3844</span> Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Bobyleva">P. I. Bobyleva</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20R.%20Andreeva"> E. R. Andreeva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Andrianova"> I. V. Andrianova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Maslova"> E. V. Maslova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20B.%20Buravkova"> L. B. Buravkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20and%20progenitor%20cells" title="hematopoietic stem and progenitor cells">hematopoietic stem and progenitor cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stromal%20cells" title=" mesenchymal stromal cells"> mesenchymal stromal cells</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue-related%20oxygen" title=" tissue-related oxygen"> tissue-related oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20tissue" title=" adipose tissue"> adipose tissue</a> </p> <a href="https://publications.waset.org/abstracts/13129/stroma-providing-activity-of-adipose-derived-mesenchymal-stromal-cells-in-tissue-related-o2-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3843</span> Umbilical Cord-Derived Cells in Corneal Epithelial Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Mahmud%20Reza">Hasan Mahmud Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive studies of the human umbilical cord, both basic and translational, over the last three decades have unveiled a plethora of information. The cord lining harbors at least two phenotypically different multipotent stem cells: mesenchymal stem cells (MSCs) and cord lining epithelial stem cells (CLECs). These cells exhibit a mixed genetic profiling of both embryonic and adult stem cells, hence display a broader stem features than cells from other sources. We have observed that umbilical cord-derived cells are immunologically privileged and non-tumorigenic by animal study. These cells are ethically acceptable, thus provides a significant advantage over other stem cells. The high proliferative capacity, viability, differentiation potential, and superior harvest of these cells have made them better candidates in comparison to contemporary adult stem cells. Following 30 replication cycles, these cells have been observed to retain their stemness, with their phenotype and karyotype intact. Transplantation of bioengineered CLEC sheets in limbal stem cell-deficient rabbit eyes resulted in regeneration of clear cornea with phenotypic expression of the normal cornea-specific epithelial cytokeratin markers. The striking features of low immunogenicity protecting self along with co-transplanted allografts from rejection largely define the transplantation potential of umbilical cord-derived stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cord%20lining%20epithelial%20stem%20cells" title="cord lining epithelial stem cells">cord lining epithelial stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord" title=" umbilical cord"> umbilical cord</a> </p> <a href="https://publications.waset.org/abstracts/117218/umbilical-cord-derived-cells-in-corneal-epithelial-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3842</span> Expansion of Cord Blood Cells Using a Mix of Neurotrophic Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Dos%20Santos">Francisco Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Diogo%20Fonseca-Pereira"> Diogo Fonseca-Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%ADlvia%20Arroz-Madeira"> Sílvia Arroz-Madeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrique%20Veiga-Fernandes"> Henrique Veiga-Fernandes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Haematopoiesis is a developmental process that generates all blood cell lineages in health and disease. This relies on quiescent haematopoietic stem cells (HSCs) that are able to differentiate, self renew and expand upon physiological demand. HSCs have great interest in regenerative medicine, including haematological malignancies, immunodeficiencies and metabolic disorders. However, the limited yield from existing HSC sources drives the global need for reliable techniques to expand harvested HSCs at high quality and sufficient quantities. With the extensive use of cord blood progenitors for clinical applications, there is a demand for a safe and efficient expansion protocol that is able to overcome the limitations of the cord blood as a source of HSC. StemCell2MAXTM developed a technology that enhances the survival, proliferation and transplantation efficiency of HSC, leading the way to a more widespread use of HSC for research and clinical purposes. StemCell2MAXTM MIX is a solution that improves HSC expansion up to 20x, while preserving stemness, when compared to state-of-the-art. In a recent study by a leading cord blood bank, StemCell2MAX MIX was shown to support a selective 100-fold expansion of CD34+ Hematopoietic Stem and Progenitor Cells (when compared to a 10-fold expansion of Total Nucleated Cells), while maintaining their multipotent differentiative potential as assessed by CFU assays. The technology developed by StemCell2MAXTM opens new horizons for the usage of expanded hematopoietic progenitors for both research purposes (including quality and functional assays in Cord Blood Banks) and clinical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cord%20blood" title="cord blood">cord blood</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion" title=" expansion"> expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20cell" title=" hematopoietic stem cell"> hematopoietic stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=transplantation" title=" transplantation"> transplantation</a> </p> <a href="https://publications.waset.org/abstracts/52602/expansion-of-cord-blood-cells-using-a-mix-of-neurotrophic-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3841</span> Normal Hematopoietic Stem Cell and the Toxic Effect of Parthenolide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alsulami%20H.">Alsulami H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Alghamdi%20N."> Alghamdi N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Alasker%20A."> Alasker A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Almohen%20N."> Almohen N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shome%20D."> Shome D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most conventional chemotherapeutic agents which are used for the treatment of cancers not only eradicate cancer cells but also affect normal hematopoietic Stem cells (HSCs) that leads to severe pancytopenia during treatment. Therefore, a need exists for novel approaches to treat cancer without or with minimum effect on normal HSCs. Parthenolide (PTL), a herbal product occurring naturally in the plant Feverfew, is a potential new chemotherapeutic agent for the treatment of many cancers such as acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). In this study we investigated the effect of different PTL concentrations on the viability of normal HSCs and also on the ability of these cells to form colonies after they have been treated with PTL in vitro. Methods: In this study, 24 samples of bone marrow and cord blood were collected with consent, and mononuclear cells were separated using density gradient separation. These cells were then exposed to various concentrations of PTL for 24 hours. Cell viability after culture was determined using 7ADD in a flow cytometry test. Additionally, the impact of PTL on hematopoietic stem cells (HSCs) was evaluated using a colony forming unit assay (CFU). Furthermore, the levels of NFҝB expression were assessed by using a PE-labelled anti-pNFκBP65 antibody. Results: this study showed that there was no statistically significant difference in the percentage of cell death between untreated and PTL treated cells with 5 μM PTL (p = 0.7), 10 μM PTL (p = 0.4) and 25 μM (p = 0.09) respectively. However, at higher doses, PTL caused significant increase in the percentage of cell death. These results were significant when compared to untreated control (p < 0.001). The response of cord blood cells (n=4) on the other hand was slightly different from that for bone marrow cells in that the percentage of cell death was significant at 100 μM PTL. Therefore, cord blood cells seemed more resistant than bone marrow cells. Discussion &Conclusion: At concentrations ≤25 μM PTL has a minimum or no effect on HSCs in vitro. Cord blood HSCs are more resistant to PTL compared to bone marrow HSCs. This could be due to the higher percentage of T-lymphocytes, which are resistant to PTL, in CB samples (85% in CB vs. 56% in BM. Additionally, CB samples contained a higher proportion of CD34+ cells, with 14.5% of brightly CD34+ cells compared to only 1% in normal BM. These bright CD34+ cells in CB were mostly negative for early-stage stem cell maturation antigens, making them young and resilient to oxidative stress and high concentrations of PTL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title="stem cell">stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=parthenolide" title=" parthenolide"> parthenolide</a>, <a href="https://publications.waset.org/abstracts/search?q=NFKB" title=" NFKB"> NFKB</a>, <a href="https://publications.waset.org/abstracts/search?q=CLL" title=" CLL"> CLL</a> </p> <a href="https://publications.waset.org/abstracts/185389/normal-hematopoietic-stem-cell-and-the-toxic-effect-of-parthenolide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3840</span> Aerobic Exercise Increases Circulating Hematopoietic Stem Cells and Endothelial Progenitor Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20shady">Khaled A. shady</a>, <a href="https://publications.waset.org/abstracts/search?q=Fagr%20B.%20Bazeed"> Fagr B. Bazeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nashwa%20K.%20Abousamra"> Nashwa K. Abousamra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihab%20H.%20Elberawe"> Ihab H. Elberawe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20E.%20shaalan"> Ashraf E. shaalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Sobh"> Mohamed A. Sobh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity activates a variety of adult stem cells which might be released into the circulation or might be activated in their organ-resident state. A variety of stimuli such as metabolic, mechanical, and hormonal stimuli might by responsible for the mobilization. This study was done to know the changes in hematopoietic stem cells and endothelial progenitor in athletes in the 24 hours following 30 min of aerobic exercise. Methods: Ten healthy male's athlete's (age 20.7± 0.61 y) performed moderate running with 30 min at 80% of velocity of The IAT. Blood samples taken pre-, and immediately, 30 min, 2h, 6h and 24h post-exercise were analyzed for hematopoietic stem cells (HSCs ), endothelial progenitor cells (EPCs(, vascular endothelial growth factor (VEGF), nitric oxide (NO), lactic acid (LA), and white blood cells . HSCs and EPCs were quantified by flow cytometry. Results: After 30min of aerobic exercise significant increases in HSCs, EPC, VEGF, NO, LA and WBCs (p ˂ 0.05). This increase will be at different rates according to the timing of taking blood sample and was in the maximum rate of increase after 30 min of aerobic exercise. HSCs, EPC, NO and WBCs were in the maximum rate of increase 2h post exercise. In addition, VEGF was in the maximum rate of increase immediately post exercise and LA concentration not affected after exercise. Conclusion: These data suggest that HSCs and EPCs increased after aerobic exercise due to increase of VEGF which play an important role in mobilization of stem cells and promotes NO increase which contributes to increase EPCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title="physical activity">physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20cells" title=" hematopoietic stem cells"> hematopoietic stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilization" title=" mobilization"> mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=athletes" title=" athletes"> athletes</a> </p> <a href="https://publications.waset.org/abstracts/158031/aerobic-exercise-increases-circulating-hematopoietic-stem-cells-and-endothelial-progenitor-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3839</span> A Serum- And Feeder-Free Culture System for the Robust Generation of Human Stem Cell-Derived CD19+ B Cells and Antibody-Secreting Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirsten%20Wilson">Kirsten Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20M.%20Brauer"> Patrick M. Brauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Babic"> Sandra Babic</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Golubeva"> Diana Golubeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Van%20Eyk"> Jessica Van Eyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tinya%20Wang"> Tinya Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Avanti%20Karkhanis"> Avanti Karkhanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20A.%20Le%20Fevre"> Tim A. Le Fevre</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20I.%20Kokaji"> Andy I. Kokaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Allen%20C.%20Eaves"> Allen C. Eaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharon%20A.%20Louis"> Sharon A. Louis</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Nooshin%20Tabatabaei-Zavareh">Nooshin Tabatabaei-Zavareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long-lived plasma cells are rare, non-proliferative B cells generated from antibody-secreting cells (ASCs) following an immune response to protect the host against pathogen re-exposure. Despite their therapeutic potential, the lack of in vitro protocols in the field makes it challenging to use B cells as a cellular therapeutic tool. As a result, there is a need to establish robust and reproducible methods for the generation of B cells. To address this, we have developed a culture system for generating B cells from hematopoietic stem and/or progenitor cells (HSPCs) derived from human umbilical cord blood (CB) or pluripotent stem cells (PSCs). HSPCs isolated from CB were cultured using the StemSpan™ B Cell Generation Kit and produced CD19+ B cells at a frequency of 23.2 ± 1.5% and 59.6 ± 2.3%, with a yield of 91 ± 11 and 196 ± 37 CD19+ cells per input CD34+ cell on culture days 28 and 35, respectively (n = 50 - 59). CD19+IgM+ cells were detected at a frequency of 31.2 ± 2.6% and were produced at a yield of 113 ± 26 cells per input CD34+ cell on culture day 35 (n = 50 - 59). The B cell receptor loci of CB-derived B cells were sequenced to confirm V(D)J gene rearrangement. ELISpot analysis revealed that ASCs were generated at a frequency of 570 ± 57 per 10,000 day 35 cells, with an average IgM+ ASC yield of 16 ± 2 cells per input CD34+ cell (n = 33 - 42). PSC-derived HSPCs were generated using the STEMdiff™ Hematopoietic - EB reagents and differentiated to CD10+CD19+ B cells with a frequency of 4 ± 0.8% after 28 days of culture (n = 37, 1 embryonic and 3 induced pluripotent stem cell lines tested). Subsequent culture of PSC-derived HSPCs increased CD19+ frequency and generated ASCs from 1 - 2 iPSC lines. This method is the first report of a serum- and feeder-free system for the generation of B cells from CB and PSCs, enabling further B lineage-specific research for potential future clinical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title="stem cells">stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=B%20cells" title=" B cells"> B cells</a>, <a href="https://publications.waset.org/abstracts/search?q=immunology" title=" immunology"> immunology</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoiesis" title=" hematopoiesis"> hematopoiesis</a>, <a href="https://publications.waset.org/abstracts/search?q=PSC" title=" PSC"> PSC</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a> </p> <a href="https://publications.waset.org/abstracts/182989/a-serum-and-feeder-free-culture-system-for-the-robust-generation-of-human-stem-cell-derived-cd19-b-cells-and-antibody-secreting-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3838</span> Studying the Antiapoptotic Activity of Β Cells from Cord Blood Based Mesenchymal Stem Cells as an Approach to Treat Diabetes Mellitus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parcha%20Sreenivasa%20Rao">Parcha Sreenivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Lakshmi"> P. Lakshmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes Mellitus is metabolic disorder, characterized by high glucose levels in the blood due to one of the reason i.e., the death of β cells. The lack of β cells leads to the reduced insulin levels. The β cell death generally occurs due to apoptosis induced by the several cytokines. IL-1β, IFN- ϒ and TNF –α cytokines that are generally cause apoptosis to the β cell. The nutrient based apoptosis is generally seen with high glucose and free fatty acids. It is also noted that the β cell death triggered by Fas ligand and its receptor Fas at the surface of the activated CD8+ T- lymphocytes. Reports also reveal that the β cell apoptosis is under control of the transcription factors NF-kB and STAT- 1. The arresting or opposing of the β cell apoptosis can be overcome by the different growth factors like GLP-1, growth hormone, prolactin, VEGF, Dipeptidyl peptidase-4, Vildagliptin, suberoylanilidehydroxamic acid, trichistatin-A, XIAP, Bcl-2, FGF-21. Present investigation explains antiapoptotic property of the β cells derived from the mesenchymal stem cells of umbilical cord. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title="stem cells">stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=umblical%20cord" title=" umblical cord"> umblical cord</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/39952/studying-the-antiapoptotic-activity-of-b-cells-from-cord-blood-based-mesenchymal-stem-cells-as-an-approach-to-treat-diabetes-mellitus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3837</span> Immature Platelet Fraction and Immature Reticulocyte Fraction as Early Predictors of Hematopoietic Recovery Post Stem Cell Transplantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Mittal">Aditi Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nishit%20Gupta"> Nishit Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Dadu"> Tina Dadu</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Handoo"> Anil Handoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Hematopoietic stem cell transplantation (HSCT) is a curative treatment done for hematologic malignancies and other clinical conditions. Its main objective is to reconstitute the hematopoietic system of the recipient by administering an infusion of donor hematopoietic stem cells. Transplant engraftment is the first sign of bone marrow recovery. The main objective of this study is to assess immature platelet fraction (IPF) and immature reticulocyte fraction (IRF) as early indicators of post-hematopoietic stem cell transplant engraftment. Methods: Patients of all age groups and both genders undergoing both autologous and allogeneic transplants were included in the study. All the CBC samples were run on Mindray CAL-8000 (BC-6800 plus; Shenzhen, China) analyser and assessed for IPF and IRF. Neutrophil engraftment was defined as the first of three consecutive days with an ANC >0.5 x 109/L and platelet engraftment with a count >20 x 109/L. The cut-off values for IRF were calculated as 13.5% with a CV of 5% and for IPF was 19% with a CV of 12%. Results: The study sample comprised 200 patients, of whom 116 had undergone autologous HSCT, and 84 had undergone allogeneic HSCT. We observed that IRF anticipated the neutrophil recovery by an average of 5 days prior to IPF. Though there was no significant variation in IPF and IRF for the prediction of platelet recovery, IRF was preceded by 1 or 2 days to IPF in 25% of cases. Conclusions: Both IPF and IRF can be used as reliable parameters as predictors for post-transplant engraftment; however, IRF seems to be more reliable than IPF as a simple, inexpensive, and widely available tool for predicting marrow recovery several days before engraftment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transplantation" title="transplantation">transplantation</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=reticulocyte" title=" reticulocyte"> reticulocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=engraftment" title=" engraftment"> engraftment</a> </p> <a href="https://publications.waset.org/abstracts/152256/immature-platelet-fraction-and-immature-reticulocyte-fraction-as-early-predictors-of-hematopoietic-recovery-post-stem-cell-transplantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3836</span> Culture of Human Mesenchymal Stem Cells Culture in Xeno-Free Serum-Free Culture Conditions on Laminin-521</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halima%20Albalushi">Halima Albalushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohadese%20Boroojerdi"> Mohadese Boroojerdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Murtadha%20Alkhabori"> Murtadha Alkhabori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Maintenance of stem cell properties during culture necessitates the recreation of the natural cell niche. Studies reported the promising outcome of mesenchymal stem cells (MSC) properties maintenance after using extracellular matrix such as CELLstart™, which is the recommended coating material for stem cells cultured in serum-free and xeno-free conditions. Laminin-521 is known as a crucial adhesion protein, which is found in natural stem cell niche, and plays an important role in facilitating the maintenance of self-renewal, pluripotency, standard morphology, and karyotype of human pluripotent stem cells (PSCs). The aim of this study is to investigate the effects of Laminin-521 on human umbilical cord-derived mesenchymal stem cells (UC-MSC) characteristics as a step toward clinical application. Methods: Human MSC were isolated from the umbilical cord via the explant method. Umbilical cord-derived-MSC were cultured in serum-free and xeno-free conditions in the presence of Laminin-521 for six passages. Cultured cells were evaluated by morphology and expansion index for each passage. Phenotypic characterization of UC-MSCs cultured on Laminin-521 was evaluated by assessment of cell surface markers. Results: Umbilical cord derived-MSCs formed small colonies and expanded as a homogeneous monolayer when cultured on Laminin-521. Umbilical cord derived-MSCs reached confluence after 4 days in culture. No statistically significant difference was detected in all passages when comparing the expansion index of UC-MSCs cultured on LN-521 and CELLstart™. Phenotypic characterization of UC-MSCs cultured on LN-521 using flow cytometry revealed positive expression of CD73, CD90, CD105 and negative expression of CD34, CD45, CD19, CD14 and HLA-DR.Conclusion: Laminin-521 is comparable to CELLstart™ in supporting UC-MSCs expansion and maintaining their characteristics during culture in xeno-free and serum-free culture conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=culture" title=" culture"> culture</a>, <a href="https://publications.waset.org/abstracts/search?q=laminin-521" title=" laminin-521"> laminin-521</a>, <a href="https://publications.waset.org/abstracts/search?q=xeno-free%20serum-free" title=" xeno-free serum-free"> xeno-free serum-free</a> </p> <a href="https://publications.waset.org/abstracts/169207/culture-of-human-mesenchymal-stem-cells-culture-in-xeno-free-serum-free-culture-conditions-on-laminin-521" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3835</span> Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariyah%20Poonawala">Mariyah Poonawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Selvan%20Ravindran"> Selvan Ravindran</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuradha%20Vaidya"> Anuradha Vaidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-culture%20system" title="co-culture system">co-culture system</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20micro-environment" title=" hematopoietic micro-environment"> hematopoietic micro-environment</a>, <a href="https://publications.waset.org/abstracts/search?q=KG1a%20cell%20line" title=" KG1a cell line"> KG1a cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=M210B4%20cell%20line" title=" M210B4 cell line"> M210B4 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=trans-resveratrol" title=" trans-resveratrol"> trans-resveratrol</a> </p> <a href="https://publications.waset.org/abstracts/58181/co-culture-with-murine-stromal-cells-enhances-the-in-vitro-expansion-of-hematopoietic-stem-cells-in-response-to-low-concentrations-of-trans-resveratrol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3834</span> Comparative Stem Cells Therapy for Regeneration of Liver Fibrosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Imam">H. M. Imam</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Rezk"> H. M. Rezk</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Tohamy"> A. F. Tohamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Human umbilical cord blood (HUCB) is considered as a unique source for stem cells. HUCB contain different types of progenitor cells which could differentiate into hepatocytes. Aims: To investigate the potential of rat's liver damage repair using human umbilical cord mesenchymal stem cells (hUCMSCs). We investigated the feasibility for hUCMSCs in recovery from liver damage. Moreover, investigating fibrotic liver repair and using the CCl4-induced model for liver damage in the rat. Methods: Rats were injected with 0.5 ml/kg CCl4 to induce liver damage and progressive liver fibrosis. hUCMSCs were injected into the rats through the tail vein; Stem cells were transplanted at a dose of 1×106 cells/rat after 72 hours of CCl4 injection without receiving any immunosuppressant. After (6 and 8 weeks) of transplantation, blood samples were collected to assess liver functions (ALT, AST, GGT and ALB) and level of Procollagen III as a liver fibrosis marker. In addition, hepatic tissue regeneration was assessed histopathologically and immunohistochemically using antihuman monoclonal antibodies against CD34, CK19 and albumin. Results: Biochemical and histopathological analysis showed significantly increased recovery from liver damage in the transplanted group. In addition, HUCB stem cells transdifferentiated into functional hepatocytes in rats with hepatic injury which results in improving liver structure and function. Conclusion: Our findings suggest that transplantation of hUCMSCs may be a novel therapeutic approach for treating liver fibrosis. Therefore, hUCMSCs are a potential option for treatment of liver cirrhosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20tetra%20chloride" title="carbon tetra chloride">carbon tetra chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20fibrosis" title=" liver fibrosis"> liver fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/27746/comparative-stem-cells-therapy-for-regeneration-of-liver-fibrosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3833</span> Comparison Study of 70% Ethanol Effect on Direct and Retrival Culture of Contaminated Umblical Cord Tissue for Expansion of Mesenchymal Stem Cells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganeshkumar">Ganeshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashika"> Ashika</a>, <a href="https://publications.waset.org/abstracts/search?q=Valavan"> Valavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh"> Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Thangam"> Thangam</a>, <a href="https://publications.waset.org/abstracts/search?q=Chirayu"> Chirayu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MSCs are found in much higher concentration in the Wharton’s jelly compared to the umbilical cord blood, which is a rich source of hematopoietic stem cells. Umbilical cord tissue is collected at the time of birth; it is processed and stored in liquid nitrogen for future therapeutical purpose. The source of contamination might be either from vaginal tract of mother or from hospital environment or from personal handling during cord tissue sample collection. If the sample were contaminated, decontamination procedure will be done with 70% ethanol (1 minute) in order to avoid sample rejection. Ethanol is effective against a wide range of bacteria, protozoa and fungi and has low toxicity to humans. Among the 1954 samples taken for the study, 24 samples were found to be contaminated with microorganism. The organisms isolated from the positive samples were found to be E. coli, Stenotrophomonas maltophilia, Pseudomonas aueroginosa, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, Enterobacter cloacae, and Proteus mirabilis. Among these organisms 70% ethanol successfully eliminated E. coli, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, and Proteus mirabilis. 70% ethanol was unsuccessful in eliminating Stenotrophomonas maltophilia, Pseudomonas aueroginosa, and Enterobacter cloacae. Stenotrophomonas maltophilia and Pseudomonas aueroginosa have the ability to form biofilm that make them resistant to alcohol. Biofilm act as protective layer for bacteria and which protects them from host defense and antibiotic wash. Finally it was found 70% ethanol wash saved 58.3% cord tissue samples from rejection and it is ineffective against 41% of the samples. The contamination rate can be reduced by maintaining proper aseptic techniques during sample collection and processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=umblical%20cord%20tissue" title="umblical cord tissue">umblical cord tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=70%25%20ethanol%20effectiveness" title=" 70% ethanol effectiveness"> 70% ethanol effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a> </p> <a href="https://publications.waset.org/abstracts/11290/comparison-study-of-70-ethanol-effect-on-direct-and-retrival-culture-of-contaminated-umblical-cord-tissue-for-expansion-of-mesenchymal-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3832</span> The Stem Cell Transcription Co-factor Znf521 Sustains Mll-af9 Fusion Protein In Acute Myeloid Leukemias By Altering The Gene Expression Landscape</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuela%20Chiarella">Emanuela Chiarella</a>, <a href="https://publications.waset.org/abstracts/search?q=Annamaria%20Aloisio"> Annamaria Aloisio</a>, <a href="https://publications.waset.org/abstracts/search?q=Nistic%C3%B2%20Clelia"> Nisticò Clelia</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Mesuraca"> Maria Mesuraca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZNF521 is a stem cell-associated transcription co-factor, that plays a crucial role in the homeostatic regulation of the stem cell compartment in the hematopoietic, osteo-adipogenic, and neural system. In normal hematopoiesis, primary human CD34+ hematopoietic stem cells display typically a high expression of ZNF521, while its mRNA levels rapidly decrease when these progenitors progress towards erythroid, granulocytic, or B-lymphoid differentiation. However, most acute myeloid leukemias (AMLs) and leukemia-initiating cells keep high ZNF521 expression. In particular, AMLs are often characterized by chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene, which MLL gene includes a variety of fusion oncogenes arisen from genes normally required during hematopoietic development; once they are fused, they promote epigenetic and transcription factor dysregulation. The chromosomal translocation t(9;11)(p21-22;q23), fusing the MLL gene with AF9 gene, results in a monocytic immune phenotype with an aggressive course, frequent relapses, and a short survival time. To better understand the dysfunctional transcriptional networks related to genetic aberrations, AML gene expression profile datasets were queried for ZNF521 expression and its correlations with specific gene rearrangements and mutations. The results showed that ZNF521 mRNA levels are associated with specific genetic aberrations: the highest expression levels were observed in AMLs involving t(11q23) MLL rearrangements in two distinct datasets (MILE and den Boer); elevated ZNF521 mRNA expression levels were also revealed in AMLs with t(7;12) or with internal rearrangements of chromosome 16. On the contrary, relatively low ZNF521 expression levels seemed to be associated with the t(8;21) translocation, that in turn is correlated with the AML1-ETO fusion gene or the t(15;17) translocation and in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. Invitro, we found that the enforced co-expression of ZNF521 in cord blood-derived CD34+ cells induced a significant proliferative advantage, improving MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome profiling of CD34+ cells transduced with either MLL-AF9, ZNF521, or a combination of the two transgenes highlighted specific sets of up- or down-regulated genes that are involved in the leukemic phenotype, including those encoding transcription factors, epigenetic modulators, and cell cycle regulators as well as those engaged in the transport or uptake of nutrients. These data enhance the functional cooperation between ZNF521 and MA9, resulting in the development, maintenance, and clonal expansion of leukemic cells. Finally, silencing of ZNF521 in MLL-AF9-transformed primary CD34+ cells inhibited their proliferation and led to their extinction, as well as ZNF521 silencing in the MLL-AF9+ THP-1 cell line resulted in an impairment of their growth and clonogenicity. Taken together, our data highlight ZNF521 role in the control of self-renewal and in the immature compartment of malignant hematopoiesis, which, by altering the gene expression landscape, contributes to the development and/or maintenance of AML acting in concert with the MLL-AF9 fusion oncogene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AML" title="AML">AML</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20zinc%20finger%20protein%20521%20%28hZNF521%29" title=" human zinc finger protein 521 (hZNF521)"> human zinc finger protein 521 (hZNF521)</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20lineage%20leukemia%20gene%20%28MLL%29%20AF9%20%28MLLT3%20or%20LTG9%29" title=" mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9)"> mixed lineage leukemia gene (MLL) AF9 (MLLT3 or LTG9)</a>, <a href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29" title=" cord blood-derived hematopoietic stem cells (CB-CD34+)"> cord blood-derived hematopoietic stem cells (CB-CD34+)</a> </p> <a href="https://publications.waset.org/abstracts/157048/the-stem-cell-transcription-co-factor-znf521-sustains-mll-af9-fusion-protein-in-acute-myeloid-leukemias-by-altering-the-gene-expression-landscape" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3831</span> In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urvi%20Panwar">Urvi Panwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanchan%20Mishra"> Kanchan Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanjaksha%20Ghosh"> Kanjaksha Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=ShankerLal%20Kothari"> ShankerLal Kothari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow" title="bone marrow">bone marrow</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title=" cell therapy"> cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=explant%20culture%20method" title=" explant culture method"> explant culture method</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20cytometer" title=" flow cytometer"> flow cytometer</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20umbilical%20cord" title=" human umbilical cord"> human umbilical cord</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegenerative%20diseases" title=" neurodegenerative diseases"> neurodegenerative diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotective" title=" neuroprotective"> neuroprotective</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/87395/in-vitro-regeneration-of-neural-cells-using-human-umbilical-cord-derived-mesenchymal-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3830</span> Efficacy of Umbilical Cord Lining Stem Cells For Wound Healing in Diabetic Murine Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fui%20Ping%20Lim">Fui Ping Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Choong%20Chua"> Wen Choong Chua</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Thang%20Phan"> Toan Thang Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: This study investigates the roles of Cord Lining Stem Cells (CLSCs) as potential therapeutic agents for diabetic wounds. Method: 20 genetically diabetic db/db mice were randomly assigned to two arms; (i) control group received placebo treatment (sham media or cells delivery material), and (ii) active comparator received CLSCs. Two full-thickness wounds, each sized 10mm X 10mm were created, one on each side of the midline on the back of the mice. Digital pictures were taken on day 1, 3, 7, 10, 14, 17, 21, 24, 28. Wound areas were analyzed with ImageJ TM software and calculated as percentage of the original wound. Time to closure was defined as the day the wound bed was completely epithelized and filled with new tissues. Results: The CLSCs-treated wounds, showed a significant increase in the percentage of wound closure and achieved 100% closure of the wound sooner than the control group by an average of 3.7 days. The mice treated with CLSCs have a shorter wound closure time (mean closure day: 19.8 days) as compared to the control group (mean closure day: 23.5 days). Conclusion: Our preliminary findings inferred that CLSCs treated wound achieved higher percentage of wound closure within a shorter duration of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cord%20lining%20stem%20cell" title="cord lining stem cell">cord lining stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20wound" title=" diabetic wound"> diabetic wound</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wound" title=" wound"> wound</a> </p> <a href="https://publications.waset.org/abstracts/53878/efficacy-of-umbilical-cord-lining-stem-cells-for-wound-healing-in-diabetic-murine-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3829</span> Identification of Individuals in Forensic Situations after Allo-Hematopoietic Stem Cell Transplantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupuma%20Raina">Anupuma Raina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Parkash"> Ajay Parkash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In forensic investigation, DNA analysis helps in the identification of a particular individual under investigation. A set of Short Tandem Repeats loci are widely used for individualization at a molecular level in forensic testing. STRs with tetrameric repeats of DNA are highly polymorphic and widely used for forensic DNA analysis. Identification of an individual became challenging for forensic examiners after Hematopoietic Stem Cell Transplantation. HSCT is a well-accepted and life-saving treatment to treat malignant and nonmalignant diseases. It involves the administration of healthy donor stem cells to replace the patient’s own unhealthy stem cells. A successful HSCT results in complete donor-derived cells in a patient’s hematopoiesis and hence have the capability to change the genetic makeup of the patient. Although an individual who has undergone HSCT and then committed a crime is a very rare situation, but not impossible. Keeping such a situation in mind, various biological samples like blood, buccal swab, and hair follicle were collected and studied after a certain interval of time after HSCT. Blood was collected from both the patient and the donor before the transplant. The DNA profile of both was analyzed using a short tandem repeat kit for autosomal chromosomes. Among all exhibits studied, only hair follicles were found to be the most suitable biological exhibit, as no donor DNA profile was observed for up to 90 days of study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chimerism" title="chimerism">chimerism</a>, <a href="https://publications.waset.org/abstracts/search?q=HSCT" title=" HSCT"> HSCT</a>, <a href="https://publications.waset.org/abstracts/search?q=STRs%20analysis" title=" STRs analysis"> STRs analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=forensic%20identification" title=" forensic identification"> forensic identification</a> </p> <a href="https://publications.waset.org/abstracts/166184/identification-of-individuals-in-forensic-situations-after-allo-hematopoietic-stem-cell-transplantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3828</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3827</span> Safety Study of Intravenously Administered Human Cord Blood Stem Cells in the Treatment of Symptoms Related to Chronic Inflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20M.%20Mehling">Brian M. Mehling</a>, <a href="https://publications.waset.org/abstracts/search?q=Louis%20Quartararo"> Louis Quartararo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marine%20Manvelyan"> Marine Manvelyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Wang"> Paul Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Cheng%20Wu"> Dong-Cheng Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous investigations suggest that Mesenchymal Stem Cells (MSCs) in general represent a valuable tool for therapy of symptoms related to chronic inflammatory diseases. Blue Horizon Stem Cell Therapy Program is a leading provider of adult and children’s stem cell therapies. Uniquely we have safely and efficiently treated more than 600 patients with documenting each procedure. The purpose of our study is primarily to monitor the immune response in order to validate the safety of intravenous infusion of human umbilical cord blood derived MSCs (UC-MSCs), and secondly, to evaluate effects on biomarkers associated with chronic inflammation. Nine patients were treated for conditions associated with chronic inflammation and for the purpose of anti-aging. They have been given one intravenous infusion of UC-MSCs. Our study of blood test markers of 9 patients with chronic inflammation before and within three months after MSCs treatment demonstrates that there is no significant changes and MSCs treatment was safe for the patients. Analysis of different indicators of chronic inflammation and aging included in initial, 24-hours, two weeks and three months protocols showed that stem cell treatment was safe for the patients; there were no adverse reactions. Moreover data from follow up protocols demonstrates significant improvement in energy level, hair, nails growth and skin conditions. Intravenously administered UC-MSCs were safe and effective in the improvement of symptoms related to chronic inflammation. Further close monitoring and inclusion of more patients are necessary to fully characterize the advantages of UC-MSCs application in treatment of symptoms related to chronic inflammation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20inflammatory%20diseases" title="chronic inflammatory diseases">chronic inflammatory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=intravenous%20infusion" title=" intravenous infusion"> intravenous infusion</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20therapy" title=" stem cell therapy"> stem cell therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord%20blood%20derived%20mesenchymal%20stem%20cells%20%28UC-MSCs%29" title=" umbilical cord blood derived mesenchymal stem cells (UC-MSCs)"> umbilical cord blood derived mesenchymal stem cells (UC-MSCs)</a> </p> <a href="https://publications.waset.org/abstracts/32420/safety-study-of-intravenously-administered-human-cord-blood-stem-cells-in-the-treatment-of-symptoms-related-to-chronic-inflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3826</span> Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Park">Jung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Anca%20Mazare"> Anca Mazare</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Von%20Der%20Mark"> Klaus Von Der Mark</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrik%20Schmuki"> Patrik Schmuki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanotube" title="TiO2 nanotube">TiO2 nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20fate%20decision" title=" stem cell fate decision"> stem cell fate decision</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-scale%20microenvironment" title=" nano-scale microenvironment"> nano-scale microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a> </p> <a href="https://publications.waset.org/abstracts/12191/stem-cell-fate-decision-depending-on-tio2-nanotubular-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3825</span> Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vytautas%20Galvanauskas">Vytautas Galvanauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vykantas%20Grincas"> Vykantas Grincas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rimvydas%20Simutis"> Rimvydas Simutis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregated%20stem%20cells" title="aggregated stem cells">aggregated stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen%20profiles" title=" dissolved oxygen profiles"> dissolved oxygen profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred-tank" title=" stirred-tank"> stirred-tank</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20expansion" title=" 3D expansion"> 3D expansion</a> </p> <a href="https://publications.waset.org/abstracts/49847/modeling-of-oxygen-supply-profiles-in-stirred-tank-aggregated-stem-cells-cultivation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3824</span> Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolamir%20Allameh">Abdolamir Allameh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahnaz%20Esmaeili"> Shahnaz Esmaeili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mina%20Allameh"> Mina Allameh</a>, <a href="https://publications.waset.org/abstracts/search?q=Safoura%20Khajeniazi"> Safoura Khajeniazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adult%20stem%20cells" title="adult stem cells">adult stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20integrity" title=" DNA integrity"> DNA integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radicals" title=" free radicals"> free radicals</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20differentiation" title=" hepatic differentiation"> hepatic differentiation</a> </p> <a href="https://publications.waset.org/abstracts/90001/oxidative-damage-to-lipids-proteins-and-dna-during-differentiation-of-mesenchymal-stem-cells-derived-from-umbilical-cord-into-biologically-active-hepatocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3823</span> Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Barbaro">K. Barbaro</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Di%20Egidio"> F. Di Egidio</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amaddeo"> A. Amaddeo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lupoli"> G. Lupoli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Eramo"> S. Eramo</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Barraco"> G. Barraco</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Amaddeo"> D. Amaddeo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gallottini"> C. Gallottini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-hydroxy%20apatite" title="nano-hydroxy apatite">nano-hydroxy apatite</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20mesenchymal%20stem%20cells" title=" adipose mesenchymal stem cells"> adipose mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=dog" title=" dog"> dog</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20evaluation" title=" morphological evaluation"> morphological evaluation</a> </p> <a href="https://publications.waset.org/abstracts/12800/morphological-evaluation-of-mesenchymal-stem-cells-derived-from-adipose-tissue-of-dog-treated-with-different-concentrations-of-nano-hydroxy-apatite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3822</span> Human Mesenchymal Stem Cells as a Potential Source for Cell Therapy in Liver Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20Montaser">Laila Montaser</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Gabr"> Hala Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20El-Bassuony"> Maha El-Bassuony</a>, <a href="https://publications.waset.org/abstracts/search?q=Gehan%20Tawfeek"> Gehan Tawfeek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthotropic liver transplantation (OLT) is the final procedure of both end stage and metabolic liver diseases. Hepatocyte transplantation is an alternative for OLT, but the sources of hepatocytes are limited. Bone marrow mesenchymal stem cells (BM-MSCs) can differentiate into hepatocyte-like cells and are a potential alternative source for hepatocytes. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. MSCs from bone marrow may have the potential to differentiate in vitro and in vivo into hepatocytes. Our study examined whether mesenchymal stem cells (MSCs), which are stem cells originated from human bone marrow, are able to differentiate into functional hepatocyte-like cells in vitro. Our aim was to investigate the differentiation potential of BM-MSCs into hepatocyte-like cells. Adult stem cell therapy could solve the problem of degenerative disorders, including liver disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow" title="bone marrow">bone marrow</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatocyte" title=" hepatocyte"> hepatocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells "> stem cells </a> </p> <a href="https://publications.waset.org/abstracts/13255/human-mesenchymal-stem-cells-as-a-potential-source-for-cell-therapy-in-liver-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3821</span> The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khalaf%20Reyad%20Raslan">Ahmed Khalaf Reyad Raslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a> </p> <a href="https://publications.waset.org/abstracts/145693/the-using-of-hybrid-superparamagnetic-magnetite-nanoparticles-fe3o4-graphene-oxide-functionalized-surface-with-collagen-to-target-the-cancer-stem-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3820</span> A Review of Feature Selection Methods Implemented in Neural Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natasha%20Petrovska">Natasha Petrovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Pavlovic"> Mirjana Pavlovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20Larrondo-Petrie"> Maria M. Larrondo-Petrie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neural stem cells (NSCs) are multi-potent, self-renewing cells that generate new neurons. Three subtypes of NSCs can be separated regarding the stages of NSC lineage: quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs), but their gene expression signatures are not utterly understood yet. Single-cell examinations have started to elucidate the complex structure of NSC populations. Nevertheless, there is a lack of thorough molecular interpretation of the NSC lineage heterogeneity and an increasing need for tools to analyze and improve the efficiency and correctness of single-cell sequencing data. Feature selection and ordering can identify and classify the gene expression signatures of these subtypes and can discover novel subpopulations during the NSCs activation and differentiation processes. The aim here is to review the implementation of the feature selection technique on NSC subtypes and the classification techniques that have been used for the identification of gene expression signatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20similarity" title=" feature similarity"> feature similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20stem%20cells" title=" neural stem cells"> neural stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection%20methods" title=" feature selection methods"> feature selection methods</a> </p> <a href="https://publications.waset.org/abstracts/163549/a-review-of-feature-selection-methods-implemented-in-neural-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3819</span> Isolation, Characterization and Myogenic Differentiation of Synovial Mesenchymal Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Y.%20Meligy">Fatma Y. Meligy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The objectives of this study aimed to isolate and characterize mesenchymal stem cells (MSCs) derived from synovial membrane. Then to assess the potentiality of myogenic differentiation of these isolated MSCs. Methods: The MSCs were isolated from synovial membrane by digestion method. Three adult rats were used. The 5 -azacytidine was added to the cultured cells for one day. The isolated cells and treated cells are assessed using immunoflouresence, flowcytometry, PCR and real time PCR. Results: The isolated stem cells showed morphological aspect of stem cells they showed strong positivity to CD44 and CD90 in immunoflouresence while in CD34 and CD45 showed negative reaction. The treated cells with 5-azacytidine was shown to have positive reaction for desmin. Flowcytometric analysis showed that synovial MSCs had strong positive percentage for CD44(%98)and CD90 (%97) and low percentage for CD34 & CD45 while the treated cells showed positive percentage for myogenic marker myogenin (85%). As regard the PCR and Real time PCR, the treated cells showed positive reaction to the desmin primer. Conclusion: The adult MSCs were isolated successfully from synovial membrane and characterized with stem cell markers. The isolated cells could be differentiated in vitro into myogenic cells. These differentiated cells could be used in auto-replacement of diseased or traumatized muscle cells as a regenerative therapy for muscle disorders and trauma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=synovial%20membrane" title=" synovial membrane"> synovial membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=myogenic%20differentiation" title=" myogenic differentiation "> myogenic differentiation </a> </p> <a href="https://publications.waset.org/abstracts/29107/isolation-characterization-and-myogenic-differentiation-of-synovial-mesenchymal-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3818</span> Excellent Outcome with Early Diagnosis in an Infant with Wiskott-Aldrich Syndrome in a Tertiary Hospital in Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surekha%20Tony">Surekha Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshan%20Mevada"> Roshan Mevada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disease resulting in recurrent infections, eczema, and microthrombocytopenia. In its classical form, significant combined immune deficiency, autoimmune complications, and risk of hematological malignancy necessitate early correction, preferably before 2 years of age, with hematopoietic stem cell transplant (HSCT) or gene therapy. Clinical features and severity are varied, making the diagnosis difficult in milder cases. We report an Omani boy diagnosed in early infancy with WAS based on clinical presentation and confirmed by genetic diagnosis with cure by HSCT from an HLA-identical sibling donor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diagnosis" title="genetic diagnosis">genetic diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=hematopoietic%20stem%20cell%20transplant" title=" hematopoietic stem cell transplant"> hematopoietic stem cell transplant</a>, <a href="https://publications.waset.org/abstracts/search?q=infant" title=" infant"> infant</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiskott-Aldrich%20syndrome" title=" Wiskott-Aldrich syndrome"> Wiskott-Aldrich syndrome</a> </p> <a href="https://publications.waset.org/abstracts/188928/excellent-outcome-with-early-diagnosis-in-an-infant-with-wiskott-aldrich-syndrome-in-a-tertiary-hospital-in-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3817</span> Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alieh%20Farshbaf">Alieh Farshbaf </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title="stem cell">stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=AIDS" title=" AIDS"> AIDS</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20modification" title=" gene modification"> gene modification</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20engineering" title=" cell engineering"> cell engineering</a> </p> <a href="https://publications.waset.org/abstracts/37049/induction-of-hiv-1-resistance-the-new-approaches-based-on-gene-modification-and-stem-cell-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=128">128</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=129">129</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cord%20blood-derived%20hematopoietic%20stem%20cells%20%28CB-CD34%2B%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10