CINXE.COM

Search results for: Chicken manure

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chicken manure</title> <meta name="description" content="Search results for: Chicken manure"> <meta name="keywords" content="Chicken manure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chicken manure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chicken manure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 384</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chicken manure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Biodiesel Synthesis Using Animal Excreta-Based Biochar and Waste Cooking Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Ryong%20Lee">Sang-Ryong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Woon%20%20Jung"> Min-Woon Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Deugwoo%20Han"> Deugwoo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiyong%20Kim"> Kiyong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study laid an emphasis on the possible employment of biochar generated from pyrolysis of animal excreta to establish a green platform for producing biodiesel. To this end, the pseudo-catalytic transesterification reaction using chicken manure biochar and waste cooking oil was investigated. Compared with a commercial porous material (SiO2), chicken manure biochar generated from 350 C showed better performance, resulting in 95.6% of the FAME yield at 350C. The Ca species in chicken manure biochar imparted strong catalytic capability by providing the basicity for transesterification. The identified catalytic effect also led to the thermal cracking of unsaturated FAMEs, which decreased the overall FAME yield. For example, 40–60% of converted FAMEs were thermally degraded. To avoid undesirable thermal cracking arising from the high content of the Ca species in chicken manure biochar, the fabrication of chicken manure biochar at temperatures ≥350C was highly recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trasesterification" title="Trasesterification">Trasesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=Animal%20excreta" title=" Animal excreta"> Animal excreta</a>, <a href="https://publications.waset.org/abstracts/search?q=FAME" title=" FAME"> FAME</a>, <a href="https://publications.waset.org/abstracts/search?q=Biochar" title=" Biochar"> Biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chicken%20manure" title=" Chicken manure"> Chicken manure</a> </p> <a href="https://publications.waset.org/abstracts/85982/biodiesel-synthesis-using-animal-excreta-based-biochar-and-waste-cooking-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Effect of Organic Manure on Production of Potato (Solanum tuberosum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Behrooz">R. Behrooz</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jahanfar"> D. Jahanfar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Reza"> D. Reza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic farming is a fundamental principle in sustainable agriculture. Preventing excessive contamination of water and soil with pesticides and chemical fertilizers is important in order to produce healthy food. For this purpose, two potato cultivars (Sante and Marfona) and seven levels of fertilizer (non-fertilizer, chemical fertilizer, granulated chicken manure, common manure, compost, vermicompost and tea compost) were evaluated by factorial experiment based on randomized complete block design (RCBD) with three replications. According to the results, the effect of different manure was significant on number of tubers per plant, tuber weight per plant and tuber yield. The highest value of these traits was obtained by using of chicken manure which was significantly superior to other treatments. However, there was no significant difference between the two varieties. According to the results, the use of chicken manure has produced the highest potato yield even in comparison with the use of chemical fertilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20manure" title=" organic manure"> organic manure</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=tuber%20yield" title=" tuber yield"> tuber yield</a> </p> <a href="https://publications.waset.org/abstracts/95085/effect-of-organic-manure-on-production-of-potato-solanum-tuberosum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Yangin-Gomec">Cigdem Yangin-Gomec</a>, <a href="https://publications.waset.org/abstracts/search?q=Aigerim%20Jaxybayeva"> Aigerim Jaxybayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Ince"> Orhan Ince</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23<sup>◦</sup>C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of COD<sub>removed</sub> from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35<sup>◦</sup>C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20anaerobic%20digestion" title="ambient anaerobic digestion">ambient anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20recovery" title=" biogas recovery"> biogas recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title=" poultry manure"> poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/40062/renewable-energy-potential-of-diluted-poultry-manure-during-ambient-anaerobic-stabilisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> A Comparative Study on Fish Raised with Feed Formulated with Various Organic Wastes and Commercial Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chijioke%20Dike">Charles Chijioke Dike</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugh%20Clifford%20Chima%20Maduka"> Hugh Clifford Chima Maduka</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinwe%20A.%20Isibor"> Chinwe A. Isibor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is among the products consumed at a very high rate. In most countries of the world, fish are used as part of the daily meal. The high cost of commercial fish feeds in Africa has made it necessary the development of an alternative source of fish feed processing from organic waste. The objective of this research is to investigate the efficacy of fish feeds processed from various animal wastes in order to know whether those feeds shall be alternatives to commercial feeds. This work shall be carried out at the Research Laboratory Unit of the Department of Human Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University (NAU), Nnewi Campus, Anambra State. The fingerlings to be used shall be gotten from the Agricultural Department of NAU, Awka, Anambra State, and allowed to acclimatize for 14 d. Animal and food wastes shall be gotten from Nnewi. The fish shall be grouped into 1-13 (Chicken manure only, cow dung only, pig manure only, chicken manure + yeast, cow dung + yeast, pig manure + yeast, chicken manure + other wastes + yeast, cow dung + other wastes + yeast, and pig manure + other wastes + yeast. Feed assessment shall be carried out by determining bulk density, feed water absorption, feed hardness, feed oil absorption, and feed water stability. The nutritional analysis shall be carried out on the feeds processed. The risk assessment shall be done on the fish by determining methylmercury (MeHg), polycyclic aromatic hydrocarbons (PAHs), and dichloro-diphenyl-trichloroethane (DDT) in the fish. The results from this study shall be analyzed statistically using SPSS statistical software, version 25. The hypothesis is that fish feeds processed from animal wastes are efficient in raising catfish. The outcome of this study shall provide the basis for the formulation of fish feeds from organic wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=feeds" title=" feeds"> feeds</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes" title=" wastes"> wastes</a> </p> <a href="https://publications.waset.org/abstracts/161292/a-comparative-study-on-fish-raised-with-feed-formulated-with-various-organic-wastes-and-commercial-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Assessment of the Production System and Management Practices in Selected Layer Chicken Farms in Batangas, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monette%20S.%20De%20Castro">Monette S. De Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Veneranda%20A.%20Magpantay"> Veneranda A. Magpantay</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20B.%20Adiova"> Christine B. Adiova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20D.%20Arboleda"> Mark D. Arboleda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One-hundred-layer chicken farmers were randomly selected and interviewed using structured questionnaires to assess the production system and management practices in layer chicken farms. The respondents belonged to the commercial scale operation. Results showed that the predominant rearing and housing systems were intensive/complete confinement and open-sided, while slatted was the common type of flooring used during the brood-grow period. Dekalb and Lohmann were the common chicken layer strains reared by farmers. The majority of commercial chicken layer farms preferred ready-to-lay (RTL) pullets as their replacement stocks. Selling was the easiest way for farmers to dispose of and utilize poultry manure, while veterinary waste and mortality were disposed of in pits. Biosecurity practices employed by the farmers conformed with the ASEAN Biosecurity Management Manual for Commercial Poultry Farming. Flies and odor were the major problems in most layer farms that are associated with their farm wastes. Therefore, the application of new technologies and husbandry practices through training and actual demonstrations could be implemented to further improve the layer chicken raising in the province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layer%20chicken%20farms" title="layer chicken farms">layer chicken farms</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing" title=" marketing"> marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20system" title=" production system"> production system</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/182403/assessment-of-the-production-system-and-management-practices-in-selected-layer-chicken-farms-in-batangas-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Baltrenas">P. Baltrenas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Paliulis"> D. Paliulis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kolodynskij"> V. Kolodynskij</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Urbanas"> D. Urbanas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/101582/experimental-research-of-biogas-production-by-using-sewage-sludge-and-chicken-manure-bioloadings-with-wood-biochar-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Manure Management Systems in Sheep and Goat Farms in Konya, Türkiye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selda%20Uzal%20Seyfi">Selda Uzal Seyfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Goat and sheep milk is quite significant in human nutrition. It is considered as more important day by day. This study was carried out in order to determine applied manure management system and their possibilities of improvement in goat and sheep farm in between 2012 and 2013 years. In the study, it was investigated manure management systems of 25 pieces of sheep and goat farms. It was analyzed the manure collecting, storage and treatment features of farms and whether or not they are suitable for animal breeding. As a result of the study, it was determined that the applied manure management systems in the farm were insufficient. Planning the manure management systems in goat and sheep breeding is appropriate technical criteria is useful in respect of the animal welfare, animal health, the health of workers in the barn and environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goat%20farm" title="goat farm">goat farm</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20farm" title=" sheep farm"> sheep farm</a>, <a href="https://publications.waset.org/abstracts/search?q=manure%20storage" title=" manure storage"> manure storage</a>, <a href="https://publications.waset.org/abstracts/search?q=manure%20management" title=" manure management"> manure management</a> </p> <a href="https://publications.waset.org/abstracts/64622/manure-management-systems-in-sheep-and-goat-farms-in-konya-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> The Effects of Cow Manure Treated by Fruit Beetle Larvae, Waxworms and Tiger Worms on Plant Growth in Relation to Its Use as Potting Compost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20S.%20Alwaneen">Waleed S. Alwaneen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dairy industry is flourishing in world to provide milk and milk products to local population. Besides milk products, dairy industries also generate a substantial amount of cow manure that significantly affects the environment. Moreover, heat produced during the decomposition of the cow manure adversely affects the crop germination. Different companies are producing vermicompost using different species of worms/larvae to overcome the harmful effects using fresh manure. Tiger worm treatment enhanced plant growth, especially in the compost-manure ratio (75% compost, 25% cow manure), followed by a ratio of 50% compost, 50% cow manure. &nbsp;Results also indicated that plant growth in Waxworm treated manure was weak as compared to plant growth in compost treated with Fruit Beetle (FB), Waxworms (WW), and Control (C) especially in the compost (25% compost, 75% cow manure) and 100% cow manure where there was no growth at all. Freshplant weight, fresh leaf weight and fresh root weight were significantly higher in the compost treated with Tiger worms in (75% compost, 25% cow manure); no evidence was seen for any significant differences in the dry root weight measurement between FB, Tiger worms (TW), WW, Control (C) in all composts. TW produced the best product, especially at the compost ratio of 75% compost, 25% cow manure followed by 50% compost, 50% cow manure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit%20beetle" title="fruit beetle">fruit beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=tiger%20worms" title=" tiger worms"> tiger worms</a>, <a href="https://publications.waset.org/abstracts/search?q=waxworms" title=" waxworms"> waxworms</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/112712/the-effects-of-cow-manure-treated-by-fruit-beetle-larvae-waxworms-and-tiger-worms-on-plant-growth-in-relation-to-its-use-as-potting-compost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Analyzing the Effect of Biomass and Cementitious Materials on Air Content in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Albahttiti">Mohammed Albahttiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliana%20Aguilar"> Eliana Aguilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A push for sustainability in the concrete industry is increasing. Cow manure itself is becoming a problem and having the potential solution to use it in concrete as a cementitious replacement would be an ideal solution. For cow manure ash to become a well-rounded substitute, it would have to meet the right criteria to progress in becoming a more popular idea in the concrete industry. This investigation primarily focuses on how the replacement of cow manure ash affects the air content and air void distribution in concrete. In order to assess these parameters, the Super Air Meter (SAM) was used to test concrete in this research. In addition, multiple additional tests were performed, which included the slump test, temperature, and compression test. The strength results of the manure ash in concrete were promising. The manure showed compression strength results that are similar to that of the other supplementary cementitious materials tested. On the other hand, concrete samples made with cow manure ash showed 2% air content loss and an increasing SAM number proportional to cow manure content starting at 0.38 and increasing to 0.8. In conclusion, while the use of cow manure results in loss of air content, it results in compressive strengths similar to other supplementary cementitious materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20content" title="air content">air content</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20ash" title=" biomass ash"> biomass ash</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20manure%20ash" title=" cow manure ash"> cow manure ash</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20air%20meter" title=" super air meter"> super air meter</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20materials" title=" supplementary cementitious materials"> supplementary cementitious materials</a> </p> <a href="https://publications.waset.org/abstracts/105720/analyzing-the-effect-of-biomass-and-cementitious-materials-on-air-content-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Isolation and Characterization of Collagen from Chicken Feet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hashim">P. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mohd%20Ridzwan"> M. S. Mohd Ridzwan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bakar"> J. Bakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collagen was isolated from chicken feet by using papain and pepsin enzymes in acetic acid solution at 4°C for 24h with a yield of 18.16% and 22.94% by dry weight, respectively. Chemical composition and characteristics of chicken feet collagen such as amino acid composition, SDS-PAGE patterns, FTIR spectra and thermal properties were evaluated. The chicken feet collagen is rich in the amino acids glycine, glutamic acid, proline and hydroxyproline. Electrophoresis pattern demonstrated two distinct α-chains (α1 and α2) and β chain, indicating that type I collagen is a major component of chicken feet collagen. The thermal stability of collagen isolated by papain and pepsin revealed stable denaturation temperatures of 48.40 and 53.35°C, respectively. The FTIR spectra of both collagens were similar with amide regions in A, B, I, II, and III. The study demonstrated that chicken feet collagen using papain isolation method is possible as commercial alternative ingredient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20feet" title="chicken feet">chicken feet</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=papain" title=" papain"> papain</a>, <a href="https://publications.waset.org/abstracts/search?q=pepsin" title=" pepsin"> pepsin</a> </p> <a href="https://publications.waset.org/abstracts/3623/isolation-and-characterization-of-collagen-from-chicken-feet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Nutritional Quality of Partially Processed Chicken Meat Products from Egyptian and Saudi Arabia Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Meawad%20Ahmad">Ali Meawad Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosny%20A.%20Abdelrahman"> Hosny A. Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chicken meat is a good source of protein of high biological value which contains most of essential amino-acids with high proportion of unsaturated fatty acids and low cholesterol level. Besides, it contain many vitamins as well as minerals which are important for the human body. Therefore, a total of 150 frozen chicken meat product samples, 800g each within their shelf-life, were randomly collected from commercial markets from Egypt (75 samples) and Saudi Arabian (75 samples) for chemical evaluation. The mean values of fat% in the examined samples of Egyptian and Saudi markets were 16.0% and 4.6% for chicken burger; 15.0% and 11% for nuggets and 11% and 11% for strips respectively. The mean values of moisture % in the examined samples of Egyptian and Saudi markets were 67.0% and 81% for chicken burger; 66.0% and 78% for nuggets and 71.0% and 72% for strips respectively. The mean values of protein % in the examined samples of Egyptian and Saudi markets were 15% and 17% for chicken burger; 16% and 16% for nuggets and 16% and 17% for strips respectively. The obtained results were compared with the Egyptian slandered and suggestions for improving the chemical quality of chicken products were given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20meat" title="chicken meat">chicken meat</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=markets" title=" markets"> markets</a> </p> <a href="https://publications.waset.org/abstracts/40108/nutritional-quality-of-partially-processed-chicken-meat-products-from-egyptian-and-saudi-arabia-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Factors Affecting Consumers’ Willingness to Pay for Chicken Meat from Biosecure Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veronica%20Sri%20Lestari">Veronica Sri Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmuddin%20Natsir"> Asmuddin Natsir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasmida%20Karim"> Hasmida Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Patrick"> Ian Patrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research aimed at investigating the factors affecting consumers&rsquo; willingness to pay for chicken meat from biosecure farms. The research was conducted in Makassar City, South Sulawesi Province, Indonesia. Samples were taken using random sampling technique in two supermarkets namely Lotte Mart and Gelael. Total samples were 50 respondents which comprised the chicken meat consumers. To find out the consumers&rsquo; willingness to pay for chicken meat from the biosecure farms, the contingent valuation method was utilized. Data were collected through interviews and questionnaires. Probit Logistic was estimated to examine the factors affecting the consumers&rsquo; willingness to pay for at the premium price for chicken meat from the biosecure farms. The research indicates that the education and income affect significantly the consumers&rsquo; willingness to pay for chicken meat from the biosecure farms (P &lt; 0.05). The results of the study will be beneficial for the policy makers, producers, consumers and those conducting research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosecure" title="biosecure">biosecure</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken" title=" chicken"> chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=farms" title=" farms"> farms</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer" title=" consumer"> consumer</a>, <a href="https://publications.waset.org/abstracts/search?q=willingness-to-pay" title=" willingness-to-pay"> willingness-to-pay</a> </p> <a href="https://publications.waset.org/abstracts/48035/factors-affecting-consumers-willingness-to-pay-for-chicken-meat-from-biosecure-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Changes in Some Biochemical Parameters and Body Weight of Chicken Exposed to Cadmium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Saeed%20Ali">Khaled Saeed Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted with 3 week old domestic chicken to determine the effect of supplementation of cadmium to dietary. 10 mg/kg Cadmium chloride added to maize- sesame cake meal diet for 4 weeks. The additional cadmium to the diet induced a decreasing body weight and changes in biochemical parameters of chicken. Chicken were divided into two groups. The first group was given a diet containing the concentration of 10 mg cadmium /kg daily for a period of 30 days and the second group was given diet without cadmium and used as a control group. The result revealed decrease in the body weight of treated chicken by 12.7 % compared to control group, whose body weight increased. The plasma glucose concentration, creatinine, aspartate aminotranseferase (AST), and alanine aminotransferase (ALT) were increased significantly (P<0.05) in Cd treated chicken in comparison to the control group. Cadmium accumulation was observed in the intestine, kidney, liver and bone. The accumulation of cadmium was markedly higher (3-4 times) in cadmium-treated animals compared to the control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title=" body weight"> body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken" title=" chicken"> chicken</a> </p> <a href="https://publications.waset.org/abstracts/16827/changes-in-some-biochemical-parameters-and-body-weight-of-chicken-exposed-to-cadmium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Exploring the Impact of Tillage and Manure on Soil Water Retention and Van Genuchten</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Safadoust">Azadeh Safadoust</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Mahboubi"> Ali Akbar Mahboubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=manure" title=" manure"> manure</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated%20hydraulic%20conductivity" title=" saturated hydraulic conductivity"> saturated hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water%20characteristic%20curve" title=" soil water characteristic curve"> soil water characteristic curve</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a> </p> <a href="https://publications.waset.org/abstracts/179918/exploring-the-impact-of-tillage-and-manure-on-soil-water-retention-and-van-genuchten" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20Stefanny%20Aguilar-Moreno">Guadalupe Stefanny Aguilar-Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Aguilar-Mendez"> Miguel Angel Aguilar-Mendez</a>, <a href="https://publications.waset.org/abstracts/search?q=Teodoro%20Espinosa-Solares"> Teodoro Espinosa-Solares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20sector" title="agricultural sector">agricultural sector</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/114341/effect-of-the-magnetite-nanoparticles-concentration-on-biogas-and-methane-production-from-chicken-litter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Soil Properties and Yam Performance as Influenced by Poultry Manure and Tillage on an Alfisol in Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Adeleye">E. O. Adeleye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiments were conducted to investigate the effect of soil tillage techniques and poultry manure application on the soil properties and yam (Dioscorea rotundata) performance in Ondo, southwestern Nigeria for two farming seasons. Five soil tillage techniques, namely ploughing (P), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and zero-tillage (ZT) each combined with and without poultry manure at the rate of 10 tha-1 were investigated. Data were obtained on soil properties, nutrient uptake, growth and yield of yam. Soil moisture content, bulk density, total porosity and post harvest soil chemical characteristics were significantly (p>0.05) influenced by soil tillage-manure treatments. Addition of poultry manure to the tillage techniques in the study increased soil total porosity, soil moisture content and reduced soil bulk density. Poultry manure improved soil organic matter, total nitrogen, available phosphorous, exchangeable Ca, k, leaf nutrients content of yam, yam growth and tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that the possible deleterious effect of tillage on soil properties, growth and yield of yam on an alfisol in southwestern Nigeria can be reduced by combining tillage with poultry manure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poultry%20manure" title="poultry manure">poultry manure</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20chemical%20properties" title=" soil chemical properties"> soil chemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/7336/soil-properties-and-yam-performance-as-influenced-by-poultry-manure-and-tillage-on-an-alfisol-in-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> The Expression of Toll-Like Receptors Gene in Peripheral Blood Mononuclear Cells of Betong (KU Line) Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Boonkaewwan">Chaiwat Boonkaewwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anutian%20Suklek"> Anutian Suklek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatuporn%20Rattanasrisomporn"> Jatuporn Rattanasrisomporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Autchara%20Kayan"> Autchara Kayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toll-like receptors (TLR) are conserved microbial sensing receptors located on cell surface that are able to detect different pathogens. The aim of the present study is to examine the expression of TLR gene in peripheral blood mononuclear cell of Betong (KU line) chicken. Blood samples were collected from healthy 12 Betong (KU line) chicken. PBMCs were isolated and maintained in RPMI1640 with 10% FBS, penicillin and streptomycin. Cell viability was determined by trypan blue dye exclusion test. The expression of TLRs gene was investigated by polymerase chain reaction (PCR) technique. Results showed that PBMCs viability from Betong (KU line) chicken was 95.38 ± 1.06%. From the study of TLRs gene expression, results indicated that there are expressions of TLR1.1 TLR1.2 TLR2.1 TLR2.2 TLR3 TLR4 TLR5 TLR 7 TLR15 and TLR21 in PBMCs of Betong (KU line) chicken. In conclusion, PBMCs isolated from blood of Betong (KU line) chicken had a high cell viability ( > 95%). The expression of TLRs in chicken was all found in PBMCs, which indicated that PBMC isolated from the blood of Betong (KU line) chicken can be used as an in vitro immune responses study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toll-like%20receptor" title="toll-like receptor">toll-like receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=Betong%20%28KU%20line%29%20chicken" title=" Betong (KU line) chicken"> Betong (KU line) chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20blood%20mononuclear%20cells" title=" peripheral blood mononuclear cells"> peripheral blood mononuclear cells</a> </p> <a href="https://publications.waset.org/abstracts/111706/the-expression-of-toll-like-receptors-gene-in-peripheral-blood-mononuclear-cells-of-betong-ku-line-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Tillage and Manure Effects on Water Retention and Van Genuchten Parameters in Western Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Safadoust">Azadeh Safadoust</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Mahboubi"> Ali Akbar Mahboubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Mosaddeghi"> Mohammad Reza Mosaddeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Gharabaghi"> Bahram Gharabaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha⁻¹] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha⁻¹). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha⁻¹). This was due to the increase in the total pore size and continuity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=manure" title=" manure"> manure</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated%20hydraulic%20conductivity" title=" saturated hydraulic conductivity"> saturated hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water%20characteristic%20curve" title=" soil water characteristic curve"> soil water characteristic curve</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a> </p> <a href="https://publications.waset.org/abstracts/160768/tillage-and-manure-effects-on-water-retention-and-van-genuchten-parameters-in-western-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Investigation of Biogas from Slaughterhouse and Dairy Farm Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saadelnour%20Abdueljabbar%20Adam">Saadelnour Abdueljabbar Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents a solution of organic waste from cow dairy farms and slaughterhouse. We present the findings of experimental investigation of biogas production using cow manure, blood and rumen content were mixed at three proportions :72.3%, 61%, 39% manure, 6%, 8.5%, 22% blood; and 21.7%, 30.5%, 39% rumen content in volume for bio-digester 1,2,3 respectively. This paper analyses the quantitative and qualitative composition of biogas: gas content, and the concentration of methane. The highest biogas output 0.116L/g dry matter from bio-digester1 together with a high-quality biogas of 85% methane Was from the mixture of cow manure with blood and rumen content were mixed at 72.3%manure, 6%blood and 21.7%rumen content which is useful for combustion and energy production. While bio-digester 2 and 3 gave 0.012L/g dry matter and 0.013L/g dry matter respectively with the weak concentration of methane (50%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-digester" title=" bio-digester"> bio-digester</a>, <a href="https://publications.waset.org/abstracts/search?q=blood" title=" blood"> blood</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20manure" title=" cow manure"> cow manure</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20content" title=" rumen content"> rumen content</a> </p> <a href="https://publications.waset.org/abstracts/20167/investigation-of-biogas-from-slaughterhouse-and-dairy-farm-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Temperature Susceptibility for Optimal Biogas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujjal%20Chattaraj">Ujjal Chattaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Pbharat%20Saikumar"> Pbharat Saikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Thinley%20Dorji"> Thinley Dorji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digester" title="digester">digester</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic%20temperature" title=" mesophilic temperature"> mesophilic temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20manure" title=" organic manure"> organic manure</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20temperature" title=" thermophilic temperature"> thermophilic temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=t-test" title=" t-test"> t-test</a> </p> <a href="https://publications.waset.org/abstracts/54436/temperature-susceptibility-for-optimal-biogas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Soil Water Retention and Van Genuchten Parameters following Tillage and Manure Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Farajifar">Shahin Farajifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Safadoust"> Azadeh Safadoust</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Mahboubi"> Ali Akbar Mahboubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=manuure" title=" manuure"> manuure</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated%20hydraulic%20conductivity" title=" saturated hydraulic conductivity"> saturated hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water%20characteristic%20curve" title=" soil water characteristic curve"> soil water characteristic curve</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a> </p> <a href="https://publications.waset.org/abstracts/169776/soil-water-retention-and-van-genuchten-parameters-following-tillage-and-manure-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Pomegranate Peel Based Edible Coating Treatment for Safety and Quality of Chicken Nuggets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sajid%20Arshad">Muhammad Sajid Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Bashir"> Sadaf Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of pomegranate peel based edible coating were determined on safety and quality of chicken nuggets. Four treatment groups were prepared as control (without coating), coating with sodium alginate (SA) (1.5%), pomegranate peel powder (PPP) (1.5%), and combination of SA and PPP. There was a significant variation observed with respect to coating treatments and storage intervals. The chicken nuggets were subjected to refrigerated storage (40C) and were analyzed at regular intervals of 0, 7, 14 1 and 21 days. The microbiological quality was determined by total aerobic and coliform counts. Total aerobic (5.09±0.05 log CFU/g) and coliforms (3.91±0.06 log CFU/g) counts were higher in uncoated chicken nuggets whereas lower was observed in coated chicken nuggets having combination of SA and PPP. Likewise, antioxidants potential of chicken nuggets was observed by assessing total phenolic contents (TPC) and DPPH activity. Higher TPC (135.66 GAE/100g) and DPPH (64.65%) were found in combination with SA and PPP, whereas minimum TPC (91.38) and DPPH (41.48) was observed in uncoated chicken nuggets. Regarding the stability analysis of chicken nuggets, thiobarbituric acid reactive substances (TBARS) and peroxide value (POV) were determined. Higher TBARS (1.62±0.03 MDA/Kg) and POV (0.92±0.03 meq peroxide/kg) were found in uncoated chicken nuggets. Hunter color values were also observed in both uncoated and coated chicken nuggets. Sensorial attributes were also observed by the trained panelists. The higher sensory score for appearance, color, taste, texture and overall acceptability were observed in control (uncoated) while in coated treatments, it was found within acceptable limits. In nutshell, the combination of SA and PPP enhanced the overall quality, antioxidant potential, and stability of chicken nuggets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20nuggets" title="chicken nuggets">chicken nuggets</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20coatings" title=" edible coatings"> edible coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20peel%20powder" title=" pomegranate peel powder"> pomegranate peel powder</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a> </p> <a href="https://publications.waset.org/abstracts/113564/pomegranate-peel-based-edible-coating-treatment-for-safety-and-quality-of-chicken-nuggets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Effect of Thermal Pretreatment on Functional Properties of Chicken Protein Hydrolysate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nutnicha%20Wongpadungkiat">Nutnicha Wongpadungkiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Suwit%20Siriwatanayotin"> Suwit Siriwatanayotin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aluck%20Thipayarat"> Aluck Thipayarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Punchira%20Vongsawasdi"> Punchira Vongsawasdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chotika%20Viriyarattanasak"> Chotika Viriyarattanasak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chicken products are major export product of Thailand. With a dramatically increasing consumption of chicken product in the world, there are abundant wastes from chicken meat processing industry. Recently, much research in the development of value-added products from chicken meat industry has focused on the production of protein hydrolysate, utilized as food ingredients for human diet and animal feed. The present study aimed to determine the effect of thermal pre-treatment on functional properties of chicken protein hydrolysate. Chicken breasts were heated at 40, 60, 80 and 100ºC prior to hydrolysis by Alcalase at 60ºC, pH 8 for 4 hr. The hydrolysate was freeze-dried, and subsequently used for assessment of its functional properties molecular weight by gel electrophoresis (SDS-PAGE). The obtained results show that increasing the pre-treatment temperature increased oil holding capacity and emulsion stability while decreasing antioxidant activity and water holding capacity. The SDS-PAGE analysis showed the evidence of protein aggregation in the hydrolysate treated at the higher pre-treatment temperature. These results suggest the connection between molecular weight of the hydrolysate and its functional properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20protein%20hydrolysate" title="chicken protein hydrolysate">chicken protein hydrolysate</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20pretreatment" title=" thermal pretreatment"> thermal pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title=" functional properties"> functional properties</a> </p> <a href="https://publications.waset.org/abstracts/56093/effect-of-thermal-pretreatment-on-functional-properties-of-chicken-protein-hydrolysate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Changes in Physical Soil Properties and Crop Status on Soil Enriched With Treated Manure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Novak">Vaclav Novak</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Krizova"> Katerina Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Sarec"> Petr Sarec</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern agriculture has to face many issues from which soil degradation and lack of organic matter in the soil are only a few of them. Apart from Climate Change, human utilization of landscape is the cause of a majority part of these problems. Cattle production in Czechia has been reduced by more than half in recent 30 years. However, cattle manure is considered as staple organic fertilizer, and its role in attempts for sustainable agriculture is irreplaceable. This study aims to describe the impact of so-called activators of biological manure transformation (Z´fix, Olmix Group) mainly on physical soil properties but also on crop status. The experiment has been established in 2017; nevertheless, initial measurements of implement draft have been performed before the treated manure application. In 2018, the physical soil properties and crop status (sugar beet) has been determined and compared with the untreated manure and control variant. Significant results have been observed already in the first year, where the implement draft decreased by 9.2 % within the treated manure variant in comparison with the control variant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20experiment" title="field experiment">field experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=implement%20draft" title=" implement draft"> implement draft</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20index" title=" vegetation index"> vegetation index</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20beet" title=" sugar beet"> sugar beet</a> </p> <a href="https://publications.waset.org/abstracts/120126/changes-in-physical-soil-properties-and-crop-status-on-soil-enriched-with-treated-manure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Evaluation of Biofertilizer and Manure Effects on Quantitative Yield of Nigella Sativa L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Haj%20Seyed%20Hadi">Mohammad Reza Haj Seyed Hadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Ghanepasand"> Fereshteh Ghanepasand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taghi%20Darzi"> Mohammad Taghi Darzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was to determine the effects of Nitrogen fixing bacteria and manure application on the seed yield and yield components in black cumin (Nigella sativa L.). The experiment was carried out at the RAN Research Station in Firouzkouh in 2012. A 4×4 factorial experiment, arranged in a randomized complete blocks designed with three replications. The treatments consisted of 4 level of nitrogen fixing bacteria (control, Azotobacter, Azospirillum and Azotobacter + Azospirillum) and 4 level of manure (0, 2.5, 5 and 7.5 ton ha-1). The present results have shown that the highest height, 1000 seeds weight, seed number per follicle, follicle yield, seed yield and harvest index were obtained after using Azotobacter and Azospirillum, simultaneously. Manure application only affects on follicle yield and by 5ton manure ha-1 the highest follicle yield obtained. Results of this investigation showed that the maximum seed yield obtained when Aotobacter+Azospirillum inoculated with black cumin seeds and 5 ton manure ha-1 applied. Combined application of nitrogen fixing bacteria and manure can be helpful in developing of production and yield in Black cumin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azotobacter" title="azotobacter">azotobacter</a>, <a href="https://publications.waset.org/abstracts/search?q=azospirillum" title=" azospirillum"> azospirillum</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title=" black cumin"> black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20components" title=" yield components"> yield components</a> </p> <a href="https://publications.waset.org/abstracts/28053/evaluation-of-biofertilizer-and-manure-effects-on-quantitative-yield-of-nigella-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Effect of Manure Treatment on Furrow Erosion: A Case Study of Sagawika Irrigation Scheme in Kasungu, Malawi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abel%20Mahowe">Abel Mahowe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Furrow erosion is the major problem menacing sustainability of irrigation in Malawi and polluting water bodies resulting in death of many aquatic animals. Many rivers in Malawi are drying due to some poor practices that are being practiced around these water bodies, furrow erosion is one of the cause of sedimentation in these rivers although it has gradual effect on deteriorating of these rivers hence neglected, but has got long term disastrous effect on water bodies. Many aquatic animals also suffer when these sediments are taken into these water bodies. An assessment of effect of manure treatment on furrow erosion was carried out in Sagawika irrigation scheme located in Kasungu District north part of Malawi. The soil on the field was clay loam and had just been tilled. The average furrow slope of 0.2% and was divided into two blocks, A and B. Each block had 20V-shaped furrow having a length of 10 m. Three different manure were used to construct these furrows by mixing it with soil which was moderately moist and 5 furrows from each block were constructed without manure. In each block 5furrow were made using a specific type of manure, and one set of five furrows in each block was made without manure treatment. The types of manure that were used were goat manure, pig manure, and manure from crop residuals. The manure application late was 5 kg/m. The furrow was constructed at a spacing of 0.6 m. Tomato was planted in the two blocks at spacing of 0.15 m between rows and 0.15 m between planting stations. Irrigation water was led from feeder canal into the irrigation furrows using siphons. The siphons discharge into each furrow was set at 1.86 L/S. The ¾ rule was used to determine the cut-off time for the irrigation cycles in order to reduce the run-off at the tail end. During each irrigation cycle, samples of the runoff water were collected at one-minute intervals and analyzed for total sediment concentration for use in estimating the total soil sediment loss. The results of the study have shown that a significant amount of soil is lost in soils without many organic matters, there was a low level of erosion in furrows that were constructed using manure treatment within the blocks. In addition, the results have shown that manure also differs in their ability to control erosion since pig manure proved to have greater abilities in binding the soil together than other manure since they were reduction in the amount of sediments at the tail end of furrows constructed by this type of manure. The results prove that manure contains organic matters which helps soil particles to bind together hence resisting the erosive force of water. The use of manure when constructing furrows in soil with less organic matter can highly reduce erosion hence reducing also pollution of water bodies and improve the conditions of aquatic animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic" title="aquatic">aquatic</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=furrow" title=" furrow"> furrow</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/47359/effect-of-manure-treatment-on-furrow-erosion-a-case-study-of-sagawika-irrigation-scheme-in-kasungu-malawi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> The Effects of Sewage Sludge Usage and Manure on Some Heavy Metals Uptake in Savory (Satureja Hortensis L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Hani">Abbas Hani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades with the development of technology and lack of food sources, sewage sludge in production of human foods is inevitable. Various sources of municipal and industrial sewage sludge that is produced can provide the requirement of plant nutrients. Soils in arid, semi-arid climate of central Iran that most affected by water drainage, iron and zinc deficiencies, using of sewage sludge is helpful. Therefore, the aim of this study is investigation of sewage sludge and manure application on Ni and Zn uptake by Savory. An experiment in a randomized complete block design with three replications was performed. Sewage sludge treatments consisted of four levels, control, 15, 30, 80 tons per hectares, the manure was used in four levels of control, 20, 40 and 80 tons per hectare. Results showed that the wet and dry weights was not affected by sewage sludge using, while, manure has significant effect on them. The effect of sewage sludge on the cadmium and lead concentrations were significant. Interactions of sewage sludge and manure on dry weight values were not significant. Compare mean analysis showed that increasing the amount of sewage sludge had no significant effect on cadmium concentration and it reduced when sewage sludge usage increased. This is probably due to increased plant growth and reduced concentrations of these elements in the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=savory" title="savory">savory</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=manure" title=" manure"> manure</a> </p> <a href="https://publications.waset.org/abstracts/18651/the-effects-of-sewage-sludge-usage-and-manure-on-some-heavy-metals-uptake-in-savory-satureja-hortensis-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Utilization of Chicken Skin Based Products as Fat Replacers for Improving the Nutritional Quality, Physico-Chemical Characteristics and Sensory Attributes of Beef Fresh Sausage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20M.%20H.%20Mohamed">Hussein M. H. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20B.%20Zaki"> Hamdy M. B. Zaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh sausage is one of the cheapest and delicious meat products that are gaining popularity all over the world. It is considered as a practice of adding value to low-value meat cuts of high fat and connective tissue contents. One of the most important characteristics of fresh sausage is the distinctive marbling appearance between lean and fatty portions, which can be achieved by using animal fat. For achieving the marbling appearance of fresh sausage, a lager amount of fat needs to be used. The use of animal fat may represent a health concern due to its content of saturated fatty acids and trans-fats, which increase the risk of heart diseases. There is a need for reducing the fat content of fresh sausage to obtain a healthy product. However, fat is responsible for the texture, flavor, and juiciness of the product. Therefore, developing reduced-fat products is a challenging process. The main objectives of the current study were to incorporate chicken skin based products (chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion) during the formulation of fresh sausage as fat replacers and to study the effect of these products on the nutritional quality, physicochemical properties, and sensory attributes of the processed product. Three fresh sausage formulae were prepared using chicken skin based fat replacers (chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion) beside one formula prepared using mesenteric beef fat as a control. The proximate composition, fatty acid profiles, Physico-chemical characteristics, and sensory attributes of all formulas were assessed. The results revealed that the use of chicken skin based fat replacers resulted in significant (P < 0.05) reduction of fat contents from 17.67 % in beef mesenteric fat formulated sausage to 5.77, 8.05 and 8.46 in chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion formulated sausages, respectively. Significant reduction in the saturated fatty acid contents and a significant increase in mono-unsaturated, poly-unsaturated, and omega-3 fatty acids have been observed in all formulae processed with chicken skin based fat replacers. Moreover, significant improvements in the physico-chemical characteristics and non-significant changes in the sensory attributes have been obtained. From the obtained results, it can be concluded that the chicken skin based products can be used safely to improve the nutritional quality and physico chemical properties of beef fresh sausages without changing the sensory attributes of the product. This study may encourage meat processors to utilize chicken skin based fat replacers for the production of high quality and healthy beef fresh sausages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20skin%20emulsion" title="chicken skin emulsion">chicken skin emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20sausage" title=" fresh sausage"> fresh sausage</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinized%20chicken%20skin" title=" gelatinized chicken skin"> gelatinized chicken skin</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinized%20chicken%20skin%20emulsion" title=" gelatinized chicken skin emulsion"> gelatinized chicken skin emulsion</a> </p> <a href="https://publications.waset.org/abstracts/119610/utilization-of-chicken-skin-based-products-as-fat-replacers-for-improving-the-nutritional-quality-physico-chemical-characteristics-and-sensory-attributes-of-beef-fresh-sausage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Biogas Production from Zebra Manure and Winery Waste Co-Digestion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wicleffe%20Musingarimi">Wicleffe Musingarimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=co-digestion" title=" co-digestion"> co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogens" title=" methanogens"> methanogens</a> </p> <a href="https://publications.waset.org/abstracts/77383/biogas-production-from-zebra-manure-and-winery-waste-co-digestion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Effect of Packaging Treatment and Storage Condition on Stability of Low Fat Chicken Burger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Kenawi%20Abdallah">Mohamed Ahmed Kenawi Abdallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical composition, cooking loss, shrinkage value, texture coefficient indices, Feder value, microbial examination, and sensory evaluation were done in order to examine the effect of adding 15% germinated quinoa seeds flour as extender to chicken wings meat to produce low fat chicken burger, packaged in two different packing materials and stored frozen for nine months. The data indicated reduction in the moisture content, crude either extract, and increase in the ash content, pH value, and total acidity for the samples extended by quinoa flour compared with the control one. The data showed that the extended samples with quinoa flour had the lowest values of TBA, cooking loss, and shrinkage value compared with the control ones. The data also revealed that, the sample contained quinoa flour had total bacterial count and psychrophilic bacterial count lower than the control sample. In addition, it has higher evaluation values for overall acceptability than the control one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20wings" title="chicken wings">chicken wings</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20fat%20chicken%20burger" title=" low fat chicken burger"> low fat chicken burger</a>, <a href="https://publications.waset.org/abstracts/search?q=quinoa%20flour" title=" quinoa flour"> quinoa flour</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20packaging." title=" vacuum packaging."> vacuum packaging.</a> </p> <a href="https://publications.waset.org/abstracts/154828/effect-of-packaging-treatment-and-storage-condition-on-stability-of-low-fat-chicken-burger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chicken%20manure&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10