CINXE.COM
Search results for: automotive production
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: automotive production</title> <meta name="description" content="Search results for: automotive production"> <meta name="keywords" content="automotive production"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="automotive production" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="automotive production"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7884</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: automotive production</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7884</span> Transforming the Automotive Production: A Bibliometric Analysis on Lean-Green Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Melissa%20Ergun">Ayse Melissa Ergun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lean management concept is a widely used and implemented production improvement solution especially in the automotive sector. However, in the recent years the need for an efficient production system became no longer sufficient for companies. The increasing importance of green production and environmental sustainability pushed companies to modify their manufacturing systems in a more environmentally conscious way. As a result, the recent improvements in the automotive sector has surpassed the lean management directives and currently are in need of a more sustainable and green transformation. At this point a comprehensive approach like Lean-Green (LG) Management, which combines lean management and green applications, gains popularity in the sector. This study conducts a bibliometric analysis between the years 2015-2023 for LG management. This study aims to identify the current standing of the literature. The most researched branches of the concept have been determined by the conducted analysis. Furthermore, this study sheds a light on the future research directions for scholars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LG%20management" title="LG management">LG management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=lean" title=" lean"> lean</a>, <a href="https://publications.waset.org/abstracts/search?q=green" title=" green"> green</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=bibliometric%20analysis" title=" bibliometric analysis"> bibliometric analysis</a> </p> <a href="https://publications.waset.org/abstracts/193444/transforming-the-automotive-production-a-bibliometric-analysis-on-lean-green-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7883</span> Fundamental Problems in the Operation of the Automotive Parts Industry Small and Medium Businesses in the Greater Bangkok and Perimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thepnarintra%20Praphanphat">Thepnarintra Praphanphat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this study were to: 1) investigate operation conditions of SME automotive part industry in Bangkok and vicinity and 2) to compare operation problem levels of SME automotive part industry in Bangkok and vicinity according to the sizes of the enterprises. Samples in this study included 196 entrepreneurs of SME automotive part industry in Bangkok and vicinity derived from simple random sampling and calculation from R. V. Krejcie and D. W. Morgan’s tables. Research statistics included frequency, percentage, mean, standard deviation, and T-test. The results revealed that in general the problem levels of SME automotive part industry in Bangkok and vicinity were high. When considering in details, it was found that the problem levels were high at every aspect, i.e. personal, production, export, finance, and marketing respectively. The comparison of the problem levels according to the sizes of the enterprises revealed statistically significant differences at .05. When considering on each aspect, it was found that the aspect with the statistical difference at .05 included 5 aspects, i.e. production, marketing, finance, personal, and export. The findings also showed that small enterprises faced more severe problems than those of medium enterprises. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20part%20industry" title="automotive part industry">automotive part industry</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20problems" title=" operation problems"> operation problems</a>, <a href="https://publications.waset.org/abstracts/search?q=SME" title=" SME"> SME</a>, <a href="https://publications.waset.org/abstracts/search?q=Perimeter" title=" Perimeter"> Perimeter</a> </p> <a href="https://publications.waset.org/abstracts/35780/fundamental-problems-in-the-operation-of-the-automotive-parts-industry-small-and-medium-businesses-in-the-greater-bangkok-and-perimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7882</span> Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Rybicka">Justyna Rybicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Tiwari"> Ashutosh Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shane%20Enticott"> Shane Enticott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system" title=" flexible manufacturing system"> flexible manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20performance" title=" capacity performance"> capacity performance</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a> </p> <a href="https://publications.waset.org/abstracts/43018/testing-a-flexible-manufacturing-system-facility-production-capacity-through-discrete-event-simulation-automotive-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7881</span> Quality Control of Automotive Gearbox Based On Vibration Signal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilson%20Barbieri">Nilson Barbieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Matos%20Martins"> Bruno Matos Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20de%20Sant%27Anna%20Vitor%20Barbieri"> Gabriel de Sant'Anna Vitor Barbieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20gearbox" title="automotive gearbox">automotive gearbox</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20morphology" title=" mathematical morphology"> mathematical morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet" title=" wavelet"> wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=bispectrum" title=" bispectrum"> bispectrum</a> </p> <a href="https://publications.waset.org/abstracts/22115/quality-control-of-automotive-gearbox-based-on-vibration-signal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7880</span> Analysis of the Impact of Foreign Direct Investment on the Integration of the Automotive Industry of Iran into Global Production Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Mostofian">Bahareh Mostofian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foreign Direct Investment (FDI) has long been recognized as a crucial driver of economic growth and development in less-developed countries and their integration into Global Production Networks (GPNs). FDI not only brings capital from the core countries but also technology, innovation, and know-how knowledge that can upgrade the capabilities of host automotive industries. On the other hand, FDI can also have negative impacts on host countries if it leads to significant import dependency. In the case of the Iranian automotive sector, the industry greatly benefited from FDI, with Western carmakers dominating the market. Over time, various types of know-how knowledge, including joint ventures (JVs), trade licenses, and technical assistance, have been provided, helping Iran upgrade its automotive industry. While after the severe geopolitical obstacles imposed by both the EU and the U.S., the industry became over-reliant on the car and spare parts imports, and the lack of emphasis on knowledge transfer further affected the growth and development of the Iranian automotive sector. To address these challenges, current research has adopted a descriptive-analytical methodology to illustrate the gradual changes accrued with foreign suppliers through FDI. The research finding shows that after the two-phase imposed sanctions, the detrimental linkages created by overreliance on the car and spare parts imports without any industrial upgrading negatively affected the growth and development of the national and assembled products of the Iranian automotive sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=less-developed%20country" title="less-developed country">less-developed country</a>, <a href="https://publications.waset.org/abstracts/search?q=FDI" title=" FDI"> FDI</a>, <a href="https://publications.waset.org/abstracts/search?q=GPNs" title=" GPNs"> GPNs</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/166654/analysis-of-the-impact-of-foreign-direct-investment-on-the-integration-of-the-automotive-industry-of-iran-into-global-production-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7879</span> A Solution for Production Facility Assignment: An Automotive Subcontract Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cihan%20%C3%87etinkaya">Cihan Çetinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Eren%20%C3%96zceylan"> Eren Özceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Elibal"> Kerem Elibal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a solution method for selection of production facility. The motivation has been taken from a real life case, an automotive subcontractor which has two production facilities at different cities and parts. The problem is to decide which part(s) should be produced at which facility. To the best of our knowledge, until this study, there was no scientific approach about this problem at the firm and decisions were being given intuitively. In this study, some logistic cost parameters have been defined and with these parameters a mathematical model has been constructed. Defined and collected cost parameters are handling cost of parts, shipment cost of parts and shipment cost of welding fixtures. Constructed multi-objective mathematical model aims to minimize these costs while aims to balance the workload between two locations. Results showed that defined model can give optimum solutions in reasonable computing times. Also, this result gave encouragement to develop the model with addition of new logistic cost parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20subcontract" title="automotive subcontract">automotive subcontract</a>, <a href="https://publications.waset.org/abstracts/search?q=facility%20assignment" title=" facility assignment"> facility assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20costs" title=" logistic costs"> logistic costs</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20models" title=" multi-objective models"> multi-objective models</a> </p> <a href="https://publications.waset.org/abstracts/68574/a-solution-for-production-facility-assignment-an-automotive-subcontract-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7878</span> Occupational Diseases in the Automotive Industry in Czechia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Jarol%C3%ADmek">J. Jarolímek</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Urban"> P. Urban</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Pavl%C3%ADnek"> P. Pavlínek</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Dz%C3%BArov%C3%A1"> D. Dzúrová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The industry constitutes a dominant economic sector in Czechia. The automotive industry represents the most important industrial sector in terms of gross value added and the number of employees. The objective of this study was to analyse the occurrence of occupational diseases (OD) in the automotive industry in Czechia during the 2001-2014 period. Whereas the occurrence of OD in other sectors has generally been decreasing, it has been increasing in the automotive industry, including growing spatial discrepancies. Data on OD cases were retrieved from the National Registry of Occupational Diseases. Further, we conducted a survey in automotive companies with a focus on occupational health services and positions of the companies in global production networks (GPNs). An analysis of OD distribution in the automotive industry was performed (age, gender, company size and its role in GPNs, regional distribution of studied companies, and regional unemployment rate), and was accompanied by an assessment of the quality and range of occupational health services. The employees older than 40 years had nearly 2.5 times higher probability of OD occurrence compared with employees younger than 40 years (OR 2.41; 95% CI: 2.05-2.85). The OD occurrence probability was 3 times higher for women than for men (OR 3.01; 95 % CI: 2.55-3.55). The OD incidence rate was increasing with the size of the company. An association between the OD incidence and the unemployment rate was not confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occupational%20diseases" title="occupational diseases">occupational diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20geography" title=" health geography"> health geography</a>, <a href="https://publications.waset.org/abstracts/search?q=unemployment" title=" unemployment"> unemployment</a> </p> <a href="https://publications.waset.org/abstracts/49738/occupational-diseases-in-the-automotive-industry-in-czechia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7877</span> Optimization of Production Scheduling through the Lean and Simulation Integration in Automotive Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guilherme%20Gorgulho">Guilherme Gorgulho</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Roberto%20Camello%20Lima"> Carlos Roberto Camello Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the competitive market in which companies are currently engaged, the constant changes require companies to react quickly regarding the variability of demand and process. The changes are caused by customers, or by demand fluctuations or variations of products, or the need to serve customers within agreed delivery taking into account the continuous search for quality and competitive prices in products. These changes end up influencing directly or indirectly the activities of the Planning and Production Control (PPC), which does business in strategic, tactical and operational levels of production systems. One area of concern for organizations is in the short term (operational level), because this planning stage any error or divergence will cause waste and impact on the delivery of products on time to customers. Thus, this study aims to optimize the efficiency of production scheduling, using different sequencing strategies in an automotive company. Seeking to aim the proposed objective, we used the computer simulation in conjunction with lean manufacturing to build and validate the current model, and subsequently the creation of future scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20simulation" title="computational simulation">computational simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title=" lean manufacturing"> lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20scheduling" title=" production scheduling"> production scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing%20strategies" title=" sequencing strategies"> sequencing strategies</a> </p> <a href="https://publications.waset.org/abstracts/53432/optimization-of-production-scheduling-through-the-lean-and-simulation-integration-in-automotive-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7876</span> Preparation and Characterization of Recycled Polyethylene Terephthalate/Polypropylene Blends from Automotive Textile Waste for Use in the Furniture Edge Banding Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Ozer">Merve Ozer</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolga%20Gokkurt"> Tolga Gokkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemen%20Gokkurt"> Yasemen Gokkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezgi%20Bozbey"> Ezgi Bozbey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigated the recovery of Polyethylene terephthalate/Polypropylene (PET/PP)-containing automotive textile waste from post-product and post-consumer phases in the automotive sector according to the upcycling technique and the methods of formulation and production that would allow these wastes to be substituted as PP/PET alloys instead of original PP raw materials used in plastic edge band production. The laminated structure of the stated wastes makes it impossible to separate the incompatible PP and PET phases in content and thus produce a quality raw material or product as a result of recycling. Within the scope of a two-stage production process, a comprehensive process was examined using block copolymers and maleic grafted copolymers with different features to ensure that these two incompatible phases are compatible. The mechanical, thermal, and morphological properties of the plastic raw materials, which will be referred to as PP/PET blends obtained as a result of the process, were examined in detail and discussed their substitutability instead of the original raw materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20recycling" title="mechanical recycling">mechanical recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blending" title=" melt blending"> melt blending</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20blends" title=" plastic blends"> plastic blends</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20of%20plastics" title=" recycling of plastics"> recycling of plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=terephthalate" title=" terephthalate"> terephthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20screw%20extruders" title=" twin screw extruders"> twin screw extruders</a> </p> <a href="https://publications.waset.org/abstracts/173560/preparation-and-characterization-of-recycled-polyethylene-terephthalatepolypropylene-blends-from-automotive-textile-waste-for-use-in-the-furniture-edge-banding-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7875</span> Product Architecture and Production Process of Battery Modules from Prismatic Lithium-Ion-Battery Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemanja%20Sarovic"> Nemanja Sarovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Philip%20Ganser"> Jan-Philip Ganser</a>, <a href="https://publications.waset.org/abstracts/search?q=Saskia%20Wessel"> Saskia Wessel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Lienemann"> Christoph Lienemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrification of the power train is a fundamental technical transition in the automotive industry and poses a major challenge for established car companies. Providing the traction energy, requiring an ever greater amount of space within the car and having a high share of value-add the lithium-ion battery is a central component of the electric power train and a completely new component to car manufacturers at the same time. Being relatively new to the automotive industry, the current design of the product architecture and production process (including manufacturing and assembling processes) of lithium-ion battery modules do not allow for an easy and cost-efficient disassembly or product design change. Yet these two requirements will increase in importance with rising sales volumes of electric cars in the near future and need to be addressed for the electric car to be competitive with conventional power train systems. This paper focuses on the current product architecture and production process of common automotive battery modules from prismatic lithium-ion battery cells to derive impacts for a remanufacturing concept. The information necessary for this purpose were gathered by literature research, patent inquiries, industry expert interviews and first-hand experiences of the authors. On the basis of these results, the underlying causes for the design´s lack of remanufacturability and flexibility with regards to product design changes are examined. In all, this paper gives an extensive and detailed overview of the state of the art of the product architecture and production process of lithium-ion battery modules from prismatic battery cells, identifies its deficiencies and derives improvement measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20module" title="battery module">battery module</a>, <a href="https://publications.waset.org/abstracts/search?q=prismatic%20lithium-ion%20battery%20cell" title=" prismatic lithium-ion battery cell"> prismatic lithium-ion battery cell</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20architecture" title=" product architecture"> product architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20process" title=" production process"> production process</a>, <a href="https://publications.waset.org/abstracts/search?q=remanufacturing" title=" remanufacturing"> remanufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a> </p> <a href="https://publications.waset.org/abstracts/78338/product-architecture-and-production-process-of-battery-modules-from-prismatic-lithium-ion-battery-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7874</span> Automotive Quality Engineering: A Roadmap for Functional Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hugo%20d%E2%80%99Albert">Hugo d’Albert</a>, <a href="https://publications.waset.org/abstracts/search?q=Udo%20Lindemann"> Udo Lindemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of automotive electronic systems that allow realizing new functions, like driver assistance systems, has been increasing extremely in the last decade. Although they bring several benefits, their malfunctions can lead to severe consequences, such as personal injury of road users. Functional safety is an approach to identify these critical malfunctions and arrange technical systems that include only tolerable risk. This approach is– in comparison with other technical areas– relatively new in the automotive sector. For a long time, the automotive systems have based on mechanical components and approved principles, like robust design. With a growing number of electric and electronic components in the modern cars and realizing by software of the system functions, the need for new standards and methods to assure the functional safety has arisen. This paper described the current state of engineering for safety in automotive sector and discusses new directions to meet the challenges of the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20systems" title="automotive systems">automotive systems</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20safety" title=" functional safety"> functional safety</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20engineering" title=" quality engineering"> quality engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management" title=" quality management"> quality management</a> </p> <a href="https://publications.waset.org/abstracts/85012/automotive-quality-engineering-a-roadmap-for-functional-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7873</span> Enabling Integrated Production of Electric Vehicles in Automotive Final Assembly: Realization of an Expert Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Hans%20Heimes"> Heiner Hans Heimes</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Ordung"> Mathias Ordung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Philip%20Ganser"> Jan-Philip Ganser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past years, the automotive industry has changed significantly. Innovative mobility concepts have become more important, and electric vehicles see a chance of replacing vehicles with combustion engines in the long term. However, the coming years will be characterized by coexistence. In this context, there are two possible production scenarios: One the one hand, electric vehicles could be manufactured in bespoke assembly lines. Concerning the uncertainty regarding sales figures development, this alternative boasts a high investment risk. Therefore, an integrated assembly building upon existing structures also seems a feasible solution. This empirical study aims at validating hypotheses concerning theoretical and practical challenges of the integrated production in the final assembly. In order to take a test of approaches of the research by analyzing censored feedback of professionals, these hypotheses are validated in the framework of an expert study. For this purpose, hypotheses have been generated on the basis of a requirements analysis and a concept specification. Thereupon, a list of question has been implemented and deduced from the hypotheses to execute an online- and written-survey and interviews with professionals. The interpretation and evaluation of the findings includes an inter-component comparison for the electric drivetrain. Furthermore, key drivers for a sufficient integrated product and process design are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title="automotive industry">automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=final%20assembly" title=" final assembly"> final assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20manufacturing" title=" integrated manufacturing"> integrated manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20and%20process%20development" title=" product and process development"> product and process development</a> </p> <a href="https://publications.waset.org/abstracts/56390/enabling-integrated-production-of-electric-vehicles-in-automotive-final-assembly-realization-of-an-expert-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7872</span> Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yuri">T. Yuri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zagloel"> M. Zagloel</a>, <a href="https://publications.waset.org/abstracts/search?q=Inaki%20M.%20Hakim"> Inaki M. Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tegu%20Bintang%20Nugraha"> Tegu Bintang Nugraha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title="automotive industry">automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20uncertainty" title=" demand uncertainty"> demand uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20assembly%20system" title=" flexible assembly system"> flexible assembly system</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20mapping" title=" value stream mapping"> value stream mapping</a> </p> <a href="https://publications.waset.org/abstracts/57658/flexible-mixed-model-assembly-line-design-a-strategy-to-respond-for-demand-uncertainty-at-automotive-part-manufacturer-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7871</span> Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Pomlenyi">Peter Pomlenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Orsolya%20Semperger"> Orsolya Semperger</a>, <a href="https://publications.waset.org/abstracts/search?q=Gergely%20Hegedus"> Gergely Hegedus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T-RTM%20technology" title="T-RTM technology">T-RTM technology</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20A%20surface" title=" class A surface"> class A surface</a> </p> <a href="https://publications.waset.org/abstracts/99497/automated-short-cycle-production-of-polymer-composite-applications-with-special-regards-to-the-complexity-and-recyclability-of-composite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7870</span> Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achim%20Kampker">Achim Kampker</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Kreiskoether"> Kai Kreiskoether</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Wagner"> Johannes Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Fluchs"> Sarah Fluchs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20assembly" title="automotive assembly">automotive assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=e-mobility" title=" e-mobility"> e-mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20technology" title=" production technology"> production technology</a>, <a href="https://publications.waset.org/abstracts/search?q=release%20capability" title=" release capability"> release capability</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20series%20assembly" title=" small series assembly"> small series assembly</a> </p> <a href="https://publications.waset.org/abstracts/56019/mobile-assembly-of-electric-vehicles-decentralized-low-invest-and-flexible" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7869</span> A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Hurtalov%C3%A1">Lenka Hurtalová</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tillov%C3%A1"> Eva Tillová</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1ria%20Chalupov%C3%A1"> Mária Chalupová</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Belan"> Juraj Belan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik"> Milan Uhríčik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A226%20secondary%20aluminium%20alloy" title="A226 secondary aluminium alloy">A226 secondary aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20etching" title=" deep etching"> deep etching</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20foundry%20aluminium%20alloy" title=" recycling foundry aluminium alloy"> recycling foundry aluminium alloy</a> </p> <a href="https://publications.waset.org/abstracts/20090/a-metallography-study-of-secondary-a226-aluminium-alloy-used-in-automotive-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7868</span> Data Acquisition System for Automotive Testing According to the European Directive 2004/104/EC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herminio%20Mart%C3%ADnez-Garc%C3%ADa">Herminio Martínez-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20G%C3%A1miz"> Juan Gámiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolanda%20Bolea"> Yolanda Bolea</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoni%20Grau"> Antoni Grau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents an interactive system for data acquisition in vehicle testing according to the test process defined in automotive directive 2004/104/EC. The project has been designed and developed by authors for the Spanish company Applus-LGAI. The developed project will result in a new process, which will involve the creation of braking cycle test defined in the aforementioned automotive directive. It will also allow the analysis of new vehicle features that was not feasible, allowing an increasing interaction with the vehicle. Potential users of this system in the short term will be vehicle manufacturers and in a medium term the system can be extended to testing other automotive components and EMC tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20process" title="automotive process">automotive process</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition%20system" title=" data acquisition system"> data acquisition system</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20compatibility%20%28EMC%29%20testing" title=" electromagnetic compatibility (EMC) testing"> electromagnetic compatibility (EMC) testing</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20Directive%202004%2F104%2FEC" title=" European Directive 2004/104/EC"> European Directive 2004/104/EC</a> </p> <a href="https://publications.waset.org/abstracts/41207/data-acquisition-system-for-automotive-testing-according-to-the-european-directive-2004104ec" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7867</span> Development of Value Productivity in Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Kle%C4%8Dka">Jiří Klečka</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagmar%20%C4%8C%C3%A1msk%C3%A1"> Dagmar Čámská</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the investigation of productivity (total productivity and partial productivity). The value productivity is an indicator of level and changes in technical economic efficiency of production factors. It represents an important factor in achieving corporate objectives. This text works with the contemporary concept of value productivity that means that indicators of the productivity express the effect of economic efficiency not only of inputs consumption, but also of inputs binding efficiency. This approach is based on principles of the economic profit, respectively the economic value added (EVA). The research is done on the sample of Czech enterprises operating in the automotive industry in the regions of Liberec and the Central Bohemia. The data sample covers the time period 2006-2011 which allows the comparison of development before crisis and during crisis period. It enables to discover the companies' reaction during crises and the regional comparison allows to showing if there are significant differences between regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title="automotive industry">automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Czech%20Republic" title=" Czech Republic"> Czech Republic</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20efficiency" title=" economic efficiency"> economic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20comparison" title=" regional comparison"> regional comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20productivity" title=" value productivity "> value productivity </a> </p> <a href="https://publications.waset.org/abstracts/1272/development-of-value-productivity-in-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7866</span> Technical Determinants of the Success of the Quality Management Systems Implementation in Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Misztal">Agnieszka Misztal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The popularity of the quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with the demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel appropriate to focus attention on the selection of companies aspiring to quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car), 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). Identified determinants were divided in two types of criteria into: internal and external, as well as: hard and soft. The article presents hard - technical factors that automotive company must meet in order to achieve the goal of the quality management system implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title="automotive industry">automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management%20system" title=" quality management system"> quality management system</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20technology" title=" automotive technology"> automotive technology</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20company" title=" automotive company"> automotive company</a> </p> <a href="https://publications.waset.org/abstracts/26321/technical-determinants-of-the-success-of-the-quality-management-systems-implementation-in-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7865</span> Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamzeh%20Soltanali">Hamzeh Soltanali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rohani"> Abbas Rohani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20S.%20Garmabaki"> A. H. S. Garmabaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Abbaspour-Fard"> Mohammad Hossein Abbaspour-Fard</a>, <a href="https://publications.waset.org/abstracts/search?q=Adithya%20Thaduri"> Adithya Thaduri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive" title="automotive">automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=RAM" title=" RAM"> RAM</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20filling%20process" title=" fluid filling process"> fluid filling process</a> </p> <a href="https://publications.waset.org/abstracts/94759/evaluation-of-reliability-availability-and-maintainability-for-automotive-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7864</span> Counteracting Disruptions during the COVID-19 Pandemic in the Supply Chains of the Automotive Industry: The Example of Polish Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Rokicki">Tomasz Rokicki</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20B%C3%B3rawski"> Piotr Bórawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Be%C5%82dycka-B%C3%B3rawska"> Aneta Bełdycka-Bórawska</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Szeber%C3%A9nyi"> András Szeberényi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the article was to present ways to counteract disruptions during the COVID-19 pandemic occurring in the supply chain of enterprises from the automotive industry. The specific objectives are to determine changes in the automotive industry during the pandemic, to show the types of disruptions in supply chains, and how to counteract these unfavorable situations. Enterprises from the automotive industry operating in Poland were deliberately selected for research. Using the purposive sampling method, ten companies from the automotive industry were selected for qualitative research. In-depth research was carried out in selected enterprises using a personal interview. At the beginning of the pandemic, lockdowns and unpredictability were a problem. The key was to protect employees and introduce appropriate procedures. In the later stages of the pandemic, there were restrictions on the timeliness of deliveries and extension of delivery times. There were problems with the shortage of materials, and the costs of products and transport increased. In automotive companies, counteracting the effects of the pandemic consisted of ensuring the safety of employees, maintaining constant contact and communication with branches and headquarters, as well as with suppliers and contractors. Therefore, appropriate communication, cooperation, and flexibility were important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruptions" title="disruptions">disruptions</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20disruption" title=" supply chain disruption"> supply chain disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperation%20in%20supply%20chain" title=" cooperation in supply chain"> cooperation in supply chain</a> </p> <a href="https://publications.waset.org/abstracts/186164/counteracting-disruptions-during-the-covid-19-pandemic-in-the-supply-chains-of-the-automotive-industry-the-example-of-polish-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7863</span> Carbon Footprint of Blowmoulded Plastic Parts-Case Study on Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C4%83d%C4%83lina%20Elena%20Mavrodin">Mădălina Elena Mavrodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Andreea%20Despescu"> Gabriela Andreea Despescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20L%C4%83z%C4%83roiu"> Gheorghe Lăzăroiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long term trend of global warming has brought a very deep interest in climate change, which is due most likely to increasing concentrations of anthropogenic greenhouse gases. 0f these, particular attention is paid to carbon dioxide, which has led in desire for obtaining carbon footprint products. Automotive industry is one of the world’s most important economic sectors with a great impact over the environment through all range of activities. Its impact over the environment has been studied, researcher trying as much as possible to reduce it and to offer environmental friendly solution for the using, but also manufacturing cars. In the global endeavour to meet the international commitments in order to reduce the greenhouse gas emissions, many companies integrate environmental issues into their management systems, with potential effects in their entire production chains. Several tools and calculators have been developed to measure the environmental impact of a product in the life cycle perspective of the whole product chain. There were a lot of ways to obtain the carbon footprint of driving a car, but the total carbon footprint of a car includes also the carbon footprint of all the components and accessories. In the automotive industry, one of the challenges is to calculate the carbon footprint of a car from ‘cradle to grave’; this meaning not only for driving the car, but also manufacturing it, so there can be an overview over the entire process of production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title="carbon footprint">carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming%20potential" title=" global warming potential"> global warming potential</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacture" title=" manufacture"> manufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20air%20ducts" title=" plastic air ducts"> plastic air ducts</a> </p> <a href="https://publications.waset.org/abstracts/37633/carbon-footprint-of-blowmoulded-plastic-parts-case-study-on-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7862</span> Optimization Design of Superposition Wave Form Automotive Exhaust Bellows Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Jianrun">Zhang Jianrun</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Tangling"> He Tangling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superposition wave form automotive exhaust bellows is a new type of bellows, which has the characteristics of large compensation, good vibration isolation performance and long life. It has been paid more and more attention and applications in automotive exhaust pipe system. Aiming at the lack of current design methods of superposition wave form automotive exhaust bellows, this paper proposes a response surface parameter optimization method where the fatigue life and vibration transmissibility of the bellows are set as objectives. The parametric modeling of bellow structure is also adopted to achieve the high efficiency in the design. The approach proposed in this paper provides a new way for the design of superposition wave form automotive exhaust bellows. It embodies good engineering application value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superposition%20wave%20form" title="superposition wave form">superposition wave form</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20bellows" title=" exhaust bellows"> exhaust bellows</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a> </p> <a href="https://publications.waset.org/abstracts/169206/optimization-design-of-superposition-wave-form-automotive-exhaust-bellows-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7861</span> Identifying Principle Components Affecting Competitiveness of Thai Automotive Parts Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanatip%20Lerttanaporn">Thanatip Lerttanaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuanjai%20Somboonwiwat"> Tuanjai Somboonwiwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Charoenchai%20Khompatraporn"> Charoenchai Khompatraporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The automotive parts industry is one of the vital sectors in Thai economy and now is facing a greater competition from ASEAN Economic Community (AEC). This article identifies important factors that impact the competitiveness of Thai automotive parts industry. There are eight groups of factors with a total of 58 factors. Due to a variety of factors, the Exploratory Factor Analysis and Principle Component Analysis have been applied to classify factors into groups or principle components. The results show that there are 15 groups and four of them are critical, covering 80% of important value. These four critical groups are then used to formulate strategies to improve the competitiveness of the Thai automotive parts industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title="factor analysis">factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20automotive%20parts" title=" Thai automotive parts"> Thai automotive parts</a>, <a href="https://publications.waset.org/abstracts/search?q=principle%20components" title=" principle components"> principle components</a>, <a href="https://publications.waset.org/abstracts/search?q=exploratory%20factor" title=" exploratory factor"> exploratory factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ASEAN%20economic%20community" title=" ASEAN economic community "> ASEAN economic community </a> </p> <a href="https://publications.waset.org/abstracts/45323/identifying-principle-components-affecting-competitiveness-of-thai-automotive-parts-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7860</span> Information Technologies in Automotive Assembly Industry in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jirarat%20Teeravaraprug">Jirarat Teeravaraprug</a>, <a href="https://publications.waset.org/abstracts/search?q=Usawadee%20Inklay"> Usawadee Inklay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gave an attempt in prioritizing information technologies that organizations should give concentration. The case study was organizations in the automotive assembly industry in Thailand. Data were first collected to gather all information technologies known and used in the automotive assembly industry in Thailand. Five experts from the industries were surveyed based on the concept of fuzzy DEMATEL. The information technologies were categorized into six groups, which were communication, transaction, planning, organization management, warehouse management, and transportation. The cause groups of information technologies for each group were analysed and presented. Moreover, the relationship between the used and the significant information technologies was given. Discussions based on the used information technologies and the research results are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20technology" title="information technology">information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20assembly%20industry" title=" automotive assembly industry"> automotive assembly industry</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20DEMATEL" title=" fuzzy DEMATEL"> fuzzy DEMATEL</a> </p> <a href="https://publications.waset.org/abstracts/2498/information-technologies-in-automotive-assembly-industry-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7859</span> A Comparative Study of Automotive / Transportation Design Programs and University: Industry Cooperation Models in Higher Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efe%20%C3%87ukur">Efe Çukur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to discuss and compare i) widespread and generic design, particularly industrial design education in relation to the specific needs of the automotive/transportation industry, and ii) an automotive/transportation design education model within and under to provide the conditions of design education and automotive industry, especially in Turkey and T.R.N.C. The automotive industry is the 11th largest in the world ($1.51 trillion). One of the most important departments in this industry, along with sales, marketing and engineering, is the design department. The automotive industry is known as the locomotive industry, but there is a non-automotive design department on the academic side of Turkey. This suggestion; includes the presentation of a program proposal that meets the needs of the industry for Turkey and T.R.N.C., the second largest automobile manufacturing country in Europe. On the education side, industrial design education has become a generic title. Automotive design studios are divided into several subgroups. Even in the higher graduate education, the automotive design departments get their subgroups like exterior design and interior design. Transportation design, which is a subfield of industrial design, is offered as higher education in transportation design departments, particularly in America and Europe. In these departments, the curriculum is shaped to the needs of the sectors. Higher education transportation design programs began in the mid-20th century. Until those high education programs...Until these high education programs, the industry has adapted architectures and engineers for designer workloads. Still today transportation design graduates are not the majority of the design studios. The content of the study is an in-depth comparison of these institutions and how the requirements, demands of the industry are met in this regard and revealed. Some of the institutions are selected from Europe and US. To be analyzed under the headings of staff, courses, syllabus, University-Industry collaboration, and location selection. The study includes short, mid, and long term proposals and a hypothesis for discussion. In short, the study will not only provide a wide comparative scope of information on generic and specialized aspects of design education in different countries but also propose a higher education model for automotive / transportation design with solid data of requirements, methodology, and structure regarding learning outcomes, and especially industry cooperation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20education" title="design education">design education</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20-%20transportation%20design%20programs" title=" automotive - transportation design programs"> automotive - transportation design programs</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20design" title=" transportation design"> transportation design</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry%20in%20Turkey%20%2FT.R.N.C." title=" automotive industry in Turkey /T.R.N.C."> automotive industry in Turkey /T.R.N.C.</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20design%20education%20in%20Turkey%20%2FT.R.N.C." title=" automotive design education in Turkey /T.R.N.C."> automotive design education in Turkey /T.R.N.C.</a> </p> <a href="https://publications.waset.org/abstracts/157443/a-comparative-study-of-automotive-transportation-design-programs-and-university-industry-cooperation-models-in-higher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7858</span> Influences of Market Orientation and Supply Chain Management on Competitive Capability in Case of Automotive Parts Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattapong%20Techarattanased">Nattapong Techarattanased</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this research were to study the influence of market orientation and supply chain management on competitive capability in case of the automotive parts industry in Thailand. This study employed by survey research and questionnaire was used to collect the data from 400 entrepreneurs in the automotive parts industry in Thailand. The descriptive statistics and multiple regression analysis were used to analyze data. The results revealed that the overall dimensions of marketing orientation, namely, responsiveness, intelligence generation, and intelligence dissemination were rated at the high level. As well, the overall dimensions of supply chain management, namely, collaboration, communication, trust, and commitment were also rated at the high level. Furthermore, the hypothesis testing results showed that supply chain management and market orientation affected competitive capability of the automotive parts industry in Thailand which these two variables could be combined to predict competitive capability of the automotive parts industry in Thailand by 31.5 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20parts%20industry" title="automotive parts industry">automotive parts industry</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20capability" title=" competitive capability"> competitive capability</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20orientation" title=" market orientation"> market orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/44008/influences-of-market-orientation-and-supply-chain-management-on-competitive-capability-in-case-of-automotive-parts-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7857</span> Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ralph%20Gruber">Ralph Gruber</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Hafner"> Martina Hafner</a>, <a href="https://publications.waset.org/abstracts/search?q=Theresia%20Greunz"> Theresia Greunz</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Reisecker"> Christian Reisecker</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Stifter"> David Stifter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observed <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloys" title="aluminium alloys">aluminium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20film%20lubricants" title=" dry film lubricants"> dry film lubricants</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20bonding" title=" adhesive bonding"> adhesive bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/154769/influence-of-dry-film-lubricants-on-bond-strength-and-corrosion-behaviour-of-6xxx-aluminium-alloy-adhesive-joints-for-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7856</span> Implementation of ISO 26262: Issues and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Jung">Won Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Azianti%20Ismail"> Azianti Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional safety is about electrical, electronics, and programmable electronic safety-related system focuses on the potential risk of malfunction which may have a significant impact on the safety of humans and/or the environment based on IEC 61508. In November 2011, the automotive industry has been introduced to automotive functional safety ISO 26262 which addresses the complete safety installation from sensor to actuator with its technical as well as management issues. Nowadays, most of the modern automobiles are equipped with embedded electronic systems which include many Electronic Controller Units (ECUs), electronic sensors, signals, bus systems and coding. Due to upcoming more sophisticated systems installed in automobiles, the need to carry out detailed safety is very crucial. Assimilation of existing practices with this new standard is a major challenge for the automotive industry in reducing redundancy, time and resources. Therefore, this paper will analyze the research trends on pre and post introduction of ISO 26262 through publications as well as to take a glimpse in the activities for implementing this standard by the automotive manufacturers around the world. It is going to highlight issues and challenges which have been discussed among the experts in this field. Even though it will take some time for this standard to be fully implemented, the benefits from this implementation will raise the competitiveness in the global automotive market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ISO%2026262" title="ISO 26262">ISO 26262</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20safety" title=" functional safety"> functional safety</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=standard" title=" standard"> standard</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a> </p> <a href="https://publications.waset.org/abstracts/4258/implementation-of-iso-26262-issues-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7855</span> Optimization of Switched Reluctance Motor for Drive System in Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Peniak">A. Peniak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Makarovi%C4%8D"> J. Makarovič</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rafajdus"> P. Rafajdus</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D%C3%BAbravka"> P. Dúbravka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive" title="automotive">automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=drive%20system" title=" drive system"> drive system</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20car" title=" electric car"> electric car</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20car" title=" hybrid car"> hybrid car</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title=" switched reluctance motor"> switched reluctance motor</a> </p> <a href="https://publications.waset.org/abstracts/13141/optimization-of-switched-reluctance-motor-for-drive-system-in-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=262">262</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=263">263</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=automotive%20production&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>