CINXE.COM

Voigt profile - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Voigt profile - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"669c505a-7c8a-4691-b76f-2eaf077f04bb","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Voigt_profile","wgTitle":"Voigt profile","wgCurRevisionId":1239827838,"wgRevisionId":1239827838,"wgArticleId":1202098,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Continuous distributions","Spectroscopy","Special functions","Probability distributions with non-finite variance"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Voigt_profile","wgRelevantArticleId":1202098,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject": "wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1417619","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/VoigtPDF.svg/1200px-VoigtPDF.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/VoigtPDF.svg/800px-VoigtPDF.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/VoigtPDF.svg/640px-VoigtPDF.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Voigt profile - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Voigt_profile"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Voigt_profile&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Voigt_profile"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Voigt_profile rootpage-Voigt_profile skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Voigt+profile" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Voigt+profile" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Voigt+profile" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Voigt+profile" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History_and_applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History_and_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History and applications</span> </div> </a> <ul id="toc-History_and_applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Cumulative_distribution_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cumulative_distribution_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Cumulative distribution function</span> </div> </a> <ul id="toc-Cumulative_distribution_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_uncentered_Voigt_profile" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_uncentered_Voigt_profile"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>The uncentered Voigt profile</span> </div> </a> <ul id="toc-The_uncentered_Voigt_profile-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivatives" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivatives"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Derivatives</span> </div> </a> <ul id="toc-Derivatives-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Voigt_functions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voigt_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Voigt functions</span> </div> </a> <button aria-controls="toc-Voigt_functions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Voigt functions subsection</span> </button> <ul id="toc-Voigt_functions-sublist" class="vector-toc-list"> <li id="toc-Relation_to_Voigt_profile" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_Voigt_profile"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Relation to Voigt profile</span> </div> </a> <ul id="toc-Relation_to_Voigt_profile-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Numeric_approximations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Numeric_approximations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Numeric approximations</span> </div> </a> <button aria-controls="toc-Numeric_approximations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Numeric approximations subsection</span> </button> <ul id="toc-Numeric_approximations-sublist" class="vector-toc-list"> <li id="toc-Tepper-García_Function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tepper-García_Function"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Tepper-García Function</span> </div> </a> <ul id="toc-Tepper-García_Function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pseudo-Voigt_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pseudo-Voigt_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Pseudo-Voigt approximation</span> </div> </a> <ul id="toc-Pseudo-Voigt_approximation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_width_of_the_Voigt_profile" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_width_of_the_Voigt_profile"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>The width of the Voigt profile</span> </div> </a> <ul id="toc-The_width_of_the_Voigt_profile-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Asymmetric_Pseudo-Voigt_(Martinelli)_function" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Asymmetric_Pseudo-Voigt_(Martinelli)_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Asymmetric Pseudo-Voigt (Martinelli) function</span> </div> </a> <ul id="toc-Asymmetric_Pseudo-Voigt_(Martinelli)_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Voigt profile</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 10 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-10" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">10 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Perfil_de_Voigt" title="Perfil de Voigt – Catalan" lang="ca" hreflang="ca" data-title="Perfil de Voigt" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Voigt-Profil" title="Voigt-Profil – German" lang="de" hreflang="de" data-title="Voigt-Profil" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_de_Voigt" title="Loi de Voigt – French" lang="fr" hreflang="fr" data-title="Loi de Voigt" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8F%AC%ED%81%AC%ED%8A%B8_%EC%9C%A4%EA%B3%BD" title="포크트 윤곽 – Korean" lang="ko" hreflang="ko" data-title="포크트 윤곽" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A9%E3%83%BC%E3%82%AF%E3%83%88%E9%96%A2%E6%95%B0" title="フォークト関数 – Japanese" lang="ja" hreflang="ja" data-title="フォークト関数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Voigta" title="Rozkład Voigta – Polish" lang="pl" hreflang="pl" data-title="Rozkład Voigta" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%84%D0%B8%D0%BB%D1%8C_%D0%A4%D0%BE%D0%B9%D0%B3%D1%82%D0%B0" title="Профиль Фойгта – Russian" lang="ru" hreflang="ru" data-title="Профиль Фойгта" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Voigtprofil" title="Voigtprofil – Swedish" lang="sv" hreflang="sv" data-title="Voigtprofil" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%84%D1%96%D0%BB%D1%8C_%D0%A4%D0%BE%D0%B9%D0%B3%D1%82%D0%B0" title="Профіль Фойгта – Ukrainian" lang="uk" hreflang="uk" data-title="Профіль Фойгта" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%A6%8F%E6%A0%BC%E7%89%B9%E5%87%BD%E6%95%B0" title="福格特函数 – Chinese" lang="zh" hreflang="zh" data-title="福格特函数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1417619#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Voigt_profile" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Voigt_profile" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Voigt_profile"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Voigt_profile&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Voigt_profile&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Voigt_profile"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Voigt_profile&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Voigt_profile&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Voigt_profile" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Voigt_profile" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Voigt_profile&amp;oldid=1239827838" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Voigt_profile&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Voigt_profile&amp;id=1239827838&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVoigt_profile"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVoigt_profile"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Voigt_profile&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Voigt_profile&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1417619" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability distribution</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1259743904">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1);padding:0.3em 0.4em}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist"><caption class="infobox-title">(Centered) Voigt</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability density function</div><span typeof="mw:File"><a href="/wiki/File:VoigtPDF.svg" class="mw-file-description" title="Plot of the centered Voigt profile for four cases"><img alt="Plot of the centered Voigt profile for four cases" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/VoigtPDF.svg/325px-VoigtPDF.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/VoigtPDF.svg/488px-VoigtPDF.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/VoigtPDF.svg/650px-VoigtPDF.svg.png 2x" data-file-width="720" data-file-height="540" /></a></span><br /><small>Plot of the centered Voigt profile for four cases. Each case has a full width at half-maximum of very nearly 3.6. The black and red profiles are the limiting cases of the Gaussian (γ =0) and the Lorentzian (σ =0) profiles respectively. </small></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:VoigtCDF.svg" class="mw-file-description" title="Centered Voigt CDF."><img alt="Centered Voigt CDF." src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/VoigtCDF.svg/325px-VoigtCDF.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/VoigtCDF.svg/488px-VoigtCDF.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/VoigtCDF.svg/650px-VoigtCDF.svg.png 2x" data-file-width="720" data-file-height="540" /></a></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ,\sigma &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ,\sigma &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b80e5f141e4094680744e286323c091b5b378224" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.887ex; height:2.676ex;" alt="{\displaystyle \gamma ,\sigma &gt;0}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (-\infty ,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (-\infty ,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7aea9be5e96822459afc5c7d9f911a586290dc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.469ex; height:2.843ex;" alt="{\displaystyle x\in (-\infty ,\infty )}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_density_function" title="Probability density function">PDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Re [w(z)]}{\sigma {\sqrt {2\pi }}}},~~~z={\frac {x+i\gamma }{\sigma {\sqrt {2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mo stretchy="false">[</mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Re [w(z)]}{\sigma {\sqrt {2\pi }}}},~~~z={\frac {x+i\gamma }{\sigma {\sqrt {2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d32b81cec7e6bba1f2c5ce2b2dbd4469531d9d53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.649ex; height:6.676ex;" alt="{\displaystyle {\frac {\Re [w(z)]}{\sigma {\sqrt {2\pi }}}},~~~z={\frac {x+i\gamma }{\sigma {\sqrt {2}}}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> (complicated - see text)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> (not defined)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> (not defined)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data"> (not defined)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Excess kurtosis</a></th><td colspan="3" class="infobox-data"> (not defined)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> (not defined)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\gamma |t|-\sigma ^{2}t^{2}/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\gamma |t|-\sigma ^{2}t^{2}/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b0fc368a4710874d2df00cb7b92064cea896009" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.116ex; height:3.009ex;" alt="{\displaystyle e^{-\gamma |t|-\sigma ^{2}t^{2}/2}}"></span></td></tr></tbody></table> <p>The <b>Voigt profile</b> (named after <a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a>) is a <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> given by a <a href="/wiki/Convolution" title="Convolution">convolution</a> of a <a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy-Lorentz distribution</a> and a <a href="/wiki/Normal_distribution" title="Normal distribution">Gaussian distribution</a>. It is often used in analyzing data from <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopy</a> or <a href="/wiki/Diffraction" title="Diffraction">diffraction</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Without loss of generality, we can consider only centered profiles, which peak at zero. The Voigt profile is then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(x;\sigma ,\gamma )\equiv \int _{-\infty }^{\infty }G(x';\sigma )L(x-x';\gamma )\,dx',}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>&#x2261;<!-- ≡ --></mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>G</mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>;</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(x;\sigma ,\gamma )\equiv \int _{-\infty }^{\infty }G(x';\sigma )L(x-x';\gamma )\,dx',}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2719d6290ea856f0c86751b56ced3c1789de7e59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:41.669ex; height:6.009ex;" alt="{\displaystyle V(x;\sigma ,\gamma )\equiv \int _{-\infty }^{\infty }G(x&#039;;\sigma )L(x-x&#039;;\gamma )\,dx&#039;,}"></span></dd></dl> <p>where <i>x</i> is the shift from the line center, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(x;\sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(x;\sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ff0398c8521a20bab653e2a61069077f567c09c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.329ex; height:2.843ex;" alt="{\displaystyle G(x;\sigma )}"></span> is the centered Gaussian profile: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(x;\sigma )\equiv {\frac {e^{-{\frac {x^{2}}{2\sigma ^{2}}}}}{{\sqrt {2\pi }}\,\sigma }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(x;\sigma )\equiv {\frac {e^{-{\frac {x^{2}}{2\sigma ^{2}}}}}{{\sqrt {2\pi }}\,\sigma }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c7d8d7a86361fd0e1f66f7791ec025b955df80e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:18.058ex; height:8.509ex;" alt="{\displaystyle G(x;\sigma )\equiv {\frac {e^{-{\frac {x^{2}}{2\sigma ^{2}}}}}{{\sqrt {2\pi }}\,\sigma }},}"></span></dd></dl> <p>and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(x;\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(x;\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4c5593fc463e29ceb95be834eb8b1befd9738d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.018ex; height:2.843ex;" alt="{\displaystyle L(x;\gamma )}"></span> is the centered Lorentzian profile: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(x;\gamma )\equiv {\frac {\gamma }{\pi (\gamma ^{2}+x^{2})}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">(</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(x;\gamma )\equiv {\frac {\gamma }{\pi (\gamma ^{2}+x^{2})}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08211d7deef3dd23cb23bc597cf78dc046ef0bd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.299ex; height:5.676ex;" alt="{\displaystyle L(x;\gamma )\equiv {\frac {\gamma }{\pi (\gamma ^{2}+x^{2})}}.}"></span></dd></dl> <p>The defining integral can be evaluated as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(x;\sigma ,\gamma )={\frac {\operatorname {Re} [w(z)]}{{\sqrt {2\pi }}\,\sigma }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(x;\sigma ,\gamma )={\frac {\operatorname {Re} [w(z)]}{{\sqrt {2\pi }}\,\sigma }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09078935f729902c72d9b1b64d2a2a2291873cd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.766ex; height:6.676ex;" alt="{\displaystyle V(x;\sigma ,\gamma )={\frac {\operatorname {Re} [w(z)]}{{\sqrt {2\pi }}\,\sigma }},}"></span></dd></dl> <p>where Re[<i>w</i>(<i>z</i>)] is the real part of the <a href="/wiki/Faddeeva_function" title="Faddeeva function">Faddeeva function</a> evaluated for </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z={\frac {x+i\gamma }{{\sqrt {2}}\,\sigma }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z={\frac {x+i\gamma }{{\sqrt {2}}\,\sigma }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3110971f998705d94f82458a6c82e077bfe7473e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:11.904ex; height:6.343ex;" alt="{\displaystyle z={\frac {x+i\gamma }{{\sqrt {2}}\,\sigma }}.}"></span></dd></dl> <p>In the limiting cases of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eb4831f1e0ca1ba7d007dc6b973e54787e1a4b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle \sigma =0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a5e84cac32e896a80a89f8cd1917c2defcf4108" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.523ex; height:2.676ex;" alt="{\displaystyle \gamma =0}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(x;\sigma ,\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(x;\sigma ,\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/406526d4eb8209e470445e6792fb608577b81361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.586ex; height:2.843ex;" alt="{\displaystyle V(x;\sigma ,\gamma )}"></span> simplifies to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(x;\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(x;\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4c5593fc463e29ceb95be834eb8b1befd9738d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.018ex; height:2.843ex;" alt="{\displaystyle L(x;\gamma )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(x;\sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(x;\sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ff0398c8521a20bab653e2a61069077f567c09c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.329ex; height:2.843ex;" alt="{\displaystyle G(x;\sigma )}"></span>, respectively. </p> <div class="mw-heading mw-heading2"><h2 id="History_and_applications">History and applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=2" title="Edit section: History and applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In spectroscopy, a Voigt profile results from the convolution of two broadening mechanisms, one of which alone would produce a Gaussian profile (usually, as a result of the <a href="/wiki/Doppler_broadening" title="Doppler broadening">Doppler broadening</a>), and the other would produce a Lorentzian profile. Voigt profiles are common in many branches of spectroscopy and <a href="/wiki/Powder_diffraction" title="Powder diffraction">diffraction</a>. Due to the expense of computing the <a href="/wiki/Faddeeva_function" title="Faddeeva function">Faddeeva function</a>, the Voigt profile is sometimes approximated using a pseudo-Voigt profile. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=3" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Voigt profile is normalized: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }V(x;\sigma ,\gamma )\,dx=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }V(x;\sigma ,\gamma )\,dx=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29e84d284b1f1a9402e84031cacad6de047c8141" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.26ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }V(x;\sigma ,\gamma )\,dx=1,}"></span></dd></dl> <p>since it is a convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth), and so the <a href="/wiki/Moment-generating_function" title="Moment-generating function">moment-generating function</a> for the <a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy distribution</a> is not defined. It follows that the Voigt profile will not have a moment-generating function either, but the <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> for the <a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy distribution</a> is well defined, as is the characteristic function for the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>. The <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> for the (centered) Voigt profile will then be the product of the two: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{f}(t;\sigma ,\gamma )=E(e^{ixt})=e^{-\sigma ^{2}t^{2}/2-\gamma |t|}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>E</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> <mi>t</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{f}(t;\sigma ,\gamma )=E(e^{ixt})=e^{-\sigma ^{2}t^{2}/2-\gamma |t|}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72472efe8f4551c4d6086f85f881f2bd8ea4c1ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.927ex; height:3.676ex;" alt="{\displaystyle \varphi _{f}(t;\sigma ,\gamma )=E(e^{ixt})=e^{-\sigma ^{2}t^{2}/2-\gamma |t|}.}"></span></dd></dl> <p>Since normal distributions and Cauchy distributions are <a href="/wiki/Stable_distributions" class="mw-redirect" title="Stable distributions">stable distributions</a>, they are each closed under <a href="/wiki/Convolution" title="Convolution">convolution</a> (up to change of scale), and it follows that the Voigt distributions are also closed under convolution. </p> <div class="mw-heading mw-heading3"><h3 id="Cumulative_distribution_function">Cumulative distribution function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=4" title="Edit section: Cumulative distribution function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using the above definition for <i>z</i> , the cumulative distribution function (CDF) can be found as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x_{0};\mu ,\sigma )=\int _{-\infty }^{x_{0}}{\frac {\operatorname {Re} (w(z))}{\sigma {\sqrt {2\pi }}}}\,dx=\operatorname {Re} \left({\frac {1}{\sqrt {\pi }}}\int _{z(-\infty )}^{z(x_{0})}w(z)\,dz\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>;</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msubsup> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x_{0};\mu ,\sigma )=\int _{-\infty }^{x_{0}}{\frac {\operatorname {Re} (w(z))}{\sigma {\sqrt {2\pi }}}}\,dx=\operatorname {Re} \left({\frac {1}{\sqrt {\pi }}}\int _{z(-\infty )}^{z(x_{0})}w(z)\,dz\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e08445a1dfc0026de3467d305db45dc2bb29887b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:60.387ex; height:7.509ex;" alt="{\displaystyle F(x_{0};\mu ,\sigma )=\int _{-\infty }^{x_{0}}{\frac {\operatorname {Re} (w(z))}{\sigma {\sqrt {2\pi }}}}\,dx=\operatorname {Re} \left({\frac {1}{\sqrt {\pi }}}\int _{z(-\infty )}^{z(x_{0})}w(z)\,dz\right).}"></span></dd></dl> <p>Substituting the definition of the <a href="/wiki/Faddeeva_function" title="Faddeeva function">Faddeeva function</a> (scaled complex <a href="/wiki/Error_function" title="Error function">error function</a>) yields for the indefinite integral: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {\pi }}}\int w(z)\,dz={\frac {1}{\sqrt {\pi }}}\int e^{-z^{2}}\left[1-\operatorname {erf} (-iz)\right]\,dz,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>z</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {\pi }}}\int w(z)\,dz={\frac {1}{\sqrt {\pi }}}\int e^{-z^{2}}\left[1-\operatorname {erf} (-iz)\right]\,dz,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b31c51050bbf533103cf874be6e747d453866a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:46.264ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {\pi }}}\int w(z)\,dz={\frac {1}{\sqrt {\pi }}}\int e^{-z^{2}}\left[1-\operatorname {erf} (-iz)\right]\,dz,}"></span></dd></dl> <p>which may be solved to yield </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {\pi }}}\int w(z)\,dz={\frac {\operatorname {erf} (z)}{2}}+{\frac {iz^{2}}{\pi }}\,_{2}F_{2}\left(1,1;{\frac {3}{2}},2;-z^{2}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> <msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mn>2</mn> <mo>;</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {\pi }}}\int w(z)\,dz={\frac {\operatorname {erf} (z)}{2}}+{\frac {iz^{2}}{\pi }}\,_{2}F_{2}\left(1,1;{\frac {3}{2}},2;-z^{2}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5bc28abd09351da6bff23dcf1b1744e99030ad4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:52.843ex; height:6.676ex;" alt="{\displaystyle {\frac {1}{\sqrt {\pi }}}\int w(z)\,dz={\frac {\operatorname {erf} (z)}{2}}+{\frac {iz^{2}}{\pi }}\,_{2}F_{2}\left(1,1;{\frac {3}{2}},2;-z^{2}\right),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}_{2}F_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {}_{2}F_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e841dd1322872ac6e4f8e4d0fdd6da13397d81e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.603ex; height:2.509ex;" alt="{\displaystyle {}_{2}F_{2}}"></span> is a <a href="/wiki/Hypergeometric_function" title="Hypergeometric function">hypergeometric function</a>. In order for the function to approach zero as <i>x</i> approaches negative infinity (as the CDF must do), an integration constant of 1/2 must be added. This gives for the CDF of Voigt: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;\mu ,\sigma )=\operatorname {Re} \left[{\frac {1}{2}}+{\frac {\operatorname {erf} (z)}{2}}+{\frac {iz^{2}}{\pi }}\,_{2}F_{2}\left(1,1;{\frac {3}{2}},2;-z^{2}\right)\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> <msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mn>2</mn> <mo>;</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x;\mu ,\sigma )=\operatorname {Re} \left[{\frac {1}{2}}+{\frac {\operatorname {erf} (z)}{2}}+{\frac {iz^{2}}{\pi }}\,_{2}F_{2}\left(1,1;{\frac {3}{2}},2;-z^{2}\right)\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d07a432fe757810dd141d270667d705e7a8258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:57.847ex; height:6.343ex;" alt="{\displaystyle F(x;\mu ,\sigma )=\operatorname {Re} \left[{\frac {1}{2}}+{\frac {\operatorname {erf} (z)}{2}}+{\frac {iz^{2}}{\pi }}\,_{2}F_{2}\left(1,1;{\frac {3}{2}},2;-z^{2}\right)\right].}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="The_uncentered_Voigt_profile">The uncentered Voigt profile</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=5" title="Edit section: The uncentered Voigt profile"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the Gaussian profile is centered at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{G}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{G}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dda577f83b0f673b3c59652dfcd8c195b965030f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.926ex; height:2.176ex;" alt="{\displaystyle \mu _{G}}"></span> and the Lorentzian profile is centered at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{L}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{L}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ead3fb6403830911f81cec11c800bd9e67e243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.753ex; height:2.176ex;" alt="{\displaystyle \mu _{L}}"></span>, the convolution is centered at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{V}=\mu _{G}+\mu _{L}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{V}=\mu _{G}+\mu _{L}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35fee66e1c8107b872909382d399e4dcf7a4349b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.515ex; height:2.509ex;" alt="{\displaystyle \mu _{V}=\mu _{G}+\mu _{L}}"></span> and the characteristic function is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{f}(t;\sigma ,\gamma ,\mu _{\mathrm {G} },\mu _{\mathrm {L} })=e^{i(\mu _{\mathrm {G} }+\mu _{\mathrm {L} })t-\sigma ^{2}t^{2}/2-\gamma |t|}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> </mrow> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{f}(t;\sigma ,\gamma ,\mu _{\mathrm {G} },\mu _{\mathrm {L} })=e^{i(\mu _{\mathrm {G} }+\mu _{\mathrm {L} })t-\sigma ^{2}t^{2}/2-\gamma |t|}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d088ea2774bc742a3c7dbc5c241246cc742893a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.39ex; height:3.676ex;" alt="{\displaystyle \varphi _{f}(t;\sigma ,\gamma ,\mu _{\mathrm {G} },\mu _{\mathrm {L} })=e^{i(\mu _{\mathrm {G} }+\mu _{\mathrm {L} })t-\sigma ^{2}t^{2}/2-\gamma |t|}.}"></span></dd></dl> <p>The probability density function is simply offset from the centered profile by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a18f504bb4bade47b4907dd82e219e9746c136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.898ex; height:2.176ex;" alt="{\displaystyle \mu _{V}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(x;\mu _{V},\sigma ,\gamma )={\frac {\operatorname {Re} [w(z)]}{\sigma {\sqrt {2\pi }}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(x;\mu _{V},\sigma ,\gamma )={\frac {\operatorname {Re} [w(z)]}{\sigma {\sqrt {2\pi }}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b086dff7ca0535412fbf35f180caec20ba8c8e9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:26.697ex; height:6.676ex;" alt="{\displaystyle V(x;\mu _{V},\sigma ,\gamma )={\frac {\operatorname {Re} [w(z)]}{\sigma {\sqrt {2\pi }}}},}"></span></dd></dl> <p>where: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z={\frac {x-\mu _{V}+i\gamma }{\sigma {\sqrt {2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z={\frac {x-\mu _{V}+i\gamma }{\sigma {\sqrt {2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71aa1c19cb684ad50742135ba062c108687a1ca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:16.996ex; height:6.343ex;" alt="{\displaystyle z={\frac {x-\mu _{V}+i\gamma }{\sigma {\sqrt {2}}}}}"></span></dd></dl> <p>The mode and median are both located at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a18f504bb4bade47b4907dd82e219e9746c136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.898ex; height:2.176ex;" alt="{\displaystyle \mu _{V}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Derivatives">Derivatives</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=6" title="Edit section: Derivatives"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Voigt_PartialDerivatives.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Voigt_PartialDerivatives.png/220px-Voigt_PartialDerivatives.png" decoding="async" width="220" height="113" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Voigt_PartialDerivatives.png/330px-Voigt_PartialDerivatives.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/Voigt_PartialDerivatives.png/440px-Voigt_PartialDerivatives.png 2x" data-file-width="1920" data-file-height="983" /></a><figcaption>A Voigt profile (here, assuming <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{V}=10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> <mo>=</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{V}=10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c5c02a17b89aace1ff1b2e3c743e99ccac41b83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.321ex; height:2.676ex;" alt="{\displaystyle \mu _{V}=10}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma =1.3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mn>1.3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma =1.3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85de495626e23abec616db8691570bf6cb064a21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.4ex; height:2.176ex;" alt="{\displaystyle \sigma =1.3}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =2.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mn>2.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =2.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d67e934a2ea27ac1a8017840a5269147f84f492" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.333ex; height:2.676ex;" alt="{\displaystyle \gamma =2.5}"></span>) and its first two partial derivatives with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> (the first column) and the three parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a18f504bb4bade47b4907dd82e219e9746c136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.898ex; height:2.176ex;" alt="{\displaystyle \mu _{V}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> (the second, third, and fourth column, respectively), obtained analytically and numerically.</figcaption></figure> <p>Using the definition above for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{c}=x-\mu _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{c}=x-\mu _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/140f8a22bf4ef77768a6a1afa2a8eb6faef7d545" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.44ex; height:2.509ex;" alt="{\displaystyle x_{c}=x-\mu _{V}}"></span>, the first and second derivatives can be expressed in terms of the <a href="/wiki/Faddeeva_function#Derivative" title="Faddeeva function">Faddeeva function</a> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial }{\partial x}}V(x_{c};\sigma ,\gamma )&amp;=-{\frac {\operatorname {Re} \left[z~w(z)\right]}{\sigma ^{2}{\sqrt {\pi }}}}=-{\frac {x_{c}}{\sigma ^{2}}}{\frac {\operatorname {Re} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}+{\frac {\gamma }{\sigma ^{2}}}{\frac {\operatorname {Im} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}\\&amp;={\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \operatorname {Im} \left[w(z)\right]-x_{c}\cdot \operatorname {Re} \left[w(z)\right]\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi>V</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>z</mi> <mtext>&#xA0;</mtext> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial }{\partial x}}V(x_{c};\sigma ,\gamma )&amp;=-{\frac {\operatorname {Re} \left[z~w(z)\right]}{\sigma ^{2}{\sqrt {\pi }}}}=-{\frac {x_{c}}{\sigma ^{2}}}{\frac {\operatorname {Re} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}+{\frac {\gamma }{\sigma ^{2}}}{\frac {\operatorname {Im} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}\\&amp;={\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \operatorname {Im} \left[w(z)\right]-x_{c}\cdot \operatorname {Re} \left[w(z)\right]\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5daf037d7e2e1e09cf479761cb8377e3e4e06a97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:63.865ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial }{\partial x}}V(x_{c};\sigma ,\gamma )&amp;=-{\frac {\operatorname {Re} \left[z~w(z)\right]}{\sigma ^{2}{\sqrt {\pi }}}}=-{\frac {x_{c}}{\sigma ^{2}}}{\frac {\operatorname {Re} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}+{\frac {\gamma }{\sigma ^{2}}}{\frac {\operatorname {Im} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}\\&amp;={\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \operatorname {Im} \left[w(z)\right]-x_{c}\cdot \operatorname {Re} \left[w(z)\right]\right)\end{aligned}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial ^{2}}{\left(\partial x\right)^{2}}}V(x_{c};\sigma ,\gamma )&amp;={\frac {x_{c}^{2}-\gamma ^{2}-\sigma ^{2}}{\sigma ^{4}}}{\frac {\operatorname {Re} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}-{\frac {2x_{c}\gamma }{\sigma ^{4}}}{\frac {\operatorname {Im} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}+{\frac {\gamma }{\sigma ^{4}}}{\frac {1}{\pi }}\\&amp;=-{\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \left(2x_{c}\cdot \operatorname {Im} \left[w(z)\right]-\sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \operatorname {Re} \left[w(z)\right]\right),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>V</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial ^{2}}{\left(\partial x\right)^{2}}}V(x_{c};\sigma ,\gamma )&amp;={\frac {x_{c}^{2}-\gamma ^{2}-\sigma ^{2}}{\sigma ^{4}}}{\frac {\operatorname {Re} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}-{\frac {2x_{c}\gamma }{\sigma ^{4}}}{\frac {\operatorname {Im} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}+{\frac {\gamma }{\sigma ^{4}}}{\frac {1}{\pi }}\\&amp;=-{\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \left(2x_{c}\cdot \operatorname {Im} \left[w(z)\right]-\sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \operatorname {Re} \left[w(z)\right]\right),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87d3c80969d05caae1ee85d195675c55a926cf59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:94.802ex; height:13.843ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial ^{2}}{\left(\partial x\right)^{2}}}V(x_{c};\sigma ,\gamma )&amp;={\frac {x_{c}^{2}-\gamma ^{2}-\sigma ^{2}}{\sigma ^{4}}}{\frac {\operatorname {Re} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}-{\frac {2x_{c}\gamma }{\sigma ^{4}}}{\frac {\operatorname {Im} \left[w(z)\right]}{\sigma {\sqrt {2\pi }}}}+{\frac {\gamma }{\sigma ^{4}}}{\frac {1}{\pi }}\\&amp;=-{\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \left(2x_{c}\cdot \operatorname {Im} \left[w(z)\right]-\sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \operatorname {Re} \left[w(z)\right]\right),\end{aligned}}}"></span></dd></dl> <p>respectively. </p><p>Often, one or multiple Voigt profiles and/or their respective derivatives need to be fitted to a measured signal by means of <a href="/wiki/Non-linear_least_squares" title="Non-linear least squares">non-linear least squares</a>, e.g., in <a href="/wiki/Spectral_line_shape" title="Spectral line shape">spectroscopy</a>. Then, further partial derivatives can be utilised to accelerate computations. Instead of approximating the <a href="/wiki/Jacobian_matrix" class="mw-redirect" title="Jacobian matrix">Jacobian matrix</a> with respect to the parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a18f504bb4bade47b4907dd82e219e9746c136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.898ex; height:2.176ex;" alt="{\displaystyle \mu _{V}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> with the aid of <a href="/wiki/Finite_differences" class="mw-redirect" title="Finite differences">finite differences</a>, the corresponding analytical expressions can be applied. With <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Re} \left[w(z)\right]=\Re _{w}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Re</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Re} \left[w(z)\right]=\Re _{w}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a419322625df866fc852ff4ae7b5970c1ff3605b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.03ex; height:2.843ex;" alt="{\displaystyle \operatorname {Re} \left[w(z)\right]=\Re _{w}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Im} \left[w(z)\right]=\Im _{w}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Im</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Im} \left[w(z)\right]=\Im _{w}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf2fdac80435ccb39a7355f48e8a67ad2496b08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.426ex; height:2.843ex;" alt="{\displaystyle \operatorname {Im} \left[w(z)\right]=\Im _{w}}"></span>, these are given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \mu _{V}}}=-{\frac {\partial V}{\partial x}}={\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(x_{c}\cdot \Re _{w}-\gamma \cdot \Im _{w}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>V</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>V</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \mu _{V}}}=-{\frac {\partial V}{\partial x}}={\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(x_{c}\cdot \Re _{w}-\gamma \cdot \Im _{w}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08781bb3f41ea476b002c58bfbaba75920d36aa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.292ex; margin-bottom: -0.212ex; width:44.654ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \mu _{V}}}=-{\frac {\partial V}{\partial x}}={\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(x_{c}\cdot \Re _{w}-\gamma \cdot \Im _{w}\right)\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \sigma }}={\frac {1}{\sigma ^{4}{\sqrt {2\pi }}}}\cdot \left(\left(x_{c}^{2}-\gamma ^{2}-\sigma ^{2}\right)\cdot \Re _{w}-2x_{c}\gamma \cdot \Im _{w}+\gamma \sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>V</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \sigma }}={\frac {1}{\sigma ^{4}{\sqrt {2\pi }}}}\cdot \left(\left(x_{c}^{2}-\gamma ^{2}-\sigma ^{2}\right)\cdot \Re _{w}-2x_{c}\gamma \cdot \Im _{w}+\gamma \sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f56ce69201598ac4a77c1f04829f0e6807c8f37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.487ex; margin-bottom: -0.185ex; width:63.987ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \sigma }}={\frac {1}{\sigma ^{4}{\sqrt {2\pi }}}}\cdot \left(\left(x_{c}^{2}-\gamma ^{2}-\sigma ^{2}\right)\cdot \Re _{w}-2x_{c}\gamma \cdot \Im _{w}+\gamma \sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \gamma }}=-{\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(\sigma \cdot {\sqrt {\frac {2}{\pi }}}-x_{c}\cdot \Im _{w}-\gamma \cdot \Re _{w}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>V</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \gamma }}=-{\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(\sigma \cdot {\sqrt {\frac {2}{\pi }}}-x_{c}\cdot \Im _{w}-\gamma \cdot \Re _{w}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/233d011a2382f1a747f1a73874208ff028a5db00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.487ex; margin-bottom: -0.185ex; width:48.457ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V}{\partial \gamma }}=-{\frac {1}{\sigma ^{3}{\sqrt {2\pi }}}}\cdot \left(\sigma \cdot {\sqrt {\frac {2}{\pi }}}-x_{c}\cdot \Im _{w}-\gamma \cdot \Re _{w}\right)\end{aligned}}}"></span></dd></dl> <p>for the original voigt profile <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>; </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V'}{\partial \mu _{V}}}=-{\frac {\partial V'}{\partial x}}=-{\frac {\partial ^{2}V}{\left(\partial x\right)^{2}}}={\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \left(2x_{c}\cdot \Im _{w}-\sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \Re _{w}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>V</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V'}{\partial \mu _{V}}}=-{\frac {\partial V'}{\partial x}}=-{\frac {\partial ^{2}V}{\left(\partial x\right)^{2}}}={\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \left(2x_{c}\cdot \Im _{w}-\sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \Re _{w}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/742b4881a152d218edd4bef514dc22ab85de6d43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:89.852ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V&#039;}{\partial \mu _{V}}}=-{\frac {\partial V&#039;}{\partial x}}=-{\frac {\partial ^{2}V}{\left(\partial x\right)^{2}}}={\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(\gamma \cdot \left(2x_{c}\cdot \Im _{w}-\sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \Re _{w}\right)\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V'}{\partial \sigma }}={\frac {3}{\sigma ^{6}{\sqrt {2\pi }}}}\cdot \left(-\gamma \sigma x_{c}\cdot {\frac {2{\sqrt {2}}}{3{\sqrt {\pi }}}}+\left(x_{c}^{2}-{\frac {\gamma ^{2}}{3}}-\sigma ^{2}\right)\cdot \gamma \cdot \Im _{w}+\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Re _{w}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V'}{\partial \sigma }}={\frac {3}{\sigma ^{6}{\sqrt {2\pi }}}}\cdot \left(-\gamma \sigma x_{c}\cdot {\frac {2{\sqrt {2}}}{3{\sqrt {\pi }}}}+\left(x_{c}^{2}-{\frac {\gamma ^{2}}{3}}-\sigma ^{2}\right)\cdot \gamma \cdot \Im _{w}+\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Re _{w}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8c2e23830e4bb1bfe3e87e3ad58c76683118a2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:91.022ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V&#039;}{\partial \sigma }}={\frac {3}{\sigma ^{6}{\sqrt {2\pi }}}}\cdot \left(-\gamma \sigma x_{c}\cdot {\frac {2{\sqrt {2}}}{3{\sqrt {\pi }}}}+\left(x_{c}^{2}-{\frac {\gamma ^{2}}{3}}-\sigma ^{2}\right)\cdot \gamma \cdot \Im _{w}+\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Re _{w}\right)\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V'}{\partial \gamma }}={\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(x_{c}\cdot \left(\sigma \cdot {\sqrt {\frac {2}{\pi }}}-2\gamma \cdot \Re _{w}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \Im _{w}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V'}{\partial \gamma }}={\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(x_{c}\cdot \left(\sigma \cdot {\sqrt {\frac {2}{\pi }}}-2\gamma \cdot \Re _{w}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \Im _{w}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6561d7aebab0707472359b9d2883596eb738c53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.487ex; margin-bottom: -0.185ex; width:68.639ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V&#039;}{\partial \gamma }}={\frac {1}{\sigma ^{5}{\sqrt {2\pi }}}}\cdot \left(x_{c}\cdot \left(\sigma \cdot {\sqrt {\frac {2}{\pi }}}-2\gamma \cdot \Re _{w}\right)+\left(\gamma ^{2}+\sigma ^{2}-x_{c}^{2}\right)\cdot \Im _{w}\right)\end{aligned}}}"></span></dd></dl> <p>for the first order partial derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V'={\frac {\partial V}{\partial x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>V</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>V</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V'={\frac {\partial V}{\partial x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/410d15a25e24eb87c61828b866ec886929ab3cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.642ex; height:5.509ex;" alt="{\displaystyle V&#039;={\frac {\partial V}{\partial x}}}"></span>; and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V''}{\partial \mu _{V}}}=-{\frac {\partial V''}{\partial x}}=-{\frac {\partial ^{3}V}{\left(\partial x\right)^{3}}}=-{\frac {3}{\sigma ^{7}{\sqrt {2\pi }}}}\cdot \left(\left(x_{c}^{2}-{\frac {\gamma ^{2}}{3}}-\sigma ^{2}\right)\cdot \gamma \cdot \Im _{w}+\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Re _{w}-\gamma \sigma x_{c}\cdot {\frac {2{\sqrt {2}}}{3{\sqrt {\pi }}}}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2033;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2033;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>V</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V''}{\partial \mu _{V}}}=-{\frac {\partial V''}{\partial x}}=-{\frac {\partial ^{3}V}{\left(\partial x\right)^{3}}}=-{\frac {3}{\sigma ^{7}{\sqrt {2\pi }}}}\cdot \left(\left(x_{c}^{2}-{\frac {\gamma ^{2}}{3}}-\sigma ^{2}\right)\cdot \gamma \cdot \Im _{w}+\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Re _{w}-\gamma \sigma x_{c}\cdot {\frac {2{\sqrt {2}}}{3{\sqrt {\pi }}}}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0514b3bef5487342e6c6532f5b8eb73d6e553e2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:112.844ex; height:7.009ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V&#039;&#039;}{\partial \mu _{V}}}=-{\frac {\partial V&#039;&#039;}{\partial x}}=-{\frac {\partial ^{3}V}{\left(\partial x\right)^{3}}}=-{\frac {3}{\sigma ^{7}{\sqrt {2\pi }}}}\cdot \left(\left(x_{c}^{2}-{\frac {\gamma ^{2}}{3}}-\sigma ^{2}\right)\cdot \gamma \cdot \Im _{w}+\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Re _{w}-\gamma \sigma x_{c}\cdot {\frac {2{\sqrt {2}}}{3{\sqrt {\pi }}}}\right)\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;{\frac {\partial V''}{\partial \sigma }}=-{\frac {1}{\sigma ^{8}{\sqrt {2\pi }}}}\cdot \\&amp;\left(\left(-3\gamma x_{c}\sigma ^{2}+\gamma x_{c}^{3}-\gamma ^{3}x_{c}\right)\cdot 4\cdot \Im _{w}+\left(\left(2x_{c}^{2}-2\gamma ^{2}-\sigma ^{2}\right)\cdot 3\sigma ^{2}+6\gamma ^{2}x_{c}^{2}-x_{c}^{4}-\gamma ^{4}\right)\cdot \Re _{w}+\left(\gamma ^{2}+5\sigma ^{2}-3x_{c}^{2}\right)\cdot \gamma \sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2033;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>3</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>6</mn> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>5</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;{\frac {\partial V''}{\partial \sigma }}=-{\frac {1}{\sigma ^{8}{\sqrt {2\pi }}}}\cdot \\&amp;\left(\left(-3\gamma x_{c}\sigma ^{2}+\gamma x_{c}^{3}-\gamma ^{3}x_{c}\right)\cdot 4\cdot \Im _{w}+\left(\left(2x_{c}^{2}-2\gamma ^{2}-\sigma ^{2}\right)\cdot 3\sigma ^{2}+6\gamma ^{2}x_{c}^{2}-x_{c}^{4}-\gamma ^{4}\right)\cdot \Re _{w}+\left(\gamma ^{2}+5\sigma ^{2}-3x_{c}^{2}\right)\cdot \gamma \sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/839eba1b7ca88629d25efb3e313439011ec99bad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:118.434ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}&amp;{\frac {\partial V&#039;&#039;}{\partial \sigma }}=-{\frac {1}{\sigma ^{8}{\sqrt {2\pi }}}}\cdot \\&amp;\left(\left(-3\gamma x_{c}\sigma ^{2}+\gamma x_{c}^{3}-\gamma ^{3}x_{c}\right)\cdot 4\cdot \Im _{w}+\left(\left(2x_{c}^{2}-2\gamma ^{2}-\sigma ^{2}\right)\cdot 3\sigma ^{2}+6\gamma ^{2}x_{c}^{2}-x_{c}^{4}-\gamma ^{4}\right)\cdot \Re _{w}+\left(\gamma ^{2}+5\sigma ^{2}-3x_{c}^{2}\right)\cdot \gamma \sigma \cdot {\sqrt {\frac {2}{\pi }}}\right)\end{aligned}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\partial V''}{\partial \gamma }}=-{\frac {3}{\sigma ^{7}{\sqrt {2\pi }}}}\cdot \left(\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Im _{w}+\left({\frac {\gamma ^{2}}{3}}+\sigma ^{2}-x_{c}^{2}\right)\cdot \gamma \cdot \Re _{w}+\left(x_{c}^{2}-\gamma ^{2}-2\sigma ^{2}\right)\cdot \sigma \cdot {\frac {\sqrt {2}}{3{\sqrt {\pi }}}}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>V</mi> <mo>&#x2033;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\partial V''}{\partial \gamma }}=-{\frac {3}{\sigma ^{7}{\sqrt {2\pi }}}}\cdot \left(\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Im _{w}+\left({\frac {\gamma ^{2}}{3}}+\sigma ^{2}-x_{c}^{2}\right)\cdot \gamma \cdot \Re _{w}+\left(x_{c}^{2}-\gamma ^{2}-2\sigma ^{2}\right)\cdot \sigma \cdot {\frac {\sqrt {2}}{3{\sqrt {\pi }}}}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181759aac13022fd153752b98afc40ff35c3af4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:105.693ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}{\frac {\partial V&#039;&#039;}{\partial \gamma }}=-{\frac {3}{\sigma ^{7}{\sqrt {2\pi }}}}\cdot \left(\left(\gamma ^{2}+\sigma ^{2}-{\frac {x_{c}^{2}}{3}}\right)\cdot x_{c}\cdot \Im _{w}+\left({\frac {\gamma ^{2}}{3}}+\sigma ^{2}-x_{c}^{2}\right)\cdot \gamma \cdot \Re _{w}+\left(x_{c}^{2}-\gamma ^{2}-2\sigma ^{2}\right)\cdot \sigma \cdot {\frac {\sqrt {2}}{3{\sqrt {\pi }}}}\right)\end{aligned}}}"></span></dd></dl> <p>for the second order partial derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V''={\frac {\partial ^{2}V}{\left(\partial x\right)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>V</mi> <mo>&#x2033;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>V</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V''={\frac {\partial ^{2}V}{\left(\partial x\right)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb9b70e93eb1eb95a236c5303d15b9b6185ab6df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.5ex; height:7.009ex;" alt="{\displaystyle V&#039;&#039;={\frac {\partial ^{2}V}{\left(\partial x\right)^{2}}}}"></span>. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{V}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>V</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{V}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a18f504bb4bade47b4907dd82e219e9746c136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.898ex; height:2.176ex;" alt="{\displaystyle \mu _{V}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> play a relatively similar role in the calculation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>, their respective partial derivatives also look quite similar in terms of their structure, although they result in totally different derivative profiles. Indeed, the partial derivatives with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> show more similarity since both are width parameters. All these derivatives involve only simple operations (multiplications and additions) because the computationally expensive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Re _{w}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Re _{w}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f47df285285edc0ff9ca87046b48de44b2e6c41b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.333ex; height:2.509ex;" alt="{\displaystyle \Re _{w}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Im _{w}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2111;<!-- ℑ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Im _{w}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc111def2107a2704c6432d554cea95612979a96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.697ex; height:2.509ex;" alt="{\displaystyle \Im _{w}}"></span> are readily obtained when computing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\left(z\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\left(z\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b397023d984e76060fe56a68d965a8a17a2eb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle w\left(z\right)}"></span>. Such a reuse of previous calculations allows for a derivation at minimum costs. This is not the case for <a href="/wiki/Finite_differences" class="mw-redirect" title="Finite differences">finite difference gradient approximation</a> as it requires the evaluation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\left(z\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\left(z\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b397023d984e76060fe56a68d965a8a17a2eb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.949ex; height:2.843ex;" alt="{\displaystyle w\left(z\right)}"></span> for each gradient respectively. </p> <div class="mw-heading mw-heading2"><h2 id="Voigt_functions">Voigt functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=7" title="Edit section: Voigt functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>Voigt functions</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <i>U</i>, <i>V</i>, and <i>H</i> (sometimes called the <b>line broadening function</b>) are defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U(x,t)+iV(x,t)={\sqrt {\frac {\pi }{4t}}}e^{z^{2}}\operatorname {erfc} (z)={\sqrt {\frac {\pi }{4t}}}w(iz),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>i</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>4</mn> <mi>t</mi> </mrow> </mfrac> </msqrt> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mi>erfc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>4</mn> <mi>t</mi> </mrow> </mfrac> </msqrt> </mrow> <mi>w</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U(x,t)+iV(x,t)={\sqrt {\frac {\pi }{4t}}}e^{z^{2}}\operatorname {erfc} (z)={\sqrt {\frac {\pi }{4t}}}w(iz),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d30e5d29a366d072bdee5b02f2e7bf3af4ee6c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:49.661ex; height:6.343ex;" alt="{\displaystyle U(x,t)+iV(x,t)={\sqrt {\frac {\pi }{4t}}}e^{z^{2}}\operatorname {erfc} (z)={\sqrt {\frac {\pi }{4t}}}w(iz),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(a,u)={\frac {U({\frac {u}{a}},{\frac {1}{4a^{2}}})}{{\sqrt {\pi }}\,a}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>u</mi> <mi>a</mi> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(a,u)={\frac {U({\frac {u}{a}},{\frac {1}{4a^{2}}})}{{\sqrt {\pi }}\,a}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/553c6a57b3f1261fd5d8180ae6c21b0830f183a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:21.809ex; height:7.676ex;" alt="{\displaystyle H(a,u)={\frac {U({\frac {u}{a}},{\frac {1}{4a^{2}}})}{{\sqrt {\pi }}\,a}},}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z={\frac {1-ix}{2{\sqrt {t}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>t</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z={\frac {1-ix}{2{\sqrt {t}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d65f21cfe571376b3fb52719c069e5cfe9571525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:11.805ex; height:6.176ex;" alt="{\displaystyle z={\frac {1-ix}{2{\sqrt {t}}}},}"></span></dd></dl> <p>erfc is the <a href="/wiki/Complementary_error_function" class="mw-redirect" title="Complementary error function">complementary error function</a>, and <i>w</i>(<i>z</i>) is the <a href="/wiki/Faddeeva_function" title="Faddeeva function">Faddeeva function</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Relation_to_Voigt_profile">Relation to Voigt profile</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=8" title="Edit section: Relation to Voigt profile"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(x;\sigma ,\gamma )={\frac {H(a,u)}{{\sqrt {2\pi }}\,\sigma }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>H</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(x;\sigma ,\gamma )={\frac {H(a,u)}{{\sqrt {2\pi }}\,\sigma }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e684a05bfebdc32e2b40f451b5e4397e8344c267" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:21.634ex; height:6.676ex;" alt="{\displaystyle V(x;\sigma ,\gamma )={\frac {H(a,u)}{{\sqrt {2\pi }}\,\sigma }},}"></span></dd></dl> <p>with Gaussian sigma relative variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u={\frac {x}{{\sqrt {2}}\,\sigma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u={\frac {x}{{\sqrt {2}}\,\sigma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/791fc6a9cae9ca24af7a70b091b3011c544e4225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:10.079ex; height:5.676ex;" alt="{\displaystyle u={\frac {x}{{\sqrt {2}}\,\sigma }}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {\gamma }{{\sqrt {2}}\,\sigma }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>&#x03C3;<!-- σ --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\frac {\gamma }{{\sqrt {2}}\,\sigma }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a67928e0adc28e939f21a03d2e0cbde96705e328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:10.626ex; height:5.843ex;" alt="{\displaystyle a={\frac {\gamma }{{\sqrt {2}}\,\sigma }}.}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Numeric_approximations">Numeric approximations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=9" title="Edit section: Numeric approximations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Tepper_function"></span><span class="anchor" id="Tepper_approximation"></span><span class="anchor" id="Tepper-García_approximation"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Tepper-García_Function"><span id="Tepper-Garc.C3.ADa_Function"></span><span class="anchor" id="Tepper_Function"></span> Tepper-García Function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=10" title="Edit section: Tepper-García Function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>Tepper-García function</b>, named after German-Mexican Astrophysicist <a href="/w/index.php?title=Thor_Tepper-Garc%C3%ADa&amp;action=edit&amp;redlink=1" class="new" title="Thor Tepper-García (page does not exist)">Thor Tepper-García</a>, is a combination of an exponential function and rational functions that approximates the line broadening function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(a,u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(a,u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1f6b609d8de00942e33763c94f9d7b40f1a421" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.466ex; height:2.843ex;" alt="{\displaystyle H(a,u)}"></span> over a wide range of its parameters.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> It is obtained from a truncated <a href="/wiki/Power_series" title="Power series">power series</a> expansion of the exact line broadening function. </p><p>In its most computationally efficient form, the <b>Tepper-García function</b> can be expressed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(a,u)=R-\left(a/{\sqrt {\pi }}P\right)~\left[R^{2}~(4P^{2}+7P+4+Q)-Q-1\right]\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> <mi>P</mi> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mn>4</mn> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>7</mn> <mi>P</mi> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mi>Q</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>Q</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(a,u)=R-\left(a/{\sqrt {\pi }}P\right)~\left[R^{2}~(4P^{2}+7P+4+Q)-Q-1\right]\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c16f22985123d8564e3fc8b56c1ba678dee9ada5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:61.35ex; height:3.343ex;" alt="{\displaystyle T(a,u)=R-\left(a/{\sqrt {\pi }}P\right)~\left[R^{2}~(4P^{2}+7P+4+Q)-Q-1\right]\,,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\equiv u^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\equiv u^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb79b5887b76c706bcce64152d15c69c00c88fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.228ex; height:2.676ex;" alt="{\displaystyle P\equiv u^{2}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q\equiv 3/(2P)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>P</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q\equiv 3/(2P)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2684976096a2b64bb223cd5a3265bdcfcca09fa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.979ex; height:2.843ex;" alt="{\displaystyle Q\equiv 3/(2P)}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\equiv e^{-P}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>&#x2261;<!-- ≡ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R\equiv e^{-P}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4aef4e2c69f939193dd22bf27719087bb640b424" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.691ex; height:2.676ex;" alt="{\displaystyle R\equiv e^{-P}}"></span>. </p><p>Thus the line broadening function can be viewed, to first order, as a pure Gaussian function plus a correction factor that depends linearly on the microscopic properties of the absorbing medium (encoded in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>); however, as a result of the early truncation in the series expansion, the error in the approximation is still of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(a,u)\approx T(a,u)+{\mathcal {O}}(a)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(a,u)\approx T(a,u)+{\mathcal {O}}(a)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd4569476f83e190c67f4b62c05a706245f93780" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.333ex; height:2.843ex;" alt="{\displaystyle H(a,u)\approx T(a,u)+{\mathcal {O}}(a)}"></span>. This approximation has a relative accuracy of </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon \equiv {\frac {\vert H(a,u)-T(a,u)\vert }{H(a,u)}}\lesssim 10^{-4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">|</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">|</mo> </mrow> <mrow> <mi>H</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2272;<!-- ≲ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon \equiv {\frac {\vert H(a,u)-T(a,u)\vert }{H(a,u)}}\lesssim 10^{-4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c7ffc0ed0447833e895a2aee792be27e17963af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.274ex; height:6.509ex;" alt="{\displaystyle \epsilon \equiv {\frac {\vert H(a,u)-T(a,u)\vert }{H(a,u)}}\lesssim 10^{-4}}"></span></dd></dl> <p>over the full wavelength range of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(a,u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(a,u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1f6b609d8de00942e33763c94f9d7b40f1a421" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.466ex; height:2.843ex;" alt="{\displaystyle H(a,u)}"></span>, provided that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\lesssim 10^{-4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2272;<!-- ≲ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\lesssim 10^{-4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a8c079b75b4a6a90d873dd388b91e618b2206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.986ex; height:3.176ex;" alt="{\displaystyle a\lesssim 10^{-4}}"></span>. In addition to its high accuracy, the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(a,u)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(a,u)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869852326d043d09be5b5559a2d20ed7d918b8da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.039ex; height:2.843ex;" alt="{\displaystyle T(a,u)}"></span> is easy to implement as well as computationally fast. It is widely used in the field of quasar absorption line analysis.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Pseudo-Voigt_approximation">Pseudo-Voigt approximation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=11" title="Edit section: Pseudo-Voigt approximation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>pseudo-Voigt profile</b> (or <b>pseudo-Voigt function</b>) is an approximation of the Voigt profile <i>V</i>(<i>x</i>) using a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of a <a href="/wiki/Gaussian_function" title="Gaussian function">Gaussian curve</a> <i>G</i>(<i>x</i>) and a <a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Lorentzian curve</a> <i>L</i>(<i>x</i>) instead of their <a href="/wiki/Convolution" title="Convolution">convolution</a>. </p><p>The pseudo-Voigt function is often used for calculations of experimental <a href="/wiki/Spectral_line_shape" title="Spectral line shape">spectral line shapes</a>. </p><p>The mathematical definition of the normalized pseudo-Voigt profile is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{p}(x,f)=\eta \cdot L(x,f)+(1-\eta )\cdot G(x,f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B7;<!-- η --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{p}(x,f)=\eta \cdot L(x,f)+(1-\eta )\cdot G(x,f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24859840bf6a4d6521fa30e72fb4e038b486e37e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.627ex; height:3.009ex;" alt="{\displaystyle V_{p}(x,f)=\eta \cdot L(x,f)+(1-\eta )\cdot G(x,f)}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\eta &lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>&#x03B7;<!-- η --></mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\eta &lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9676097de21f4ec2dead2bee81c47da062013260" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.691ex; height:2.676ex;" alt="{\displaystyle 0&lt;\eta &lt;1}"></span>.</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> is a function of <a href="/wiki/Full_width_at_half_maximum" title="Full width at half maximum">full width at half maximum</a> (FWHM) parameter. </p><p>There are several possible choices for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> parameter.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> A simple formula, accurate to 1%, is<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta =1.36603(f_{L}/f)-0.47719(f_{L}/f)^{2}+0.11116(f_{L}/f)^{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo>=</mo> <mn>1.36603</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>0.47719</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0.11116</mn> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta =1.36603(f_{L}/f)-0.47719(f_{L}/f)^{2}+0.11116(f_{L}/f)^{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff0be0f1692b35259188b4405feeabdebe8ea719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.792ex; height:3.176ex;" alt="{\displaystyle \eta =1.36603(f_{L}/f)-0.47719(f_{L}/f)^{2}+0.11116(f_{L}/f)^{3},}"></span></dd></dl> <p>where now, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }"></span> is a function of Lorentz (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{L}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{L}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc2c59e3cea4572aacc777142562b1ecb70342e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.491ex; height:2.509ex;" alt="{\displaystyle f_{L}}"></span>), Gaussian (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{G}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{G}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/556702991770638edd8858e328f5f09223d77f80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.663ex; height:2.509ex;" alt="{\displaystyle f_{G}}"></span>) and total (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>) <a href="/wiki/Full_width_at_half_maximum" title="Full width at half maximum">Full width at half maximum</a> (FWHM) parameters. The total FWHM (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>) parameter is described by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=[f_{G}^{5}+2.69269f_{G}^{4}f_{L}+2.42843f_{G}^{3}f_{L}^{2}+4.47163f_{G}^{2}f_{L}^{3}+0.07842f_{G}f_{L}^{4}+f_{L}^{5}]^{1/5}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">[</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> <mo>+</mo> <mn>2.69269</mn> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msub> <mo>+</mo> <mn>2.42843</mn> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mn>4.47163</mn> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> <mo>+</mo> <mn>0.07842</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msubsup> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>5</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=[f_{G}^{5}+2.69269f_{G}^{4}f_{L}+2.42843f_{G}^{3}f_{L}^{2}+4.47163f_{G}^{2}f_{L}^{3}+0.07842f_{G}f_{L}^{4}+f_{L}^{5}]^{1/5}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3ab3f98234264eaebccd47e51e399110e699301" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:79.474ex; height:3.509ex;" alt="{\displaystyle f=[f_{G}^{5}+2.69269f_{G}^{4}f_{L}+2.42843f_{G}^{3}f_{L}^{2}+4.47163f_{G}^{2}f_{L}^{3}+0.07842f_{G}f_{L}^{4}+f_{L}^{5}]^{1/5}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="The_width_of_the_Voigt_profile">The width of the Voigt profile</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=12" title="Edit section: The width of the Voigt profile"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Full_width_at_half_maximum" title="Full width at half maximum">full width at half maximum</a> (FWHM) of the Voigt profile can be found from the widths of the associated Gaussian and Lorentzian widths. The FWHM of the Gaussian profile is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\mathrm {G} }=2\sigma {\sqrt {2\ln(2)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\mathrm {G} }=2\sigma {\sqrt {2\ln(2)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09da3bf013e549b039044a2287c251512706e402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.683ex; height:4.843ex;" alt="{\displaystyle f_{\mathrm {G} }=2\sigma {\sqrt {2\ln(2)}}.}"></span></dd></dl> <p>The FWHM of the Lorentzian profile is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\mathrm {L} }=2\gamma .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mi>&#x03B3;<!-- γ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\mathrm {L} }=2\gamma .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/679c3cfa43459baa358e915572154a34ac3607e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.569ex; height:2.676ex;" alt="{\displaystyle f_{\mathrm {L} }=2\gamma .}"></span></dd></dl> <p>An approximate relation (accurate to within about 1.2%) between the widths of the Voigt, Gaussian, and Lorentzian profiles is:<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\mathrm {V} }\approx f_{\mathrm {L} }/2+{\sqrt {f_{\mathrm {L} }^{2}/4+f_{\mathrm {G} }^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> </mrow> </mrow> </msub> <mo>&#x2248;<!-- ≈ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo>+</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\mathrm {V} }\approx f_{\mathrm {L} }/2+{\sqrt {f_{\mathrm {L} }^{2}/4+f_{\mathrm {G} }^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b2f3a5b9b9b335f1258fc8067430a4c92f6f91f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.463ex; height:4.843ex;" alt="{\displaystyle f_{\mathrm {V} }\approx f_{\mathrm {L} }/2+{\sqrt {f_{\mathrm {L} }^{2}/4+f_{\mathrm {G} }^{2}}}.}"></span></dd></dl> <p>By construction, this expression is exact for a pure Gaussian or Lorentzian. </p><p>A better approximation with an accuracy of 0.02% is given by <sup id="cite_ref-:0_11-0" class="reference"><a href="#cite_note-:0-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> (originally found by Kielkopf<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\mathrm {V} }\approx 0.5346f_{\mathrm {L} }+{\sqrt {0.2166f_{\mathrm {L} }^{2}+f_{\mathrm {G} }^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">V</mi> </mrow> </mrow> </msub> <mo>&#x2248;<!-- ≈ --></mo> <mn>0.5346</mn> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>0.2166</mn> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\mathrm {V} }\approx 0.5346f_{\mathrm {L} }+{\sqrt {0.2166f_{\mathrm {L} }^{2}+f_{\mathrm {G} }^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc6f4385fd913493fe4726dbbd20fc059279d6fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.731ex; height:4.843ex;" alt="{\displaystyle f_{\mathrm {V} }\approx 0.5346f_{\mathrm {L} }+{\sqrt {0.2166f_{\mathrm {L} }^{2}+f_{\mathrm {G} }^{2}}}.}"></span></dd></dl> <p>Again, this expression is exact for a pure Gaussian or Lorentzian. In the same publication,<sup id="cite_ref-:0_11-1" class="reference"><a href="#cite_note-:0-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> a slightly more precise (within 0.012%), yet significantly more complicated expression can be found. </p> <div class="mw-heading mw-heading2"><h2 id="Asymmetric_Pseudo-Voigt_(Martinelli)_function"><span id="Asymmetric_Pseudo-Voigt_.28Martinelli.29_function"></span>Asymmetric Pseudo-Voigt (Martinelli) function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=13" title="Edit section: Asymmetric Pseudo-Voigt (Martinelli) function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The asymmetry pseudo-Voigt (Martinelli) function resembles a <a href="/wiki/Split_normal_distribution" title="Split normal distribution">split normal distribution</a> by having different widths on each side of the peak position. Mathematically this is expressed as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{p}(x,f)=\eta \cdot L(x,f)+(1-\eta )\cdot G(x,f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B7;<!-- η --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>L</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{p}(x,f)=\eta \cdot L(x,f)+(1-\eta )\cdot G(x,f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24859840bf6a4d6521fa30e72fb4e038b486e37e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.627ex; height:3.009ex;" alt="{\displaystyle V_{p}(x,f)=\eta \cdot L(x,f)+(1-\eta )\cdot G(x,f)}"></span> </p><p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\eta &lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>&#x03B7;<!-- η --></mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\eta &lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9676097de21f4ec2dead2bee81c47da062013260" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.691ex; height:2.676ex;" alt="{\displaystyle 0&lt;\eta &lt;1}"></span> being the weight of the Lorentzian and the width <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> being a split function (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc1b0570c5c5a294a7e39d5951374dfda399316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.571ex; height:2.509ex;" alt="{\displaystyle f=f_{1}}"></span>for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a4dbbf970b2d2863dcab589eafe006f08e727d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x&lt;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=f_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=f_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beaab7bfcd8f1d964b27ad0c5dc6fc8795fdd9e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.571ex; height:2.509ex;" alt="{\displaystyle f=f_{2}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2608e2b392b079f5b763f27bf52883dbee3b64a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.591ex; height:2.343ex;" alt="{\displaystyle x\geq 0}"></span>). In the limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}\rightarrow f_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}\rightarrow f_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22f0b45989f7ebfadc84e67e4767b87cc6cffffa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.001ex; height:2.509ex;" alt="{\displaystyle f_{1}\rightarrow f_{2}}"></span>, the Martinelli function returns to a symmetry pseudo Voigt function. The Martinelli function has been used to model elastic scattering on <a href="/wiki/Resonant_inelastic_X-ray_scattering" title="Resonant inelastic X-ray scattering">resonant inelastic X-ray scattering</a> instruments.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=14" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFTemme2010" class="citation cs2">Temme, N. M. (2010), <a rel="nofollow" class="external text" href="http://dlmf.nist.gov/7.19">"Voigt function"</a>, in <a href="/wiki/Frank_W._J._Olver" title="Frank W. J. Olver">Olver, Frank W. J.</a>; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), <i><a href="/wiki/Digital_Library_of_Mathematical_Functions" title="Digital Library of Mathematical Functions">NIST Handbook of Mathematical Functions</a></i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-19225-5" title="Special:BookSources/978-0-521-19225-5"><bdi>978-0-521-19225-5</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2723248">2723248</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Voigt+function&amp;rft.btitle=NIST+Handbook+of+Mathematical+Functions&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-521-19225-5&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2723248%23id-name%3DMR&amp;rft.aulast=Temme&amp;rft.aufirst=N.+M.&amp;rft_id=http%3A%2F%2Fdlmf.nist.gov%2F7.19&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTepper-García2006" class="citation journal cs1">Tepper-García, Thorsten (2006). <a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2006.10450.x">"Voigt profile fitting to quasar absorption lines: an analytic approximation to the Voigt-Hjerting function"</a>. <i>Monthly Notices of the Royal Astronomical Society</i>. <b>369</b> (4): <span class="nowrap">2025–</span>2035. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/astro-ph/0602124">astro-ph/0602124</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006MNRAS.369.2025T">2006MNRAS.369.2025T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2966.2006.10450.x">10.1111/j.1365-2966.2006.10450.x</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16981310">16981310</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Monthly+Notices+of+the+Royal+Astronomical+Society&amp;rft.atitle=Voigt+profile+fitting+to+quasar+absorption+lines%3A+an+analytic+approximation+to+the+Voigt-Hjerting+function&amp;rft.volume=369&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2025-%3C%2Fspan%3E2035&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0602124&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16981310%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1365-2966.2006.10450.x&amp;rft_id=info%3Abibcode%2F2006MNRAS.369.2025T&amp;rft.aulast=Tepper-Garc%C3%ADa&amp;rft.aufirst=Thorsten&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1111%252Fj.1365-2966.2006.10450.x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">List of citations found in the SAO/NASA Astrophysics Data System (ADS): <a rel="nofollow" class="external free" href="https://ui.adsabs.harvard.edu/abs/2006MNRAS.369.2025T/citations">https://ui.adsabs.harvard.edu/abs/2006MNRAS.369.2025T/citations</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWertheimButlerWestBuchanan1974" class="citation journal cs1">Wertheim GK, Butler MA, West KW, Buchanan DN (1974). "Determination of the Gaussian and Lorentzian content of experimental line shapes". <i>Review of Scientific Instruments</i>. <b>45</b> (11): <span class="nowrap">1369–</span>1371. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1974RScI...45.1369W">1974RScI...45.1369W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.1686503">10.1063/1.1686503</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Review+of+Scientific+Instruments&amp;rft.atitle=Determination+of+the+Gaussian+and+Lorentzian+content+of+experimental+line+shapes&amp;rft.volume=45&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1369-%3C%2Fspan%3E1371&amp;rft.date=1974&amp;rft_id=info%3Adoi%2F10.1063%2F1.1686503&amp;rft_id=info%3Abibcode%2F1974RScI...45.1369W&amp;rft.aulast=Wertheim&amp;rft.aufirst=GK&amp;rft.au=Butler%2C+MA&amp;rft.au=West%2C+KW&amp;rft.au=Buchanan%2C+DN&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSánchez-BajoF._L._Cumbrera1997" class="citation journal cs1">Sánchez-Bajo, F.; F. L. Cumbrera (August 1997). "The Use of the Pseudo-Voigt Function in the Variance Method of X-ray Line-Broadening Analysis". <i>Journal of Applied Crystallography</i>. <b>30</b> (4): <span class="nowrap">427–</span>430. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997JApCr..30..427S">1997JApCr..30..427S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0021889896015464">10.1107/S0021889896015464</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Applied+Crystallography&amp;rft.atitle=The+Use+of+the+Pseudo-Voigt+Function+in+the+Variance+Method+of+X-ray+Line-Broadening+Analysis&amp;rft.volume=30&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E427-%3C%2Fspan%3E430&amp;rft.date=1997-08&amp;rft_id=info%3Adoi%2F10.1107%2FS0021889896015464&amp;rft_id=info%3Abibcode%2F1997JApCr..30..427S&amp;rft.aulast=S%C3%A1nchez-Bajo&amp;rft.aufirst=F.&amp;rft.au=F.+L.+Cumbrera&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuLinHuangGuo2001" class="citation journal cs1">Liu Y, Lin J, Huang G, Guo Y, Duan C (2001). "Simple empirical analytical approximation to the Voigt profile". <i>JOSA B</i>. <b>18</b> (5): <span class="nowrap">666–</span>672. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001JOSAB..18..666L">2001JOSAB..18..666L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2Fjosab.18.000666">10.1364/josab.18.000666</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=JOSA+B&amp;rft.atitle=Simple+empirical+analytical+approximation+to+the+Voigt+profile&amp;rft.volume=18&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E666-%3C%2Fspan%3E672&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1364%2Fjosab.18.000666&amp;rft_id=info%3Abibcode%2F2001JOSAB..18..666L&amp;rft.aulast=Liu&amp;rft.aufirst=Y&amp;rft.au=Lin%2C+J&amp;rft.au=Huang%2C+G&amp;rft.au=Guo%2C+Y&amp;rft.au=Duan%2C+C&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDi_RoccoCruzado2012" class="citation journal cs1">Di Rocco HO, Cruzado A (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.12693%2FAPhysPolA.122.666">"The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends Only on the Widths Ratio"</a>. <i>Acta Physica Polonica A</i>. <b>122</b> (4): <span class="nowrap">666–</span>669. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AcPPA.122..666D">2012AcPPA.122..666D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.12693%2FAPhysPolA.122.666">10.12693/APhysPolA.122.666</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0587-4246">0587-4246</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Physica+Polonica+A&amp;rft.atitle=The+Voigt+Profile+as+a+Sum+of+a+Gaussian+and+a+Lorentzian+Functions%2C+when+the+Weight+Coefficient+Depends+Only+on+the+Widths+Ratio&amp;rft.volume=122&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E666-%3C%2Fspan%3E669&amp;rft.date=2012&amp;rft.issn=0587-4246&amp;rft_id=info%3Adoi%2F10.12693%2FAPhysPolA.122.666&amp;rft_id=info%3Abibcode%2F2012AcPPA.122..666D&amp;rft.aulast=Di+Rocco&amp;rft.aufirst=HO&amp;rft.au=Cruzado%2C+A&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.12693%252FAPhysPolA.122.666&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIdaAndoToraya2000" class="citation journal cs1">Ida T, Ando M, Toraya H (2000). "Extended pseudo-Voigt function for approximating the Voigt profile". <i>Journal of Applied Crystallography</i>. <b>33</b> (6): <span class="nowrap">1311–</span>1316. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2Fs0021889800010219">10.1107/s0021889800010219</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55372305">55372305</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Applied+Crystallography&amp;rft.atitle=Extended+pseudo-Voigt+function+for+approximating+the+Voigt+profile&amp;rft.volume=33&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1311-%3C%2Fspan%3E1316&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1107%2Fs0021889800010219&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55372305%23id-name%3DS2CID&amp;rft.aulast=Ida&amp;rft.aufirst=T&amp;rft.au=Ando%2C+M&amp;rft.au=Toraya%2C+H&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._Thompson,_D._E._Cox_and_J._B._Hastings1987" class="citation journal cs1">P. Thompson, D. E. Cox and J. B. Hastings (1987). "Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al<sub>2</sub>O<sub>3</sub>". <i>Journal of Applied Crystallography</i>. <b>20</b> (2): <span class="nowrap">79–</span>83. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1987JApCr..20...79T">1987JApCr..20...79T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0021889887087090">10.1107/S0021889887087090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Applied+Crystallography&amp;rft.atitle=Rietveld+refinement+of+Debye-Scherrer+synchrotron+X-ray+data+from+Al%3Csub%3E2%3C%2Fsub%3EO%3Csub%3E3%3C%2Fsub%3E&amp;rft.volume=20&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E79-%3C%2Fspan%3E83&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1107%2FS0021889887087090&amp;rft_id=info%3Abibcode%2F1987JApCr..20...79T&amp;rft.au=P.+Thompson%2C+D.+E.+Cox+and+J.+B.+Hastings&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhiting1968" class="citation journal cs1">Whiting, E. E. (June 1968). "An empirical approximation to the Voigt profile". <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i>. <b>8</b> (6): <span class="nowrap">1379–</span>1384. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1968JQSRT...8.1379W">1968JQSRT...8.1379W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-4073%2868%2990081-2">10.1016/0022-4073(68)90081-2</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-4073">0022-4073</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Quantitative+Spectroscopy+and+Radiative+Transfer&amp;rft.atitle=An+empirical+approximation+to+the+Voigt+profile&amp;rft.volume=8&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1379-%3C%2Fspan%3E1384&amp;rft.date=1968-06&amp;rft.issn=0022-4073&amp;rft_id=info%3Adoi%2F10.1016%2F0022-4073%2868%2990081-2&amp;rft_id=info%3Abibcode%2F1968JQSRT...8.1379W&amp;rft.aulast=Whiting&amp;rft.aufirst=E.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-:0-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliveroR._L._Longbothum1977" class="citation journal cs1">Olivero, J. J.; R. L. Longbothum (February 1977). "Empirical fits to the Voigt line width: A brief review". <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i>. <b>17</b> (2): <span class="nowrap">233–</span>236. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977JQSRT..17..233O">1977JQSRT..17..233O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-4073%2877%2990161-3">10.1016/0022-4073(77)90161-3</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-4073">0022-4073</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Quantitative+Spectroscopy+and+Radiative+Transfer&amp;rft.atitle=Empirical+fits+to+the+Voigt+line+width%3A+A+brief+review&amp;rft.volume=17&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E233-%3C%2Fspan%3E236&amp;rft.date=1977-02&amp;rft.issn=0022-4073&amp;rft_id=info%3Adoi%2F10.1016%2F0022-4073%2877%2990161-3&amp;rft_id=info%3Abibcode%2F1977JQSRT..17..233O&amp;rft.aulast=Olivero&amp;rft.aufirst=J.+J.&amp;rft.au=R.+L.+Longbothum&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_F._Kielkopf1973" class="citation cs2">John F. Kielkopf (1973), "New approximation to the Voigt function with applications to spectral-line profile analysis", <i>Journal of the Optical Society of America</i>, <b>63</b> (8): 987, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973JOSA...63..987K">1973JOSA...63..987K</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FJOSA.63.000987">10.1364/JOSA.63.000987</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Optical+Society+of+America&amp;rft.atitle=New+approximation+to+the+Voigt+function+with+applications+to+spectral-line+profile+analysis&amp;rft.volume=63&amp;rft.issue=8&amp;rft.pages=987&amp;rft.date=1973&amp;rft_id=info%3Adoi%2F10.1364%2FJOSA.63.000987&amp;rft_id=info%3Abibcode%2F1973JOSA...63..987K&amp;rft.au=John+F.+Kielkopf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartinelliBiałoHongOppliger2024" class="citation arxiv cs1">Martinelli, L.; Biało, I.; Hong, X.; Oppliger, J.; et&#160;al. (2024). "Decoupled static and dynamical charge correlations in La2−xSrxCuO4". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2406.15062">2406.15062</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cond-mat.str-el">cond-mat.str-el</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Decoupled+static+and+dynamical+charge+correlations+in+La2%E2%88%92xSrxCuO4&amp;rft.date=2024&amp;rft_id=info%3Aarxiv%2F2406.15062&amp;rft.aulast=Martinelli&amp;rft.aufirst=L.&amp;rft.au=Bia%C5%82o%2C+I.&amp;rft.au=Hong%2C+X.&amp;rft.au=Oppliger%2C+J.&amp;rft.au=Lin%2C+C.&amp;rft.au=Schaller%2C+T.&amp;rft.au=K%C3%BCspert%2C+J.&amp;rft.au=Fischer%2C+M.+H.&amp;rft.au=Kurosawa%2C+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AVoigt+profile" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Voigt_profile&amp;action=edit&amp;section=15" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external free" href="http://jugit.fz-juelich.de/mlz/libcerf">http://jugit.fz-juelich.de/mlz/libcerf</a>, numeric C library for complex error functions, provides a function <i>voigt(x, sigma, gamma)</i> with approximately 13–14 digits precision.</li> <li>The original article is&#160;: Voigt, Woldemar, 1912, ''Das Gesetz der Intensitätsverteilung innerhalb der Linien eines Gasspektrums'', Sitzungsbericht der Bayerischen Akademie der Wissenschaften, 25, 603 (see also: http://publikationen.badw.de/de/003395768)</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)587" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)587" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford&#39;s law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf&#39;s law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling&#39;s T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks&#39;s lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher&#39;s z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson&#39;s SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student&#39;s t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a class="mw-selflink selflink">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens&#39;s sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_variate_beta_distribution" title="Matrix variate beta distribution">Matrix beta</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐868759585b‐97nsl Cached time: 20250216163549 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.536 seconds Real time usage: 0.815 seconds Preprocessor visited node count: 2298/1000000 Post‐expand include size: 102458/2097152 bytes Template argument size: 2232/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 63470/5000000 bytes Lua time usage: 0.265/10.000 seconds Lua memory usage: 5313335/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 463.047 1 -total 42.77% 198.022 1 Template:Reflist 24.48% 113.342 1 Template:Dlmf 22.72% 105.184 1 Template:ProbDistributions 22.34% 103.466 4 Template:Navbox 21.46% 99.384 1 Template:Short_description 21.25% 98.396 2 Template:Citation 14.26% 66.045 2 Template:Pagetype 9.84% 45.545 9 Template:Cite_journal 9.31% 43.124 1 Template:Probability_distribution --> <!-- Saved in parser cache with key enwiki:pcache:1202098:|#|:idhash:canonical and timestamp 20250216163549 and revision id 1239827838. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Voigt_profile&amp;oldid=1239827838">https://en.wikipedia.org/w/index.php?title=Voigt_profile&amp;oldid=1239827838</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Continuous_distributions" title="Category:Continuous distributions">Continuous distributions</a></li><li><a href="/wiki/Category:Spectroscopy" title="Category:Spectroscopy">Spectroscopy</a></li><li><a href="/wiki/Category:Special_functions" title="Category:Special functions">Special functions</a></li><li><a href="/wiki/Category:Probability_distributions_with_non-finite_variance" title="Category:Probability distributions with non-finite variance">Probability distributions with non-finite variance</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 August 2024, at 20:04<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Voigt_profile&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Voigt profile</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>10 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-d859b9dc9-vk28h","wgBackendResponseTime":125,"wgPageParseReport":{"limitreport":{"cputime":"0.536","walltime":"0.815","ppvisitednodes":{"value":2298,"limit":1000000},"postexpandincludesize":{"value":102458,"limit":2097152},"templateargumentsize":{"value":2232,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":63470,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 463.047 1 -total"," 42.77% 198.022 1 Template:Reflist"," 24.48% 113.342 1 Template:Dlmf"," 22.72% 105.184 1 Template:ProbDistributions"," 22.34% 103.466 4 Template:Navbox"," 21.46% 99.384 1 Template:Short_description"," 21.25% 98.396 2 Template:Citation"," 14.26% 66.045 2 Template:Pagetype"," 9.84% 45.545 9 Template:Cite_journal"," 9.31% 43.124 1 Template:Probability_distribution"]},"scribunto":{"limitreport-timeusage":{"value":"0.265","limit":"10.000"},"limitreport-memusage":{"value":5313335,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-868759585b-97nsl","timestamp":"20250216163549","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Voigt profile","url":"https:\/\/en.wikipedia.org\/wiki\/Voigt_profile","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1417619","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1417619","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-11-23T19:52:18Z","dateModified":"2024-08-11T20:04:04Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/fc\/VoigtPDF.svg","headline":"probability distribution often used in spectroscopy and diffraction"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10