CINXE.COM

Момент на инерција — Википедија

<!doctype html> <html class="client-nojs mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="mk" dir="ltr"> <head> <base href="https://mk.m.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0"> <meta charset="UTF-8"> <title>Момент на инерција — Википедија</title> <script>(function(){var className="client-js mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )mkwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","јануари","февруари","март","април","мај","јуни","јули","август","септември","октомври","ноември","декември"],"wgRequestId":"f8714b7a-bd74-4bbd-9fe3-d08a80588b55","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Момент_на_инерција","wgTitle": "Момент на инерција","wgCurRevisionId":5256009,"wgRevisionId":5256009,"wgArticleId":1211214,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"mk","wgPageContentLanguage":"mk","wgPageContentModel":"wikitext","wgRelevantPageName":"Момент_на_инерција","wgRelevantArticleId":1211214,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgStableRevisionId":5256009,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"mk","pageLanguageDir":"ltr","pageVariantFallbacks":"mk"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false, "wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang": "avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym": "বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir": "ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"glk","autonym":"گیلکی", "dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang": "ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym": "къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang": "map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym": "閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap", "autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir" :"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski", "dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ve","autonym": "Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary", "arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr" ,"nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q165618","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":false},"wgMinervaDownloadNamespaces":[0],"wgSiteNoticeId":"2.1"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready", "mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=mk&amp;modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=mk&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg/1200px-%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg/800px-%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1067"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg/640px-%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="853"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Момент на инерција — Википедија"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Уреди" href="/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедија (mk)"> <link rel="EditURI" type="application/rsd+xml" href="//mk.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://mk.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.mk"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=corsproxy" data-sourceurl="https://mk.m.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://mk.m.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Момент_на_инерција rootpage-Момент_на_инерција stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=navigationui" data-environment="prod" data-proxy-url="https://mk-m-wikipedia-org.translate.goog" data-proxy-full-url="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://mk.m.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="mk" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mk.m.wikipedia.org/wiki/%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582_%25D0%25BD%25D0%25B0_%25D0%25B8%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D0%25B8%25D1%2598%25D0%25B0&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Почетна</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D1%98%D0%BD%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Случајна</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%92%D0%BE%D0%91%D0%BB%D0%B8%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Во близина</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9D%D0%B0%D1%98%D0%B0%D0%B2%D1%83%D0%B2%D0%B0%D1%9A%D0%B5&amp;returnto=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Најава</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9C%D0%BE%D0%B1%D0%B8%D0%BB%D0%BD%D0%B8%D0%9F%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D0%BA%D0%B8&amp;returnto=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Нагодувања</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_mk.wikipedia.org%26uselang%3Dmk%26wmf_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Дарување</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%97%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">За Википедија</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9E%D0%B4%D1%80%D0%B5%D0%BA%D1%83%D0%B2%D0%B0%D1%9A%D0%B5_%D0%BE%D0%B4_%D0%BE%D0%B4%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%BD%D0%BE%D1%81%D1%82?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Одрекување од одговорност</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-sr.svg" alt="Википедија" width="125" height="23" style="width: 7.8125em; height: 1.4375em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Специјална:Барај"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Пребарајте по Википедија" aria-label="Пребарајте по Википедија" autocapitalize="sentences" title="Пребарај низ Википедија [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Пребарај</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Кориснички прегледник"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Момент на инерција</span></h1> <div class="tagline"></div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Јазик" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Јазик</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9D%D0%B0%D1%98%D0%B0%D0%B2%D1%83%D0%B2%D0%B0%D1%9A%D0%B5&amp;returnto=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Набљудувај</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Уреди</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="mk" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p><b>Моментот на инерција</b>, инаку познат како <b>аголна маса</b> или <b>вртежна инерција</b>, на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A6%D0%B2%D1%80%D1%81%D1%82%D0%B0_%D1%81%D0%BE%D1%81%D1%82%D0%BE%D1%98%D0%B1%D0%B0_%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D1%98%D0%B0%D1%82%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Цврста состојба на материјата">цврсто тело</a> е тензор кој го одредува <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Момент на сила">моментот на силата</a> потребен за саканото <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%BE_%D0%B7%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Аголно забрзување">аголно забрзување</a> околу вртежната оска; слично како <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%B0%D1%81%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-disambig" title="Маса">масата</a> ја одредува <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Сила">силата</a> потребна за посакуваното <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%97%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Забрзување">забрзување</a>. Тоа зависи од распределбата на масата на телото и одбраната оска, со поголеми моменти кои бараат поголем вртежен момент за промена на стапката на ротација на телото. Тоа е екстензивно (адитивно) својство: за точка маса маса на инерција е само маса на квадрат на нормално растојание до оската на вртење. Моментот на инерција на композитниот систем на кругот е збирот на моментите на инерција на нејзините составни потсистеми (сите земени за истата оска). Неговата наједноставна дефиниција е вториот <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Момент (математика)">момент</a> на маса во однос на растојанието од <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D1%80%D1%82%D0%B5%D1%9A%D0%B5_%D0%BE%D0%BA%D0%BE%D0%BB%D1%83_%D0%BD%D0%B5%D0%BF%D0%BE%D0%B4%D0%B2%D0%B8%D0%B6%D0%BD%D0%B0_%D0%BE%D1%81%D0%BA%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Вртење околу неподвижна оска">оската</a>. За ограничените тела да се ротираат во рамнина, важно е само нивниот момент на инерција околу оската нормална на рамнината, скаларната вредност. За телата кои слободно можат да ротираат во три димензии, нивните моменти може да се опишат со симетрична 3 × 3 <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Матрица (математика)">матрица</a>, со множество на меѓусебно нормални главни оски за кои оваа матрица е <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%94%D0%B8%D1%98%D0%B0%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Дијагонална матрица (страницата не постои)">дијагонална</a>, а вртежите околу оските делуваат независно еден од друг.</p> <table class="infobox" style="width:22em"> <tbody> <tr> <th colspan="2" style="text-align:center;font-size:125%;font-weight:bold;font-style:italic;"><span style="font-style:normal;">Момент на инерција</span></th> </tr> <tr> <td colspan="2" style="text-align:center"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg/220px-%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg" decoding="async" width="220" height="293" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/%25D0%259C%25D0%25B0%25D1%2585%25D0%25BE%25D0%25B2%25D0%25B8%25D0%25BA.jpg/330px-%25D0%259C%25D0%25B0%25D1%2585%25D0%25BE%25D0%25B2%25D0%25B8%25D0%25BA.jpg 1.5x,https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/d/da/%25D0%259C%25D0%25B0%25D1%2585%25D0%25BE%25D0%25B2%25D0%25B8%25D0%25BA.jpg/440px-%25D0%259C%25D0%25B0%25D1%2585%25D0%25BE%25D0%25B2%25D0%25B8%25D0%25BA.jpg 2x" data-file-width="2736" data-file-height="3648"></a></span> <div> <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%97%D0%B0%D0%BC%D0%B0%D0%B5%D1%86&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Замаец (страницата не постои)">Замајците</a> имаат големи моменти на инерција за да го ублажат механичкото движење. Овој пример е во рускиот музеј. </div></td> </tr> <tr> <th scope="row"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"> Симболи </div></th> <td><i>I</i></td> </tr> <tr> <th scope="row"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%B5%D1%93%D1%83%D0%BD%D0%B0%D1%80%D0%BE%D0%B4%D0%B5%D0%BD_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC_%D0%BD%D0%B0_%D0%BC%D0%B5%D1%80%D0%BD%D0%B8_%D0%B5%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D0%B8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Меѓународен систем на мерни единици">SI-единица</a></th> <td>kg m<sup>2</sup></td> </tr> <tr> <th scope="row"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"> Други единици </div></th> <td>lbf·ft·s<sup>2</sup></td> </tr> <tr> <th scope="row"><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%94%D0%B8%D0%BC%D0%B5%D0%BD%D0%B7%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%B0_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Димензионална анализа (страницата не постои)">Димензија</a></th> <td><b>M</b> <b>L</b><sup>2</sup></td> </tr> <tr> <th scope="row"><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%95%D0%BA%D1%81%D1%82%D0%B5%D0%BD%D0%B7%D0%B8%D0%B2%D0%BD%D0%B0_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Екстензивна величина (страницата не постои)">Екстензивна</a>?</th> <td>да</td> </tr> <tr> <th scope="row"> <div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"> Изведенки од<br> други величини </div></th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I={\frac {L}{\omega }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> L </mi> <mi> ω<!-- ω --> </mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I={\frac {L}{\omega }}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6a21fa504541c8dd9a46cddd2ad2b0d657b53b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.689ex; height:5.176ex;" alt="{\displaystyle I={\frac {L}{\omega }}}"></span></td> </tr> </tbody> </table> <style data-mw-deduplicate="TemplateStyles:r4539682">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:#f8f9fa;border:1px solid #aaa;padding:0.2em;border-spacing:0.4em 0;text-align:center;line-height:1.4em;font-size:88%;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar a{white-space:nowrap}.mw-parser-output .sidebar-wraplinks a{white-space:normal}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding-bottom:0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em 0}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding-top:0.2em;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding-top:0.4em;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.4em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding-top:0}.mw-parser-output .sidebar-image{padding:0.2em 0 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em}.mw-parser-output .sidebar-content{padding:0 0.1em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.4em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%}.mw-parser-output .sidebar-collapse .sidebar-navbar{padding-top:0.6em}.mw-parser-output .sidebar-list-title{text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{text-align:center;margin:0 3.3em}@media(max-width:720px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}</style> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Samuel_Dixon_Niagara.jpg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Samuel_Dixon_Niagara.jpg/220px-Samuel_Dixon_Niagara.jpg" decoding="async" width="220" height="197" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Samuel_Dixon_Niagara.jpg/330px-Samuel_Dixon_Niagara.jpg 1.5x,https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Samuel_Dixon_Niagara.jpg/440px-Samuel_Dixon_Niagara.jpg 2x" data-file-width="461" data-file-height="412"></a> <figcaption> Пешаци на јаже го користат моментот на инерција на долги прачки за рамнотежа додека одат по јажето. Семјуел Диксон ја преминува <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9D%D0%B8%D1%98%D0%B0%D0%B3%D0%B0%D1%80%D0%B8%D0%BD%D0%B8_%D0%92%D0%BE%D0%B4%D0%BE%D0%BF%D0%B0%D0%B4%D0%B8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Нијагарини Водопади">реката Нијагара</a> во 1890 година. </figcaption> </figure> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="mk" dir="ltr"> <h2 id="mw-toc-heading">Содржина</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%92%D0%BE%D0%B2%D0%B5%D0%B4"><span class="tocnumber">1</span> <span class="toctext">Вовед</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%94%D0%B5%D1%84%D0%B8%D0%BD%D0%B8%D1%86%D0%B8%D1%98%D0%B0"><span class="tocnumber">2</span> <span class="toctext">Дефиниција</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D0%B8"><span class="tocnumber">3</span> <span class="toctext">Примери</span></a> <ul> <li class="toclevel-2 tocsection-4"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%95%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D0%BD%D0%BE_%D0%BD%D0%B8%D1%88%D0%B0%D0%BB%D0%BE"><span class="tocnumber">3.1</span> <span class="toctext">Едноставно нишало</span></a></li> <li class="toclevel-2 tocsection-5"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A4%D0%B8%D0%B7%D0%B8%D1%87%D0%BA%D0%BE_%D0%BD%D0%B8%D1%88%D0%B0%D0%BB%D0%BE"><span class="tocnumber">3.2</span> <span class="toctext">Физичко нишало</span></a> <ul> <li class="toclevel-3 tocsection-6"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A6%D0%B5%D0%BD%D1%82%D0%B0%D1%80_%D0%BD%D0%B0_%D0%BE%D1%81%D1%86%D0%B8%D0%BB%D0%B0%D1%86%D0%B8%D1%98%D0%B0"><span class="tocnumber">3.2.1</span> <span class="toctext">Центар на осцилација</span></a></li> </ul></li> </ul></li> <li class="toclevel-1 tocsection-7"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9C%D0%B5%D1%80%D0%B5%D1%9A%D0%B5_%D0%BD%D0%B0_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0"><span class="tocnumber">4</span> <span class="toctext">Мерење на моментот на инерција</span></a></li> <li class="toclevel-1 tocsection-8"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%94%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5_%D0%B2%D0%BE_%D1%84%D0%B8%D0%BA%D1%81%D0%BD%D0%B0_%D1%80%D0%B0%D0%BC%D0%BD%D0%B8%D0%BD%D0%B0"><span class="tocnumber">5</span> <span class="toctext">Движење во фиксна рамнина</span></a> <ul> <li class="toclevel-2 tocsection-9"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A2%D0%BE%D1%87%D0%BA%D0%B5%D1%81%D1%82%D0%B0_%D0%BC%D0%B0%D1%81%D0%B0"><span class="tocnumber">5.1</span> <span class="toctext">Точкеста маса</span></a> <ul> <li class="toclevel-3 tocsection-10"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D0%B8_2"><span class="tocnumber">5.1.1</span> <span class="toctext">Примери</span></a></li> </ul></li> <li class="toclevel-2 tocsection-11"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A6%D0%B2%D1%80%D1%81%D1%82%D0%BE_%D1%82%D0%B5%D0%BB%D0%BE"><span class="tocnumber">5.2</span> <span class="toctext">Цврсто тело</span></a> <ul> <li class="toclevel-3 tocsection-12"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%90%D0%B3%D0%BE%D0%BB%D0%B5%D0%BD_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81"><span class="tocnumber">5.2.1</span> <span class="toctext">Аголен импулс</span></a></li> <li class="toclevel-3 tocsection-13"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9A%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%BA%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0"><span class="tocnumber">5.2.2</span> <span class="toctext">Кинетичка енергија</span></a></li> <li class="toclevel-3 tocsection-14"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8"><span class="tocnumber">5.2.3</span> <span class="toctext">Њутнови закони</span></a></li> </ul></li> </ul></li> <li class="toclevel-1 tocsection-15"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%94%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5_%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D1%80%D0%BE%D1%82_%D0%BD%D0%B0_%D1%86%D0%B2%D1%80%D1%81%D1%82%D0%BE_%D1%82%D0%B5%D0%BB%D0%BE_%D0%B8_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0"><span class="tocnumber">6</span> <span class="toctext">Движење во просторот на цврсто тело и инерцијална матрица</span></a> <ul> <li class="toclevel-2 tocsection-16"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81%D0%BE%D1%82"><span class="tocnumber">6.1</span> <span class="toctext">Момент на импулсот</span></a></li> <li class="toclevel-2 tocsection-17"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9A%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%BA%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0_2"><span class="tocnumber">6.2</span> <span class="toctext">Кинетичка енергија</span></a></li> <li class="toclevel-2 tocsection-18"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A0%D0%B5%D0%B7%D1%83%D0%BB%D1%82%D0%B0%D0%BD%D1%82%D0%B5%D0%BD_%D0%B2%D1%80%D1%82%D0%B5%D0%B6%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82"><span class="tocnumber">6.3</span> <span class="toctext">Резултантен вртежен момент</span></a></li> <li class="toclevel-2 tocsection-19"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BD%D0%B0_%D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%B5%D0%BB%D0%BD%D0%B0_%D0%BE%D1%81%D0%BA%D0%B0"><span class="tocnumber">6.4</span> <span class="toctext">Теорема на паралелна оска</span></a></li> <li class="toclevel-2 tocsection-20"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A1%D0%BA%D0%B0%D0%BB%D0%B0%D1%80%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0_%D0%B2%D0%BE_%D1%80%D0%B0%D0%BC%D0%BD%D0%B8%D0%BD%D0%B0"><span class="tocnumber">6.5</span> <span class="toctext">Скаларен момент на инерција во рамнина</span></a></li> </ul></li> <li class="toclevel-1 tocsection-21"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%98%D0%BD%D0%B5%D1%80%D1%82%D0%B5%D0%BD_%D1%82%D0%B5%D0%BD%D0%B7%D0%BE%D1%80"><span class="tocnumber">7</span> <span class="toctext">Инертен тензор</span></a></li> <li class="toclevel-1 tocsection-22"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_%D0%B2%D0%BE_%D1%80%D0%B0%D0%B7%D0%BB%D0%B8%D1%87%D0%BD%D0%B8_%D0%BF%D0%BE%D1%98%D0%B4%D0%BE%D0%B2%D0%BD%D0%B8_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B8"><span class="tocnumber">8</span> <span class="toctext">Инерцијална матрица во различни појдовни системи</span></a> <ul> <li class="toclevel-2 tocsection-23"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%A0%D0%B0%D0%BC%D0%BA%D0%B0_%D0%BD%D0%B0_%D1%82%D0%B5%D0%BB%D0%BE%D1%82%D0%BE"><span class="tocnumber">8.1</span> <span class="toctext">Рамка на телото</span></a></li> <li class="toclevel-2 tocsection-24"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%93%D0%BB%D0%B0%D0%B2%D0%BD%D0%B8_%D0%BE%D1%81%D0%BA%D0%B8"><span class="tocnumber">8.2</span> <span class="toctext">Главни оски</span></a></li> <li class="toclevel-2 tocsection-25"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%95%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4"><span class="tocnumber">8.3</span> <span class="toctext">Елипсоид</span></a></li> </ul></li> <li class="toclevel-1 tocsection-26"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9F%D0%BE%D0%B2%D1%80%D0%B7%D0%B0%D0%BD%D0%BE"><span class="tocnumber">9</span> <span class="toctext">Поврзано</span></a></li> <li class="toclevel-1 tocsection-27"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9D%D0%B0%D0%B2%D0%BE%D0%B4%D0%B8"><span class="tocnumber">10</span> <span class="toctext">Наводи</span></a></li> <li class="toclevel-1 tocsection-28"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9D%D0%B0%D0%B4%D0%B2%D0%BE%D1%80%D0%B5%D1%88%D0%BD%D0%B8_%D0%B2%D1%80%D1%81%D0%BA%D0%B8"><span class="tocnumber">11</span> <span class="toctext">Надворешни врски</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Вовед"><span id=".D0.92.D0.BE.D0.B2.D0.B5.D0.B4"></span>Вовед</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Вовед“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Кога телото може слободно да ротира околу оска, мора да се примени <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Момент на сила">вртежен момент</a> за да се смени аголниот момент. Количината на вртежен момент што е потребна за да предизвика било кое <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%BE_%D0%B7%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Аголно забрзување">аголно забрзување</a> (стапката на промена на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%B0_%D0%B1%D1%80%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Аголна брзина">аголната брзина</a>) е пропорционална на моментот на инерција на телото. Момент на инерција може да се изрази во единици од килограм метар квадрат (kg·m<sup>2</sup>) во единици на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%B5%D1%93%D1%83%D0%BD%D0%B0%D1%80%D0%BE%D0%B4%D0%B5%D0%BD_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC_%D0%BD%D0%B0_%D0%BC%D0%B5%D1%80%D0%BD%D0%B8_%D0%B5%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D0%B8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Меѓународен систем на мерни единици">SI</a> и квадратни (квадратни-секунди) квадратни (lbf · ft · s2) во <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%98%D0%BC%D0%BF%D0%B5%D1%80%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B8_%D0%B5%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D0%B8&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Империјални единици (страницата не постои)">империјални</a> или <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%90%D0%BC%D0%B5%D1%80%D0%B8%D0%BA%D0%B0%D0%BD%D1%81%D0%BA%D0%B8_%D0%B5%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D0%B8&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Американски единици (страницата не постои)">американски</a> единици.</p> <p>Моментот на инерција ја игра улогата во вртежната кинетика што <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%B0%D1%81%D0%B0_(%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Маса (физика)">масата</a> (инерција) игра во линеарна кинетика - и го карактеризираат отпорноста на телото на промени во движењето. Моментот на инерција зависи од тоа колку масата се дистрибуира околу оската на вртење и ќе варира во зависност од избраната оска. За маса-како маса, моментот на инерција околу некоја оска е даден со <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.143ex; height:2.676ex;" alt="{\displaystyle mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.143ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" data-alt="{\displaystyle mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, каде што r е растојанието од точката од оската, и m е масата. За проширено цврсто тело, моментот на инерција е само збир на сите мали парчиња маса помножени со квадратот на нивните растојанија од оската за која станува збор. За проширено тело со редовна форма и еднаква густина, оваа збирка понекогаш произведува едноставен израз кој зависи од димензиите, обликот и вкупната маса на објектот.</p> <p>Во 1673 година, <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D1%80%D0%B8%D1%81%D1%82%D0%B8%D1%98%D0%B0%D0%BD_%D0%A5%D0%B0%D1%98%D0%B3%D0%B5%D0%BD%D1%81?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Кристијан Хајгенс">Кристијан Хајгенс</a> го претстави овој параметар во неговата студија за осцилацијата на едно тело висечко од столб, познато како соединето <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9D%D0%B8%D1%88%D0%B0%D0%BB%D0%BE&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Нишало (страницата не постои)">нишало</a>.<sup id="cite_ref-mach_1-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-mach-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Терминот момент на инерција бил воведен од <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9B%D0%B5%D0%BE%D0%BD%D0%B0%D1%80%D0%B4_%D0%9E%D1%98%D0%BB%D0%B5%D1%80?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Леонард Ојлер">Леонард Ојлер</a> во неговата книга <b>Theoria motus corporum solidumum seu rigidorum</b> во 1765,<sup id="cite_ref-mach_1-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-mach-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Euler1730_2-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Euler1730-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> и е вграден во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9E%D1%98%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8_%D0%B7%D0%B0_%D0%B4%D0%B2%D0%B8%D0%B6%D0%B5%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Ојлерови закони за движење">вториот закон на Ојлер</a>.</p> <p>Природната честота на осцилација на сложеното нишало се добива од односот на вртежниот момент наметнат од гравитацијата врз масата на нишалото до отпорноста на забрзувањето дефинирана со моментот на инерција. Споредба на оваа природна честота со онаа на едноставното нишало кое се состои од една единствена точка на маса обезбедува математичка формулација за момент на инерција на проширено тело.<sup id="cite_ref-Marion_1995_3-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Marion_1995-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Symon_1971_4-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Symon_1971-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></p> <p>Моментот на инерција, исто така, се појавува во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81%D0%BE%D1%82?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Момент на импулсот">моментот на импулсот</a>, <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D0%B8%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%BA%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Кинетичка енергија">кинетичката енергија</a> и во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Њутнови закони">Њутновите закони</a> на движење за круто тело како физички параметар кој ги комбинира својата форма и маса. Постои интересна разлика во начинот на кој моментот на инерција се појавува во рамни и просторно движење. Плодното движење има еден скалар кој го дефинира моментот на инерција, додека за просторно движење истите пресметки даваат матрица од 3 × 3 моменти на инерција, наречена инерцијална матрица или инертен тензор.<sup id="cite_ref-Tenenbaum_2004_5-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Tenenbaum_2004-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kane_6-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Kane-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></p> <p>Моментот на инерција на вртечкиот замаец се користи во машина за да се спротивстави на промените во применетиот вртежен момент за да се изедначи вртежното производство. Моментот на инерција на авионот околу неговата надолжна, хоризонтална и вертикална оска определува како управувачките сили на контролните површини на нејзините крила, лифтови и опашка влијаат на рамнината во тркалање, висина и виткање.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Дефиниција"><span id=".D0.94.D0.B5.D1.84.D0.B8.D0.BD.D0.B8.D1.86.D0.B8.D1.98.D0.B0"></span>Дефиниција</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Дефиниција“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Cup_of_Russia_2010_-_Yuko_Kawaguti_(2).jpg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Cup_of_Russia_2010_-_Yuko_Kawaguti_%282%29.jpg/170px-Cup_of_Russia_2010_-_Yuko_Kawaguti_%282%29.jpg" decoding="async" width="170" height="277" class="mw-file-element" data-file-width="307" data-file-height="500"> </noscript><span class="lazy-image-placeholder" style="width: 170px;height: 277px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Cup_of_Russia_2010_-_Yuko_Kawaguti_%282%29.jpg/170px-Cup_of_Russia_2010_-_Yuko_Kawaguti_%282%29.jpg" data-width="170" data-height="277" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Cup_of_Russia_2010_-_Yuko_Kawaguti_%282%29.jpg/255px-Cup_of_Russia_2010_-_Yuko_Kawaguti_%282%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/6/68/Cup_of_Russia_2010_-_Yuko_Kawaguti_%282%29.jpg 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Уметничките лизгачи може да го намалат моментот на инерција со повлекување на нивните раце, што им овозможува да се вртат побрзо поради <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81%D0%BE%D1%82?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Момент на импулсот">зачувувањето на импулсот</a>. </figcaption> </figure> <figure class="mw-default-size mw-halign-right" typeof="mw:Error mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%BE%D0%B4%D0%B8%D0%B3%D0%B0%D1%9A%D0%B5&amp;wpDestFile=25._%D0%92%D1%80%D1%82%D0%B5%D0%B6%D0%B5%D0%BD_%D1%81%D1%82%D0%BE%D0%BB.ogv&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Податотека:25. Вртежен стол.ogv"><span class="mw-file-element mw-broken-media" data-width="180">Податотека:25. Вртежен стол.ogv</span></a> <figcaption> Видео со вртежен стол, на кое е прикажано зачувувањето на моментот на импулсот. Кога професорот кој се врти ги вовлекува рацете , неговиот момент на импулсот се намалува, а за да се запази аголниот момент на импулсот, неговата аголна брзина се зголемува. </figcaption> </figure> <p>Моментот на инерција <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle I}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\displaystyle I}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66932f38fb3374fddca73712ac432cff074352e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle {\displaystyle I}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.172ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66932f38fb3374fddca73712ac432cff074352e4" data-alt="{\displaystyle {\displaystyle I}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е дефиниран како однос на <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BC%D0%BF%D1%83%D0%BB%D1%81%D0%BE%D1%82?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Момент на импулсот">моментот на импулсот</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на системот на неговата <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%B0_%D0%B1%D1%80%D0%B7%D0%B8%D0%BD%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Аголна брзина">аголна брзина</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ω<!-- ω --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \omega } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"> </noscript><span class="lazy-image-placeholder" style="width: 1.446ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" data-alt="{\displaystyle \omega }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> околу главната оска,<sup id="cite_ref-Winn_7-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Winn-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Fullerton_8-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Fullerton-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> што е:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\displaystyle I={\frac {L}{\omega }}.}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> L </mi> <mi> ω<!-- ω --> </mi> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\displaystyle I={\frac {L}{\omega }}.}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4062f05985241f507c1bf1c94adbb9246bd50d25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.336ex; height:5.176ex;" alt="{\displaystyle {\displaystyle I={\frac {L}{\omega }}.}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.336ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4062f05985241f507c1bf1c94adbb9246bd50d25" data-alt="{\displaystyle {\displaystyle I={\frac {L}{\omega }}.}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Ако аголниот моментум на системот е константен, тогаш кога моментот на инерција станува помал, аголната брзина мора да се зголеми. Ова се случува кога вртењето на лизгачите се повлекува во нивните раширени раце или <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9D%D1%83%D1%80%D0%BA%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Нуркање">нуркачите</a> ги закопуваат нивните тела во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9D%D1%83%D1%80%D0%BA%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Нуркање">позиција за навивање</a> за време на нуркање, за да се вртат побрзо.<sup id="cite_ref-Winn_7-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Winn-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Fullerton_8-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Fullerton-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Wolfram_9-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Wolfram-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Hokin_10-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Hokin-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Breithaupt_11-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Breithaupt-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Crowell_12-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Crowell-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Tipler_13-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Tipler-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup></p> <p>Ако обликот на телото не се промени, тогаш неговиот момент на инерција се појавува во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B8_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Њутнови закони">Њутновиот закон на движење</a> како однос на применетиот <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D1%81%D0%B8%D0%BB%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Момент на сила">вртежен момент</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> τ<!-- τ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \tau } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.202ex; height:1.676ex;" alt="{\displaystyle \tau }"> </noscript><span class="lazy-image-placeholder" style="width: 1.202ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38a7dcde9730ef0853809fefc18d88771f95206c" data-alt="{\displaystyle \tau }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на телото до аголното забрзување <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"> </noscript><span class="lazy-image-placeholder" style="width: 1.488ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" data-alt="{\displaystyle \alpha }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> околу главната оска, што е</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =I\alpha }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> τ<!-- τ --> </mi> <mo> = </mo> <mi> I </mi> <mi> α<!-- α --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \tau =I\alpha } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01a662a7ad75feca822305e985c0d19c277b0d55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.96ex; height:2.176ex;" alt="{\displaystyle \tau =I\alpha }"> </noscript><span class="lazy-image-placeholder" style="width: 6.96ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01a662a7ad75feca822305e985c0d19c277b0d55" data-alt="{\displaystyle \tau =I\alpha }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>За <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9D%D0%B8%D1%88%D0%B0%D0%BB%D0%BE&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Нишало (страницата не постои)">едноставно нишало</a>, оваа дефиниција дава формула за моментот на инерција <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"> </noscript><span class="lazy-image-placeholder" style="width: 1.172ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" data-alt="{\displaystyle I}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во однос на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на матичниот агол и нејзиното растојание <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> од клучната точка како,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I=mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.413ex; height:2.676ex;" alt="{\displaystyle I=mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.413ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" data-alt="{\displaystyle I=mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Така, моментот на инерција зависи од масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на телото и неговата геометрија или форма, како што е дефинирано со растојанието <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на оската на вртење.</p> <p>Оваа едноставна формула е генерализирана за да го дефинира моментот на инерција на произволно обликуваното тело како збир на сите елементарни точки маси <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dm}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> d </mi> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle dm} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b992fcc988fb290f5734f9a67def09cff8550c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.256ex; height:2.176ex;" alt="{\displaystyle dm}"> </noscript><span class="lazy-image-placeholder" style="width: 3.256ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b992fcc988fb290f5734f9a67def09cff8550c" data-alt="{\displaystyle dm}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> секој помножен со квадратот на нејзиното нормално растојание <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на оската <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Општо земено, со оглед на објект на маса <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, делотворен полупречник <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> може да се дефинира за оската преку нејзиниот центар на маса, со таква вредност дека нејзиниот момент на инерција е</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=mk^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mi> m </mi> <msup> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I=mk^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8df60f37cce2762e866b4ffa67cfa527158c6b2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.576ex; height:2.676ex;" alt="{\displaystyle I=mk^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.576ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8df60f37cce2762e866b4ffa67cfa527158c6b2f" data-alt="{\displaystyle I=mk^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е познат како <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%96%D0%B8%D1%80%D0%BE%D1%81%D0%BA%D0%BE%D0%BF%D1%81%D0%BA%D0%B8_%D0%BF%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%B5%D1%87%D0%BD%D0%B8%D0%BA&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Жироскопски полупречник (страницата не постои)">жироскопски полупречник</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Примери"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.80.D0.B8"></span>Примери</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Примери“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <div class="mw-heading mw-heading3"> <h3 id="Едноставно_нишало"><span id=".D0.95.D0.B4.D0.BD.D0.BE.D1.81.D1.82.D0.B0.D0.B2.D0.BD.D0.BE_.D0.BD.D0.B8.D1.88.D0.B0.D0.BB.D0.BE"></span>Едноставно нишало</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Едноставно нишало“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Моментот на инерција може да се мери со едноставно нишало, бидејќи тоа е отпорност на ротација предизвикана од гравитацијата. Математички, моментот на инерција на нишалото е односот на вртежниот момент кој се должи на гравитацијата околу вртењето на нишалото до неговото аголно забрзување околу таа точка на вртење. За едноставно нишало, ова е резултат на производ на масата на честичката <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> со квадратот на растојанието <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на клучот, што е</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I=mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.413ex; height:2.676ex;" alt="{\displaystyle I=mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.413ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" data-alt="{\displaystyle I=mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Ова може да се прикаже на следниов начин: Силата на гравитацијата на масата на едноставното нишало генерира вртежен момент <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =r\times F}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> τ<!-- τ --> </mi> <mo> = </mo> <mi> r </mi> <mo> ×<!-- × --> </mo> <mi> F </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \tau =r\times F} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddddfe5ab1252efa4d4faab3b64ae8a0b9be5659" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.93ex; height:2.176ex;" alt="{\displaystyle \tau =r\times F}"> </noscript><span class="lazy-image-placeholder" style="width: 9.93ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddddfe5ab1252efa4d4faab3b64ae8a0b9be5659" data-alt="{\displaystyle \tau =r\times F}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> околу оската нормална на рамнината на движењето на нишалото. Тука <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е векторот на растојанието, нормалниот кон и од силата на оската на вртежниот момент, и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"> </noscript><span class="lazy-image-placeholder" style="width: 1.741ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" data-alt="{\displaystyle F}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> сила на масата. Поврзан со овој вртежен момент е <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%BE_%D0%B7%D0%B0%D0%B1%D1%80%D0%B7%D1%83%D0%B2%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Аголно забрзување">аголно забрзување</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"> </noscript><span class="lazy-image-placeholder" style="width: 1.488ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" data-alt="{\displaystyle \alpha }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, на низата и масата околу оваа оска. Бидејќи масата е ограничена на круг, тангентното забрзување на масата е <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=\alpha \times r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> = </mo> <mi> α<!-- α --> </mi> <mo> ×<!-- × --> </mo> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a=\alpha \times r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/750fc97deb372d956fbff2a1a5a300fc98af64ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.705ex; height:1.676ex;" alt="{\displaystyle a=\alpha \times r}"> </noscript><span class="lazy-image-placeholder" style="width: 9.705ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/750fc97deb372d956fbff2a1a5a300fc98af64ef" data-alt="{\displaystyle a=\alpha \times r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Бидејќи <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=ma}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> F </mi> <mo> = </mo> <mi> m </mi> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle F=ma} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ca4e42b7d6d66f52294364928cb5f7c590f514c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.109ex; height:2.176ex;" alt="{\displaystyle F=ma}"> </noscript><span class="lazy-image-placeholder" style="width: 8.109ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ca4e42b7d6d66f52294364928cb5f7c590f514c" data-alt="{\displaystyle F=ma}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =r\times F=r\times (m\alpha \times r)=m((r\cdot r)\alpha -(r\cdot \alpha )r)=mr^{2}\alpha =I\alpha k,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> τ<!-- τ --> </mi> <mo> = </mo> <mi> r </mi> <mo> ×<!-- × --> </mo> <mi> F </mi> <mo> = </mo> <mi> r </mi> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi> m </mi> <mi> α<!-- α --> </mi> <mo> ×<!-- × --> </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> m </mi> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mi> r </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mi> α<!-- α --> </mi> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> r </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> α<!-- α --> </mi> <mo> = </mo> <mi> I </mi> <mi> α<!-- α --> </mi> <mi> k </mi> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \tau =r\times F=r\times (m\alpha \times r)=m((r\cdot r)\alpha -(r\cdot \alpha )r)=mr^{2}\alpha =I\alpha k,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdbd93fa710d281f15806d544874a4293ed00373" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:66.425ex; height:3.176ex;" alt="{\displaystyle \tau =r\times F=r\times (m\alpha \times r)=m((r\cdot r)\alpha -(r\cdot \alpha )r)=mr^{2}\alpha =I\alpha k,}"> </noscript><span class="lazy-image-placeholder" style="width: 66.425ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdbd93fa710d281f15806d544874a4293ed00373" data-alt="{\displaystyle \tau =r\times F=r\times (m\alpha \times r)=m((r\cdot r)\alpha -(r\cdot \alpha )r)=mr^{2}\alpha =I\alpha k,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е единичен вектор нормален на рамнината на нишалото. (Вториот до последен чекор ја користи <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A2%D1%80%D0%BE%D0%B5%D0%BD_%D0%BF%D1%80%D0%BE%D0%B4%D1%83%D0%BA%D1%82&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Троен продукт (страницата не постои)">векторското тројно проширување</a> на производот со нормалност на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"> </noscript><span class="lazy-image-placeholder" style="width: 1.488ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" data-alt="{\displaystyle \alpha }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>) Количината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I=mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.413ex; height:2.676ex;" alt="{\displaystyle I=mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.413ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" data-alt="{\displaystyle I=mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е <i><b>момент на инерција</b></i> на оваа единствена маса околу точка на вртење.</p> <p>Количината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I=mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.413ex; height:2.676ex;" alt="{\displaystyle I=mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.413ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" data-alt="{\displaystyle I=mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се појавува и во <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Аголен момент">аголниот момент</a> на едноставно нишало, кое се пресметува од брзината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=\omega \times r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> <mo> = </mo> <mi> ω<!-- ω --> </mi> <mo> ×<!-- × --> </mo> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v=\omega \times r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/427de270f2b38c63ec43a3961df1a27c2df9d02c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.561ex; height:1.676ex;" alt="{\displaystyle v=\omega \times r}"> </noscript><span class="lazy-image-placeholder" style="width: 9.561ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/427de270f2b38c63ec43a3961df1a27c2df9d02c" data-alt="{\displaystyle v=\omega \times r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на масата на нишалото околу оската, каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ω<!-- ω --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \omega } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"> </noscript><span class="lazy-image-placeholder" style="width: 1.446ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" data-alt="{\displaystyle \omega }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е аголната брзина на масата околу точка на вртење. Овој аголен импулс е даден од</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau =r\times p=r\times (m\omega \times r)=m((r\cdot r)\omega -(r\cdot \omega )r)=mr^{2}\omega =I\omega k,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> τ<!-- τ --> </mi> <mo> = </mo> <mi> r </mi> <mo> ×<!-- × --> </mo> <mi> p </mi> <mo> = </mo> <mi> r </mi> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi> m </mi> <mi> ω<!-- ω --> </mi> <mo> ×<!-- × --> </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> m </mi> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mi> r </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mi> ω<!-- ω --> </mi> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> r </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> ω<!-- ω --> </mi> <mo stretchy="false"> ) </mo> <mi> r </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> ω<!-- ω --> </mi> <mo> = </mo> <mi> I </mi> <mi> ω<!-- ω --> </mi> <mi> k </mi> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \tau =r\times p=r\times (m\omega \times r)=m((r\cdot r)\omega -(r\cdot \omega )r)=mr^{2}\omega =I\omega k,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7db061e8d3f6187f216d54d2f74143eb9256f325" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:65.644ex; height:3.176ex;" alt="{\displaystyle \tau =r\times p=r\times (m\omega \times r)=m((r\cdot r)\omega -(r\cdot \omega )r)=mr^{2}\omega =I\omega k,}"> </noscript><span class="lazy-image-placeholder" style="width: 65.644ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7db061e8d3f6187f216d54d2f74143eb9256f325" data-alt="{\displaystyle \tau =r\times p=r\times (m\omega \times r)=m((r\cdot r)\omega -(r\cdot \omega )r)=mr^{2}\omega =I\omega k,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>користејќи слични деривации на претходната равенка.</p> <p>Слично на тоа, кинетичката енергија на масовната низа е дефинирана со брзината на нишалото околу вртењето за да се добие</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ek=1/2(mv)\cdot v=1/2(mr^{2})\omega =1/2(I\omega ^{2})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> E </mi> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo stretchy="false"> ( </mo> <mi> m </mi> <mi> v </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mi> v </mi> <mo> = </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo stretchy="false"> ( </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mi> ω<!-- ω --> </mi> <mo> = </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo stretchy="false"> ( </mo> <mi> I </mi> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Ek=1/2(mv)\cdot v=1/2(mr^{2})\omega =1/2(I\omega ^{2})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/727e0497668dcfae1ef51b5a7ab11eb40262cb36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.408ex; height:3.176ex;" alt="{\displaystyle Ek=1/2(mv)\cdot v=1/2(mr^{2})\omega =1/2(I\omega ^{2})}"> </noscript><span class="lazy-image-placeholder" style="width: 43.408ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/727e0497668dcfae1ef51b5a7ab11eb40262cb36" data-alt="{\displaystyle Ek=1/2(mv)\cdot v=1/2(mr^{2})\omega =1/2(I\omega ^{2})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Ова покажува дека количината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mo> = </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I=mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.413ex; height:2.676ex;" alt="{\displaystyle I=mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.413ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc416bcccf5f63d22af13befd74e5c653ab82f1b" data-alt="{\displaystyle I=mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е како масата се комбинира со обликот на телото за да се дефинира вртежната инерција. Моментот на инерција на произволно обликуваното тело е збирот на вредностите <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.143ex; height:2.676ex;" alt="{\displaystyle mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.143ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" data-alt="{\displaystyle mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> за сите елементи на масата во телото.</p> <div class="mw-heading mw-heading3"> <h3 id="Физичко_нишало"><span id=".D0.A4.D0.B8.D0.B7.D0.B8.D1.87.D0.BA.D0.BE_.D0.BD.D0.B8.D1.88.D0.B0.D0.BB.D0.BE"></span>Физичко нишало</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Физичко нишало“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Mendenhall_gravimeter_pendulums.jpg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Mendenhall_gravimeter_pendulums.jpg/220px-Mendenhall_gravimeter_pendulums.jpg" decoding="async" width="220" height="210" class="mw-file-element" data-file-width="712" data-file-height="679"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 210px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Mendenhall_gravimeter_pendulums.jpg/220px-Mendenhall_gravimeter_pendulums.jpg" data-width="220" data-height="210" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Mendenhall_gravimeter_pendulums.jpg/330px-Mendenhall_gravimeter_pendulums.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Mendenhall_gravimeter_pendulums.jpg/440px-Mendenhall_gravimeter_pendulums.jpg 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Нишала употребени во Менденхаловиот апарат за <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D0%BC%D0%B5%D1%82%D0%B0%D1%80?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Гравиметар">гравиметрија</a>, објавен во научно списание од 1897 година. Преносливиот гравиметер развиен во 1890 година од страна на Томас К. Менденхал обезбеди најточни релативни мерења на локалното гравитациско поле на Земјата. </figcaption> </figure> <p><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9D%D0%B8%D1%88%D0%B0%D0%BB%D0%BE&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Нишало (страницата не постои)">Физичко нишало</a> е тело формирано од збир на честички со континуирана форма кои ротираат круто околу стожерот. Нејзиниот момент на инерција е збирот на моментите на инерција на секоја од честичките од кои е составен.<sup id="cite_ref-B-Paul_14-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-B-Paul-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Resnick_15-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Resnick-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>395–396</span></sup><sup id="cite_ref-16" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>51–53</span></sup> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A0%D0%B5%D0%B7%D0%BE%D0%BD%D0%B0%D0%BD%D1%86%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Резонанца">Природната</a> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%90%D0%B3%D0%BE%D0%BB%D0%BD%D0%B0_%D1%87%D0%B5%D1%81%D1%82%D0%BE%D1%82%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Аголна честота">честота</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ω<!-- ω --> </mi> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \omega n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d016c8be0690be6c6435d6e848b20bed5673aa93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.841ex; height:1.676ex;" alt="{\displaystyle \omega n}"> </noscript><span class="lazy-image-placeholder" style="width: 2.841ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d016c8be0690be6c6435d6e848b20bed5673aa93" data-alt="{\displaystyle \omega n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>од сложено нишало зависи од неговиот момент на инерција, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ip}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> I </mi> <mi> p </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Ip} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da43a71b8fde0d7e4a20007765a46d48ce840f04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.341ex; height:2.509ex;" alt="{\displaystyle Ip}"> </noscript><span class="lazy-image-placeholder" style="width: 2.341ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da43a71b8fde0d7e4a20007765a46d48ce840f04" data-alt="{\displaystyle Ip}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{\text{n}}={\sqrt {\frac {mgr}{I_{P}}}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> n </mtext> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi> m </mi> <mi> g </mi> <mi> r </mi> </mrow> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> </mfrac> </msqrt> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \omega _{\text{n}}={\sqrt {\frac {mgr}{I_{P}}}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84766ee4c4f1b99c2efab4acf11b56499a0a36b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.702ex; height:6.176ex;" alt="{\displaystyle \omega _{\text{n}}={\sqrt {\frac {mgr}{I_{P}}}},}"> </noscript><span class="lazy-image-placeholder" style="width: 13.702ex;height: 6.176ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84766ee4c4f1b99c2efab4acf11b56499a0a36b0" data-alt="{\displaystyle \omega _{\text{n}}={\sqrt {\frac {mgr}{I_{P}}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е масата на објектот,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> g </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle g} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"> </noscript><span class="lazy-image-placeholder" style="width: 1.116ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" data-alt="{\displaystyle g}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp; е локално забрзување на гравитацијата, и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp;е растојанието од точка на вртење до центарот на масата на објектот. Мерењето на оваа честота на осцилации преку мали аголни поместувања обезбедува ефикасен начин за мерење на моментот на инерција на телото.<sup id="cite_ref-Uicker_17-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Uicker-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>516–517</span></sup></p> <p>Така, за да се одреди моментот на инерција на телото, едноставно го суспендира од удобна точка на вртење <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> P </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"> </noscript><span class="lazy-image-placeholder" style="width: 1.745ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" data-alt="{\displaystyle P}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp;така што слободно се ниша во рамнина нормална на правецот на посакуваниот момент на инерција, потоа ја мери неговата природна честота или период на осцилација (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> t </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle t} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"> </noscript><span class="lazy-image-placeholder" style="width: 0.84ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" data-alt="{\displaystyle t}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>), за да се добие</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{P}={\frac {mgr}{\omega _{\text{n}}^{2}}}={\frac {mgrt^{2}}{4\pi ^{2}}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> m </mi> <mi> g </mi> <mi> r </mi> </mrow> <msubsup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> n </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> m </mi> <mi> g </mi> <mi> r </mi> <msup> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mn> 4 </mn> <msup> <mi> π<!-- π --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{P}={\frac {mgr}{\omega _{\text{n}}^{2}}}={\frac {mgrt^{2}}{4\pi ^{2}}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85426a7473f7d944e188ba5d27b4469cf5df1821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.31ex; height:6.343ex;" alt="{\displaystyle I_{P}={\frac {mgr}{\omega _{\text{n}}^{2}}}={\frac {mgrt^{2}}{4\pi ^{2}}},}"> </noscript><span class="lazy-image-placeholder" style="width: 21.31ex;height: 6.343ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85426a7473f7d944e188ba5d27b4469cf5df1821" data-alt="{\displaystyle I_{P}={\frac {mgr}{\omega _{\text{n}}^{2}}}={\frac {mgrt^{2}}{4\pi ^{2}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> t </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle t} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"> </noscript><span class="lazy-image-placeholder" style="width: 0.84ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" data-alt="{\displaystyle t}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е периодот (времетраењето) на осцилацијата (обично во просек во текот на повеќе периоди). Моментот на инерција на телото околу неговиот <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A6%D0%B5%D0%BD%D1%82%D0%B0%D1%80_%D0%BD%D0%B0_%D0%BC%D0%B0%D1%81%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Центар на маса (страницата не постои)">центар на маса</a>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{C}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{C}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcad0811b1e635343b4ac72fe5b75ac4a160b318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.504ex; height:2.509ex;" alt="{\displaystyle I_{C}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.504ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcad0811b1e635343b4ac72fe5b75ac4a160b318" data-alt="{\displaystyle I_{C}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, потоа се пресметува со употреба на <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%B7%D0%B0_%D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%B5%D0%BB%D0%BD%D0%B0_%D0%BE%D1%81%D0%BA%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Теорема за паралелна оска (страницата не постои)">теорема за паралелна оска</a> за да биде</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{C}=I_{P}-mr^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{C}=I_{P}-mr^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b620abd41e5b8f61bbba1687aa11c8a14dcef1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.723ex; height:3.009ex;" alt="{\displaystyle I_{C}=I_{P}-mr^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 15.723ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b620abd41e5b8f61bbba1687aa11c8a14dcef1c6" data-alt="{\displaystyle I_{C}=I_{P}-mr^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е масата на телото и р е растојанието од вртежната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> P </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"> </noscript><span class="lazy-image-placeholder" style="width: 1.745ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" data-alt="{\displaystyle P}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> до центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> C </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle C} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"> </noscript><span class="lazy-image-placeholder" style="width: 1.766ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" data-alt="{\displaystyle C}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Моментот на инерција на телото често се дефинира во однос на неговиот <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%96%D0%B8%D1%80%D0%BE%D1%81%D0%BA%D0%BE%D0%BF%D1%81%D0%BA%D0%B8_%D0%BF%D0%BE%D0%BB%D1%83%D0%BF%D1%80%D0%B5%D1%87%D0%BD%D0%B8%D0%BA&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Жироскопски полупречник (страницата не постои)">жироскопски полупречник</a>, кој е полупречник на прстен со еднаква маса околу центарот на масата на телото што го има истиот момент на инерција. Полупречник на гурација к се пресметува од моментот на инерција на телото <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{C}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{C}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcad0811b1e635343b4ac72fe5b75ac4a160b318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.504ex; height:2.509ex;" alt="{\displaystyle I_{C}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.504ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcad0811b1e635343b4ac72fe5b75ac4a160b318" data-alt="{\displaystyle I_{C}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и маса <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> како должина,<sup id="cite_ref-Beer_18-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1296–1297</span></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k={\sqrt {\frac {I_{C}}{m}}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> </mrow> </msub> <mi> m </mi> </mfrac> </msqrt> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k={\sqrt {\frac {I_{C}}{m}}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d33e3c713151dd31bcddd2f3d2f1bf310da47cb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:10.621ex; height:6.176ex;" alt="{\displaystyle k={\sqrt {\frac {I_{C}}{m}}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 10.621ex;height: 6.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d33e3c713151dd31bcddd2f3d2f1bf310da47cb4" data-alt="{\displaystyle k={\sqrt {\frac {I_{C}}{m}}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <div class="mw-heading mw-heading4"> <h4 id="Центар_на_осцилација"><span id=".D0.A6.D0.B5.D0.BD.D1.82.D0.B0.D1.80_.D0.BD.D0.B0_.D0.BE.D1.81.D1.86.D0.B8.D0.BB.D0.B0.D1.86.D0.B8.D1.98.D0.B0"></span>Центар на осцилација</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=6&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Центар на осцилација“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Едноставно нишало кое ја има истата природна честота како сложено нишало ја дефинира должината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> од вртење до точка наречена <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A6%D0%B5%D0%BD%D1%82%D0%B0%D1%80_%D0%BD%D0%B0_%D0%BE%D1%81%D1%86%D0%B8%D0%BB%D0%B0%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Центар на осцилација (страницата не постои)">центар на осцилација</a> на сложеното нишало. Оваа точка, исто така, одговара на <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A6%D0%B5%D0%BD%D1%82%D0%B0%D1%80_%D0%BD%D0%B0_%D0%BF%D0%B5%D1%80%D0%BA%D1%83%D1%81%D0%B8%D0%B8&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Центар на перкусии (страницата не постои)">центарот на перкусии</a>. Должина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се определува од формулата,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{\text{n}}={\sqrt {\frac {g}{L}}}={\sqrt {\frac {mgr}{I_{P}}}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> n </mtext> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi> g </mi> <mi> L </mi> </mfrac> </msqrt> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi> m </mi> <mi> g </mi> <mi> r </mi> </mrow> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> </mfrac> </msqrt> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \omega _{\text{n}}={\sqrt {\frac {g}{L}}}={\sqrt {\frac {mgr}{I_{P}}}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af13f8f7fc5c36205648dfcc8e1ae74d68d1ee13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.543ex; height:6.343ex;" alt="{\displaystyle \omega _{\text{n}}={\sqrt {\frac {g}{L}}}={\sqrt {\frac {mgr}{I_{P}}}},}"> </noscript><span class="lazy-image-placeholder" style="width: 21.543ex;height: 6.343ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af13f8f7fc5c36205648dfcc8e1ae74d68d1ee13" data-alt="{\displaystyle \omega _{\text{n}}={\sqrt {\frac {g}{L}}}={\sqrt {\frac {mgr}{I_{P}}}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>или</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}={\frac {I_{P}}{mr}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> g </mi> <msubsup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> n </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> <mrow> <mi> m </mi> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}={\frac {I_{P}}{mr}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ae9270c69ece90445dd11b9d6a65d045a3dd092" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.78ex; height:5.843ex;" alt="{\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}={\frac {I_{P}}{mr}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 15.78ex;height: 5.843ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ae9270c69ece90445dd11b9d6a65d045a3dd092" data-alt="{\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}={\frac {I_{P}}{mr}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>На <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9D%D0%B8%D1%88%D0%B0%D0%BB%D0%BE_%D0%B7%D0%B0_%D1%81%D0%B5%D0%BA%D1%83%D0%BD%D0%B4%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Нишало за секунда (страницата не постои)">нишалото за секунда</a>, кое овозможува "крлеж" и "тока" на дедо часовник, трае една секунда за да се сврти од рамо до рамо. Ова е период од две секунди, или природна честота на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi \ \mathrm {rad/s} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> π<!-- π --> </mi> <mtext> &nbsp; </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> r </mi> <mi mathvariant="normal"> a </mi> <mi mathvariant="normal"> d </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mi mathvariant="normal"> s </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \pi \ \mathrm {rad/s} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9165b16312df8cb79a9f7b2fa7146744de9390b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.358ex; height:2.843ex;" alt="{\displaystyle \pi \ \mathrm {rad/s} }"> </noscript><span class="lazy-image-placeholder" style="width: 7.358ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9165b16312df8cb79a9f7b2fa7146744de9390b6" data-alt="{\displaystyle \pi \ \mathrm {rad/s} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp; за нишалото. Во овој случај, растојанието до центарот на осцилацијата,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, може да се пресмета да биде</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}\approx {\frac {9.81\ \mathrm {m/s^{2}} }{(3.14\ \mathrm {rad/s} )^{2}}}\approx 0.99\ \mathrm {m} .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> g </mi> <msubsup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> n </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mfrac> </mrow> <mo> ≈<!-- ≈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 9.81 </mn> <mtext> &nbsp; </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <msup> <mi mathvariant="normal"> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mrow> <mo stretchy="false"> ( </mo> <mn> 3.14 </mn> <mtext> &nbsp; </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> r </mi> <mi mathvariant="normal"> a </mi> <mi mathvariant="normal"> d </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mi mathvariant="normal"> s </mi> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> ≈<!-- ≈ --> </mo> <mn> 0.99 </mn> <mtext> &nbsp; </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> m </mi> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}\approx {\frac {9.81\ \mathrm {m/s^{2}} }{(3.14\ \mathrm {rad/s} )^{2}}}\approx 0.99\ \mathrm {m} .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6daff307d9615e49828965aef674f12679ebc65f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.464ex; height:6.676ex;" alt="{\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}\approx {\frac {9.81\ \mathrm {m/s^{2}} }{(3.14\ \mathrm {rad/s} )^{2}}}\approx 0.99\ \mathrm {m} .}"> </noscript><span class="lazy-image-placeholder" style="width: 35.464ex;height: 6.676ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6daff307d9615e49828965aef674f12679ebc65f" data-alt="{\displaystyle L={\frac {g}{\omega _{\text{n}}^{2}}}\approx {\frac {9.81\ \mathrm {m/s^{2}} }{(3.14\ \mathrm {rad/s} )^{2}}}\approx 0.99\ \mathrm {m} .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Забележете дека растојанието до центарот на осцилацијата на секундарното нишало мора да се прилагоди за да се приспособат на различни вредности за локалното забрзување на гравитацијата. <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9A%D0%B0%D1%82%D0%B5%D1%80%D0%BE%D0%BB%D0%BE%D0%B2%D0%BE_%D0%BD%D0%B8%D1%88%D0%B0%D0%BB%D0%BE&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Катеролово нишало (страницата не постои)">Катеролово нишало</a> е сложено нишало кое го користи овој својство за мерење на локалното забрзување на гравитацијата и се нарекува <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%93%D1%80%D0%B0%D0%B2%D0%B8%D0%BC%D0%B5%D1%82%D0%B0%D1%80?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Гравиметар">гравиметар</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Мерење_на_моментот_на_инерција"><span id=".D0.9C.D0.B5.D1.80.D0.B5.D1.9A.D0.B5_.D0.BD.D0.B0_.D0.BC.D0.BE.D0.BC.D0.B5.D0.BD.D1.82.D0.BE.D1.82_.D0.BD.D0.B0_.D0.B8.D0.BD.D0.B5.D1.80.D1.86.D0.B8.D1.98.D0.B0"></span>Мерење на моментот на инерција</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=7&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Мерење на моментот на инерција“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>Моментот на инерција на комплексен систем, како што е возило или авион околу неговата вертикална оска, може да се мери со суспендирање на системот од три точки за да се формира трифиларно нишало. Трифиларното нишало е платформа поддржана од три жици дизајнирани да осцилираат во торзија околу вертикалната централна оска.<sup id="cite_ref-19" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Периодот на осцилација на трифиларното нишало го дава моментот на инерција на системот.<sup id="cite_ref-20" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Движење_во_фиксна_рамнина"><span id=".D0.94.D0.B2.D0.B8.D0.B6.D0.B5.D1.9A.D0.B5_.D0.B2.D0.BE_.D1.84.D0.B8.D0.BA.D1.81.D0.BD.D0.B0_.D1.80.D0.B0.D0.BC.D0.BD.D0.B8.D0.BD.D0.B0"></span>Движење во фиксна рамнина</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=8&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Движење во фиксна рамнина“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <div class="mw-heading mw-heading3"> <h3 id="Точкеста_маса"><span id=".D0.A2.D0.BE.D1.87.D0.BA.D0.B5.D1.81.D1.82.D0.B0_.D0.BC.D0.B0.D1.81.D0.B0"></span>Точкеста маса</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=9&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Точкеста маса“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <figure typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Rolling_Racers_-_Moment_of_inertia.gif?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Rolling_Racers_-_Moment_of_inertia.gif/216px-Rolling_Racers_-_Moment_of_inertia.gif" decoding="async" width="216" height="122" class="mw-file-element" data-file-width="480" data-file-height="270"> </noscript><span class="lazy-image-placeholder" style="width: 216px;height: 122px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Rolling_Racers_-_Moment_of_inertia.gif/216px-Rolling_Racers_-_Moment_of_inertia.gif" data-alt="" data-width="216" data-height="122" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Rolling_Racers_-_Moment_of_inertia.gif/324px-Rolling_Racers_-_Moment_of_inertia.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Rolling_Racers_-_Moment_of_inertia.gif/432px-Rolling_Racers_-_Moment_of_inertia.gif 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Четири објекти со идентични маси и полупречници, се тркалаат по рамнина додека се тркалаат без лизгање. <style data-mw-deduplicate="TemplateStyles:r4948454">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="plainlist"> <ul> <li><span style="background-color:red; border:1px solid darkgray;">&nbsp;&nbsp;&nbsp;&nbsp;</span>шуплива сфера,</li> <li><span style="background-color:orange; border:1px solid darkgray;">&nbsp;&nbsp;&nbsp;&nbsp;</span> цврста сфера,</li> <li><span style="background-color:green; border:1px solid darkgray;">&nbsp;&nbsp;&nbsp;&nbsp;</span> цилиндричен прстен, и</li> <li><span style="background-color:blue; border:1px solid darkgray;">&nbsp;&nbsp;&nbsp;&nbsp;</span> цврст цилиндар.</li> </ul> </div>Времето за секој предмет да стигне до завршната линија зависи од нивниот момент на инерција. </figcaption> </figure> <p>Моментот на инерција околу оската на телото се пресметува со собирање <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.143ex; height:2.676ex;" alt="{\displaystyle mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.143ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" data-alt="{\displaystyle mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>за секоја честичка во телото, каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp;е нормално растојание до одредената оска. За да видиме како се јавува моментот на инерција во проучувањето на движењето на проширено тело, удобно е да се разгледа круто собрание на точка маси. (Оваа равенка може да се користи за оските кои не се главни оски под услов да се сфати дека ова не го опишува целосно моментот на инерција.<sup id="cite_ref-21" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup>)</p> <p>Размислете за кинетичката енергија на едно собрание на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> N </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle N} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"> </noscript><span class="lazy-image-placeholder" style="width: 2.064ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" data-alt="{\displaystyle N}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp;маси <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec8e804f69706d3f5ad235f4f983220c8df7c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.84ex; height:2.009ex;" alt="{\displaystyle m_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.84ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec8e804f69706d3f5ad235f4f983220c8df7c2" data-alt="{\displaystyle m_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>кои лежат на растојанија <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b6d651eaf432dbf1f106021c8bb499ae83fd1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.848ex; height:2.009ex;" alt="{\displaystyle r_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.848ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b6d651eaf432dbf1f106021c8bb499ae83fd1f" data-alt="{\displaystyle r_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>од точка на вртење <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> P </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"> </noscript><span class="lazy-image-placeholder" style="width: 1.745ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" data-alt="{\displaystyle P}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp;, што е најблиската точка на оската на вртење. Тоа е збир на кинетичката енергија на поединечните маси,<sup id="cite_ref-Uicker_17-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Uicker-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>516–517</span></sup><sup id="cite_ref-Beer_18-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1084–1085</span></sup><sup id="cite_ref-Beer_18-2" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1296–1300</span></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{K}}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\left(\omega r_{i}\right)^{2}={\frac {1}{2}}\,\omega ^{2}\sum _{i=1}^{N}m_{i}r_{i}^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> E </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> K </mtext> </mrow> </msub> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ω<!-- ω --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle E_{\text{K}}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\left(\omega r_{i}\right)^{2}={\frac {1}{2}}\,\omega ^{2}\sum _{i=1}^{N}m_{i}r_{i}^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d0b6efec911bdb60f83cfb6eac131cf2020523f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:57.32ex; height:7.343ex;" alt="{\displaystyle E_{\text{K}}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\left(\omega r_{i}\right)^{2}={\frac {1}{2}}\,\omega ^{2}\sum _{i=1}^{N}m_{i}r_{i}^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 57.32ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d0b6efec911bdb60f83cfb6eac131cf2020523f" data-alt="{\displaystyle E_{\text{K}}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}=\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\left(\omega r_{i}\right)^{2}={\frac {1}{2}}\,\omega ^{2}\sum _{i=1}^{N}m_{i}r_{i}^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Ова покажува дека моментот на инерција на телото е збирот на секоја од нив <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.143ex; height:2.676ex;" alt="{\displaystyle mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.143ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" data-alt="{\displaystyle mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> термини, што е</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{P}=\sum _{i=1}^{N}m_{i}r_{i}^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{P}=\sum _{i=1}^{N}m_{i}r_{i}^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/442d042dcc10bf6d82bc5350bfd55e94b189ac5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.92ex; height:7.343ex;" alt="{\displaystyle I_{P}=\sum _{i=1}^{N}m_{i}r_{i}^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 14.92ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/442d042dcc10bf6d82bc5350bfd55e94b189ac5d" data-alt="{\displaystyle I_{P}=\sum _{i=1}^{N}m_{i}r_{i}^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Друг израз ја заменува сумацијата со <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%BD%D0%BE_%D1%81%D0%BC%D0%B5%D1%82%D0%B0%D1%9A%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Интегрално сметање">интеграл</a>,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{P}=\iiint \limits _{Q}\rho \left(x,y,z\right)\left\|\mathbf {r} \right\|^{2}\mathrm {d} V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> <mo> = </mo> <munder> <mo> ∭<!-- ∭ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> Q </mi> </mrow> </munder> <mi> ρ<!-- ρ --> </mi> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msup> <mrow> <mo symmetric="true"> ‖ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo symmetric="true"> ‖ </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{P}=\iiint \limits _{Q}\rho \left(x,y,z\right)\left\|\mathbf {r} \right\|^{2}\mathrm {d} V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d18ed30d1d981875bfe43d0a1e678cec601738f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:27.563ex; height:7.676ex;" alt="{\displaystyle I_{P}=\iiint \limits _{Q}\rho \left(x,y,z\right)\left\|\mathbf {r} \right\|^{2}\mathrm {d} V}"> </noscript><span class="lazy-image-placeholder" style="width: 27.563ex;height: 7.676ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d18ed30d1d981875bfe43d0a1e678cec601738f3" data-alt="{\displaystyle I_{P}=\iiint \limits _{Q}\rho \left(x,y,z\right)\left\|\mathbf {r} \right\|^{2}\mathrm {d} V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Тука функцијата ρ ја дава густината на маса во секоја точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y,z)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x,y,z)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22a8c93372e8f8b6e24d523bd5545aed3430baf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.45ex; height:2.843ex;" alt="{\displaystyle (x,y,z)}"> </noscript><span class="lazy-image-placeholder" style="width: 7.45ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22a8c93372e8f8b6e24d523bd5545aed3430baf4" data-alt="{\displaystyle (x,y,z)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.102ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" data-alt="{\displaystyle \mathbf {r} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е вектор нормален на оската на вртење и се протега од точка на оската на вртење до точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,y,z)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> , </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (x,y,z)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22a8c93372e8f8b6e24d523bd5545aed3430baf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.45ex; height:2.843ex;" alt="{\displaystyle (x,y,z)}"> </noscript><span class="lazy-image-placeholder" style="width: 7.45ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22a8c93372e8f8b6e24d523bd5545aed3430baf4" data-alt="{\displaystyle (x,y,z)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во цврстата состојба, а интеграцијата се оценува преку волуменот <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"> </noscript><span class="lazy-image-placeholder" style="width: 1.787ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" data-alt="{\displaystyle V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на телото <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> Q </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"> </noscript><span class="lazy-image-placeholder" style="width: 1.838ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" data-alt="{\displaystyle Q}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Моментот на инерција на рамна површина е сличен, при што густината на масата се заменува со густината на масата на површината со интегрален евалуиран над својата област.</p> <p><b>Забелешка за вториот момент на површината:</b> Моментот на инерција на телото што се движи во рамнина и <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%92%D1%82%D0%BE%D1%80_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%BF%D0%BE%D0%B2%D1%80%D1%88%D0%B8%D0%BD%D0%B0%D1%82%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Втор момент на површината (страницата не постои)">вториот момент на површината</a> на зракот често се збунети. Моментот на инерција на тело со облик на пресек е вториот момент на оваа област околу z-оската нормална на пресекот, пондерирана според нејзината густина. Ова се нарекува и <i>поларен момент на површината</i>, и е збир на вторите моменти за x- и y-оски.<sup id="cite_ref-22" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Напорите во зракот се пресметуваат со користење на вториот момент на пресекот околу или околу x-оската или y-оската во зависност од товарот.</p> <div class="mw-heading mw-heading4"> <h4 id="Примери_2"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.80.D0.B8_2"></span>Примери</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=10&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Примери“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <style data-mw-deduplicate="TemplateStyles:r4650192">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style> <div role="note" class="hatnote navigation-not-searchable"> Главна статија: <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BD%D0%B0_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%B8_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Список на моменти на инерција (страницата не постои)">Список на моменти на инерција</a> </div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Moment_of_inertia_rod_center.svg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Moment_of_inertia_rod_center.svg/220px-Moment_of_inertia_rod_center.svg.png" decoding="async" width="220" height="244" class="mw-file-element" data-file-width="512" data-file-height="569"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 244px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Moment_of_inertia_rod_center.svg/220px-Moment_of_inertia_rod_center.svg.png" data-width="220" data-height="244" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Moment_of_inertia_rod_center.svg/330px-Moment_of_inertia_rod_center.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Moment_of_inertia_rod_center.svg/440px-Moment_of_inertia_rod_center.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption></figcaption> </figure> <p>Моментот на инерција на сложено нишало изградено од тенок диск монтиран на крајот од тенка прачка што осцилира околу стожерот на другиот крај на шипката започнува со пресметување на моментот на инерција на тенката прачка и тенокиот диск за нивните соодветни центри на маса.<sup id="cite_ref-Beer_18-3" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></p> <ul> <li>Моментот на инерција на тенка прачка со константен пресек <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> s </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"> </noscript><span class="lazy-image-placeholder" style="width: 1.09ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" data-alt="{\displaystyle s}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и густината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"> </noscript><span class="lazy-image-placeholder" style="width: 1.202ex;height: 2.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" data-alt="{\displaystyle \rho }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и со должина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ℓ<!-- ℓ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \ell } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"> </noscript><span class="lazy-image-placeholder" style="width: 0.97ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" data-alt="{\displaystyle \ell }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> околу нормална оска преку нејзиниот центар на маса се определува со интеграција.<sup id="cite_ref-Beer_18-4" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1301</span></sup> Порамнувајќи ја x-оската со шипката и сместувајќи го центарот на масата во центарот на шипката, следи:</li> </ul> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{C,{\text{rod}}}=\iiint \limits _{Q}\rho \,x^{2}\,\mathrm {d} V=\int _{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}\rho \,x^{2}s\,\mathrm {d} x=\left.\rho s{\frac {x^{3}}{3}}\right|_{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}={\frac {\rho s}{3}}\left({\frac {\ell ^{3}}{8}}+{\frac {\ell ^{3}}{8}}\right)={\frac {m\ell ^{2}}{12}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> rod </mtext> </mrow> </mrow> </msub> <mo> = </mo> <munder> <mo> ∭<!-- ∭ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> Q </mi> </mrow> </munder> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ℓ<!-- ℓ --> </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ℓ<!-- ℓ --> </mi> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> s </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> <mo> = </mo> <msubsup> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mi> ρ<!-- ρ --> </mi> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ℓ<!-- ℓ --> </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ℓ<!-- ℓ --> </mi> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> ρ<!-- ρ --> </mi> <mi> s </mi> </mrow> <mn> 3 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> ℓ<!-- ℓ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mn> 8 </mn> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> ℓ<!-- ℓ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mn> 8 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> m </mi> <msup> <mi> ℓ<!-- ℓ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mn> 12 </mn> </mfrac> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{C,{\text{rod}}}=\iiint \limits _{Q}\rho \,x^{2}\,\mathrm {d} V=\int _{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}\rho \,x^{2}s\,\mathrm {d} x=\left.\rho s{\frac {x^{3}}{3}}\right|_{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}={\frac {\rho s}{3}}\left({\frac {\ell ^{3}}{8}}+{\frac {\ell ^{3}}{8}}\right)={\frac {m\ell ^{2}}{12}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efcc120df3de0f96b2d79462c18bcf1444ae1731" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:76.246ex; height:9.343ex;" alt="{\displaystyle I_{C,{\text{rod}}}=\iiint \limits _{Q}\rho \,x^{2}\,\mathrm {d} V=\int _{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}\rho \,x^{2}s\,\mathrm {d} x=\left.\rho s{\frac {x^{3}}{3}}\right|_{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}={\frac {\rho s}{3}}\left({\frac {\ell ^{3}}{8}}+{\frac {\ell ^{3}}{8}}\right)={\frac {m\ell ^{2}}{12}},}"> </noscript><span class="lazy-image-placeholder" style="width: 76.246ex;height: 9.343ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efcc120df3de0f96b2d79462c18bcf1444ae1731" data-alt="{\displaystyle I_{C,{\text{rod}}}=\iiint \limits _{Q}\rho \,x^{2}\,\mathrm {d} V=\int _{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}\rho \,x^{2}s\,\mathrm {d} x=\left.\rho s{\frac {x^{3}}{3}}\right|_{-{\frac {\ell }{2}}}^{\frac {\ell }{2}}={\frac {\rho s}{3}}\left({\frac {\ell ^{3}}{8}}+{\frac {\ell ^{3}}{8}}\right)={\frac {m\ell ^{2}}{12}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>каде што math&gt;m = \rho s \ell&lt;/math&gt; е масата на прачката.</p> <ul> <li>Моментот на инерција на тенок диск со константна дебелина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> s </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"> </noscript><span class="lazy-image-placeholder" style="width: 1.09ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" data-alt="{\displaystyle s}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, полупречник <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"> </noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" data-alt="{\displaystyle R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и густината <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"> </noscript><span class="lazy-image-placeholder" style="width: 1.202ex;height: 2.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" data-alt="{\displaystyle \rho }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>околу оската преку неговиот центар и нормално на неговото лице (паралелно со неговата оска на <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%92%D1%80%D1%82%D0%B5%D0%B6%D0%BD%D0%B0_%D1%81%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Вртежна симетрија (страницата не постои)">вртежна симетрија</a>) се определува со интеграција.<sup id="cite_ref-Beer_18-5" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1301</span></sup> Порамнувајќи ја z-оската со оската на дискот и дефинирајќи го елементот за волумен како <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} V=sr\mathrm {d} r\mathrm {d} \theta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <mi> s </mi> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> θ<!-- θ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {d} V=sr\mathrm {d} r\mathrm {d} \theta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa6a262a2ab533edc9bf6be82a4250799df3fac9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.041ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} V=sr\mathrm {d} r\mathrm {d} \theta }"> </noscript><span class="lazy-image-placeholder" style="width: 13.041ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa6a262a2ab533edc9bf6be82a4250799df3fac9" data-alt="{\displaystyle \mathrm {d} V=sr\mathrm {d} r\mathrm {d} \theta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, следи:</li> </ul> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{C,{\text{disc}}}=\iiint \limits _{Q}\rho \,r^{2}\,\mathrm {d} V=\int _{0}^{2\pi }\int _{0}^{R}\rho r^{2}sr\,\mathrm {d} r\,\mathrm {d} \theta =2\pi \rho s{\frac {R^{4}}{4}}={\frac {1}{2}}mR^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> disc </mtext> </mrow> </mrow> </msub> <mo> = </mo> <munder> <mo> ∭<!-- ∭ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> Q </mi> </mrow> </munder> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mrow> </msubsup> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msubsup> <mi> ρ<!-- ρ --> </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> s </mi> <mi> r </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> r </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> θ<!-- θ --> </mi> <mo> = </mo> <mn> 2 </mn> <mi> π<!-- π --> </mi> <mi> ρ<!-- ρ --> </mi> <mi> s </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mi> m </mi> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{C,{\text{disc}}}=\iiint \limits _{Q}\rho \,r^{2}\,\mathrm {d} V=\int _{0}^{2\pi }\int _{0}^{R}\rho r^{2}sr\,\mathrm {d} r\,\mathrm {d} \theta =2\pi \rho s{\frac {R^{4}}{4}}={\frac {1}{2}}mR^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b70e507f08442801dccbc17daa7474c36c6c08a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:66.316ex; height:8.176ex;" alt="{\displaystyle I_{C,{\text{disc}}}=\iiint \limits _{Q}\rho \,r^{2}\,\mathrm {d} V=\int _{0}^{2\pi }\int _{0}^{R}\rho r^{2}sr\,\mathrm {d} r\,\mathrm {d} \theta =2\pi \rho s{\frac {R^{4}}{4}}={\frac {1}{2}}mR^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 66.316ex;height: 8.176ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b70e507f08442801dccbc17daa7474c36c6c08a3" data-alt="{\displaystyle I_{C,{\text{disc}}}=\iiint \limits _{Q}\rho \,r^{2}\,\mathrm {d} V=\int _{0}^{2\pi }\int _{0}^{R}\rho r^{2}sr\,\mathrm {d} r\,\mathrm {d} \theta =2\pi \rho s{\frac {R^{4}}{4}}={\frac {1}{2}}mR^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=\pi R^{2}\rho s}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <mo> = </mo> <mi> π<!-- π --> </mi> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> ρ<!-- ρ --> </mi> <mi> s </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m=\pi R^{2}\rho s} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5dca17cc43732e0d5266a98ebe1fdde0a678a2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.582ex; height:3.176ex;" alt="{\displaystyle m=\pi R^{2}\rho s}"> </noscript><span class="lazy-image-placeholder" style="width: 11.582ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5dca17cc43732e0d5266a98ebe1fdde0a678a2c" data-alt="{\displaystyle m=\pi R^{2}\rho s}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е неговата маса.</p> <ul> <li>Моментот на инерција на сложеното нишало сега се добива со додавање на моментот на инерција на шипката и дискот околу точката на вртење <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> P </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"> </noscript><span class="lazy-image-placeholder" style="width: 1.745ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" data-alt="{\displaystyle P}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> како,</li> </ul> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{P}=I_{C,{\text{rod}}}+M_{\text{rod}}\left({\frac {L}{2}}\right)^{2}+I_{C,{\text{disc}}}+M_{\text{disc}}(L+R)^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> P </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> rod </mtext> </mrow> </mrow> </msub> <mo> + </mo> <msub> <mi> M </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> rod </mtext> </mrow> </msub> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> L </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> disc </mtext> </mrow> </mrow> </msub> <mo> + </mo> <msub> <mi> M </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> disc </mtext> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> L </mi> <mo> + </mo> <mi> R </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{P}=I_{C,{\text{rod}}}+M_{\text{rod}}\left({\frac {L}{2}}\right)^{2}+I_{C,{\text{disc}}}+M_{\text{disc}}(L+R)^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/516751c9cd8925d27978349304a410048a9111fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:51.857ex; height:6.509ex;" alt="{\displaystyle I_{P}=I_{C,{\text{rod}}}+M_{\text{rod}}\left({\frac {L}{2}}\right)^{2}+I_{C,{\text{disc}}}+M_{\text{disc}}(L+R)^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 51.857ex;height: 6.509ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/516751c9cd8925d27978349304a410048a9111fc" data-alt="{\displaystyle I_{P}=I_{C,{\text{rod}}}+M_{\text{rod}}\left({\frac {L}{2}}\right)^{2}+I_{C,{\text{disc}}}+M_{\text{disc}}(L+R)^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е должината на нишалото. Забележете дека теорема за паралелна оска се користи за поместување на моментот на инерција од центарот на масата до точка на вртење на нишалото.</p> <p><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BD%D0%B0_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%B8_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Список на моменти на инерција (страницата не постои)">Список на моменти на инерција</a> се равенки за стандардни обици на тела и обезбедува начин да се добие моментот на инерција на сложено тело како збир на поедноставно обликувани тела. <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BD%D0%B0_%D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%B5%D0%BB%D0%BD%D0%B0_%D0%BE%D1%81%D0%BA%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Теорема на паралелна оска (страницата не постои)">Теоремата на паралелната оска</a> се користи за поместување на референтната точка на поединечните тела на референтната точка на склопот.</p> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Moment_of_inertia_solid_sphere.svg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Moment_of_inertia_solid_sphere.svg/220px-Moment_of_inertia_solid_sphere.svg.png" decoding="async" width="220" height="203" class="mw-file-element" data-file-width="277" data-file-height="255"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 203px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Moment_of_inertia_solid_sphere.svg/220px-Moment_of_inertia_solid_sphere.svg.png" data-width="220" data-height="203" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Moment_of_inertia_solid_sphere.svg/330px-Moment_of_inertia_solid_sphere.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/Moment_of_inertia_solid_sphere.svg/440px-Moment_of_inertia_solid_sphere.svg.png 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption></figcaption> </figure> <p>Како уште еден пример, разгледајте го моментот на инерција на цврста сфера со константна густина околу оската преку нејзиниот центар на маса. Ова се определува со сумирање на моментите на инерција на тенки дискови кои ја формираат сферата. Ако површината на топката е дефинирана со равенката<sup id="cite_ref-Beer_18-6" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1301</span></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}+z^{2}=R^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x^{2}+y^{2}+z^{2}=R^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27d27233c3e28eccb66564e293ed5d94755b7179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.988ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}+z^{2}=R^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 18.988ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27d27233c3e28eccb66564e293ed5d94755b7179" data-alt="{\displaystyle x^{2}+y^{2}+z^{2}=R^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>тогаш полупречникот <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"> </noscript><span class="lazy-image-placeholder" style="width: 1.049ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" data-alt="{\displaystyle r}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на дискот на пресекот <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> </noscript><span class="lazy-image-placeholder" style="width: 1.088ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" data-alt="{\displaystyle z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> по должината на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> z </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle z} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"> </noscript><span class="lazy-image-placeholder" style="width: 1.088ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" data-alt="{\displaystyle z}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>-оската е</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r(z)^{2}=x^{2}+y^{2}=R^{2}-z^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> r </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r(z)^{2}=x^{2}+y^{2}=R^{2}-z^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80e0877d0975c009e3be64c0af3de7cbd74d4468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.086ex; height:3.176ex;" alt="{\displaystyle r(z)^{2}=x^{2}+y^{2}=R^{2}-z^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 27.086ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80e0877d0975c009e3be64c0af3de7cbd74d4468" data-alt="{\displaystyle r(z)^{2}=x^{2}+y^{2}=R^{2}-z^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>Затоа, моментот на инерција на топката е збирот на моментите на инерција на дисковите долж z-оската,</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}I_{C,{\text{ball}}}&amp;=\int _{-R}^{R}{\frac {\pi \rho }{2}}r(z)^{4}\,\mathrm {d} z=\int _{-R}^{R}{\frac {\pi \rho }{2}}\left(R^{2}-z^{2}\right)^{2}\,\mathrm {d} z\\&amp;=\left.{\frac {\pi \rho }{2}}\left(R^{4}z-{\frac {2}{3}}R^{2}z^{3}+{\frac {1}{5}}z^{5}\right)\right|_{-R}^{R}\\&amp;=\pi \rho \left(1-{\frac {2}{3}}+{\frac {1}{5}}\right)R^{5}\\&amp;={\frac {2}{5}}mR^{2},\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> C </mi> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> ball </mtext> </mrow> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> π<!-- π --> </mi> <mi> ρ<!-- ρ --> </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mi> r </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> z </mi> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> π<!-- π --> </mi> <mi> ρ<!-- ρ --> </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> −<!-- − --> </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> z </mi> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <msubsup> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> π<!-- π --> </mi> <mi> ρ<!-- ρ --> </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 4 </mn> </mrow> </msup> <mi> z </mi> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 5 </mn> </mfrac> </mrow> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> R </mi> </mrow> </msubsup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mi> π<!-- π --> </mi> <mi> ρ<!-- ρ --> </mi> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 5 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 5 </mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 2 </mn> <mn> 5 </mn> </mfrac> </mrow> <mi> m </mi> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}I_{C,{\text{ball}}}&amp;=\int _{-R}^{R}{\frac {\pi \rho }{2}}r(z)^{4}\,\mathrm {d} z=\int _{-R}^{R}{\frac {\pi \rho }{2}}\left(R^{2}-z^{2}\right)^{2}\,\mathrm {d} z\\&amp;=\left.{\frac {\pi \rho }{2}}\left(R^{4}z-{\frac {2}{3}}R^{2}z^{3}+{\frac {1}{5}}z^{5}\right)\right|_{-R}^{R}\\&amp;=\pi \rho \left(1-{\frac {2}{3}}+{\frac {1}{5}}\right)R^{5}\\&amp;={\frac {2}{5}}mR^{2},\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dc34aebaa2f5f7f0cdb4a0ab2841cedcdee7312" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.717ex; margin-bottom: -0.288ex; width:49.7ex; height:25.176ex;" alt="{\displaystyle {\begin{aligned}I_{C,{\text{ball}}}&amp;=\int _{-R}^{R}{\frac {\pi \rho }{2}}r(z)^{4}\,\mathrm {d} z=\int _{-R}^{R}{\frac {\pi \rho }{2}}\left(R^{2}-z^{2}\right)^{2}\,\mathrm {d} z\\&amp;=\left.{\frac {\pi \rho }{2}}\left(R^{4}z-{\frac {2}{3}}R^{2}z^{3}+{\frac {1}{5}}z^{5}\right)\right|_{-R}^{R}\\&amp;=\pi \rho \left(1-{\frac {2}{3}}+{\frac {1}{5}}\right)R^{5}\\&amp;={\frac {2}{5}}mR^{2},\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 49.7ex;height: 25.176ex;vertical-align: -11.717ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dc34aebaa2f5f7f0cdb4a0ab2841cedcdee7312" data-alt="{\displaystyle {\begin{aligned}I_{C,{\text{ball}}}&amp;=\int _{-R}^{R}{\frac {\pi \rho }{2}}r(z)^{4}\,\mathrm {d} z=\int _{-R}^{R}{\frac {\pi \rho }{2}}\left(R^{2}-z^{2}\right)^{2}\,\mathrm {d} z\\&amp;=\left.{\frac {\pi \rho }{2}}\left(R^{4}z-{\frac {2}{3}}R^{2}z^{3}+{\frac {1}{5}}z^{5}\right)\right|_{-R}^{R}\\&amp;=\pi \rho \left(1-{\frac {2}{3}}+{\frac {1}{5}}\right)R^{5}\\&amp;={\frac {2}{5}}mR^{2},\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m={\frac {4}{3}}\pi R^{3}\rho }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mi> π<!-- π --> </mi> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mi> ρ<!-- ρ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m={\frac {4}{3}}\pi R^{3}\rho } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92311473222cd0844b03212079c98ae36730c7b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.49ex; height:5.176ex;" alt="{\displaystyle m={\frac {4}{3}}\pi R^{3}\rho }"> </noscript><span class="lazy-image-placeholder" style="width: 12.49ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92311473222cd0844b03212079c98ae36730c7b8" data-alt="{\displaystyle m={\frac {4}{3}}\pi R^{3}\rho }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е масата на сферата.</p> <div class="mw-heading mw-heading3"> <h3 id="Цврсто_тело"><span id=".D0.A6.D0.B2.D1.80.D1.81.D1.82.D0.BE_.D1.82.D0.B5.D0.BB.D0.BE"></span>Цврсто тело</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=11&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Цврсто тело“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Ако механички систем е ограничен да се движи паралелно со фиксна рамнина, тогаш ротацијата на телото во системот се случува околу оската <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> нормално на оваа рамнина. Во овој случај, моментот на инерција на масата во овој систем е скалар кој е познат како <i>поларниот момент на инерција.</i> Дефиницијата на поларниот момент на инерција може да се добие со разгледување на моментумот, кинетичката енергија и законите на Њутн за плазно движење на крут систем на честички.<sup id="cite_ref-B-Paul_14-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-B-Paul-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Uicker_17-2" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Uicker-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Goldstein_23-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Goldstein-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-24" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup></p> <p>Ако системот од n честички,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i},i=1,...,n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i},i=1,...,n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.954ex; height:2.509ex;" alt="{\displaystyle P_{i},i=1,...,n}"> </noscript><span class="lazy-image-placeholder" style="width: 14.954ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" data-alt="{\displaystyle P_{i},i=1,...,n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се собрани во круто тело, тогаш моментумот на системот може да се напише во однос на позициите во однос на референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и апсолутните брзини <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.211ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" data-alt="{\displaystyle \mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Delta \mathbf {r} _{i}&amp;=\mathbf {r} _{i}-\mathbf {R} ,\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {V} ={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} ,\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\Delta \mathbf {r} _{i}&amp;=\mathbf {r} _{i}-\mathbf {R} ,\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {V} ={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} ,\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/763631f93bfbb2d477b0f4bc32f6f276b38989c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.563ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}\Delta \mathbf {r} _{i}&amp;=\mathbf {r} _{i}-\mathbf {R} ,\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {V} ={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} ,\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 42.563ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/763631f93bfbb2d477b0f4bc32f6f276b38989c3" data-alt="{\displaystyle {\begin{aligned}\Delta \mathbf {r} _{i}&amp;=\mathbf {r} _{i}-\mathbf {R} ,\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {V} ={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} ,\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде ω е аголната брзина на системот, а V е брзината на R.</p> <p>За рамно движење векторот на аголна брзина е насочен долж единечниот вектор k кој е нормален на рамнината на движење. Воведување на единечни вектори <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba77c5a75ef9e230d1a36183785477a2eb3c5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.025ex; height:2.009ex;" alt="{\displaystyle \mathbf {e} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.025ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba77c5a75ef9e230d1a36183785477a2eb3c5c1e" data-alt="{\displaystyle \mathbf {e} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>од референтната точка R до точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.902ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" data-alt="{\displaystyle \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, и единечниот вектор <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8be043bb3ba35151a191103bb68449759673fb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.622ex; height:3.176ex;" alt="{\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.622ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8be043bb3ba35151a191103bb68449759673fb3" data-alt="{\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, па така</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {\hat {e}} _{i}&amp;={\frac {\Delta \mathbf {r} _{i}}{\Delta r_{i}}},\quad \mathbf {\hat {k}} ={\frac {\boldsymbol {\omega }}{\omega }},\quad \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i},\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} =\omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {V} =\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> , </mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> <mi> ω<!-- ω --> </mi> </mfrac> </mrow> <mo> , </mo> <mspace width="1em"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> = </mo> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> = </mo> <mi> ω<!-- ω --> </mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {\hat {e}} _{i}&amp;={\frac {\Delta \mathbf {r} _{i}}{\Delta r_{i}}},\quad \mathbf {\hat {k}} ={\frac {\boldsymbol {\omega }}{\omega }},\quad \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i},\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} =\omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {V} =\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9fa841cd3da6473a5c2721cc37981bc44ebf0f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:54.555ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {\hat {e}} _{i}&amp;={\frac {\Delta \mathbf {r} _{i}}{\Delta r_{i}}},\quad \mathbf {\hat {k}} ={\frac {\boldsymbol {\omega }}{\omega }},\quad \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i},\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} =\omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {V} =\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 54.555ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9fa841cd3da6473a5c2721cc37981bc44ebf0f3" data-alt="{\displaystyle {\begin{aligned}\mathbf {\hat {e}} _{i}&amp;={\frac {\Delta \mathbf {r} _{i}}{\Delta r_{i}}},\quad \mathbf {\hat {k}} ={\frac {\boldsymbol {\omega }}{\omega }},\quad \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i},\\\mathbf {v} _{i}&amp;={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} =\omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {V} =\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Ова го дефинира векторот на релативната позиција и векторот на брзината за крутиот систем на честичките што се движат во рамнина.</p> <p><b>Забелешка за вкрстениот производ:</b> Кога едно тело се движи паралелно со рамнина на земјата, траекториите на сите точки во телото лежат во рамнини паралелни на оваа заземјена рамнина. Ова значи дека секоја ротација што се случува на телото мора да биде околу една оска нормална на оваа рамнина. Плодното движење често се презентира како што е проектирано на оваа основна рамнина, така што оската на вртење се појавува како точка. Во овој случај, аголната брзина и аголното забрзување на телото се скалари и фактот дека тие се вектори долж оската на вртење е игнориран. Ова обично се користи за воведување на темата. Но, во случај на момент на инерција, комбинацијата на маса и геометрија придобивки од геометриските својства на вкрстениот производ. Поради оваа причина, во овој дел за рамномерно движење аголната брзина и забрзување на телото се вектори нормални на заземјената рамнина, а операциите на вкрстените производи се исти како што се користат за проучување на движењето на просторно цврсто тело.</p> <div class="mw-heading mw-heading4"> <h4 id="Аголен_импулс"><span id=".D0.90.D0.B3.D0.BE.D0.BB.D0.B5.D0.BD_.D0.B8.D0.BC.D0.BF.D1.83.D0.BB.D1.81"></span>Аголен импулс</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=12&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Аголен импулс“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Аголниот импулс на векторот за рамно движење на крут систем на честички е даден со<sup id="cite_ref-B-Paul_14-2" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-B-Paul-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Uicker_17-3" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Uicker-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\omega \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {V} .\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> L </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mi> ω<!-- ω --> </mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\omega \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {V} .\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b74f7da5a5a9e9fcf7dd09ebbfaae0ae67076e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:48.31ex; height:21.843ex;" alt="{\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\omega \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {V} .\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 48.31ex;height: 21.843ex;vertical-align: -10.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b74f7da5a5a9e9fcf7dd09ebbfaae0ae67076e8" data-alt="{\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\omega \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {V} .\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Користете го <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A6%D0%B5%D0%BD%D1%82%D0%B0%D1%80_%D0%BD%D0%B0_%D0%BC%D0%B0%D1%81%D0%B0%D1%82%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Центар на масата (страницата не постои)">центарот на масата</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> како референтна точка така да</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=\mathbf {r} _{i}-\mathbf {C} ,\\\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=0,\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mn> 0 </mn> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=\mathbf {r} _{i}-\mathbf {C} ,\\\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=0,\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2142ef52e531692cc9869f02413e2ccdf95df6c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:24.06ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=\mathbf {r} _{i}-\mathbf {C} ,\\\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=0,\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 24.06ex;height: 9.843ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2142ef52e531692cc9869f02413e2ccdf95df6c4" data-alt="{\displaystyle {\begin{aligned}\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=\mathbf {r} _{i}-\mathbf {C} ,\\\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}&amp;=0,\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>и да го дефинира моментот на инерција во однос на центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\mathbf {C} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{\mathbf {C} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.621ex; height:2.509ex;" alt="{\displaystyle I_{\mathbf {C} }}"> </noscript><span class="lazy-image-placeholder" style="width: 2.621ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" data-alt="{\displaystyle I_{\mathbf {C} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>како</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\mathbf {C} }=\sum _{i}m_{i}\,\Delta r_{i}^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{\mathbf {C} }=\sum _{i}m_{i}\,\Delta r_{i}^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d74ff1b42e1668c88e66632b6cf03e2aa94cea8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.374ex; height:5.509ex;" alt="{\displaystyle I_{\mathbf {C} }=\sum _{i}m_{i}\,\Delta r_{i}^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 17.374ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d74ff1b42e1668c88e66632b6cf03e2aa94cea8" data-alt="{\displaystyle I_{\mathbf {C} }=\sum _{i}m_{i}\,\Delta r_{i}^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>тогаш се поедноставува равенката за аголниот момент<sup id="cite_ref-Beer_18-7" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1028</span></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L} =I_{\mathbf {C} }\omega \mathbf {\hat {k}} .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> L </mi> </mrow> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {L} =I_{\mathbf {C} }\omega \mathbf {\hat {k}} .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/140a33b8857435797ce58aaec89d066d8e796faf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.831ex; height:3.176ex;" alt="{\displaystyle \mathbf {L} =I_{\mathbf {C} }\omega \mathbf {\hat {k}} .}"> </noscript><span class="lazy-image-placeholder" style="width: 10.831ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/140a33b8857435797ce58aaec89d066d8e796faf" data-alt="{\displaystyle \mathbf {L} =I_{\mathbf {C} }\omega \mathbf {\hat {k}} .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Моментот на инерција <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\mathbf {C} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{\mathbf {C} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.621ex; height:2.509ex;" alt="{\displaystyle I_{\mathbf {C} }}"> </noscript><span class="lazy-image-placeholder" style="width: 2.621ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" data-alt="{\displaystyle I_{\mathbf {C} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> околу оската нормална на движењето на цврстиот систем и низ центарот на масата е познат како <i>поларниот момент на инерција</i>. Поточно, тоа е втор момент на маса во однос на ортогоналното растојание од оската (или пол).</p> <p>За одредена количина на аголен импулс, намалувањето на моментот на инерција резултира со зголемување на аголната брзина. Сликарите можат да го променат моментот на инерција со повлекување на рацете. Така, аголната брзина постигната со лизгач со испружени раце резултира со поголема аголна брзина кога рацете се влечат, поради намалениот момент на инерција. А фигурист не е, сепак, круто тело.</p> <div class="mw-heading mw-heading4"> <h4 id="Кинетичка_енергија"><span id=".D0.9A.D0.B8.D0.BD.D0.B5.D1.82.D0.B8.D1.87.D0.BA.D0.B0_.D0.B5.D0.BD.D0.B5.D1.80.D0.B3.D0.B8.D1.98.D0.B0"></span>Кинетичка енергија</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=13&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Кинетичка енергија“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <figure typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Lever_shear_flywheel.jpg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Lever_shear_flywheel.jpg/241px-Lever_shear_flywheel.jpg" decoding="async" width="241" height="115" class="mw-file-element" data-file-width="1153" data-file-height="549"> </noscript><span class="lazy-image-placeholder" style="width: 241px;height: 115px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Lever_shear_flywheel.jpg/241px-Lever_shear_flywheel.jpg" data-width="241" data-height="115" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Lever_shear_flywheel.jpg/362px-Lever_shear_flywheel.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Lever_shear_flywheel.jpg/482px-Lever_shear_flywheel.jpg 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Оваа вртежна стрижалка во 1906 го користи моментот на инерција на две замаец за складирање на кинетичката енергија, која кога се ослободува се користи за намалување на металниот фонд (Меѓународна библиотека за технологија, 1906). </figcaption> </figure> <p>Кинетичката енергија на крут систем на честички што се движат во рамнината е дадена со<sup id="cite_ref-B-Paul_14-3" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-B-Paul-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Uicker_17-4" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Uicker-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i},\\&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\cdot \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right),\\&amp;={\frac {1}{2}}\omega ^{2}\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\mathbf {\hat {t}} _{i}\cdot \mathbf {\hat {t}} _{i}\right)+\omega \mathbf {V} \cdot \left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {t}} _{i}\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} \cdot \mathbf {V} .\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi> E </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> K </mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mi> ω<!-- ω --> </mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mi> ω<!-- ω --> </mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i},\\&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\cdot \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right),\\&amp;={\frac {1}{2}}\omega ^{2}\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\mathbf {\hat {t}} _{i}\cdot \mathbf {\hat {t}} _{i}\right)+\omega \mathbf {V} \cdot \left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {t}} _{i}\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} \cdot \mathbf {V} .\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2857fa9af9745d1cd6110f7c5781d32ec9d55b98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:79.4ex; height:21.843ex;" alt="{\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i},\\&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\cdot \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right),\\&amp;={\frac {1}{2}}\omega ^{2}\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\mathbf {\hat {t}} _{i}\cdot \mathbf {\hat {t}} _{i}\right)+\omega \mathbf {V} \cdot \left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {t}} _{i}\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} \cdot \mathbf {V} .\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 79.4ex;height: 21.843ex;vertical-align: -10.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2857fa9af9745d1cd6110f7c5781d32ec9d55b98" data-alt="{\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i},\\&amp;={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\cdot \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right),\\&amp;={\frac {1}{2}}\omega ^{2}\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\mathbf {\hat {t}} _{i}\cdot \mathbf {\hat {t}} _{i}\right)+\omega \mathbf {V} \cdot \left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {t}} _{i}\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} \cdot \mathbf {V} .\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Нека референтната точка е центар на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на системот, па вториот мандат станува нула, и ќе го воведеме моментот на инертност <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\mathbf {C} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{\mathbf {C} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.621ex; height:2.509ex;" alt="{\displaystyle I_{\mathbf {C} }}"> </noscript><span class="lazy-image-placeholder" style="width: 2.621ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" data-alt="{\displaystyle I_{\mathbf {C} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, така што кинетичката енергија ќе биде дадена со<sup id="cite_ref-Beer_18-8" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1084</span></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{K}}={\frac {1}{2}}I_{\mathbf {C} }\omega ^{2}+{\frac {1}{2}}M\mathbf {V} \cdot \mathbf {V} .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> E </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> K </mtext> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mi> M </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle E_{\text{K}}={\frac {1}{2}}I_{\mathbf {C} }\omega ^{2}+{\frac {1}{2}}M\mathbf {V} \cdot \mathbf {V} .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4679b9b32ae721e111ca1734fa8b31aa1bd189c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.09ex; height:5.176ex;" alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}I_{\mathbf {C} }\omega ^{2}+{\frac {1}{2}}M\mathbf {V} \cdot \mathbf {V} .}"> </noscript><span class="lazy-image-placeholder" style="width: 27.09ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4679b9b32ae721e111ca1734fa8b31aa1bd189c6" data-alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}I_{\mathbf {C} }\omega ^{2}+{\frac {1}{2}}M\mathbf {V} \cdot \mathbf {V} .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Моментот на инерција <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\mathbf {C} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{\mathbf {C} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.621ex; height:2.509ex;" alt="{\displaystyle I_{\mathbf {C} }}"> </noscript><span class="lazy-image-placeholder" style="width: 2.621ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" data-alt="{\displaystyle I_{\mathbf {C} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е <i>поларниот момент на инерција</i> на телото.</p> <div class="mw-heading mw-heading4"> <h4 id="Њутнови_закони"><span id=".D0.8A.D1.83.D1.82.D0.BD.D0.BE.D0.B2.D0.B8_.D0.B7.D0.B0.D0.BA.D0.BE.D0.BD.D0.B8"></span>Њутнови закони</h4><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=14&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Њутнови закони“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <figure typeof="mw:File/Thumb"> <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Johndeered.jpg?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Johndeered.jpg/229px-Johndeered.jpg" decoding="async" width="229" height="172" class="mw-file-element" data-file-width="1024" data-file-height="768"> </noscript><span class="lazy-image-placeholder" style="width: 229px;height: 172px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Johndeered.jpg/229px-Johndeered.jpg" data-width="229" data-height="172" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Johndeered.jpg/344px-Johndeered.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Johndeered.jpg/458px-Johndeered.jpg 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Тракторот од Џон Џејмс од 1920 година со спојуваниот <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%97%D0%B0%D0%BC%D0%B0%D0%B5%D1%86&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Замаец (страницата не постои)">замаец</a> на моторот. Големиот момент на инерција на замаецот ја олеснува работата на тракторот. </figcaption> </figure> <p>Њутнови закони за крут систем на n честички, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i},i=1,...,n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i},i=1,...,n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.954ex; height:2.509ex;" alt="{\displaystyle P_{i},i=1,...,n}"> </noscript><span class="lazy-image-placeholder" style="width: 14.954ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" data-alt="{\displaystyle P_{i},i=1,...,n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, може да се напише во однос на <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A0%D0%B5%D0%B7%D1%83%D0%BB%D1%82%D0%B0%D0%BD%D1%82%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Резултанта (страницата не постои)">резултантната сила</a> и вртежен момент во референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, за да се добие<sup id="cite_ref-B-Paul_14-4" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-B-Paul-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Uicker_17-5" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Uicker-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {F} &amp;=\sum _{i=1}^{n}m_{i}\mathbf {A} _{i},\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}\Delta \mathbf {r} _{i}\times m_{i}\mathbf {A} _{i},\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {F} &amp;=\sum _{i=1}^{n}m_{i}\mathbf {A} _{i},\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}\Delta \mathbf {r} _{i}\times m_{i}\mathbf {A} _{i},\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d878e318dbc371b1e6fa920e9af0db290bc5356d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:22.259ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {F} &amp;=\sum _{i=1}^{n}m_{i}\mathbf {A} _{i},\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}\Delta \mathbf {r} _{i}\times m_{i}\mathbf {A} _{i},\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 22.259ex;height: 14.176ex;vertical-align: -6.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d878e318dbc371b1e6fa920e9af0db290bc5356d" data-alt="{\displaystyle {\begin{aligned}\mathbf {F} &amp;=\sum _{i=1}^{n}m_{i}\mathbf {A} _{i},\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}\Delta \mathbf {r} _{i}\times m_{i}\mathbf {A} _{i},\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде ri означува траекторија на секоја честичка. Кинематиката на круто тело ја дава формулата за забрзување на честичката <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.292ex; height:2.509ex;" alt="{\displaystyle P_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.292ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" data-alt="{\displaystyle P_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во однос на положбата R и забрзувањето A на референтната честичка, како и аголниот вектор на брзина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\omega }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.669ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" data-alt="{\displaystyle {\boldsymbol {\omega }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и векторот на аголно забрзување α од крутиот систем на честички како,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} _{i}={\boldsymbol {\alpha }}\times \Delta \mathbf {r} _{i}+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {A} .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {A} _{i}={\boldsymbol {\alpha }}\times \Delta \mathbf {r} _{i}+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {A} .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e689c5f3f580c43874d5a86ca01005643bedc633" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:35.567ex; height:2.509ex;" alt="{\displaystyle \mathbf {A} _{i}={\boldsymbol {\alpha }}\times \Delta \mathbf {r} _{i}+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {A} .}"> </noscript><span class="lazy-image-placeholder" style="width: 35.567ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e689c5f3f580c43874d5a86ca01005643bedc633" data-alt="{\displaystyle \mathbf {A} _{i}={\boldsymbol {\alpha }}\times \Delta \mathbf {r} _{i}+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {A} .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>За системи кои се ограничени на рамно движење, аголната брзина и векторите на аголното забрзување се насочуваат долж <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> нормално на рамнината на движење, што ја поедноставува оваа равенка за забрзување. Во овој случај, забрзувачките вектори може да се поедностават со внесување на единечните вектори <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {e}} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {e}} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f01cfee86a741d3d25c6510aea329ab584019060" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.136ex; height:2.676ex;" alt="{\displaystyle \mathbf {\hat {e}} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.136ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f01cfee86a741d3d25c6510aea329ab584019060" data-alt="{\displaystyle \mathbf {\hat {e}} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> од референтната точка R во точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.902ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" data-alt="{\displaystyle \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и единечните вектори<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8be043bb3ba35151a191103bb68449759673fb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.622ex; height:3.176ex;" alt="{\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.622ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8be043bb3ba35151a191103bb68449759673fb3" data-alt="{\displaystyle \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, па така</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {A} _{i}&amp;=\alpha \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}-\omega \mathbf {\hat {k}} \times \omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \\&amp;=\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} .\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mi> α<!-- α --> </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {A} _{i}&amp;=\alpha \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}-\omega \mathbf {\hat {k}} \times \omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \\&amp;=\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} .\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a914cf61ff0a1ca9fefa05e4bf3ac1a4f13340c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.344ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}\mathbf {A} _{i}&amp;=\alpha \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}-\omega \mathbf {\hat {k}} \times \omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \\&amp;=\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} .\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 43.344ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a914cf61ff0a1ca9fefa05e4bf3ac1a4f13340c5" data-alt="{\displaystyle {\begin{aligned}\mathbf {A} _{i}&amp;=\alpha \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}-\omega \mathbf {\hat {k}} \times \omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \\&amp;=\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} .\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Ова дава резултат на вртежен момент на системот како</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\alpha \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {A} ,\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mi> α<!-- α --> </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msup> <mi> ω<!-- ω --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\alpha \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {A} ,\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06402c0d2f280037bc077adef38e371ef4ade20d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:48.161ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\alpha \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {A} ,\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 48.161ex;height: 14.509ex;vertical-align: -6.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06402c0d2f280037bc077adef38e371ef4ade20d" data-alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}-\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \right)\\&amp;=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\alpha \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {A} ,\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {e}} _{i}=\mathbf {0} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 0 </mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {e}} _{i}=\mathbf {0} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5d5871aade530539c6fde126bd6d2212e356c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.548ex; height:2.676ex;" alt="{\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {e}} _{i}=\mathbf {0} }"> </noscript><span class="lazy-image-placeholder" style="width: 11.548ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5d5871aade530539c6fde126bd6d2212e356c48" data-alt="{\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {e}} _{i}=\mathbf {0} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> e </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> t </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c88af56868802fdc05b30d048d9fda9fb22ec99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.622ex; height:3.176ex;" alt="{\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 11.622ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c88af56868802fdc05b30d048d9fda9fb22ec99" data-alt="{\displaystyle \mathbf {\hat {e}} _{i}\times \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е единечен вектор нормален на рамнината за сите честички <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.292ex; height:2.509ex;" alt="{\displaystyle P_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.292ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" data-alt="{\displaystyle P_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Користете го <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A2%D0%B5%D0%B6%D0%B8%D1%88%D1%82%D0%B5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Тежиште">центарот на маса</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> како референтна точка и дефинирајте го моментот на инерција во однос на центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\mathbf {C} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{\mathbf {C} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.621ex; height:2.509ex;" alt="{\displaystyle I_{\mathbf {C} }}"> </noscript><span class="lazy-image-placeholder" style="width: 2.621ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed60543babbd8e72ba50197ad76e78856500230" data-alt="{\displaystyle I_{\mathbf {C} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, тогаш равенката за добиениот вртежен момент се поедноставува<sup id="cite_ref-Beer_18-9" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Beer-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:<span>1029</span></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\tau }}=I_{\mathbf {C} }\alpha \mathbf {\hat {k}} .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\tau }}=I_{\mathbf {C} }\alpha \mathbf {\hat {k}} .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2050af209e999c252e5be940b7d1eba7ff935acd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.683ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {\tau }}=I_{\mathbf {C} }\alpha \mathbf {\hat {k}} .}"> </noscript><span class="lazy-image-placeholder" style="width: 10.683ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2050af209e999c252e5be940b7d1eba7ff935acd" data-alt="{\displaystyle {\boldsymbol {\tau }}=I_{\mathbf {C} }\alpha \mathbf {\hat {k}} .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Движење_во_просторот_на_цврсто_тело_и_инерцијална_матрица"><span id=".D0.94.D0.B2.D0.B8.D0.B6.D0.B5.D1.9A.D0.B5_.D0.B2.D0.BE_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D0.BE.D1.80.D0.BE.D1.82_.D0.BD.D0.B0_.D1.86.D0.B2.D1.80.D1.81.D1.82.D0.BE_.D1.82.D0.B5.D0.BB.D0.BE_.D0.B8_.D0.B8.D0.BD.D0.B5.D1.80.D1.86.D0.B8.D1.98.D0.B0.D0.BB.D0.BD.D0.B0_.D0.BC.D0.B0.D1.82.D1.80.D0.B8.D1.86.D0.B0"></span>Движење во просторот на цврсто тело и инерцијална матрица</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=15&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Движење во просторот на цврсто тело и инерцијална матрица“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>Скаларните моменти на инерција се појавуваат како елементи во матрица кога системот на честички е составен во цврсто тело кое се движи во тридимензионален простор. Оваа инерцијална матрица се појавува при пресметувањето на аголниот момент, кинетичката енергија и резултирачкиот вртежен момент на крутиот систем на честички.<sup id="cite_ref-Marion_1995_3-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Marion_1995-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Symon_1971_4-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Symon_1971-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Tenenbaum_2004_5-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Tenenbaum_2004-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kane_6-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Kane-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Tsai_25-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Tsai-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup></p> <div class="dablink"> За анализа на вртливо тело, видете <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9F%D1%80%D0%B5%D1%86%D0%B5%D1%81%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_(%D0%8A%D1%83%D1%82%D0%BD%D0%BE%D0%B2%D0%B0)" title="Прецесија">Прецесија#Класична (Њутнова)</a> и <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9E%D1%98%D0%BB%D0%B5%D1%80%D0%BE%D0%B2%D0%B8_%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D0%BA%D0%B8_(%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0_%D0%BD%D0%B0_%D1%86%D0%B2%D1%80%D1%81%D1%82%D0%BE_%D1%82%D0%B5%D0%BB%D0%BE)&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Ојлерови равенки (динамика на цврсто тело) (страницата не постои)">Ојлерови равенки (динамика на цврсто тело)</a>. </div> <p><br> Нека системот на честички <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"> </noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> честички, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i},i=1,...,n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i},i=1,...,n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.954ex; height:2.509ex;" alt="{\displaystyle P_{i},i=1,...,n}"> </noscript><span class="lazy-image-placeholder" style="width: 14.954ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" data-alt="{\displaystyle P_{i},i=1,...,n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се наоѓаат во координатите <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.902ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" data-alt="{\displaystyle \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> со брзина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.211ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" data-alt="{\displaystyle \mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во однос на фиксната референтна рамка. За (по можност движечка) референтна точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, релативните позиции се</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba9b70b1347bdd9d18f140f45ea7e4db3666d38a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.681ex; height:2.509ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 13.681ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba9b70b1347bdd9d18f140f45ea7e4db3666d38a" data-alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>и (апсолутните) брзини се</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40f8e4a3717df9525ccdad8aeac3a14f57f3d37b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.165ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} _{i}={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }}"> </noscript><span class="lazy-image-placeholder" style="width: 20.165ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40f8e4a3717df9525ccdad8aeac3a14f57f3d37b" data-alt="{\displaystyle \mathbf {v} _{i}={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\omega }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.669ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" data-alt="{\displaystyle {\boldsymbol {\omega }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е аголната брзина на системот, а <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V_{R}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {V_{R}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b1f71d137ed03b340503b5e49c353f1f67aff27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.668ex; height:2.509ex;" alt="{\displaystyle \mathbf {V_{R}} }"> </noscript><span class="lazy-image-placeholder" style="width: 3.668ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b1f71d137ed03b340503b5e49c353f1f67aff27" data-alt="{\displaystyle \mathbf {V_{R}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е брзината на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <div class="mw-heading mw-heading3"> <h3 id="Момент_на_импулсот"><span id=".D0.9C.D0.BE.D0.BC.D0.B5.D0.BD.D1.82_.D0.BD.D0.B0_.D0.B8.D0.BC.D0.BF.D1.83.D0.BB.D1.81.D0.BE.D1.82"></span>Момент на импулсот</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=16&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Момент на импулсот“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Забележете дека <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%92%D0%BA%D1%80%D1%81%D1%82%D0%B5%D0%BD_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Вкрстен производ (страницата не постои)">вкрстениот производ може да биде еквивалентно напишан како матрично множење</a> со комбинирање на првиот операнд и операторот во коска-симетрична, матрица, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[\mathbf {b} \right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> b </mi> </mrow> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[\mathbf {b} \right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ce9643510bd433e0ed612edd5d3a9ed7faecfec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.779ex; height:2.843ex;" alt="{\displaystyle \left[\mathbf {b} \right]}"> </noscript><span class="lazy-image-placeholder" style="width: 2.779ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ce9643510bd433e0ed612edd5d3a9ed7faecfec" data-alt="{\displaystyle \left[\mathbf {b} \right]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, конструирана од компонентите на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {b} =(b_{x},b_{y},b_{z})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> b </mi> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {b} =(b_{x},b_{y},b_{z})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5684411608489b3650c74432ef2c035f76bc411c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.677ex; height:3.009ex;" alt="{\displaystyle \mathbf {b} =(b_{x},b_{y},b_{z})}"> </noscript><span class="lazy-image-placeholder" style="width: 14.677ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5684411608489b3650c74432ef2c035f76bc411c" data-alt="{\displaystyle \mathbf {b} =(b_{x},b_{y},b_{z})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {b} \times \mathbf {y} &amp;\equiv \left[\mathbf {b} \right]\mathbf {y} \\\left[\mathbf {b} \right]&amp;\equiv {\begin{bmatrix}0&amp;-b_{z}&amp;b_{y}\\b_{z}&amp;0&amp;-b_{x}\\-b_{y}&amp;b_{x}&amp;0\end{bmatrix}}.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> b </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> y </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> ≡<!-- ≡ --> </mo> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> b </mi> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> y </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> b </mi> </mrow> <mo> ] </mo> </mrow> </mtd> <mtd> <mi></mi> <mo> ≡<!-- ≡ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {b} \times \mathbf {y} &amp;\equiv \left[\mathbf {b} \right]\mathbf {y} \\\left[\mathbf {b} \right]&amp;\equiv {\begin{bmatrix}0&amp;-b_{z}&amp;b_{y}\\b_{z}&amp;0&amp;-b_{x}\\-b_{y}&amp;b_{x}&amp;0\end{bmatrix}}.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4782eb664e98a6d680dd96b77601ff9bc12ab4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:30.371ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}\mathbf {b} \times \mathbf {y} &amp;\equiv \left[\mathbf {b} \right]\mathbf {y} \\\left[\mathbf {b} \right]&amp;\equiv {\begin{bmatrix}0&amp;-b_{z}&amp;b_{y}\\b_{z}&amp;0&amp;-b_{x}\\-b_{y}&amp;b_{x}&amp;0\end{bmatrix}}.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 30.371ex;height: 12.843ex;vertical-align: -5.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4782eb664e98a6d680dd96b77601ff9bc12ab4a" data-alt="{\displaystyle {\begin{aligned}\mathbf {b} \times \mathbf {y} &amp;\equiv \left[\mathbf {b} \right]\mathbf {y} \\\left[\mathbf {b} \right]&amp;\equiv {\begin{bmatrix}0&amp;-b_{z}&amp;b_{y}\\b_{z}&amp;0&amp;-b_{x}\\-b_{y}&amp;b_{x}&amp;0\end{bmatrix}}.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Инертната матрица е конструирана со разгледување на аголниот момент, со референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на телото избрано да биде центар на маса <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }\right)\\&amp;=\left(-\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left(\Delta \mathbf {r} _{i}\times {\boldsymbol {\omega }}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {V} _{\mathbf {R} }\right),\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> L </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }\right)\\&amp;=\left(-\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left(\Delta \mathbf {r} _{i}\times {\boldsymbol {\omega }}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {V} _{\mathbf {R} }\right),\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24a7ac3c1aa4822b810baba705b84177c6994928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:60.009ex; height:21.843ex;" alt="{\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }\right)\\&amp;=\left(-\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left(\Delta \mathbf {r} _{i}\times {\boldsymbol {\omega }}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {V} _{\mathbf {R} }\right),\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 60.009ex;height: 21.843ex;vertical-align: -10.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24a7ac3c1aa4822b810baba705b84177c6994928" data-alt="{\displaystyle {\begin{aligned}\mathbf {L} &amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\\&amp;=\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }\right)\\&amp;=\left(-\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left(\Delta \mathbf {r} _{i}\times {\boldsymbol {\omega }}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {V} _{\mathbf {R} }\right),\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што условите кои содржат <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {V_{R}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {V_{R}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b1f71d137ed03b340503b5e49c353f1f67aff27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.668ex; height:2.509ex;" alt="{\displaystyle \mathbf {V_{R}} }"> </noscript><span class="lazy-image-placeholder" style="width: 3.668ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b1f71d137ed03b340503b5e49c353f1f67aff27" data-alt="{\displaystyle \mathbf {V_{R}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle =\mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d7a4dee205ebb34cdcd994634c778207154cc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.385ex; height:2.176ex;" alt="{\displaystyle =\mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 4.385ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d7a4dee205ebb34cdcd994634c778207154cc0" data-alt="{\displaystyle =\mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>) се изразува на нула со дефиницијата за центар на масата. Потоа, косисиметричната матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\Delta \mathbf {r} _{i}]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [\Delta \mathbf {r} _{i}]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee5960e77611f673ab2f2050f356dbf0e403132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.131ex; height:2.843ex;" alt="{\displaystyle [\Delta \mathbf {r} _{i}]}"> </noscript><span class="lazy-image-placeholder" style="width: 5.131ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee5960e77611f673ab2f2050f356dbf0e403132" data-alt="{\displaystyle [\Delta \mathbf {r} _{i}]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> добиена од векторот на релативната позиција <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690eb2a602890211d9c1cd09e601f81b3f8bc9df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.609ex; height:2.509ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 13.609ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690eb2a602890211d9c1cd09e601f81b3f8bc9df" data-alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, може да се користи за дефинирање,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L} =\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> L </mi> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {L} =\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26ff4f4ab9aa3fff11085b8828fc71a4af7de700" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.433ex; height:7.509ex;" alt="{\displaystyle \mathbf {L} =\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},}"> </noscript><span class="lazy-image-placeholder" style="width: 33.433ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26ff4f4ab9aa3fff11085b8828fc71a4af7de700" data-alt="{\displaystyle \mathbf {L} =\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I_{C}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I_{C}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.612ex; height:2.509ex;" alt="{\displaystyle \mathbf {I_{C}} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.612ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" data-alt="{\displaystyle \mathbf {I_{C}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се дефинира како</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {C} }=-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {C} }=-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6766e8a9ce07ff8f32ec86aaa929f1e5a3ce1a21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.32ex; height:6.843ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {C} }=-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 21.32ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6766e8a9ce07ff8f32ec86aaa929f1e5a3ce1a21" data-alt="{\displaystyle \mathbf {I} _{\mathbf {C} }=-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>е симетрична матрица на инерција на цврстиот систем на честички измерен во однос на центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <div class="mw-heading mw-heading3"> <h3 id="Кинетичка_енергија_2"><span id=".D0.9A.D0.B8.D0.BD.D0.B5.D1.82.D0.B8.D1.87.D0.BA.D0.B0_.D0.B5.D0.BD.D0.B5.D1.80.D0.B3.D0.B8.D1.98.D0.B0_2"></span>Кинетичка енергија</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=17&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Кинетичка енергија“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Кинетичката енергија на крут систем на честички може да се формулира во однос на центарот на масата и матрицата на масовните моменти на инерција на системот. Нека систем на честички <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i},i=1,...,n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i},i=1,...,n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.954ex; height:2.509ex;" alt="{\displaystyle P_{i},i=1,...,n}"> </noscript><span class="lazy-image-placeholder" style="width: 14.954ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" data-alt="{\displaystyle P_{i},i=1,...,n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се наоѓа во координатите <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.902ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" data-alt="{\displaystyle \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> со брзина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.211ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" data-alt="{\displaystyle \mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, тогаш кинетичката енергија е</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{K}}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> E </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> K </mtext> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle E_{\text{K}}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56981fba8d261103bebdb3250107b39273d9b9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:69.787ex; height:6.843ex;" alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right),}"> </noscript><span class="lazy-image-placeholder" style="width: 69.787ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56981fba8d261103bebdb3250107b39273d9b9c" data-alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}={\frac {1}{2}}\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690eb2a602890211d9c1cd09e601f81b3f8bc9df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.609ex; height:2.509ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 13.609ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690eb2a602890211d9c1cd09e601f81b3f8bc9df" data-alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>&nbsp;е положбениот вектор на честичка во однос на центарот на масата. Оваа равенка се проширува за да добие три термини</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\right).}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> E </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> K </mtext> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\right).} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2206bca6f4db61956bc2fcf0b5eafc78afac83a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:95.346ex; height:7.509ex;" alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\right).}"> </noscript><span class="lazy-image-placeholder" style="width: 95.346ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2206bca6f4db61956bc2fcf0b5eafc78afac83a" data-alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\right).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>Вториот израз во оваа равенка е нула, бидејќи <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>е центар на масата. Воведување на коска-симетрична матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\Delta \mathbf {r} _{i}]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [\Delta \mathbf {r} _{i}]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee5960e77611f673ab2f2050f356dbf0e403132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.131ex; height:2.843ex;" alt="{\displaystyle [\Delta \mathbf {r} _{i}]}"> </noscript><span class="lazy-image-placeholder" style="width: 5.131ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee5960e77611f673ab2f2050f356dbf0e403132" data-alt="{\displaystyle [\Delta \mathbf {r} _{i}]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, така што кинетичката енергија станува</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\cdot \left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi> E </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> K </mtext> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\cdot \left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c246c5646e149b67a600084c164f154ec7dda89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.838ex; width:64.755ex; height:22.843ex;" alt="{\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\cdot \left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 64.755ex;height: 22.843ex;vertical-align: -10.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c246c5646e149b67a600084c164f154ec7dda89" data-alt="{\displaystyle {\begin{aligned}E_{\text{K}}&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\cdot \left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]^{\mathsf {T}}\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&amp;={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Така, кинетичката енергија на крутиот систем на честички е дадена со</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\text{K}}={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }}+{\frac {1}{2}}M\mathbf {V} _{\mathbf {C} }^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> E </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> K </mtext> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mi> M </mi> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> V </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle E_{\text{K}}={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }}+{\frac {1}{2}}M\mathbf {V} _{\mathbf {C} }^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d4ef82b66824a7c74937a1db0d8b3923d2fb6bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.497ex; height:5.176ex;" alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }}+{\frac {1}{2}}M\mathbf {V} _{\mathbf {C} }^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 27.497ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d4ef82b66824a7c74937a1db0d8b3923d2fb6bc" data-alt="{\displaystyle E_{\text{K}}={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }}+{\frac {1}{2}}M\mathbf {V} _{\mathbf {C} }^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I_{C}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I_{C}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.612ex; height:2.509ex;" alt="{\displaystyle \mathbf {I_{C}} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.612ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" data-alt="{\displaystyle \mathbf {I_{C}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е инерцијалната матрица во однос на центарот на масата и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е вкупната маса.</p> <div class="mw-heading mw-heading3"> <h3 id="Резултантен_вртежен_момент"><span id=".D0.A0.D0.B5.D0.B7.D1.83.D0.BB.D1.82.D0.B0.D0.BD.D1.82.D0.B5.D0.BD_.D0.B2.D1.80.D1.82.D0.B5.D0.B6.D0.B5.D0.BD_.D0.BC.D0.BE.D0.BC.D0.B5.D0.BD.D1.82"></span>Резултантен вртежен момент</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=18&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Резултантен вртежен момент“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Инертната матрица се појавува при примената на вториот закон на Њутн на круто собрание на честички. Реалниот вртежен момент на овој систем е<sup id="cite_ref-Marion_1995_3-2" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Marion_1995-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kane_6-2" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Kane-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\tau }}=\sum _{i=1}^{n}\left(\mathbf {r_{i}} -\mathbf {R} \right)\times m_{i}\mathbf {a} _{i},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> i </mi> </mrow> </msub> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ×<!-- × --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\tau }}=\sum _{i=1}^{n}\left(\mathbf {r_{i}} -\mathbf {R} \right)\times m_{i}\mathbf {a} _{i},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93ab161ceb777c444827961be31c4ae628dc3c03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.197ex; height:6.843ex;" alt="{\displaystyle {\boldsymbol {\tau }}=\sum _{i=1}^{n}\left(\mathbf {r_{i}} -\mathbf {R} \right)\times m_{i}\mathbf {a} _{i},}"> </noscript><span class="lazy-image-placeholder" style="width: 25.197ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93ab161ceb777c444827961be31c4ae628dc3c03" data-alt="{\displaystyle {\boldsymbol {\tau }}=\sum _{i=1}^{n}\left(\mathbf {r_{i}} -\mathbf {R} \right)\times m_{i}\mathbf {a} _{i},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {a} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a01879ce830ef8790aa7dc9f3665d6727f3af3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.099ex; height:2.009ex;" alt="{\displaystyle \mathbf {a} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.099ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a01879ce830ef8790aa7dc9f3665d6727f3af3a" data-alt="{\displaystyle \mathbf {a} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е забрзување на честичката <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.292ex; height:2.509ex;" alt="{\displaystyle P_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.292ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" data-alt="{\displaystyle P_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9A%D0%B8%D0%BD%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Кинематика">Кинематиката</a> на круто тело ја дава формулата за забрзување на честичката <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.292ex; height:2.509ex;" alt="{\displaystyle P_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.292ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" data-alt="{\displaystyle P_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во однос на положбата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и забрзувањето <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} _{\mathbf {R} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {A} _{\mathbf {R} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c521614a9d5e3931efc3e3787e74e75c6ae88b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.668ex; height:2.509ex;" alt="{\displaystyle \mathbf {A} _{\mathbf {R} }}"> </noscript><span class="lazy-image-placeholder" style="width: 3.668ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c521614a9d5e3931efc3e3787e74e75c6ae88b3" data-alt="{\displaystyle \mathbf {A} _{\mathbf {R} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на референтната точка, како и аголниот вектор на брзина <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\omega }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.669ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.669ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb8af7a2f64af348e559652b6b1f0d2415ba444" data-alt="{\displaystyle {\boldsymbol {\omega }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и векторот на аголно забрзување <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\alpha }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\alpha }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a585d2bb19071162720ea56a7b087dab3ec17156" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.769ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\alpha }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.769ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a585d2bb19071162720ea56a7b087dab3ec17156" data-alt="{\displaystyle {\boldsymbol {\alpha }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>на крутиот систем како,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} _{i}={\boldsymbol {\alpha }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {A} _{\mathbf {R} }.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {a} _{i}={\boldsymbol {\alpha }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {A} _{\mathbf {R} }.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bed2cf766d12e829544f33f557e646924dfaed8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.93ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} _{i}={\boldsymbol {\alpha }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {A} _{\mathbf {R} }.}"> </noscript><span class="lazy-image-placeholder" style="width: 45.93ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bed2cf766d12e829544f33f557e646924dfaed8" data-alt="{\displaystyle \mathbf {a} _{i}={\boldsymbol {\alpha }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}-\mathbf {R} \right)+\mathbf {A} _{\mathbf {R} }.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Користете го центарот на маса <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> како референтна точка и внесете ја коси-симетричната матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[\Delta \mathbf {r} _{i}\right]=\left[\mathbf {r} _{i}-\mathbf {C} \right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mo> = </mo> <mrow> <mo> [ </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[\Delta \mathbf {r} _{i}\right]=\left[\mathbf {r} _{i}-\mathbf {C} \right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b83ab9af0efe0f59204a493b10b5eb453594c19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.197ex; height:2.843ex;" alt="{\displaystyle \left[\Delta \mathbf {r} _{i}\right]=\left[\mathbf {r} _{i}-\mathbf {C} \right]}"> </noscript><span class="lazy-image-placeholder" style="width: 16.197ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b83ab9af0efe0f59204a493b10b5eb453594c19" data-alt="{\displaystyle \left[\Delta \mathbf {r} _{i}\right]=\left[\mathbf {r} _{i}-\mathbf {C} \right]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> за да го претставува крстот производ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {r} _{i}-\mathbf {C} )\times }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (\mathbf {r} _{i}-\mathbf {C} )\times } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51f6499f20fd09caa9defcf2a02e5c0226ceab7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.291ex; height:2.843ex;" alt="{\displaystyle (\mathbf {r} _{i}-\mathbf {C} )\times }"> </noscript><span class="lazy-image-placeholder" style="width: 10.291ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51f6499f20fd09caa9defcf2a02e5c0226ceab7" data-alt="{\displaystyle (\mathbf {r} _{i}-\mathbf {C} )\times }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, за да се добие</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\tau }}=\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\tau }}=\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93d7ec560fb15fbaaba36a2fd0869da807fd92e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:53.366ex; height:7.509ex;" alt="{\displaystyle {\boldsymbol {\tau }}=\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}}"> </noscript><span class="lazy-image-placeholder" style="width: 53.366ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b93d7ec560fb15fbaaba36a2fd0869da807fd92e" data-alt="{\displaystyle {\boldsymbol {\tau }}=\left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Пресметката го користи идентитетот</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\boldsymbol {\omega }}\times \left(\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\times \Delta \mathbf {r} _{i}\right)=0,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mn> 0 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\boldsymbol {\omega }}\times \left(\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\times \Delta \mathbf {r} _{i}\right)=0,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ff50ef07ccacc8425a7948fc373deac860775a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:54.053ex; height:2.843ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\boldsymbol {\omega }}\times \left(\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\times \Delta \mathbf {r} _{i}\right)=0,}"> </noscript><span class="lazy-image-placeholder" style="width: 54.053ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ff50ef07ccacc8425a7948fc373deac860775a9" data-alt="{\displaystyle \Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\boldsymbol {\omega }}\times \left(\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\times \Delta \mathbf {r} _{i}\right)=0,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>добиени од идентитетот на <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%88%D0%B0%D0%BA%D0%BE%D0%B1%D0%B8%D0%B5%D0%B2_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%82%D0%B5%D1%82&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Јакобиев идентитет (страницата не постои)">Јакоби</a> за троен <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%92%D0%BA%D1%80%D1%81%D1%82%D0%B5%D0%BD_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Вкрстен производ (страницата не постои)">вкрстен производ</a> како што е прикажано во доказ подолу:</p> <table class="toccolours collapsible collapsed" style="text-align:left" width="100%"> <tbody> <tr> <th>Доказ</th> </tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}(\mathbf {r_{i}} -\mathbf {R} )\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{i}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+\mathbf {A} _{\mathbf {R} })]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+0)]\\&amp;\;\;\;\;\;\ldots \;\mathbf {R} {\text{ или е во мирување или се движи со постојана брзина не е забрзано, или }}\\&amp;\;\;\;\;\;\;\;\;\;\;\;{\text{ почетокот на неподвижниот координатен систем е сместен во центарот на масата }}\mathbf {C} \\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{тангенцијално}},i}+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{центрипетално}},i}]\;\ldots {\text{распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times \mathbf {v} _{{\text{тангенцијално}},i})]\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> i </mi> </mrow> </msub> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторско скаларно множење&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> тангенцијално </mtext> </mrow> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> центрипетално </mtext> </mrow> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> тангенцијално </mtext> </mrow> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> центрипетално </mtext> </mrow> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mn> 0 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;или е во мирување или се движи со постојана брзина не е забрзано, или&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;почетокот на неподвижниот координатен систем е сместен во центарот на масата&nbsp; </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> тангенцијално </mtext> </mrow> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> центрипетално </mtext> </mrow> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> распределба на векторски производ наспроти собирање </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext> тангенцијално </mtext> </mrow> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}(\mathbf {r_{i}} -\mathbf {R} )\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{i}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+\mathbf {A} _{\mathbf {R} })]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+0)]\\&amp;\;\;\;\;\;\ldots \;\mathbf {R} {\text{ или е во мирување или се движи со постојана брзина не е забрзано, или }}\\&amp;\;\;\;\;\;\;\;\;\;\;\;{\text{ почетокот на неподвижниот координатен систем е сместен во центарот на масата }}\mathbf {C} \\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{тангенцијално}},i}+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{центрипетално}},i}]\;\ldots {\text{распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times \mathbf {v} _{{\text{тангенцијално}},i})]\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/936cafe320db33d8134cc71733f9945d31bc7e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -31.222ex; margin-bottom: -0.283ex; width:133.292ex; height:64.176ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}(\mathbf {r_{i}} -\mathbf {R} )\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{i}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+\mathbf {A} _{\mathbf {R} })]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+0)]\\&amp;\;\;\;\;\;\ldots \;\mathbf {R} {\text{ или е во мирување или се движи со постојана брзина не е забрзано, или }}\\&amp;\;\;\;\;\;\;\;\;\;\;\;{\text{ почетокот на неподвижниот координатен систем е сместен во центарот на масата }}\mathbf {C} \\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{тангенцијално}},i}+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{центрипетално}},i}]\;\ldots {\text{распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times \mathbf {v} _{{\text{тангенцијално}},i})]\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 133.292ex;height: 64.176ex;vertical-align: -31.222ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/936cafe320db33d8134cc71733f9945d31bc7e81" data-alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}(\mathbf {r_{i}} -\mathbf {R} )\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (m_{i}\mathbf {a} _{i})\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{i}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+\mathbf {A} _{\mathbf {R} })]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{тангенцијално}},i}+\mathbf {a} _{{\text{центрипетално}},i}+0)]\\&amp;\;\;\;\;\;\ldots \;\mathbf {R} {\text{ или е во мирување или се движи со постојана брзина не е забрзано, или }}\\&amp;\;\;\;\;\;\;\;\;\;\;\;{\text{ почетокот на неподвижниот координатен систем е сместен во центарот на масата }}\mathbf {C} \\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{тангенцијално}},i}+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{центрипетално}},i}]\;\ldots {\text{распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times \mathbf {v} _{{\text{тангенцијално}},i})]\\{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> <p>Тогаш,нсе користи во последниот израз следниов <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%88%D0%B0%D0%BA%D0%BE%D0%B1%D0%B8%D0%B5%D0%B2_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%82%D0%B5%D1%82&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Јакобиев идентитет (страницата не постои)">Јакобиев идентитет</a>:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times -({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\;\ldots {\text{ векторска антикомутативност }}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ скаларано множњење на векторски производ}}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[0]\;\ldots {\text{ векторски производ }}\\0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторска антикомутативност&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;скаларано множњење на векторски производ </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mn> 0 </mn> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторски производ&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times -({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\;\ldots {\text{ векторска антикомутативност }}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ скаларано множњење на векторски производ}}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[0]\;\ldots {\text{ векторски производ }}\\0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d4b9199f8e544fd69b4dd0db6d732bd5b43eecd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:143.041ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times -({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\;\ldots {\text{ векторска антикомутативност }}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ скаларано множњење на векторски производ}}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[0]\;\ldots {\text{ векторски производ }}\\0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 143.041ex;height: 17.176ex;vertical-align: -8.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d4b9199f8e544fd69b4dd0db6d732bd5b43eecd" data-alt="{\displaystyle {\begin{aligned}0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times -({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\;\ldots {\text{ векторска антикомутативност }}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ скаларано множњење на векторски производ}}\\&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+-[0]\;\ldots {\text{ векторски производ }}\\0&amp;={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl><p>Резултатот на применетиот <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%88%D0%B0%D0%BA%D0%BE%D0%B1%D0%B8%D0%B5%D0%B2_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%82%D0%B5%D1%82&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Јакобиев идентитет (страницата не постои)">Јакобиев идентитет</a> може да се запише:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;=-[{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ троен векторски производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\omega }}))]\;\ldots {\text{ троен скаларен производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot (0))]\;\ldots {\text{ векторски производ}}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[{\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ векторско скаларно множење }}\\&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))\;\ldots {\text{ векторско скаларно множење }}\\{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))\;\ldots {\text{ комутативен скаларен производ }}\\\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;троен векторски производ&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;троен скаларен производ&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mn> 0 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторски производ </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторско скаларно множење&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторско скаларно множење&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;комутативен скаларен производ&nbsp; </mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;=-[{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ троен векторски производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\omega }}))]\;\ldots {\text{ троен скаларен производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot (0))]\;\ldots {\text{ векторски производ}}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[{\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ векторско скаларно множење }}\\&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))\;\ldots {\text{ векторско скаларно множење }}\\{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))\;\ldots {\text{ комутативен скаларен производ }}\\\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f28c150fd105a814fcbe762eb77ba8a317196ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.505ex; width:110.62ex; height:28.176ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;=-[{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ троен векторски производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\omega }}))]\;\ldots {\text{ троен скаларен производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot (0))]\;\ldots {\text{ векторски производ}}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[{\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ векторско скаларно множење }}\\&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))\;\ldots {\text{ векторско скаларно множење }}\\{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))\;\ldots {\text{ комутативен скаларен производ }}\\\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 110.62ex;height: 28.176ex;vertical-align: -13.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f28c150fd105a814fcbe762eb77ba8a317196ab" data-alt="{\displaystyle {\begin{aligned}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;=-[{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ троен векторски производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\omega }}))]\;\ldots {\text{ троен скаларен производ }}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot (0))]\;\ldots {\text{ векторски производ}}\\&amp;=-[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&amp;=-[{\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ векторско скаларно множење }}\\&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))\;\ldots {\text{ векторско скаларно множење }}\\{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&amp;={\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))\;\ldots {\text{ комутативен скаларен производ }}\\\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl><p>Конечниот резултат може да се замени во главниот доказ како што следи:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{0-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\;\ldots \;{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})=0\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})]-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ асоцијативност на собирање }}\\\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mn> 0 </mn> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;асоцијативност на собирање&nbsp; </mtext> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{0-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\;\ldots \;{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})=0\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})]-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ асоцијативност на собирање }}\\\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cf27c0c711c2504c66a4926d801081ac67d2518" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -17.171ex; width:128.012ex; height:35.509ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{0-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\;\ldots \;{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})=0\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})]-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ асоцијативност на собирање }}\\\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 128.012ex;height: 35.509ex;vertical-align: -17.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cf27c0c711c2504c66a4926d801081ac67d2518" data-alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{0-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\;\ldots \;{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})=0\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})]-{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ асоцијативност на собирање }}\\\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\quad \quad &amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\times {\boldsymbol {\omega }})]\;\ldots {\text{ векторско скаларно множење}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})(0)]\;\ldots {\text{ векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ троен векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторска антикомутитативност }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ збирна распределба}}\\{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\;\ldots \;{\boldsymbol {\omega }}{\text{ не е карактеристичен за }}P_{i}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mspace width="1em"></mspace> <mspace width="1em"></mspace> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;распределба на векторски производ наспроти собирање </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторско скаларно множење </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mn> 0 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторски производ </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;троен векторски производ </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторска антикомутитативност&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторско скаларно множење&nbsp; </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo> + </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo fence="false" stretchy="false"> } </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;збирна распределба </mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;не е карактеристичен за&nbsp; </mtext> </mrow> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\quad \quad &amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\times {\boldsymbol {\omega }})]\;\ldots {\text{ векторско скаларно множење}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})(0)]\;\ldots {\text{ векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ троен векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторска антикомутитативност }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ збирна распределба}}\\{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\;\ldots \;{\boldsymbol {\omega }}{\text{ не е карактеристичен за }}P_{i}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25103b5d65469de74a3ddff685aaff5639f94e44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -31.082ex; margin-bottom: -0.256ex; width:166.782ex; height:63.843ex;" alt="{\displaystyle {\begin{aligned}\quad \quad &amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\times {\boldsymbol {\omega }})]\;\ldots {\text{ векторско скаларно множење}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})(0)]\;\ldots {\text{ векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ троен векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторска антикомутитативност }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ збирна распределба}}\\{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\;\ldots \;{\boldsymbol {\omega }}{\text{ не е карактеристичен за }}P_{i}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 166.782ex;height: 63.843ex;vertical-align: -31.082ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25103b5d65469de74a3ddff685aaff5639f94e44" data-alt="{\displaystyle {\begin{aligned}\quad \quad &amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ распределба на векторски производ наспроти собирање}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\times {\boldsymbol {\omega }})]\;\ldots {\text{ векторско скаларно множење}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}-({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})(0)]\;\ldots {\text{ векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})-{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ троен векторски производ}}\\&amp;=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times -({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторска антикомутитативност }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ векторско скаларно множење }}\\&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ збирна распределба}}\\{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\;\ldots \;{\boldsymbol {\omega }}{\text{ не е карактеристичен за }}P_{i}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p><p>Забележете дека за секој вектор <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} \,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {u} \,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c284d16dab51c280ba2288270cbcb7701cd8da4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.872ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} \,}"> </noscript><span class="lazy-image-placeholder" style="width: 1.872ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c284d16dab51c280ba2288270cbcb7701cd8da4" data-alt="{\displaystyle \mathbf {u} \,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, ќе важи следново:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\right)\right)\;\ldots {\text{ векторски производ од множење на матрици}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3}\\+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3}\\-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2}\end{bmatrix}}\right)\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})+\Delta r_{2,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\+\Delta r_{3,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})-\Delta r_{1,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\-\Delta r_{2,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})+\Delta r_{1,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}-\Delta r_{2,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}\\-\Delta r_{3,i}^{2}\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{2}\\+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-\Delta r_{2,i}^{2}\,u_{3}+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{1,i}\Delta r_{2,i}&amp;\Delta r_{1,i}\Delta r_{3,i}\\\Delta r_{2,i}\Delta r_{1,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{2,i}\Delta r_{3,i}\\\Delta r_{3,i}\Delta r_{1,i}&amp;\Delta r_{3,i}\Delta r_{2,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\\&amp;=-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\mathbf {u} \\[6pt]-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right)\mathbf {u} \;\ldots \;\mathbf {u} {\text{ не е карактеристичен за }}P_{i}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.9em 0.3em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;векторски производ од множење на матрици </mtext> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> </msub> </mtd> <mtd> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mo> , </mo> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> u </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mspace width="thickmathspace"></mspace> <mo> …<!-- … --> </mo> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> u </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> &nbsp;не е карактеристичен за&nbsp; </mtext> </mrow> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\right)\right)\;\ldots {\text{ векторски производ од множење на матрици}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3}\\+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3}\\-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2}\end{bmatrix}}\right)\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})+\Delta r_{2,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\+\Delta r_{3,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})-\Delta r_{1,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\-\Delta r_{2,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})+\Delta r_{1,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}-\Delta r_{2,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}\\-\Delta r_{3,i}^{2}\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{2}\\+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-\Delta r_{2,i}^{2}\,u_{3}+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{1,i}\Delta r_{2,i}&amp;\Delta r_{1,i}\Delta r_{3,i}\\\Delta r_{2,i}\Delta r_{1,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{2,i}\Delta r_{3,i}\\\Delta r_{3,i}\Delta r_{1,i}&amp;\Delta r_{3,i}\Delta r_{2,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\\&amp;=-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\mathbf {u} \\[6pt]-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right)\mathbf {u} \;\ldots \;\mathbf {u} {\text{ не е карактеристичен за }}P_{i}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baf7e9903525ebf48b6977b5b81bfe683e1c73d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -43.171ex; width:170.508ex; height:87.509ex;" alt="{\displaystyle {\begin{aligned}-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\right)\right)\;\ldots {\text{ векторски производ од множење на матрици}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3}\\+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3}\\-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2}\end{bmatrix}}\right)\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})+\Delta r_{2,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\+\Delta r_{3,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})-\Delta r_{1,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\-\Delta r_{2,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})+\Delta r_{1,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}-\Delta r_{2,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}\\-\Delta r_{3,i}^{2}\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{2}\\+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-\Delta r_{2,i}^{2}\,u_{3}+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{1,i}\Delta r_{2,i}&amp;\Delta r_{1,i}\Delta r_{3,i}\\\Delta r_{2,i}\Delta r_{1,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{2,i}\Delta r_{3,i}\\\Delta r_{3,i}\Delta r_{1,i}&amp;\Delta r_{3,i}\Delta r_{2,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\\&amp;=-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\mathbf {u} \\[6pt]-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right)\mathbf {u} \;\ldots \;\mathbf {u} {\text{ не е карактеристичен за }}P_{i}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 170.508ex;height: 87.509ex;vertical-align: -43.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baf7e9903525ebf48b6977b5b81bfe683e1c73d1" data-alt="{\displaystyle {\begin{aligned}-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\right)\right)\;\ldots {\text{ векторски производ од множење на матрици}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&amp;-\Delta r_{3,i}&amp;\Delta r_{2,i}\\\Delta r_{3,i}&amp;0&amp;-\Delta r_{1,i}\\-\Delta r_{2,i}&amp;\Delta r_{1,i}&amp;0\end{bmatrix}}{\begin{bmatrix}-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3}\\+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3}\\-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2}\end{bmatrix}}\right)\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})+\Delta r_{2,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\+\Delta r_{3,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})-\Delta r_{1,i}(-\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\-\Delta r_{2,i}(-\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})+\Delta r_{1,i}(+\Delta r_{3,i}\,u_{1}-\Delta r_{1,i}\,u_{3})\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-\Delta r_{3,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}-\Delta r_{2,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}\\-\Delta r_{3,i}^{2}\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{2}\\+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-\Delta r_{2,i}^{2}\,u_{3}+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}-\Delta r_{1,i}^{2}\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\,u_{3}\end{bmatrix}}\\[6pt]&amp;=-\sum _{i=1}^{n}m_{i}{\begin{bmatrix}-(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{1,i}\Delta r_{2,i}&amp;\Delta r_{1,i}\Delta r_{3,i}\\\Delta r_{2,i}\Delta r_{1,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})&amp;\Delta r_{2,i}\Delta r_{3,i}\\\Delta r_{3,i}\Delta r_{1,i}&amp;\Delta r_{3,i}\Delta r_{2,i}&amp;-(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\\&amp;=-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\mathbf {u} \\[6pt]-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right)\mathbf {u} \;\ldots \;\mathbf {u} {\text{ не е карактеристичен за }}P_{i}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl><p>Конечно, резултатот се користи за комплетирање на главниот доказ во продолжение:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\\&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\omega }}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> </mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Δ<!-- Δ --> </mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\\&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\omega }}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0971bbc71e7ceb3c810afa1043b08aca54608486" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:67.042ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\\&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\omega }}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 67.042ex;height: 14.509ex;vertical-align: -6.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0971bbc71e7ceb3c810afa1043b08aca54608486" data-alt="{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&amp;=-\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times -\sum _{i=1}^{n}m_{i}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\\&amp;=\left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(-\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\omega }}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl></td> </tr> </tbody> </table> <p>Така, резултирачкиот вртежен момент на цврстиот систем на честички е даден од</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\tau }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> τ<!-- τ --> </mi> </mrow> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> α<!-- α --> </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ω<!-- ω --> </mi> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\tau }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6817a680bf02967f5ab5788badea07e5b205cb42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.174ex; height:2.509ex;" alt="{\displaystyle {\boldsymbol {\tau }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},}"> </noscript><span class="lazy-image-placeholder" style="width: 21.174ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6817a680bf02967f5ab5788badea07e5b205cb42" data-alt="{\displaystyle {\boldsymbol {\tau }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I_{C}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I_{C}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.612ex; height:2.509ex;" alt="{\displaystyle \mathbf {I_{C}} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.612ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" data-alt="{\displaystyle \mathbf {I_{C}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е инерцијалната матрица во однос на центарот на масата.</p> <div class="mw-heading mw-heading3"> <h3 id="Теорема_на_паралелна_оска"><span id=".D0.A2.D0.B5.D0.BE.D1.80.D0.B5.D0.BC.D0.B0_.D0.BD.D0.B0_.D0.BF.D0.B0.D1.80.D0.B0.D0.BB.D0.B5.D0.BB.D0.BD.D0.B0_.D0.BE.D1.81.D0.BA.D0.B0"></span>Теорема на паралелна оска</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=19&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Теорема на паралелна оска“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r4650192"> <div role="note" class="hatnote navigation-not-searchable"> Главна статија: <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BD%D0%B0_%D0%BF%D0%B0%D1%80%D0%B0%D0%BB%D0%B5%D0%BB%D0%BD%D0%B0_%D0%BE%D1%81%D0%BA%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Теорема на паралелна оска (страницата не постои)">Теорема на паралелна оска</a> </div> <p>Инертната матрица на телото зависи од изборот на референтната точка. Постои корисна врска помеѓу матрицата на инерција во однос на центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и матрицата на инерција во однос на друга точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Оваа врска се нарекува теорема за паралелна оска.<sup id="cite_ref-Marion_1995_3-3" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Marion_1995-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kane_6-3" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Kane-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Размислете за инерцијалната матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I_{R}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I_{R}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6d262f5376a22cca507b03419910ddd33a5fc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.663ex; height:2.509ex;" alt="{\displaystyle \mathbf {I_{R}} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.663ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6d262f5376a22cca507b03419910ddd33a5fc7" data-alt="{\displaystyle \mathbf {I_{R}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> добиена за крут систем на честички измерен во однос на референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, дадена од</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}\left[\mathbf {r} _{i}-\mathbf {R} \right]^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}\left[\mathbf {r} _{i}-\mathbf {R} \right]^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93e62233b3acff4fc919fc24e8d6241551543087" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.279ex; height:6.843ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}\left[\mathbf {r} _{i}-\mathbf {R} \right]^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 24.279ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93e62233b3acff4fc919fc24e8d6241551543087" data-alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}\left[\mathbf {r} _{i}-\mathbf {R} \right]^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Потоа,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> нека биде центар на масата на крутиот систем</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} =(\mathbf {R} -\mathbf {C} )+\mathbf {C} =\mathbf {d} +\mathbf {C} ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} =(\mathbf {R} -\mathbf {C} )+\mathbf {C} =\mathbf {d} +\mathbf {C} ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3acacbb57b62840187254b0c59ca86dd7baa40fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.46ex; height:2.843ex;" alt="{\displaystyle \mathbf {R} =(\mathbf {R} -\mathbf {C} )+\mathbf {C} =\mathbf {d} +\mathbf {C} ,}"> </noscript><span class="lazy-image-placeholder" style="width: 28.46ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3acacbb57b62840187254b0c59ca86dd7baa40fe" data-alt="{\displaystyle \mathbf {R} =(\mathbf {R} -\mathbf {C} )+\mathbf {C} =\mathbf {d} +\mathbf {C} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {d} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {d} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec3b626fc045b6ff579316e29978fccfed884c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {d} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec3b626fc045b6ff579316e29978fccfed884c2" data-alt="{\displaystyle \mathbf {d} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е векторот од центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> до референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Користете ја оваа равенка за да ја пресметате матрицата на инерција,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\left(\mathbf {C} +\mathbf {d} \right)]^{2}=-\sum _{i=1}^{n}m_{i}[\left(\mathbf {r} _{i}-\mathbf {C} \right)-\mathbf {d} ]^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\left(\mathbf {C} +\mathbf {d} \right)]^{2}=-\sum _{i=1}^{n}m_{i}[\left(\mathbf {r} _{i}-\mathbf {C} \right)-\mathbf {d} ]^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0063409d605348215928372e62f294287f06fb98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:57.374ex; height:6.843ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\left(\mathbf {C} +\mathbf {d} \right)]^{2}=-\sum _{i=1}^{n}m_{i}[\left(\mathbf {r} _{i}-\mathbf {C} \right)-\mathbf {d} ]^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 57.374ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0063409d605348215928372e62f294287f06fb98" data-alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\left(\mathbf {C} +\mathbf {d} \right)]^{2}=-\sum _{i=1}^{n}m_{i}[\left(\mathbf {r} _{i}-\mathbf {C} \right)-\mathbf {d} ]^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Дистрибуирајте преку вкрстениот производ за да се добие</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]^{2}\right)+\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)[\mathbf {d} ]+[\mathbf {d} ]\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)-\left(\sum _{i=1}^{n}m_{i}\right)[\mathbf {d} ]^{2}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mo> = </mo> <mo> −<!-- − --> </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo stretchy="false"> ] </mo> </mrow> <mo> ) </mo> </mrow> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <mo stretchy="false"> ] </mo> <mo> + </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <mo stretchy="false"> ] </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mo stretchy="false"> ] </mo> </mrow> <mo> ) </mo> </mrow> <mo> −<!-- − --> </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {R} }=-\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]^{2}\right)+\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)[\mathbf {d} ]+[\mathbf {d} ]\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)-\left(\sum _{i=1}^{n}m_{i}\right)[\mathbf {d} ]^{2}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68eee7fefe0e716823fd5d80384303b8aef58b99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:93.686ex; height:7.509ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]^{2}\right)+\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)[\mathbf {d} ]+[\mathbf {d} ]\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)-\left(\sum _{i=1}^{n}m_{i}\right)[\mathbf {d} ]^{2}.}"> </noscript><span class="lazy-image-placeholder" style="width: 93.686ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68eee7fefe0e716823fd5d80384303b8aef58b99" data-alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=-\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]^{2}\right)+\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)[\mathbf {d} ]+[\mathbf {d} ]\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}-\mathbf {C} ]\right)-\left(\sum _{i=1}^{n}m_{i}\right)[\mathbf {d} ]^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Првиот термин е инертната матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I_{C}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I_{C}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.612ex; height:2.509ex;" alt="{\displaystyle \mathbf {I_{C}} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.612ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d3bdba483ab8231b911ab724380a9ff07d66e2" data-alt="{\displaystyle \mathbf {I_{C}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во однос на центарот на масата. Вториот и третиот термин се нула по дефиниција на центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. И последниот термин е вкупната маса на системот помножена со квадратот на кососиметричната матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {d} ]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [\mathbf {d} ]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5785dcf9605fb6ace7c1a8c8b4d6b365af48366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.779ex; height:2.843ex;" alt="{\displaystyle [\mathbf {d} ]}"> </noscript><span class="lazy-image-placeholder" style="width: 2.779ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5785dcf9605fb6ace7c1a8c8b4d6b365af48366" data-alt="{\displaystyle [\mathbf {d} ]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> конструирана од <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {d} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {d} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec3b626fc045b6ff579316e29978fccfed884c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {d} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec3b626fc045b6ff579316e29978fccfed884c2" data-alt="{\displaystyle \mathbf {d} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Резултатот е теоремата за паралелна оска,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {R} }=\mathbf {I} _{\mathbf {C} }-M[\mathbf {d} ]^{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> −<!-- − --> </mo> <mi> M </mi> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {R} }=\mathbf {I} _{\mathbf {C} }-M[\mathbf {d} ]^{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c59b0848c4b1d69fff75c4257005225cd42c74d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.135ex; height:3.176ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=\mathbf {I} _{\mathbf {C} }-M[\mathbf {d} ]^{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 18.135ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c59b0848c4b1d69fff75c4257005225cd42c74d" data-alt="{\displaystyle \mathbf {I} _{\mathbf {R} }=\mathbf {I} _{\mathbf {C} }-M[\mathbf {d} ]^{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {d} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {d} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec3b626fc045b6ff579316e29978fccfed884c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:2.176ex;" alt="{\displaystyle \mathbf {d} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec3b626fc045b6ff579316e29978fccfed884c2" data-alt="{\displaystyle \mathbf {d} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е векторот од центарот на масата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.931ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" data-alt="{\displaystyle \mathbf {C} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> до референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p><b>Забелешка за знакот минус:</b> Со користење на симетричната матрица на пресек на положбени места во однос на референтната точка, матрицата на инерција на секоја честичка има облик <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -m\left[\mathbf {r} \right]^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mi> m </mi> <msup> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -m\left[\mathbf {r} \right]^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b3ed54432828b43d6ae23e9a2e9c009c7336024" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.299ex; height:3.343ex;" alt="{\displaystyle -m\left[\mathbf {r} \right]^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.299ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b3ed54432828b43d6ae23e9a2e9c009c7336024" data-alt="{\displaystyle -m\left[\mathbf {r} \right]^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, кој е сличен на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mr^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <msup> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle mr^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.143ex; height:2.676ex;" alt="{\displaystyle mr^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.143ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd9d0ea2911509b014b72a7b536acb7376cb455" data-alt="{\displaystyle mr^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> кој се појавува при рамно движење. Сепак, за да се направи ова правилно, потребно е знак минус. Овој знак за минус може да се апсорбира во терминот <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\left[\mathbf {r} \right]^{\mathsf {T}}\left[\mathbf {r} \right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <msup> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m\left[\mathbf {r} \right]^{\mathsf {T}}\left[\mathbf {r} \right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27fed5e06e85cd3d74847c333b7a32cbd6a31fe7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.57ex; height:3.343ex;" alt="{\displaystyle m\left[\mathbf {r} \right]^{\mathsf {T}}\left[\mathbf {r} \right]}"> </noscript><span class="lazy-image-placeholder" style="width: 8.57ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27fed5e06e85cd3d74847c333b7a32cbd6a31fe7" data-alt="{\displaystyle m\left[\mathbf {r} \right]^{\mathsf {T}}\left[\mathbf {r} \right]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, по желба, со користење на својството на skew-symmetry на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {r} ]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [\mathbf {r} ]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba4c4e0b7a62e35392117d1331b60c9e3276b5c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.396ex; height:2.843ex;" alt="{\displaystyle [\mathbf {r} ]}"> </noscript><span class="lazy-image-placeholder" style="width: 2.396ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba4c4e0b7a62e35392117d1331b60c9e3276b5c9" data-alt="{\displaystyle [\mathbf {r} ]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <div class="mw-heading mw-heading3"> <h3 id="Скаларен_момент_на_инерција_во_рамнина"><span id=".D0.A1.D0.BA.D0.B0.D0.BB.D0.B0.D1.80.D0.B5.D0.BD_.D0.BC.D0.BE.D0.BC.D0.B5.D0.BD.D1.82_.D0.BD.D0.B0_.D0.B8.D0.BD.D0.B5.D1.80.D1.86.D0.B8.D1.98.D0.B0_.D0.B2.D0.BE_.D1.80.D0.B0.D0.BC.D0.BD.D0.B8.D0.BD.D0.B0"></span>Скаларен момент на инерција во рамнина</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=20&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Скаларен момент на инерција во рамнина“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Скаларен момент на инерција, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{L}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> L </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{L}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f1b57d141754c4d3852d6d0bd08d2e16166630c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.375ex; height:2.509ex;" alt="{\displaystyle I_{L}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.375ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f1b57d141754c4d3852d6d0bd08d2e16166630c" data-alt="{\displaystyle I_{L}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, на тело околу одредена оска чија насока е одредена од единечниот вектор <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и поминува низ телото во точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е како што следува:<sup id="cite_ref-Kane_6-4" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Kane-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{L}=\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> L </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{L}=\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78bb7c062959fd615347939341b32bf66de221c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:49.849ex; height:7.509ex;" alt="{\displaystyle I_{L}=\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,}"> </noscript><span class="lazy-image-placeholder" style="width: 49.849ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78bb7c062959fd615347939341b32bf66de221c6" data-alt="{\displaystyle I_{L}=\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I_{R}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I_{R}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6d262f5376a22cca507b03419910ddd33a5fc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.663ex; height:2.509ex;" alt="{\displaystyle \mathbf {I_{R}} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.663ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6d262f5376a22cca507b03419910ddd33a5fc7" data-alt="{\displaystyle \mathbf {I_{R}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е момент на инерција матрица на системот во однос на референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\Delta \mathbf {r} _{i}]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [\Delta \mathbf {r} _{i}]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee5960e77611f673ab2f2050f356dbf0e403132" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.131ex; height:2.843ex;" alt="{\displaystyle [\Delta \mathbf {r} _{i}]}"> </noscript><span class="lazy-image-placeholder" style="width: 5.131ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ee5960e77611f673ab2f2050f356dbf0e403132" data-alt="{\displaystyle [\Delta \mathbf {r} _{i}]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е косо симетрична матрица добиена од векторот <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba9b70b1347bdd9d18f140f45ea7e4db3666d38a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.681ex; height:2.509ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 13.681ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba9b70b1347bdd9d18f140f45ea7e4db3666d38a" data-alt="{\displaystyle \Delta \mathbf {r} _{i}=\mathbf {r} _{i}-\mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Ова е изведено на следниов начин. Нека круто собрание на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"> </noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> честички, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i},i=1,...,n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i},i=1,...,n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.954ex; height:2.509ex;" alt="{\displaystyle P_{i},i=1,...,n}"> </noscript><span class="lazy-image-placeholder" style="width: 14.954ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fda9b5e40922a7dc3ee07ea0859c6391fcdbd4ee" data-alt="{\displaystyle P_{i},i=1,...,n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> , имаат координати<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.902ex; height:2.009ex;" alt="{\displaystyle \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.902ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed603561819ebd007acd75a0931d3ba401ad677a" data-alt="{\displaystyle \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Изберете <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> како референтна точка и пресметајте го моментот на инерција околу линијата L дефинирана од единечниот вектор k преку референтната точка R, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {L} (t)=\mathbf {R} +t\mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> L </mi> </mrow> <mo stretchy="false"> ( </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> <mo> + </mo> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {L} (t)=\mathbf {R} +t\mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee7d7d2c2d4f498f8ec004f0a3efa2f82f833893" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.45ex; height:3.343ex;" alt="{\displaystyle \mathbf {L} (t)=\mathbf {R} +t\mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 14.45ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee7d7d2c2d4f498f8ec004f0a3efa2f82f833893" data-alt="{\displaystyle \mathbf {L} (t)=\mathbf {R} +t\mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Вертикалниот вектор од оваа линија до честичката <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.292ex; height:2.509ex;" alt="{\displaystyle P_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.292ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba1396129f7be3c7f828a571b6649e6807d10d3" data-alt="{\displaystyle P_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е добиен од <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ab5ca8f4f58653e5a4ec0e9571b9c5e1d76b74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.838ex; height:2.509ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.838ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ab5ca8f4f58653e5a4ec0e9571b9c5e1d76b74" data-alt="{\displaystyle \Delta \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> со отстранување на компонентата која проектира врз <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}^{\perp }=\Delta \mathbf {r} _{i}-\left(\mathbf {\hat {k}} \cdot \Delta \mathbf {r} _{i}\right)\mathbf {\hat {k}} =\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)\Delta \mathbf {r} _{i},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ⊥<!-- ⊥ --> </mo> </mrow> </msubsup> <mo> = </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}^{\perp }=\Delta \mathbf {r} _{i}-\left(\mathbf {\hat {k}} \cdot \Delta \mathbf {r} _{i}\right)\mathbf {\hat {k}} =\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)\Delta \mathbf {r} _{i},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a67ee90abc7d893471fed7c8d37bdb9b73c8a967" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:45.343ex; height:4.843ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}^{\perp }=\Delta \mathbf {r} _{i}-\left(\mathbf {\hat {k}} \cdot \Delta \mathbf {r} _{i}\right)\mathbf {\hat {k}} =\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)\Delta \mathbf {r} _{i},}"> </noscript><span class="lazy-image-placeholder" style="width: 45.343ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a67ee90abc7d893471fed7c8d37bdb9b73c8a967" data-alt="{\displaystyle \Delta \mathbf {r} _{i}^{\perp }=\Delta \mathbf {r} _{i}-\left(\mathbf {\hat {k}} \cdot \Delta \mathbf {r} _{i}\right)\mathbf {\hat {k}} =\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)\Delta \mathbf {r} _{i},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {E} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.757ex; height:2.176ex;" alt="{\displaystyle \mathbf {E} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.757ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" data-alt="{\displaystyle \mathbf {E} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>е идентитет матрица, со цел да се избегне забуна со инерција матрица, и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96d0817ff96d9ee9243ddc37f688e5385c0b406e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.173ex; height:3.343ex;" alt="{\displaystyle \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.173ex;height: 3.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96d0817ff96d9ee9243ddc37f688e5385c0b406e" data-alt="{\displaystyle \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>е матрица на надворешен производ формирана од единечниот вектор <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> по должината на линијата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. За да го поврзе овој скаларен момент на инерција со инерцијалната матрица на телото, воведејте ја коси-симетричната матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[\mathbf {\hat {k}} \right]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ] </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[\mathbf {\hat {k}} \right]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a515c7495954477be07dee4f29d4c4c4ec50cf98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:3.606ex; height:4.843ex;" alt="{\displaystyle \left[\mathbf {\hat {k}} \right]}"> </noscript><span class="lazy-image-placeholder" style="width: 3.606ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a515c7495954477be07dee4f29d4c4c4ec50cf98" data-alt="{\displaystyle \left[\mathbf {\hat {k}} \right]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> така што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[\mathbf {\hat {k}} \right]\mathbf {y} =\mathbf {\hat {k}} \times \mathbf {y} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> y </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> y </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[\mathbf {\hat {k}} \right]\mathbf {y} =\mathbf {\hat {k}} \times \mathbf {y} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d1281a399f50084c4d71e516f5d56b1cf5426f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.165ex; height:4.843ex;" alt="{\displaystyle \left[\mathbf {\hat {k}} \right]\mathbf {y} =\mathbf {\hat {k}} \times \mathbf {y} }"> </noscript><span class="lazy-image-placeholder" style="width: 14.165ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d1281a399f50084c4d71e516f5d56b1cf5426f" data-alt="{\displaystyle \left[\mathbf {\hat {k}} \right]\mathbf {y} =\mathbf {\hat {k}} \times \mathbf {y} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, тогаш имаме идентитет</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\left[\mathbf {\hat {k}} \right]^{2}\equiv \left|\mathbf {\hat {k}} \right|^{2}\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)=\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <msup> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> ≡<!-- ≡ --> </mo> <msup> <mrow> <mo> | </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -\left[\mathbf {\hat {k}} \right]^{2}\equiv \left|\mathbf {\hat {k}} \right|^{2}\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)=\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d92be0b3adbb50fbe61b31dc0237f0fc102476a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.775ex; height:5.176ex;" alt="{\displaystyle -\left[\mathbf {\hat {k}} \right]^{2}\equiv \left|\mathbf {\hat {k}} \right|^{2}\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)=\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}},}"> </noscript><span class="lazy-image-placeholder" style="width: 37.775ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d92be0b3adbb50fbe61b31dc0237f0fc102476a0" data-alt="{\displaystyle -\left[\mathbf {\hat {k}} \right]^{2}\equiv \left|\mathbf {\hat {k}} \right|^{2}\left(\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}}\right)=\mathbf {E} -\mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathsf {T}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>истакнувајќи дека <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е единица вектор.</p> <p>Квадрираната големина од нормалниот вектор е</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}&amp;=\left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\cdot \left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\\&amp;=\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow> <mo> | </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ⊥<!-- ⊥ --> </mo> </mrow> </msubsup> </mrow> <mo> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <msup> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <msup> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}&amp;=\left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\cdot \left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\\&amp;=\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d205a6da935ecfa8f5e13feb1a930f1d032022a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:48.208ex; height:10.843ex;" alt="{\displaystyle {\begin{aligned}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}&amp;=\left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\cdot \left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\\&amp;=\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 48.208ex;height: 10.843ex;vertical-align: -4.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d205a6da935ecfa8f5e13feb1a930f1d032022a" data-alt="{\displaystyle {\begin{aligned}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}&amp;=\left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\cdot \left(-\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\\&amp;=\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Поедноставувањето на оваа равенка го користиме идентитетот на тројниот скаларен производ</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\equiv \left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ≡<!-- ≡ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\equiv \left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e8db6d7de03a2fc68aaec686046142b6d435307" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:79.056ex; height:4.843ex;" alt="{\displaystyle \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\equiv \left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right),}"> </noscript><span class="lazy-image-placeholder" style="width: 79.056ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e8db6d7de03a2fc68aaec686046142b6d435307" data-alt="{\displaystyle \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\equiv \left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>каде што точки и крстот производи се разменуваат. Разменување на производи и поедноставување со забележување дека <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ab5ca8f4f58653e5a4ec0e9571b9c5e1d76b74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.838ex; height:2.509ex;" alt="{\displaystyle \Delta \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.838ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3ab5ca8f4f58653e5a4ec0e9571b9c5e1d76b74" data-alt="{\displaystyle \Delta \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се ортогонални:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\\={}&amp;\left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\\={}&amp;\left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\cdot \left(-\Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left(\Delta \mathbf {r} _{i}\times \Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} .\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd></mtd> <mtd> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi></mi> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi></mi> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}&amp;\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\\={}&amp;\left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\\={}&amp;\left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\cdot \left(-\Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left(\Delta \mathbf {r} _{i}\times \Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} .\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62111ff66a6922e2705a7eb60478088077b7d9bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.838ex; width:40.667ex; height:22.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\\={}&amp;\left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\\={}&amp;\left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\cdot \left(-\Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left(\Delta \mathbf {r} _{i}\times \Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} .\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 40.667ex;height: 22.843ex;vertical-align: -10.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62111ff66a6922e2705a7eb60478088077b7d9bf" data-alt="{\displaystyle {\begin{aligned}&amp;\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\\={}&amp;\left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\\={}&amp;\left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\cdot \left(-\Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left(\Delta \mathbf {r} _{i}\times \Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&amp;-\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} .\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Така, моментот на инерција околу линијата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" data-alt="{\displaystyle L}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> преку <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во правецот <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {k}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {\hat {k}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:2.843ex;" alt="{\displaystyle \mathbf {\hat {k}} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5733741b1fa48a5c01d20c7538b5850d20e63528" data-alt="{\displaystyle \mathbf {\hat {k}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се добива од пресметката</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}I_{L}&amp;=\sum _{i=1}^{N}m_{i}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}\\&amp;=-\sum _{i=1}^{N}m_{i}\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} \\&amp;=\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> L </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> | </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ⊥<!-- ⊥ --> </mo> </mrow> </msubsup> </mrow> <mo> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msup> <mrow> <mo> [ </mo> <mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold"> k </mi> <mo mathvariant="bold" stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}I_{L}&amp;=\sum _{i=1}^{N}m_{i}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}\\&amp;=-\sum _{i=1}^{N}m_{i}\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} \\&amp;=\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f4a4a61db87467a4b76294e68bba221a2810cdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:52.319ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}I_{L}&amp;=\sum _{i=1}^{N}m_{i}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}\\&amp;=-\sum _{i=1}^{N}m_{i}\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} \\&amp;=\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 52.319ex;height: 18.843ex;vertical-align: -8.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f4a4a61db87467a4b76294e68bba221a2810cdf" data-alt="{\displaystyle {\begin{aligned}I_{L}&amp;=\sum _{i=1}^{N}m_{i}\left|\Delta \mathbf {r} _{i}^{\perp }\right|^{2}\\&amp;=-\sum _{i=1}^{N}m_{i}\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \left(-\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} \\&amp;=\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathsf {T}}\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I_{R}} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold"> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I_{R}} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6d262f5376a22cca507b03419910ddd33a5fc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.663ex; height:2.509ex;" alt="{\displaystyle \mathbf {I_{R}} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.663ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6d262f5376a22cca507b03419910ddd33a5fc7" data-alt="{\displaystyle \mathbf {I_{R}} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е момент на инерција матрица на системот во однос на референтната точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {R} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> R </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {R} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.003ex; height:2.176ex;" alt="{\displaystyle \mathbf {R} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.003ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5de85fcc2a00d8ba14aae84aeef812d7fef4b3d5" data-alt="{\displaystyle \mathbf {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Ова покажува дека матрицата на инерција може да се користи за пресметување на моментот на инерција на телото околу одредената оска на вртење во телото.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Инертен_тензор"><span id=".D0.98.D0.BD.D0.B5.D1.80.D1.82.D0.B5.D0.BD_.D1.82.D0.B5.D0.BD.D0.B7.D0.BE.D1.80"></span>Инертен тензор</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=21&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Инертен тензор“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <p>Инертната матрица често се опишува како инертен тензор, кој се состои од истите моменти на инерција и инерцијални производи за трите координатни оски.<sup id="cite_ref-Kane_6-5" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Kane-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Goldstein_23-1" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Goldstein-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Тензорот на инерција е конструиран од тензорите од девет компоненти, (симболот ⊗ е <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80%D1%81%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Тензорски производ (страницата не постои)">тензорски производ</a>)</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}\otimes \mathbf {e} _{j},\quad i,j=1,2,3,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <mspace width="1em"></mspace> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{i}\otimes \mathbf {e} _{j},\quad i,j=1,2,3,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abedc58b6d80fdaedc4cd96484ba32992f406fc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.452ex; height:2.843ex;" alt="{\displaystyle \mathbf {e} _{i}\otimes \mathbf {e} _{j},\quad i,j=1,2,3,}"> </noscript><span class="lazy-image-placeholder" style="width: 22.452ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abedc58b6d80fdaedc4cd96484ba32992f406fc8" data-alt="{\displaystyle \mathbf {e} _{i}\otimes \mathbf {e} _{j},\quad i,j=1,2,3,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i},i=1,2,3}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {e} _{i},i=1,2,3} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed1a7885826cf42b57c957d7fd0eded82001a12f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.515ex; height:2.509ex;" alt="{\displaystyle \mathbf {e} _{i},i=1,2,3}"> </noscript><span class="lazy-image-placeholder" style="width: 12.515ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed1a7885826cf42b57c957d7fd0eded82001a12f" data-alt="{\displaystyle \mathbf {e} _{i},i=1,2,3}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се трите ортогонални <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%95%D0%B4%D0%B8%D0%BD%D0%B5%D1%87%D0%B5%D0%BD_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Единечен вектор (страницата не постои)">единечни вектори</a> кои ја дефинираат инерцијалната рамка во која телото се движи. Користејќи ја оваа основата на тензорот на инерција е даден од</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} =\sum _{i=1}^{3}\sum _{j=1}^{3}I_{ij}\mathbf {e} _{i}\otimes \mathbf {e} _{j}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} =\sum _{i=1}^{3}\sum _{j=1}^{3}I_{ij}\mathbf {e} _{i}\otimes \mathbf {e} _{j}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f95e3ec2b2dcb269cf41160c289586ccd8b7d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:21.744ex; height:7.509ex;" alt="{\displaystyle \mathbf {I} =\sum _{i=1}^{3}\sum _{j=1}^{3}I_{ij}\mathbf {e} _{i}\otimes \mathbf {e} _{j}.}"> </noscript><span class="lazy-image-placeholder" style="width: 21.744ex;height: 7.509ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f95e3ec2b2dcb269cf41160c289586ccd8b7d7" data-alt="{\displaystyle \mathbf {I} =\sum _{i=1}^{3}\sum _{j=1}^{3}I_{ij}\mathbf {e} _{i}\otimes \mathbf {e} _{j}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Овој тензор е од степен два, бидејќи тензорите на компонентите се конструирани од два базични вектори. Во оваа форма тензијата на инерција е исто така наречена <i>инерцијален бинор</i>.</p> <p>За крут систем на честички <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{k},k=1,...,N}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> , </mo> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <mi> N </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle P_{k},k=1,...,N} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/796766aba31837e10b56b98ff9696f9fc155f651" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.32ex; height:2.509ex;" alt="{\displaystyle P_{k},k=1,...,N}"> </noscript><span class="lazy-image-placeholder" style="width: 16.32ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/796766aba31837e10b56b98ff9696f9fc155f651" data-alt="{\displaystyle P_{k},k=1,...,N}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> секоја маса <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5e3b1ba705c5adda8381cb22580d26d64968f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.129ex; height:2.009ex;" alt="{\displaystyle m_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.129ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5e3b1ba705c5adda8381cb22580d26d64968f8" data-alt="{\displaystyle m_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> со координати на положбата <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} _{k}=(x_{k},y_{k},z_{k})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> , </mo> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} _{k}=(x_{k},y_{k},z_{k})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8bac0427cf943e3aa14cf19d70496b00389c654" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.983ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} _{k}=(x_{k},y_{k},z_{k})}"> </noscript><span class="lazy-image-placeholder" style="width: 15.983ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8bac0427cf943e3aa14cf19d70496b00389c654" data-alt="{\displaystyle \mathbf {r} _{k}=(x_{k},y_{k},z_{k})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, инертен тензорот е даден со</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} =\sum _{k=1}^{N}m_{k}\left(\left(\mathbf {r} _{k}\cdot \mathbf {r} _{k}\right)\mathbf {E} -\mathbf {r} _{k}\otimes \mathbf {r} _{k}\right),}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> −<!-- − --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} =\sum _{k=1}^{N}m_{k}\left(\left(\mathbf {r} _{k}\cdot \mathbf {r} _{k}\right)\mathbf {E} -\mathbf {r} _{k}\otimes \mathbf {r} _{k}\right),} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d30664ba2571d8121f16d0debdf0c27e97253d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.29ex; height:7.343ex;" alt="{\displaystyle \mathbf {I} =\sum _{k=1}^{N}m_{k}\left(\left(\mathbf {r} _{k}\cdot \mathbf {r} _{k}\right)\mathbf {E} -\mathbf {r} _{k}\otimes \mathbf {r} _{k}\right),}"> </noscript><span class="lazy-image-placeholder" style="width: 34.29ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d30664ba2571d8121f16d0debdf0c27e97253d" data-alt="{\displaystyle \mathbf {I} =\sum _{k=1}^{N}m_{k}\left(\left(\mathbf {r} _{k}\cdot \mathbf {r} _{k}\right)\mathbf {E} -\mathbf {r} _{k}\otimes \mathbf {r} _{k}\right),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {E} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.757ex; height:2.176ex;" alt="{\displaystyle \mathbf {E} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.757ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7f22b39d51f780fc02859059c1757c606b9de2" data-alt="{\displaystyle \mathbf {E} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>е тензор на идентитетот</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} =\mathbf {e} _{1}\otimes \mathbf {e} _{1}+\mathbf {e} _{2}\otimes \mathbf {e} _{2}+\mathbf {e} _{3}\otimes \mathbf {e} _{3}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {E} =\mathbf {e} _{1}\otimes \mathbf {e} _{1}+\mathbf {e} _{2}\otimes \mathbf {e} _{2}+\mathbf {e} _{3}\otimes \mathbf {e} _{3}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62bc98498bb4135b7886953bc34f162140934984" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:33.381ex; height:2.509ex;" alt="{\displaystyle \mathbf {E} =\mathbf {e} _{1}\otimes \mathbf {e} _{1}+\mathbf {e} _{2}\otimes \mathbf {e} _{2}+\mathbf {e} _{3}\otimes \mathbf {e} _{3}.}"> </noscript><span class="lazy-image-placeholder" style="width: 33.381ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62bc98498bb4135b7886953bc34f162140934984" data-alt="{\displaystyle \mathbf {E} =\mathbf {e} _{1}\otimes \mathbf {e} _{1}+\mathbf {e} _{2}\otimes \mathbf {e} _{2}+\mathbf {e} _{3}\otimes \mathbf {e} _{3}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Во овој случај, компонентите на инертниот тензор се дадени со</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}I_{11}=I_{xx}&amp;=\sum _{k=1}^{N}m_{k}\left(y_{k}^{2}+z_{k}^{2}\right),\\I_{22}=I_{yy}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+z_{k}^{2}\right),\\I_{33}=I_{zz}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+y_{k}^{2}\right),\\I_{12}=I_{21}=I_{xy}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}y_{k},\\I_{13}=I_{31}=I_{xz}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}z_{k},\\I_{23}=I_{32}=I_{yz}&amp;=-\sum _{k=1}^{N}m_{k}y_{k}z_{k}.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 11 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <msubsup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 22 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> y </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <msubsup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 33 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> <mi> z </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <msubsup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> + </mo> <msubsup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 12 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 21 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 13 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 31 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> z </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 23 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 32 </mn> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> z </mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </munderover> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msub> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}I_{11}=I_{xx}&amp;=\sum _{k=1}^{N}m_{k}\left(y_{k}^{2}+z_{k}^{2}\right),\\I_{22}=I_{yy}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+z_{k}^{2}\right),\\I_{33}=I_{zz}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+y_{k}^{2}\right),\\I_{12}=I_{21}=I_{xy}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}y_{k},\\I_{13}=I_{31}=I_{xz}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}z_{k},\\I_{23}=I_{32}=I_{yz}&amp;=-\sum _{k=1}^{N}m_{k}y_{k}z_{k}.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3098f142898d70ad0f240f22ffae6dbae2ea78b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -22.005ex; width:36.767ex; height:45.176ex;" alt="{\displaystyle {\begin{aligned}I_{11}=I_{xx}&amp;=\sum _{k=1}^{N}m_{k}\left(y_{k}^{2}+z_{k}^{2}\right),\\I_{22}=I_{yy}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+z_{k}^{2}\right),\\I_{33}=I_{zz}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+y_{k}^{2}\right),\\I_{12}=I_{21}=I_{xy}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}y_{k},\\I_{13}=I_{31}=I_{xz}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}z_{k},\\I_{23}=I_{32}=I_{yz}&amp;=-\sum _{k=1}^{N}m_{k}y_{k}z_{k}.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 36.767ex;height: 45.176ex;vertical-align: -22.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3098f142898d70ad0f240f22ffae6dbae2ea78b0" data-alt="{\displaystyle {\begin{aligned}I_{11}=I_{xx}&amp;=\sum _{k=1}^{N}m_{k}\left(y_{k}^{2}+z_{k}^{2}\right),\\I_{22}=I_{yy}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+z_{k}^{2}\right),\\I_{33}=I_{zz}&amp;=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+y_{k}^{2}\right),\\I_{12}=I_{21}=I_{xy}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}y_{k},\\I_{13}=I_{31}=I_{xz}&amp;=-\sum _{k=1}^{N}m_{k}x_{k}z_{k},\\I_{23}=I_{32}=I_{yz}&amp;=-\sum _{k=1}^{N}m_{k}y_{k}z_{k}.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Инерцијалниот тензор за континуирано тело е даден со</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )\left(\left(\mathbf {r} \cdot \mathbf {r} \right)\mathbf {E} -\mathbf {r} \otimes \mathbf {r} \right)\,\mathrm {d} V,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mo> = </mo> <munder> <mo> ∭<!-- ∭ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> Q </mi> </mrow> </munder> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo stretchy="false"> ) </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )\left(\left(\mathbf {r} \cdot \mathbf {r} \right)\mathbf {E} -\mathbf {r} \otimes \mathbf {r} \right)\,\mathrm {d} V,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/459183900efa0001901395bac8073ceef970ec05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:35.631ex; height:7.676ex;" alt="{\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )\left(\left(\mathbf {r} \cdot \mathbf {r} \right)\mathbf {E} -\mathbf {r} \otimes \mathbf {r} \right)\,\mathrm {d} V,}"> </noscript><span class="lazy-image-placeholder" style="width: 35.631ex;height: 7.676ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/459183900efa0001901395bac8073ceef970ec05" data-alt="{\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )\left(\left(\mathbf {r} \cdot \mathbf {r} \right)\mathbf {E} -\mathbf {r} \otimes \mathbf {r} \right)\,\mathrm {d} V,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.102ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" data-alt="{\displaystyle \mathbf {r} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> ги дефинира координатите на точката во телото и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho (\mathbf {r} )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho (\mathbf {r} )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f477411625125978c0a18946bdfae2c1f13bcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.113ex; height:2.843ex;" alt="{\displaystyle \rho (\mathbf {r} )}"> </noscript><span class="lazy-image-placeholder" style="width: 4.113ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f477411625125978c0a18946bdfae2c1f13bcb" data-alt="{\displaystyle \rho (\mathbf {r} )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е масата на таа точка. Интегралот се презема преку волуменот <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"> </noscript><span class="lazy-image-placeholder" style="width: 1.787ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" data-alt="{\displaystyle V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на телото. Инерцијалниот тензор е симетричен, бидејќи <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{ij}=I_{ji}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{ij}=I_{ji}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb20246ff5088b705f96db0452e7e365bec1313a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.099ex; height:2.843ex;" alt="{\displaystyle I_{ij}=I_{ji}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.099ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb20246ff5088b705f96db0452e7e365bec1313a" data-alt="{\displaystyle I_{ij}=I_{ji}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Алтернативно, исто така, може да се напише во однос на <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%92%D0%BA%D1%80%D1%81%D1%82%D0%B5%D0%BD_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Вкрстен производ (страницата не постои)">операторот на аголен импулс</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {r} ]\mathbf {x} =\mathbf {r} \times \mathbf {x} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [\mathbf {r} ]\mathbf {x} =\mathbf {r} \times \mathbf {x} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f32ba1c18fa5966e4dcd2275a7f7e3bc21f6dc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.259ex; height:2.843ex;" alt="{\displaystyle [\mathbf {r} ]\mathbf {x} =\mathbf {r} \times \mathbf {x} }"> </noscript><span class="lazy-image-placeholder" style="width: 12.259ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f32ba1c18fa5966e4dcd2275a7f7e3bc21f6dc0" data-alt="{\displaystyle [\mathbf {r} ]\mathbf {x} =\mathbf {r} \times \mathbf {x} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{T}[\mathbf {r} ]\,\mathrm {d} V=-\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{2}\,\mathrm {d} V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mo> = </mo> <munder> <mo> ∭<!-- ∭ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> Q </mi> </mrow> </munder> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> T </mi> </mrow> </msup> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <mo> −<!-- − --> </mo> <munder> <mo> ∭<!-- ∭ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> Q </mi> </mrow> </munder> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{T}[\mathbf {r} ]\,\mathrm {d} V=-\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{2}\,\mathrm {d} V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30802ee347b075d63c5345bff73e38d2a7965be1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:44.171ex; height:7.676ex;" alt="{\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{T}[\mathbf {r} ]\,\mathrm {d} V=-\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{2}\,\mathrm {d} V}"> </noscript><span class="lazy-image-placeholder" style="width: 44.171ex;height: 7.676ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30802ee347b075d63c5345bff73e38d2a7965be1" data-alt="{\displaystyle \mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{T}[\mathbf {r} ]\,\mathrm {d} V=-\iiint \limits _{Q}\rho (\mathbf {r} )[\mathbf {r} ]^{2}\,\mathrm {d} V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Инерцијалниот тензор може да се користи на ист начин како инерцијалната матрица за пресметување на скаларниот момент на инерција околу произволна оска во насока <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {n} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" data-alt="{\displaystyle \mathbf {n} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{n}=\mathbf {n} \cdot \mathbf {I} \cdot \mathbf {n} ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{n}=\mathbf {n} \cdot \mathbf {I} \cdot \mathbf {n} ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4665b70c28077a426fbd1f1af3f17b6d97ced4e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.329ex; height:2.509ex;" alt="{\displaystyle I_{n}=\mathbf {n} \cdot \mathbf {I} \cdot \mathbf {n} ,}"> </noscript><span class="lazy-image-placeholder" style="width: 13.329ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4665b70c28077a426fbd1f1af3f17b6d97ced4e7" data-alt="{\displaystyle I_{n}=\mathbf {n} \cdot \mathbf {I} \cdot \mathbf {n} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде точниот производ се зема со соодветните елементи во тензорите на компонентата. Производ на термин инерција како што е <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{12}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 12 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{12}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71d87c9988135efda49f4cdfc0ffced4872a6497" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.899ex; height:2.509ex;" alt="{\displaystyle I_{12}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.899ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71d87c9988135efda49f4cdfc0ffced4872a6497" data-alt="{\displaystyle I_{12}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се добива со пресметка</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{12}=\mathbf {e} _{1}\cdot \mathbf {I} \cdot \mathbf {e} _{2},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 12 </mn> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> e </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{12}=\mathbf {e} _{1}\cdot \mathbf {I} \cdot \mathbf {e} _{2},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8121bd2cb30b298966841de1aaa32a05199d4372" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.575ex; height:2.509ex;" alt="{\displaystyle I_{12}=\mathbf {e} _{1}\cdot \mathbf {I} \cdot \mathbf {e} _{2},}"> </noscript><span class="lazy-image-placeholder" style="width: 15.575ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8121bd2cb30b298966841de1aaa32a05199d4372" data-alt="{\displaystyle I_{12}=\mathbf {e} _{1}\cdot \mathbf {I} \cdot \mathbf {e} _{2},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>и може да се толкува како момент на инерција околу x-оската кога предметот ротира околу y-оската.</p> <p>Компонентите на тензорите од степен два можат да се соберат во матрица. За тензорот на инерција оваа матрица е дадена со,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} ={\begin{bmatrix}I_{11}&amp;I_{12}&amp;I_{13}\\I_{21}&amp;I_{22}&amp;I_{23}\\I_{31}&amp;I_{32}&amp;I_{33}\end{bmatrix}}={\begin{bmatrix}I_{xx}&amp;I_{xy}&amp;I_{xz}\\I_{yx}&amp;I_{yy}&amp;I_{yz}\\I_{zx}&amp;I_{zy}&amp;I_{zz}\end{bmatrix}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 11 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 12 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 13 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 21 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 22 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 23 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 31 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 32 </mn> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 33 </mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> z </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> x </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> y </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> z </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> <mi> x </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> <mi> y </mi> </mrow> </msub> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> <mi> z </mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} ={\begin{bmatrix}I_{11}&amp;I_{12}&amp;I_{13}\\I_{21}&amp;I_{22}&amp;I_{23}\\I_{31}&amp;I_{32}&amp;I_{33}\end{bmatrix}}={\begin{bmatrix}I_{xx}&amp;I_{xy}&amp;I_{xz}\\I_{yx}&amp;I_{yy}&amp;I_{yz}\\I_{zx}&amp;I_{zy}&amp;I_{zz}\end{bmatrix}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9abbf96477fe8eedeff4e1e43471d89f7804056c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:42.664ex; height:9.843ex;" alt="{\displaystyle \mathbf {I} ={\begin{bmatrix}I_{11}&amp;I_{12}&amp;I_{13}\\I_{21}&amp;I_{22}&amp;I_{23}\\I_{31}&amp;I_{32}&amp;I_{33}\end{bmatrix}}={\begin{bmatrix}I_{xx}&amp;I_{xy}&amp;I_{xz}\\I_{yx}&amp;I_{yy}&amp;I_{yz}\\I_{zx}&amp;I_{zy}&amp;I_{zz}\end{bmatrix}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 42.664ex;height: 9.843ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9abbf96477fe8eedeff4e1e43471d89f7804056c" data-alt="{\displaystyle \mathbf {I} ={\begin{bmatrix}I_{11}&amp;I_{12}&amp;I_{13}\\I_{21}&amp;I_{22}&amp;I_{23}\\I_{31}&amp;I_{32}&amp;I_{33}\end{bmatrix}}={\begin{bmatrix}I_{xx}&amp;I_{xy}&amp;I_{xz}\\I_{yx}&amp;I_{yy}&amp;I_{yz}\\I_{zx}&amp;I_{zy}&amp;I_{zz}\end{bmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Често во ригидните механичари на телото е да се користи нотација која експлицитно го идентификува x, y и z-оски, како што се <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{xx}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{xx}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d06dfedcfe6aa332c557ec72c913472732de65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.136ex; height:2.509ex;" alt="{\displaystyle I_{xx}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.136ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d06dfedcfe6aa332c557ec72c913472732de65" data-alt="{\displaystyle I_{xx}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{xy}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{xy}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600241c202cafa4422df4a4106d081f21bafe545" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.013ex; height:2.843ex;" alt="{\displaystyle I_{xy}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.013ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600241c202cafa4422df4a4106d081f21bafe545" data-alt="{\displaystyle I_{xy}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, за компонентите на тензорот на инерција.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Инерцијална_матрица_во_различни_појдовни_системи"><span id=".D0.98.D0.BD.D0.B5.D1.80.D1.86.D0.B8.D1.98.D0.B0.D0.BB.D0.BD.D0.B0_.D0.BC.D0.B0.D1.82.D1.80.D0.B8.D1.86.D0.B0_.D0.B2.D0.BE_.D1.80.D0.B0.D0.B7.D0.BB.D0.B8.D1.87.D0.BD.D0.B8_.D0.BF.D0.BE.D1.98.D0.B4.D0.BE.D0.B2.D0.BD.D0.B8_.D1.81.D0.B8.D1.81.D1.82.D0.B5.D0.BC.D0.B8"></span>Инерцијална матрица во различни појдовни системи</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=22&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Инерцијална матрица во различни појдовни системи“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <p>Употребата на матрицата на инерција во вториот закон на Њутн претпоставува дека нејзините компоненти се пресметуваат во однос на оските паралелни на инерцијалната рамка, а не во однос на фиксирана референтна рамка на телото.<sup id="cite_ref-Kane_6-6" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Kane-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Goldstein_23-2" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Goldstein-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Ова значи дека додека телото ги поместува компонентите на матрицата на инерција, со текот на времето се менува. Спротивно на тоа, компонентите на матрицата на инерција, измерени во фиксирана рамка на телото, се константни.</p> <div class="mw-heading mw-heading3"> <h3 id="Рамка_на_телото"><span id=".D0.A0.D0.B0.D0.BC.D0.BA.D0.B0_.D0.BD.D0.B0_.D1.82.D0.B5.D0.BB.D0.BE.D1.82.D0.BE"></span>Рамка на телото</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=23&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Рамка на телото“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Нека инерцијалната матрица на рамката на телото во однос на центарот на масата се означува со <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {C} }^{B}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5375b412570a299355aebd42dc45bc0c46cd3a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.612ex; height:3.176ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.612ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5375b412570a299355aebd42dc45bc0c46cd3a20" data-alt="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и ја дефинира ориентацијата на телото рамка во однос на инерцијалната рамка од матрицата на ротација <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {A} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" data-alt="{\displaystyle \mathbf {A} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, така што,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =\mathbf {A} \mathbf {y} ,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> y </mi> </mrow> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {x} =\mathbf {A} \mathbf {y} ,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f199d57a899bdf9d2d69ade12203d8c11d56c851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.587ex; height:2.509ex;" alt="{\displaystyle \mathbf {x} =\mathbf {A} \mathbf {y} ,}"> </noscript><span class="lazy-image-placeholder" style="width: 8.587ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f199d57a899bdf9d2d69ade12203d8c11d56c851" data-alt="{\displaystyle \mathbf {x} =\mathbf {A} \mathbf {y} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде што векторите y во фиксираниот координатен рамка на телото имаат координати x во инерцијалната рамка. Потоа, матрицата на инерција на телото измерена во инерцијалната рамка е дадена со</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {C} }=\mathbf {A} \mathbf {I} _{\mathbf {C} }^{B}\mathbf {A} ^{\mathsf {T}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {C} }=\mathbf {A} \mathbf {I} _{\mathbf {C} }^{B}\mathbf {A} ^{\mathsf {T}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/932ee4752bbfe56b40201f525520bdbb5e368df1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.359ex; height:3.176ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {C} }=\mathbf {A} \mathbf {I} _{\mathbf {C} }^{B}\mathbf {A} ^{\mathsf {T}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 14.359ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/932ee4752bbfe56b40201f525520bdbb5e368df1" data-alt="{\displaystyle \mathbf {I} _{\mathbf {C} }=\mathbf {A} \mathbf {I} _{\mathbf {C} }^{B}\mathbf {A} ^{\mathsf {T}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Забележете дека <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> A </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {A} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" data-alt="{\displaystyle \mathbf {A} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> се менува додека телото се движи, додека <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {C} }^{B}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5375b412570a299355aebd42dc45bc0c46cd3a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.612ex; height:3.176ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.612ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5375b412570a299355aebd42dc45bc0c46cd3a20" data-alt="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> останува константен.</p> <div class="mw-heading mw-heading3"> <h3 id="Главни_оски"><span id=".D0.93.D0.BB.D0.B0.D0.B2.D0.BD.D0.B8_.D0.BE.D1.81.D0.BA.D0.B8"></span>Главни оски</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=24&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Главни оски“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <p>Измерен во телото рамка инерција матрица е константна реална симетрична матрица. Вистинската симетрична матрица има <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B5%D0%BA%D1%82%D1%80%D0%B0%D0%BB%D0%BD%D0%BE_%D1%80%D0%B0%D1%81%D0%BF%D0%B0%D1%93%D0%B0%D1%9A%D0%B5_%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0%D1%82%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Спектрално распаѓање на матрицата (страницата не постои)">спектрално распаѓање на матрицата</a> во производот на вртежна матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Q </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {Q} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132d0144479d6f47c30ad82a65d458966ccbe928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.008ex; height:2.509ex;" alt="{\displaystyle \mathbf {Q} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.008ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132d0144479d6f47c30ad82a65d458966ccbe928" data-alt="{\displaystyle \mathbf {Q} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> и дијагонална матрица <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\Lambda }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Λ<!-- Λ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\Lambda }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0dd88f811f247adeb58a4fd0174e95f11eefca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.873ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\Lambda }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.873ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0dd88f811f247adeb58a4fd0174e95f11eefca2" data-alt="{\displaystyle {\boldsymbol {\Lambda }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, дадена од</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}=\mathbf {Q} {\boldsymbol {\Lambda }}\mathbf {Q} ^{\mathsf {T}},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> I </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> B </mi> </mrow> </msubsup> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Q </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Λ<!-- Λ --> </mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Q </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {I} _{\mathbf {C} }^{B}=\mathbf {Q} {\boldsymbol {\Lambda }}\mathbf {Q} ^{\mathsf {T}},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54e2e55f1753f6bd594ab4eae2793aad38b6bf50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.597ex; height:3.176ex;" alt="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}=\mathbf {Q} {\boldsymbol {\Lambda }}\mathbf {Q} ^{\mathsf {T}},}"> </noscript><span class="lazy-image-placeholder" style="width: 13.597ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54e2e55f1753f6bd594ab4eae2793aad38b6bf50" data-alt="{\displaystyle \mathbf {I} _{\mathbf {C} }^{B}=\mathbf {Q} {\boldsymbol {\Lambda }}\mathbf {Q} ^{\mathsf {T}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>каде</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\Lambda }}={\begin{bmatrix}I_{1}&amp;0&amp;0\\0&amp;I_{2}&amp;0\\0&amp;0&amp;I_{3}\end{bmatrix}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Λ<!-- Λ --> </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> [ </mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> <mtd> <mn> 0 </mn> </mtd> </mtr> <mtr> <mtd> <mn> 0 </mn> </mtd> <mtd> <mn> 0 </mn> </mtd> <mtd> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo> ] </mo> </mrow> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\Lambda }}={\begin{bmatrix}I_{1}&amp;0&amp;0\\0&amp;I_{2}&amp;0\\0&amp;0&amp;I_{3}\end{bmatrix}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7144289c4fcf135450cf15f6957847a8921cb2f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:20.348ex; height:9.176ex;" alt="{\displaystyle {\boldsymbol {\Lambda }}={\begin{bmatrix}I_{1}&amp;0&amp;0\\0&amp;I_{2}&amp;0\\0&amp;0&amp;I_{3}\end{bmatrix}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 20.348ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7144289c4fcf135450cf15f6957847a8921cb2f6" data-alt="{\displaystyle {\boldsymbol {\Lambda }}={\begin{bmatrix}I_{1}&amp;0&amp;0\\0&amp;I_{2}&amp;0\\0&amp;0&amp;I_{3}\end{bmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Постојат знаци на телото на телото на телото. Овој резултат првпат го покажал <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%8F%D0%B5%D1%98%D0%BC%D1%81_%D0%8F%D0%BE%D0%B7%D0%B5%D1%84_%D0%A1%D0%B8%D0%BB%D0%B2%D0%B5%D1%81%D1%82%D0%B5%D1%80&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Џејмс Џозеф Силвестер (страницата не постои)">Џ. Силвестер (1852)</a>, и претставува форма на <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%B8%D0%BB%D0%B2%D0%B5%D1%81%D1%82%D0%B5%D1%80%D0%BE%D0%B2_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%B5%D0%BD_%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Силвестеров инерцијален закон (страницата не постои)">Силвестеровиот инерцијален закон</a>.<sup id="cite_ref-syl852_26-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-syl852-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-norm_27-0" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-norm-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup></p> <p>За тела со постојана оска.</p> <div class="mw-heading mw-heading3"> <h3 id="Елипсоид"><span id=".D0.95.D0.BB.D0.B8.D0.BF.D1.81.D0.BE.D0.B8.D0.B4"></span>Елипсоид</h3><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=25&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Елипсоид“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <figure typeof="mw:File/Thumb"> <a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/File:Triaxial_Ellipsoid.jpg"> <noscript> <img alt="" resource="/wiki/%D0%9F%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D1%82%D0%B5%D0%BA%D0%B0:Triaxial_Ellipsoid.jpg" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Triaxial_Ellipsoid.jpg/196px-Triaxial_Ellipsoid.jpg" decoding="async" width="196" height="110" class="mw-file-element" data-file-width="998" data-file-height="559"> </noscript><span class="lazy-image-placeholder" style="width: 196px;height: 110px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Triaxial_Ellipsoid.jpg/196px-Triaxial_Ellipsoid.jpg" data-alt="" data-width="196" data-height="110" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Triaxial_Ellipsoid.jpg/294px-Triaxial_Ellipsoid.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Triaxial_Ellipsoid.jpg/392px-Triaxial_Ellipsoid.jpg 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Елипсоид<sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9C%D1%80%D1%82%D0%B2%D0%B8_%D0%B2%D1%80%D1%81%D0%BA%D0%B8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Википедија:Мртви врски">мртва врска</a></i>]</span></sup> со полуглавни пречници етикетирани <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"> </noscript><span class="lazy-image-placeholder" style="width: 1.23ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" data-alt="{\displaystyle a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> b </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle b} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"> </noscript><span class="lazy-image-placeholder" style="width: 0.998ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" data-alt="{\displaystyle b}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> c </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle c} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"> </noscript><span class="lazy-image-placeholder" style="width: 1.007ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" data-alt="{\displaystyle c}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </figcaption> </figure> <p>Моментот на инерцијална матрица во координатите на телото-рамка е квадратна форма која ја дефинира површината во телото наречена <a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9F%D1%83%D0%B0%D0%BD%D1%81%D0%BE%D0%BD%D0%BE%D0%B2_%D0%B5%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Пуансонов елипсоид (страницата не постои)">Пуансонов елипсоид</a>.<sup id="cite_ref-28" class="reference"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> Нека <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\Lambda }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Λ<!-- Λ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\Lambda }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0dd88f811f247adeb58a4fd0174e95f11eefca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.873ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\Lambda }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.873ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0dd88f811f247adeb58a4fd0174e95f11eefca2" data-alt="{\displaystyle {\boldsymbol {\Lambda }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е инерција матрица во однос на центарот на маса усогласен со главните оски, а потоа на површината</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =1,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Λ<!-- Λ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =1,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25e1b955758b9a28b1e5f06b7a3ae54ad78fdb3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.954ex; height:3.009ex;" alt="{\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =1,}"> </noscript><span class="lazy-image-placeholder" style="width: 10.954ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25e1b955758b9a28b1e5f06b7a3ae54ad78fdb3f" data-alt="{\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =1,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>или</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{1}x^{2}+I_{2}y^{2}+I_{3}z^{2}=1,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <msup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{1}x^{2}+I_{2}y^{2}+I_{3}z^{2}=1,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f77feed11fc0b809a4fd3946eb966b0d41af0ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.564ex; height:3.009ex;" alt="{\displaystyle I_{1}x^{2}+I_{2}y^{2}+I_{3}z^{2}=1,}"> </noscript><span class="lazy-image-placeholder" style="width: 23.564ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f77feed11fc0b809a4fd3946eb966b0d41af0ec" data-alt="{\displaystyle I_{1}x^{2}+I_{2}y^{2}+I_{3}z^{2}=1,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>дефинира <a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%95%D0%BB%D0%B8%D0%BF%D1%81%D0%BE%D0%B8%D0%B4%D0%BD%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Елипсоидна форма">елипсоид</a> во рамката на телото. Напишете ја оваа равенка во форма,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {x}{1/{\sqrt {I_{1}}}}}\right)^{2}+\left({\frac {y}{1/{\sqrt {I_{2}}}}}\right)^{2}+\left({\frac {z}{1/{\sqrt {I_{3}}}}}\right)^{2}=1,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mrow> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> y </mi> <mrow> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left({\frac {x}{1/{\sqrt {I_{1}}}}}\right)^{2}+\left({\frac {y}{1/{\sqrt {I_{2}}}}}\right)^{2}+\left({\frac {z}{1/{\sqrt {I_{3}}}}}\right)^{2}=1,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24cb74ab9d03623f89fb144e09f2afe23ca1243c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.706ex; height:8.009ex;" alt="{\displaystyle \left({\frac {x}{1/{\sqrt {I_{1}}}}}\right)^{2}+\left({\frac {y}{1/{\sqrt {I_{2}}}}}\right)^{2}+\left({\frac {z}{1/{\sqrt {I_{3}}}}}\right)^{2}=1,}"> </noscript><span class="lazy-image-placeholder" style="width: 46.706ex;height: 8.009ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24cb74ab9d03623f89fb144e09f2afe23ca1243c" data-alt="{\displaystyle \left({\frac {x}{1/{\sqrt {I_{1}}}}}\right)^{2}+\left({\frac {y}{1/{\sqrt {I_{2}}}}}\right)^{2}+\left({\frac {z}{1/{\sqrt {I_{3}}}}}\right)^{2}=1,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>да се види дека полуглавните пречници на овој елипсоид се дадени со</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\frac {1}{\sqrt {I_{1}}}},\quad b={\frac {1}{\sqrt {I_{2}}}},\quad c={\frac {1}{\sqrt {I_{3}}}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> a </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </msqrt> </mfrac> </mrow> <mo> , </mo> <mspace width="1em"></mspace> <mi> b </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </msqrt> </mfrac> </mrow> <mo> , </mo> <mspace width="1em"></mspace> <mi> c </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> </msqrt> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle a={\frac {1}{\sqrt {I_{1}}}},\quad b={\frac {1}{\sqrt {I_{2}}}},\quad c={\frac {1}{\sqrt {I_{3}}}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/914038d07d02704f45ee854f8f72eb6cc1916320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.825ex; height:6.509ex;" alt="{\displaystyle a={\frac {1}{\sqrt {I_{1}}}},\quad b={\frac {1}{\sqrt {I_{2}}}},\quad c={\frac {1}{\sqrt {I_{3}}}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 34.825ex;height: 6.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/914038d07d02704f45ee854f8f72eb6cc1916320" data-alt="{\displaystyle a={\frac {1}{\sqrt {I_{1}}}},\quad b={\frac {1}{\sqrt {I_{2}}}},\quad c={\frac {1}{\sqrt {I_{3}}}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Нека точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {x} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" data-alt="{\displaystyle \mathbf {x} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на овој елипсоид се дефинира во однос на неговата големина и насока,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =||\mathbf {x} ||\mathbf {n} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {x} =||\mathbf {x} ||\mathbf {n} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7abec9c256860320c666ced21b5254c1d99d63e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.993ex; height:2.843ex;" alt="{\displaystyle \mathbf {x} =||\mathbf {x} ||\mathbf {n} }"> </noscript><span class="lazy-image-placeholder" style="width: 9.993ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7abec9c256860320c666ced21b5254c1d99d63e1" data-alt="{\displaystyle \mathbf {x} =||\mathbf {x} ||\mathbf {n} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, каде што <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {n} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" data-alt="{\displaystyle \mathbf {n} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> е единичен вектор. Тогаш врската прикажана погоре, помеѓу инерција матрица и скаларен момент на инерција <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\mathbf {n} }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{\mathbf {n} }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72ebb3350fb95aa9983a893859493a811ef446b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.306ex; height:2.509ex;" alt="{\displaystyle I_{\mathbf {n} }}"> </noscript><span class="lazy-image-placeholder" style="width: 2.306ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72ebb3350fb95aa9983a893859493a811ef446b" data-alt="{\displaystyle I_{\mathbf {n} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> околу оската во правец <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {n} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" data-alt="{\displaystyle \mathbf {n} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, дава</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =||\mathbf {x} ||^{2}\mathbf {n} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {n} =||\mathbf {x} ||^{2}I_{\mathbf {n} }=1.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Λ<!-- Λ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif"> T </mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Λ<!-- Λ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mrow> </msub> <mo> = </mo> <mn> 1. </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =||\mathbf {x} ||^{2}\mathbf {n} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {n} =||\mathbf {x} ||^{2}I_{\mathbf {n} }=1.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01df1dbd3d597e33e19fa25af3f0dd0508f07c5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.757ex; height:3.343ex;" alt="{\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =||\mathbf {x} ||^{2}\mathbf {n} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {n} =||\mathbf {x} ||^{2}I_{\mathbf {n} }=1.}"> </noscript><span class="lazy-image-placeholder" style="width: 35.757ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01df1dbd3d597e33e19fa25af3f0dd0508f07c5e" data-alt="{\displaystyle \mathbf {x} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {x} =||\mathbf {x} ||^{2}\mathbf {n} ^{\mathsf {T}}{\boldsymbol {\Lambda }}\mathbf {n} =||\mathbf {x} ||^{2}I_{\mathbf {n} }=1.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Така, големината на точката <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {x} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {x} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.411ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32adf004df5eb0a8c7fd8c0b6b7405183c5a5ef2" data-alt="{\displaystyle \mathbf {x} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> во правец <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {n} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {n} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.485ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a720c341f39f52fd96028dab83edd34d400be46" data-alt="{\displaystyle \mathbf {n} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> на инерцијалниот елипсоид е</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ||\mathbf {x} ||={\frac {1}{\sqrt {I_{\mathbf {n} }}}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> n </mi> </mrow> </mrow> </msub> </msqrt> </mfrac> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle ||\mathbf {x} ||={\frac {1}{\sqrt {I_{\mathbf {n} }}}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ece1d74342c0787200a13450e06681f2b47745b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:12.821ex; height:6.176ex;" alt="{\displaystyle ||\mathbf {x} ||={\frac {1}{\sqrt {I_{\mathbf {n} }}}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 12.821ex;height: 6.176ex;vertical-align: -2.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ece1d74342c0787200a13450e06681f2b47745b" data-alt="{\displaystyle ||\mathbf {x} ||={\frac {1}{\sqrt {I_{\mathbf {n} }}}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Поврзано"><span id=".D0.9F.D0.BE.D0.B2.D1.80.D0.B7.D0.B0.D0.BD.D0.BE"></span>Поврзано</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=26&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Поврзано“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-9 collapsible-block" id="mf-section-9"> <ul> <li><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B0%D0%BB%D0%B5%D0%BD_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Централен момент (страницата не постои)">Централен момент</a></li> <li><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%A1%D0%BF%D0%B8%D1%81%D0%BE%D0%BA_%D0%BD%D0%B0_%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%B8_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Список на моменти на инерција (страницата не постои)">Список на моменти на инерција</a></li> <li><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%92%D1%80%D1%82%D0%B5%D0%B6%D0%BD%D0%B0_%D0%B5%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%98%D0%B0&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Вртежна енергија (страницата не постои)">Вртежна енергија</a></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Наводи"><span id=".D0.9D.D0.B0.D0.B2.D0.BE.D0.B4.D0.B8"></span>Наводи</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=27&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Наводи“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-10 collapsible-block" id="mf-section-10"> <div class="reflist columns references-column-width" style="-moz-column-width: 30em; -webkit-column-width: 30em; column-width: 30em; list-style-type: decimal;"> <ol class="references"> <li id="cite_note-mach-1"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-mach_1-0">1,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-mach_1-1">1,1</a></sup></span> <span class="reference-text"><cite id="CITEREFMach1919" class="citation book">Mach, Ernst (1919). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/scienceofmechani005860mbp"><i>The Science of Mechanics</i></a>. стр.&nbsp;173–187<span class="reference-accessdate">. Посетено на <span class="nowrap">November 21,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Science+of+Mechanics&amp;rft.pages=173-187.&amp;rft.date=1919&amp;rft.aulast=Mach&amp;rft.aufirst=Ernst&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fscienceofmechani005860mbp&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span><style data-mw-deduplicate="TemplateStyles:r5289462">.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg");background-repeat:no-repeat;background-size:9px;background-position:right .1em center}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg");background-repeat:no-repeat;background-size:9px;background-position:right .1em center}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg");background-repeat:no-repeat;background-size:9px;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:var(--color-subtle,#54595d)}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background-image:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png");background-image:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg");background-repeat:no-repeat;background-size:12px;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style></span></li> <li id="cite_note-Euler1730-2"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Euler1730_2-0">↑</a></span> <span class="reference-text"><cite id="CITEREFEuler1765" class="citation book">Euler, Leonhard (1765). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3Dzw4OAAAAQAAJ%26pg%3DPA166%23v%3Donepage%26q%26f%3Dfalse"><i>Theoria motus corporum solidorum seu rigidorum: Ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accommodata [The theory of motion of solid or rigid bodies: established from first principles of our knowledge and appropriate for all motions which can occur in such bodies]</i></a> (латински). Rostock and Greifswald (Germany): A. F. Röse. стр.&nbsp;166. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/978-1-4297-4281-8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/978-1-4297-4281-8"><bdi>978-1-4297-4281-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theoria+motus+corporum+solidorum+seu+rigidorum%3A+Ex+primis+nostrae+cognitionis+principiis+stabilita+et+ad+omnes+motus%2C+qui+in+huiusmodi+corpora+cadere+possunt%2C+accommodata+%5BThe+theory+of+motion+of+solid+or+rigid+bodies%3A+established+from+first+principles+of+our+knowledge+and+appropriate+for+all+motions+which+can+occur+in+such+bodies%5D&amp;rft.place=Rostock+and+Greifswald+%28Germany%29&amp;rft.pages=166&amp;rft.pub=A.+F.+R%C3%B6se&amp;rft.date=1765&amp;rft.isbn=978-1-4297-4281-8&amp;rft.aulast=Euler&amp;rft.aufirst=Leonhard&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dzw4OAAAAQAAJ%26pg%3DPA166%23v%3Donepage%26q%26f%3Dfalse&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"> From page 166: <i>"Definitio 7. 422. Momentum inertiae corporis respectu eujuspiam axis est summa omnium productorum, quae oriuntur, si singula corporis elementa per quadrata distantiarum suarum ab axe multiplicentur."</i> (Definition 7. 422. A body's moment of inertia with respect to any axis is the sum of all of the products, which arise, if the individual elements of the body are multiplied by the square of their distances from the axis.)</span></li> <li id="cite_note-Marion_1995-3"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Marion_1995_3-0">3,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Marion_1995_3-1">3,1</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Marion_1995_3-2">3,2</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Marion_1995_3-3">3,3</a></sup></span> <span class="reference-text"><cite id="CITEREFMarionThornton1995" class="citation book">Marion, JB; Thornton, ST (1995). <i>Classical dynamics of particles &amp; systems</i> (4. изд.). Thomson. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0-03-097302-3?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0-03-097302-3"><bdi>0-03-097302-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+dynamics+of+particles+%26+systems&amp;rft.edition=4&amp;rft.pub=Thomson&amp;rft.date=1995&amp;rft.isbn=0-03-097302-3&amp;rft.aulast=Marion&amp;rft.aufirst=JB&amp;rft.au=Thornton%2C+ST&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Symon_1971-4"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Symon_1971_4-0">4,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Symon_1971_4-1">4,1</a></sup></span> <span class="reference-text"><cite id="CITEREFSymon1971" class="citation book">Symon, KR (1971). <i>Mechanics</i> (3. изд.). Addison-Wesley. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0-201-07392-7?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0-201-07392-7"><bdi>0-201-07392-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mechanics&amp;rft.edition=3&amp;rft.pub=Addison-Wesley&amp;rft.date=1971&amp;rft.isbn=0-201-07392-7&amp;rft.aulast=Symon&amp;rft.aufirst=KR&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Tenenbaum_2004-5"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Tenenbaum_2004_5-0">5,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Tenenbaum_2004_5-1">5,1</a></sup></span> <span class="reference-text"><cite id="CITEREFTenenbaum2004" class="citation book">Tenenbaum, RA (2004). <i>Fundamentals of Applied Dynamics</i>. Springer. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0-387-00887-X?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0-387-00887-X"><bdi>0-387-00887-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+Applied+Dynamics&amp;rft.pub=Springer&amp;rft.date=2004&amp;rft.isbn=0-387-00887-X&amp;rft.aulast=Tenenbaum&amp;rft.aufirst=RA&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Kane-6"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Kane_6-0">6,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Kane_6-1">6,1</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Kane_6-2">6,2</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Kane_6-3">6,3</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Kane_6-4">6,4</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Kane_6-5">6,5</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Kane_6-6">6,6</a></sup></span> <span class="reference-text"> <cite id="CITEREFKaneLevinson1985" class="citation book">Kane, T. R.; Levinson, D. A. (1985). <i>Dynamics, Theory and Applications</i>. New York: McGraw-Hill.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Dynamics%2C+Theory+and+Applications&amp;rft.place=New+York&amp;rft.pub=McGraw-Hill&amp;rft.date=1985&amp;rft.aulast=Kane&amp;rft.aufirst=T.+R.&amp;rft.au=Levinson%2C+D.+A.&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Winn-7"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Winn_7-0">7,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Winn_7-1">7,1</a></sup></span> <span class="reference-text"> <cite id="CITEREFWinn2010" class="citation book">Winn, Will (2010). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DNH8m7j9V0cUC%26pg%3DSA10-PA10%26dq%3D%2522ice%2Bskater%2522%2B%2522moment%2Bof%2Binertia"><i>Introduction to Understandable Physics: Volume I - Mechanics</i></a>. AuthorHouse. стр.&nbsp;10.10. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/1449063330?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/1449063330"><bdi>1449063330</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Understandable+Physics%3A+Volume+I+-+Mechanics&amp;rft.pages=10.10&amp;rft.pub=AuthorHouse&amp;rft.date=2010&amp;rft.isbn=1449063330&amp;rft.aulast=Winn&amp;rft.aufirst=Will&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNH8m7j9V0cUC%26pg%3DSA10-PA10%26dq%3D%2522ice%2Bskater%2522%2B%2522moment%2Bof%2Binertia&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Fullerton-8"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Fullerton_8-0">8,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Fullerton_8-1">8,1</a></sup></span> <span class="reference-text"> <cite id="CITEREFFullerton2011" class="citation book">Fullerton, Dan (2011). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3D8XmF2dy-9YYC%26pg%3DPA143%26dq%3D%2522ice%2Bskater%2522%2B%2522moment%2Bof%2Binertia%23v%3Donepage%26q%3D%2522ice%2520skater%2522%2520%2522moment%2520of%2520inertia%26f%3Dfalse"><i>Honors Physics Essentials</i></a>. Silly Beagle Productions. стр.&nbsp;142–143. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0983563330?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0983563330"><bdi>0983563330</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Honors+Physics+Essentials&amp;rft.pages=142-143&amp;rft.pub=Silly+Beagle+Productions&amp;rft.date=2011&amp;rft.isbn=0983563330&amp;rft.aulast=Fullerton&amp;rft.aufirst=Dan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8XmF2dy-9YYC%26pg%3DPA143%26dq%3D%2522ice%2Bskater%2522%2B%2522moment%2Bof%2Binertia%23v%3Donepage%26q%3D%2522ice%2520skater%2522%2520%2522moment%2520of%2520inertia%26f%3Dfalse&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Wolfram-9"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Wolfram_9-0">↑</a></span> <span class="reference-text"> <cite id="CITEREFWolfram2014" class="citation web">Wolfram, Stephen (2014). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://demonstrations.wolfram.com/SpinningIceSkater/">„Spinning Ice Skater“</a>. <i>Wolfram Demonstrations Project</i>. Mathematica, Inc<span class="reference-accessdate">. Посетено на <span class="nowrap">September 30,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+Demonstrations+Project&amp;rft.atitle=Spinning+Ice+Skater&amp;rft.date=2014&amp;rft.aulast=Wolfram&amp;rft.aufirst=Stephen&amp;rft_id=http%3A%2F%2Fdemonstrations.wolfram.com%2FSpinningIceSkater%2F&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Hokin-10"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Hokin_10-0">↑</a></span> <span class="reference-text"><cite id="CITEREFHokin2014" class="citation web">Hokin, Samuel (2014). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20201126232109/http://bsharp.org/physics/spins">„Figure Skating Spins“</a>. <i>The Physics of Everyday Stuff</i>. Архивирано од <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.bsharp.org/physics/spins">изворникот</a> на 2020-11-26<span class="reference-accessdate">. Посетено на <span class="nowrap">September 30,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Physics+of+Everyday+Stuff&amp;rft.atitle=Figure+Skating+Spins&amp;rft.date=2014&amp;rft.aulast=Hokin&amp;rft.aufirst=Samuel&amp;rft_id=http%3A%2F%2Fwww.bsharp.org%2Fphysics%2Fspins&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Breithaupt-11"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Breithaupt_11-0">↑</a></span> <span class="reference-text"> <cite id="CITEREFBreithaupt2000" class="citation book">Breithaupt, Jim (2000). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3Dr8I1gyNNKnoC%26pg%3DPT73%26dq%3D%2522ice%2Bskater%2522%2B%2522moment%2Bof%2Binertia"><i>New Understanding Physics for Advanced Level</i></a>. Nelson Thomas. стр.&nbsp;64. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0748743146?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0748743146"><bdi>0748743146</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=New+Understanding+Physics+for+Advanced+Level&amp;rft.pages=64&amp;rft.pub=Nelson+Thomas&amp;rft.date=2000&amp;rft.isbn=0748743146&amp;rft.aulast=Breithaupt&amp;rft.aufirst=Jim&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dr8I1gyNNKnoC%26pg%3DPT73%26dq%3D%2522ice%2Bskater%2522%2B%2522moment%2Bof%2Binertia&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Crowell-12"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Crowell_12-0">↑</a></span> <span class="reference-text"> <cite id="CITEREFCrowell2003" class="citation book">Crowell, Benjamin (2003). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DpVcROBeNJKcC%26pg%3DPA107%26dq%3Dice%2Bskater%2B%2522conservation%2Bof%2Bangular%2Bmomentum"><i>Conservation Laws</i></a>. Light and Matter. стр.&nbsp;107. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0970467028?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0970467028"><bdi>0970467028</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Conservation+Laws&amp;rft.pages=107&amp;rft.pub=Light+and+Matter&amp;rft.date=2003&amp;rft.isbn=0970467028&amp;rft.aulast=Crowell&amp;rft.aufirst=Benjamin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpVcROBeNJKcC%26pg%3DPA107%26dq%3Dice%2Bskater%2B%2522conservation%2Bof%2Bangular%2Bmomentum&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Tipler-13"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Tipler_13-0">↑</a></span> <span class="reference-text"> <cite id="CITEREFTipler1999" class="citation book">Tipler, Paul A. (1999). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DU9lkAkTdAosC%26pg%3DPA304%26dq%3Dskater%2B%2522conservation%2Bof%2Bangular%2Bmomentum"><i>Physics for Scientists and Engineers, Vol. 1: Mechanics, Oscillations and Waves, Thermodynamics</i></a>. Macmillan. стр.&nbsp;304. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/1572594918?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/1572594918"><bdi>1572594918</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Physics+for+Scientists+and+Engineers%2C+Vol.+1%3A+Mechanics%2C+Oscillations+and+Waves%2C+Thermodynamics&amp;rft.pages=304&amp;rft.pub=Macmillan&amp;rft.date=1999&amp;rft.isbn=1572594918&amp;rft.aulast=Tipler&amp;rft.aufirst=Paul+A.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DU9lkAkTdAosC%26pg%3DPA304%26dq%3Dskater%2B%2522conservation%2Bof%2Bangular%2Bmomentum&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-B-Paul-14"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-B-Paul_14-0">14,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-B-Paul_14-1">14,1</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-B-Paul_14-2">14,2</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-B-Paul_14-3">14,3</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-B-Paul_14-4">14,4</a></sup></span> <span class="reference-text"><cite id="CITEREFPaul1979" class="citation book">Paul, Burton (June 1979). <i>Kinematics and Dynamics of Planar Machinery</i>. Prentice Hall. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/978-0135160626?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/978-0135160626"><bdi>978-0135160626</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Kinematics+and+Dynamics+of+Planar+Machinery&amp;rft.pub=Prentice+Hall&amp;rft.date=1979-06&amp;rft.isbn=978-0135160626&amp;rft.aulast=Paul&amp;rft.aufirst=Burton&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Resnick-15"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Resnick_15-0">↑</a></span> <span class="reference-text"> <cite id="CITEREFHallidayResnickWalker2005" class="citation book">Halliday, David; Resnick, Robert; Walker, Jearl (2005). <i>Fundamentals of physics</i> (7. изд.). Hoboken, NJ: Wiley. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/9780471216438?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/9780471216438"><bdi>9780471216438</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+physics&amp;rft.place=Hoboken%2C+NJ&amp;rft.edition=7&amp;rft.pub=Wiley&amp;rft.date=2005&amp;rft.isbn=9780471216438&amp;rft.aulast=Halliday&amp;rft.aufirst=David&amp;rft.au=Resnick%2C+Robert&amp;rft.au=Walker%2C+Jearl&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-16">↑</a></span> <span class="reference-text"> <cite id="CITEREFFrench1971" class="citation book">French, A.P. (1971). <i>Vibrations and waves</i>. Boca Raton, FL: CRC Press. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/9780748744473?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/9780748744473"><bdi>9780748744473</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vibrations+and+waves&amp;rft.place=Boca+Raton%2C+FL&amp;rft.pub=CRC+Press&amp;rft.date=1971&amp;rft.isbn=9780748744473&amp;rft.aulast=French&amp;rft.aufirst=A.P.&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Uicker-17"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Uicker_17-0">17,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Uicker_17-1">17,1</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Uicker_17-2">17,2</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Uicker_17-3">17,3</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Uicker_17-4">17,4</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Uicker_17-5">17,5</a></sup></span> <span class="reference-text"> <cite id="CITEREFUickerPennockShigley2010" class="citation book">Uicker, John J.; Pennock, Gordon R.; Shigley, Joseph E. (2010). <i>Theory of Machines and Mechanisms</i> (4. изд.). Oxford University Press. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/978-0195371239?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/978-0195371239"><bdi>978-0195371239</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Machines+and+Mechanisms&amp;rft.edition=4&amp;rft.pub=Oxford+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0195371239&amp;rft.aulast=Uicker&amp;rft.aufirst=John+J.&amp;rft.au=Pennock%2C+Gordon+R.&amp;rft.au=Shigley%2C+Joseph+E.&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-Beer-18"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-0">18,00</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-1">18,01</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-2">18,02</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-3">18,03</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-4">18,04</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-5">18,05</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-6">18,06</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-7">18,07</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-8">18,08</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Beer_18-9">18,09</a></sup></span> <span class="reference-text"><cite id="CITEREFFerdinand_P._BeerE._Russell_JohnstonJr.,_Phillip_J._Cornwell2010" class="citation book">Ferdinand P. Beer; E. Russell Johnston; Jr., Phillip J. Cornwell (2010). <i>Vector mechanics for engineers: Dynamics</i> (9. изд.). Boston: McGraw-Hill. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/978-0077295493?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/978-0077295493"><bdi>978-0077295493</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vector+mechanics+for+engineers%3A+Dynamics&amp;rft.place=Boston&amp;rft.edition=9&amp;rft.pub=McGraw-Hill&amp;rft.date=2010&amp;rft.isbn=978-0077295493&amp;rft.au=Ferdinand+P.+Beer&amp;rft.au=E.+Russell+Johnston&amp;rft.au=Jr.%2C+Phillip+J.+Cornwell&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-19"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-19">↑</a></span> <span class="reference-text">H. Williams, <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.ima.org.uk/_db/_documents/maths07_williams_huw.pdf">Measuring the inertia tensor</a> <small><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20150924033745/http://www.ima.org.uk/_db/_documents/maths07_williams_huw.pdf">Архивирано</a> на 24&nbsp;септември 2015&nbsp;г.</small>, presented at the IMA Mathematics 2007 Conference.</span></li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-20">↑</a></span> <span class="reference-text">Gracey, William, The experimental determination of the moments of inertia of airplanes by a simplified compound-pendulum method, <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://naca.central.cranfield.ac.uk/reports/1948/naca-tn-1629.pdf">NACA Technical Note No. 1629</a> <small><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20201231124121/http://naca.central.cranfield.ac.uk/reports/1948/naca-tn-1629.pdf">Архивирано</a> на 31&nbsp;декември 2020&nbsp;г.</small>, 1948</span></li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-21">↑</a></span> <span class="reference-text">In that situation this moment of inertia only describes how a torque applied along that axis causes a rotation about that axis. But, torques not aligned along a principal axis will also cause rotations about other axes.</span></li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-22">↑</a></span> <span class="reference-text">Walter D. Pilkey, <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3D4hEsqvplmFMC%26pg%3DPA437%26dq%3Dpolar%2Bmoment%2Bof%2Binertia%26hl%3Den%26sa%3DX%26ei%3D1vxkUbj1JIr-rQH-5oC4Bg%26ved%3D0CF4Q6AEwCTgK%23v%3Donepage%26q%3D%2522polar%2520moment%2520of%2520inertia%2522%26f%3Dfalse">Analysis and Design of Elastic Beams: Computational Methods</a>, John Wiley, 2002.</span></li> <li id="cite_note-Goldstein-23"><span class="mw-cite-backlink">↑ <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Goldstein_23-0">23,0</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Goldstein_23-1">23,1</a></sup> <sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Goldstein_23-2">23,2</a></sup></span> <span class="reference-text"><cite id="CITEREFGoldstein1980" class="citation book">Goldstein, H. (1980). <i>Classical Mechanics</i> (2. изд.). Addison-Wesley. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0-201-02918-9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0-201-02918-9"><bdi>0-201-02918-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+Mechanics&amp;rft.edition=2&amp;rft.pub=Addison-Wesley&amp;rft.date=1980&amp;rft.isbn=0-201-02918-9&amp;rft.aulast=Goldstein&amp;rft.aufirst=H.&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-24"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-24">↑</a></span> <span class="reference-text">L. D. Landau and E. M. Lifshitz, <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/Mechanics_541">Mechanics</a>, Vol 1. 2nd Ed., Pergamon Press, 1969.</span></li> <li id="cite_note-Tsai-25"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Tsai_25-0">↑</a></span> <span class="reference-text">L. W. Tsai, Robot Analysis: The mechanics of serial and parallel manipulators, John-Wiley, NY, 1999.</span></li> <li id="cite_note-syl852-26"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-syl852_26-0">↑</a></span> <span class="reference-text"><cite id="CITEREFSylvester,_J_J1852" class="citation journal">Sylvester, J J (1852). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.maths.ed.ac.uk/~aar/sylv/inertia.pdf">„A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares“</a> <span class="cs1-format">(PDF)</span>. <i>Philosophical Magazine</i>. 4th Series. <b>4</b> (23): 138–142. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/Doi?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1080%252F14786445208647087">10.1080/14786445208647087</a><span class="reference-accessdate">. Посетено на <span class="nowrap">June 27,</span> 2008</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=A+demonstration+of+the+theorem+that+every+homogeneous+quadratic+polynomial+is+reducible+by+real+orthogonal+substitutions+to+the+form+of+a+sum+of+positive+and+negative+squares&amp;rft.volume=4&amp;rft.issue=23&amp;rft.pages=138-142&amp;rft.date=1852&amp;rft_id=info%3Adoi%2F10.1080%2F14786445208647087&amp;rft.au=Sylvester%2C+J+J&amp;rft_id=http%3A%2F%2Fwww.maths.ed.ac.uk%2F~aar%2Fsylv%2Finertia.pdf&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-norm-27"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-norm_27-0">↑</a></span> <span class="reference-text"> <cite id="CITEREFNorman,_C.W.1986" class="citation book">Norman, C.W. (1986). <i>Undergraduate algebra</i>. Oxford University Press. стр.&nbsp;360–361. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/0-19-853248-2?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/0-19-853248-2"><bdi>0-19-853248-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Undergraduate+algebra&amp;rft.pages=360-361&amp;rft.pub=Oxford+University+Press&amp;rft.date=1986&amp;rft.isbn=0-19-853248-2&amp;rft.au=Norman%2C+C.W.&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-28">↑</a></span> <span class="reference-text"> <cite id="CITEREFMason2001" class="citation book">Mason, Matthew T. (2001). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DNgdeu3go014C"><i>Mechanics of Robotics Manipulation</i></a>. MIT Press. <a href="https://mk-m-wikipedia-org.translate.goog/wiki/ISBN?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="ISBN">ISBN</a>&nbsp;<a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A1%D0%BF%D0%B5%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B0:%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%B5%D0%BD%D0%98%D0%B7%D0%B2%D0%BE%D1%80/978-0-262-13396-8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Специјална:ПечатенИзвор/978-0-262-13396-8"><bdi>978-0-262-13396-8</bdi></a><span class="reference-accessdate">. Посетено на <span class="nowrap">November 21,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mechanics+of+Robotics+Manipulation&amp;rft.pub=MIT+Press&amp;rft.date=2001&amp;rft.isbn=978-0-262-13396-8&amp;rft.aulast=Mason&amp;rft.aufirst=Matthew+T.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNgdeu3go014C&amp;rfr_id=info%3Asid%2Fmk.wikipedia.org%3A%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82+%D0%BD%D0%B0+%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0" class="Z3988"></span> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r5289462"></span></li> </ol> </div> <p><br></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Надворешни_врски"><span id=".D0.9D.D0.B0.D0.B4.D0.B2.D0.BE.D1.80.D0.B5.D1.88.D0.BD.D0.B8_.D0.B2.D1.80.D1.81.D0.BA.D0.B8"></span>Надворешни врски</h2><span class="mw-editsection"> <a role="button" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=edit&amp;section=28&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Уреди го одделот „Надворешни врски“" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>уреди</span> </a> </span> </div> <section class="mf-section-11 collapsible-block" id="mf-section-11"> <table role="presentation" class="mbox-small plainlinks sistersitebox" style="background-color:var(--background-color-neutral-subtle, #f8f9fa);border:1px solid var(--border-color-base, #a2a9b1);color:inherit"> <tbody> <tr> <td class="mbox-text plainlist">„<span class="plainlinks"><a class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://commons.wikimedia.org/wiki/Category:Moments_of_inertia?uselang%3Dmk">Момент на инерција</a>“ на Ризницата&nbsp;<sup><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%A0%D0%B8%D0%B7%D0%BD%D0%B8%D1%86%D0%B0_(%D0%92%D0%B8%D0%BA%D0%B8%D0%BC%D0%B5%D0%B4%D0%B8%D1%98%D0%B0)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Ризница (Викимедија)">?</a></sup></span></td> </tr> </tbody> </table> <ul> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.lightandmatter.com/html_books/0sn/ch04/ch04.html">Angular momentum and rigid-body rotation in two and three dimensions</a> <small><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20100329113035/http://www.lightandmatter.com/html_books/0sn/ch04/ch04.html">Архивирано</a> на 29&nbsp;март 2010&nbsp;г.</small></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html">Lecture notes on rigid-body rotation and moments of inertia</a></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://kwon3d.com/theory/moi/iten.html">The moment of inertia tensor</a></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.phy.hk/wiki/englishhtm/Balance.htm">An introductory lesson on moment of inertia: keeping a vertical pole not falling down (Java simulation)</a></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://hypertextbook.com/physics/mechanics/rotational-inertia/">Tutorial on finding moments of inertia, with problems and solutions on various basic shapes</a> <small><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://web.archive.org/web/20090814083636/http://hypertextbook.com/physics/mechanics/rotational-inertia/">Архивирано</a> на 14&nbsp;август 2009&nbsp;г.</small></li> <li><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.cs.cmu.edu/afs/cs/academic/class/16741-s07/www/">Notes on mechanics of manipulation: the angular inertia tensor</a></li> </ul> <p><a href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9F%D1%80%D0%B5%D0%B4%D0%BB%D0%BE%D1%88%D0%BA%D0%B0:Tensors&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Предлошка:Tensors (страницата не постои)">Предлошка:Tensors</a></p> </section> </div><!-- MobileFormatter took 0.158 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=mobile" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Преземено од „<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mk.wikipedia.org/w/index.php?title%3D%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0%26oldid%3D5256009">https://mk.wikipedia.org/w/index.php?title=Момент_на_инерција&amp;oldid=5256009</a>“ </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://mk-m-wikipedia-org.translate.goog/w/index.php?title=%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="InternetArchiveBot" data-user-gender="unknown" data-timestamp="1724966110"> <span>Последна измена на 29 август 2024, во 22:15 ч.</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Јазици</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://af.wikipedia.org/wiki/Traagheidsmoment" title="Traagheidsmoment — африканс" lang="af" hreflang="af" data-title="Traagheidsmoment" data-language-autonym="Afrikaans" data-language-local-name="африканс" class="interlanguage-link-target"><span>Afrikaans</span></a></li> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ar.wikipedia.org/wiki/%25D8%25B9%25D8%25B2%25D9%2585_%25D8%25A7%25D9%2584%25D9%2582%25D8%25B5%25D9%2588%25D8%25B1_%25D8%25A7%25D9%2584%25D8%25B0%25D8%25A7%25D8%25AA%25D9%258A" title="عزم القصور الذاتي — арапски" lang="ar" hreflang="ar" data-title="عزم القصور الذاتي" data-language-autonym="العربية" data-language-local-name="арапски" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ast.wikipedia.org/wiki/Momentu_d%2527inercia" title="Momentu d'inercia — астурски" lang="ast" hreflang="ast" data-title="Momentu d'inercia" data-language-autonym="Asturianu" data-language-local-name="астурски" class="interlanguage-link-target"><span>Asturianu</span></a></li> <li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bn.wikipedia.org/wiki/%25E0%25A6%259C%25E0%25A6%25A1%25E0%25A6%25BC%25E0%25A6%25A4%25E0%25A6%25BE%25E0%25A6%25B0_%25E0%25A6%25AD%25E0%25A7%258D%25E0%25A6%25B0%25E0%25A6%25BE%25E0%25A6%25AE%25E0%25A6%2595" title="জড়তার ভ্রামক — бенгалски" lang="bn" hreflang="bn" data-title="জড়তার ভ্রামক" data-language-autonym="বাংলা" data-language-local-name="бенгалски" class="interlanguage-link-target"><span>বাংলা</span></a></li> <li class="interlanguage-link interwiki-be mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://be.wikipedia.org/wiki/%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B0%25D0%25BD%25D1%2582_%25D1%2596%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D1%258B%25D1%2596" title="Момант інерцыі — белоруски" lang="be" hreflang="be" data-title="Момант інерцыі" data-language-autonym="Беларуская" data-language-local-name="белоруски" class="interlanguage-link-target"><span>Беларуская</span></a></li> <li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://be-tarask.wikipedia.org/wiki/%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B0%25D0%25BD%25D1%2582_%25D1%2596%25D0%25BD%25D1%258D%25D1%2580%25D1%2586%25D1%258B%25D1%2596" title="Момант інэрцыі — Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Момант інэрцыі" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bg.wikipedia.org/wiki/%25D0%259C%25D0%25B0%25D1%2581%25D0%25BE%25D0%25B2_%25D0%25B8%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D0%25B8%25D0%25BE%25D0%25BD%25D0%25B5%25D0%25BD_%25D0%25BC%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582" title="Масов инерционен момент — бугарски" lang="bg" hreflang="bg" data-title="Масов инерционен момент" data-language-autonym="Български" data-language-local-name="бугарски" class="interlanguage-link-target"><span>Български</span></a></li> <li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bs.wikipedia.org/wiki/Moment_inercije" title="Moment inercije — босански" lang="bs" hreflang="bs" data-title="Moment inercije" data-language-autonym="Bosanski" data-language-local-name="босански" class="interlanguage-link-target"><span>Bosanski</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/Moment_d%2527in%25C3%25A8rcia" title="Moment d'inèrcia — каталонски" lang="ca" hreflang="ca" data-title="Moment d'inèrcia" data-language-autonym="Català" data-language-local-name="каталонски" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cv.wikipedia.org/wiki/%25D0%2598%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D0%25B8_%25D1%2581%25D0%25B0%25D0%25BC%25D0%25B0%25D0%25BD%25D1%2587%25C4%2595" title="Инерци саманчĕ — чувашки" lang="cv" hreflang="cv" data-title="Инерци саманчĕ" data-language-autonym="Чӑвашла" data-language-local-name="чувашки" class="interlanguage-link-target"><span>Чӑвашла</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cs.wikipedia.org/wiki/Moment_setrva%25C4%258Dnosti" title="Moment setrvačnosti — чешки" lang="cs" hreflang="cs" data-title="Moment setrvačnosti" data-language-autonym="Čeština" data-language-local-name="чешки" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-da mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://da.wikipedia.org/wiki/Inertimoment" title="Inertimoment — дански" lang="da" hreflang="da" data-title="Inertimoment" data-language-autonym="Dansk" data-language-local-name="дански" class="interlanguage-link-target"><span>Dansk</span></a></li> <li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="добра статија"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Tr%25C3%25A4gheitsmoment" title="Trägheitsmoment — германски" lang="de" hreflang="de" data-title="Trägheitsmoment" data-language-autonym="Deutsch" data-language-local-name="германски" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://et.wikipedia.org/wiki/Inertsimoment" title="Inertsimoment — естонски" lang="et" hreflang="et" data-title="Inertsimoment" data-language-autonym="Eesti" data-language-local-name="естонски" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-el mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://el.wikipedia.org/wiki/%25CE%25A1%25CE%25BF%25CF%2580%25CE%25AE_%25CE%25B1%25CE%25B4%25CF%2581%25CE%25AC%25CE%25BD%25CE%25B5%25CE%25B9%25CE%25B1%25CF%2582" title="Ροπή αδράνειας — грчки" lang="el" hreflang="el" data-title="Ροπή αδράνειας" data-language-autonym="Ελληνικά" data-language-local-name="грчки" class="interlanguage-link-target"><span>Ελληνικά</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/Moment_of_inertia" title="Moment of inertia — англиски" lang="en" hreflang="en" data-title="Moment of inertia" data-language-autonym="English" data-language-local-name="англиски" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/Momento_de_inercia" title="Momento de inercia — шпански" lang="es" hreflang="es" data-title="Momento de inercia" data-language-autonym="Español" data-language-local-name="шпански" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://eo.wikipedia.org/wiki/Inercimomanto" title="Inercimomanto — есперанто" lang="eo" hreflang="eo" data-title="Inercimomanto" data-language-autonym="Esperanto" data-language-local-name="есперанто" class="interlanguage-link-target"><span>Esperanto</span></a></li> <li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://eu.wikipedia.org/wiki/Inertzia-momentu" title="Inertzia-momentu — баскиски" lang="eu" hreflang="eu" data-title="Inertzia-momentu" data-language-autonym="Euskara" data-language-local-name="баскиски" class="interlanguage-link-target"><span>Euskara</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fa.wikipedia.org/wiki/%25DA%25AF%25D8%25B4%25D8%25AA%25D8%25A7%25D9%2588%25D8%25B1_%25D9%2584%25D8%25AE%25D8%25AA%25DB%258C" title="گشتاور لختی — персиски" lang="fa" hreflang="fa" data-title="گشتاور لختی" data-language-autonym="فارسی" data-language-local-name="персиски" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Moment_d%2527inertie" title="Moment d'inertie — француски" lang="fr" hreflang="fr" data-title="Moment d'inertie" data-language-autonym="Français" data-language-local-name="француски" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ga.wikipedia.org/wiki/M%25C3%25B3imint_na_t%25C3%25A1imhe" title="Móimint na táimhe — ирски" lang="ga" hreflang="ga" data-title="Móimint na táimhe" data-language-autonym="Gaeilge" data-language-local-name="ирски" class="interlanguage-link-target"><span>Gaeilge</span></a></li> <li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://gl.wikipedia.org/wiki/Momento_de_inercia" title="Momento de inercia — галициски" lang="gl" hreflang="gl" data-title="Momento de inercia" data-language-autonym="Galego" data-language-local-name="галициски" class="interlanguage-link-target"><span>Galego</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ko.wikipedia.org/wiki/%25EA%25B4%2580%25EC%2584%25B1_%25EB%25AA%25A8%25EB%25A9%2598%25ED%258A%25B8" title="관성 모멘트 — корејски" lang="ko" hreflang="ko" data-title="관성 모멘트" data-language-autonym="한국어" data-language-local-name="корејски" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hy.wikipedia.org/wiki/%25D4%25BB%25D5%25B6%25D5%25A5%25D6%2580%25D6%2581%25D5%25AB%25D5%25A1%25D5%25B5%25D5%25AB_%25D5%25B4%25D5%25B8%25D5%25B4%25D5%25A5%25D5%25B6%25D5%25BF" title="Իներցիայի մոմենտ — ерменски" lang="hy" hreflang="hy" data-title="Իներցիայի մոմենտ" data-language-autonym="Հայերեն" data-language-local-name="ерменски" class="interlanguage-link-target"><span>Հայերեն</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hi.wikipedia.org/wiki/%25E0%25A4%259C%25E0%25A4%25A1%25E0%25A4%25BC%25E0%25A4%25A4%25E0%25A5%258D%25E0%25A4%25B5%25E0%25A4%25BE%25E0%25A4%2598%25E0%25A5%2582%25E0%25A4%25B0%25E0%25A5%258D%25E0%25A4%25A3" title="जड़त्वाघूर्ण — хинди" lang="hi" hreflang="hi" data-title="जड़त्वाघूर्ण" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hr.wikipedia.org/wiki/Moment_inercije" title="Moment inercije — хрватски" lang="hr" hreflang="hr" data-title="Moment inercije" data-language-autonym="Hrvatski" data-language-local-name="хрватски" class="interlanguage-link-target"><span>Hrvatski</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.wikipedia.org/wiki/Momen_inersia" title="Momen inersia — индонезиски" lang="id" hreflang="id" data-title="Momen inersia" data-language-autonym="Bahasa Indonesia" data-language-local-name="индонезиски" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-is mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://is.wikipedia.org/wiki/Hverfitreg%25C3%25B0a" title="Hverfitregða — исландски" lang="is" hreflang="is" data-title="Hverfitregða" data-language-autonym="Íslenska" data-language-local-name="исландски" class="interlanguage-link-target"><span>Íslenska</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Momento_di_inerzia" title="Momento di inerzia — италијански" lang="it" hreflang="it" data-title="Momento di inerzia" data-language-autonym="Italiano" data-language-local-name="италијански" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://he.wikipedia.org/wiki/%25D7%259E%25D7%2595%25D7%259E%25D7%25A0%25D7%2598_%25D7%2594%25D7%25AA%25D7%259E%25D7%2593" title="מומנט התמד — хебрејски" lang="he" hreflang="he" data-title="מומנט התמד" data-language-autonym="עברית" data-language-local-name="хебрејски" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ka.wikipedia.org/wiki/%25E1%2583%2598%25E1%2583%259C%25E1%2583%2594%25E1%2583%25A0%25E1%2583%25AA%25E1%2583%2598%25E1%2583%2598%25E1%2583%25A1_%25E1%2583%259B%25E1%2583%259D%25E1%2583%259B%25E1%2583%2594%25E1%2583%259C%25E1%2583%25A2%25E1%2583%2598" title="ინერციის მომენტი — грузиски" lang="ka" hreflang="ka" data-title="ინერციის მომენტი" data-language-autonym="ქართული" data-language-local-name="грузиски" class="interlanguage-link-target"><span>ქართული</span></a></li> <li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://kk.wikipedia.org/wiki/%25D0%2598%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D0%25B8%25D1%258F_%25D0%25BC%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582%25D1%2596" title="Инерция моменті — казашки" lang="kk" hreflang="kk" data-title="Инерция моменті" data-language-autonym="Қазақша" data-language-local-name="казашки" class="interlanguage-link-target"><span>Қазақша</span></a></li> <li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ht.wikipedia.org/wiki/Moman_in%25C3%25A8si" title="Moman inèsi — хаитски" lang="ht" hreflang="ht" data-title="Moman inèsi" data-language-autonym="Kreyòl ayisyen" data-language-local-name="хаитски" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li> <li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://lv.wikipedia.org/wiki/Inerces_moments" title="Inerces moments — латвиски" lang="lv" hreflang="lv" data-title="Inerces moments" data-language-autonym="Latviešu" data-language-local-name="латвиски" class="interlanguage-link-target"><span>Latviešu</span></a></li> <li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://lt.wikipedia.org/wiki/Inercijos_momentas" title="Inercijos momentas — литвански" lang="lt" hreflang="lt" data-title="Inercijos momentas" data-language-autonym="Lietuvių" data-language-local-name="литвански" class="interlanguage-link-target"><span>Lietuvių</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hu.wikipedia.org/wiki/Tehetetlens%25C3%25A9gi_nyomat%25C3%25A9k" title="Tehetetlenségi nyomaték — унгарски" lang="hu" hreflang="hu" data-title="Tehetetlenségi nyomaték" data-language-autonym="Magyar" data-language-local-name="унгарски" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ml.wikipedia.org/wiki/%25E0%25B4%259C%25E0%25B4%25A2%25E0%25B4%25A4%25E0%25B5%258D%25E0%25B4%25B5%25E0%25B4%25BE%25E0%25B4%2598%25E0%25B5%2582%25E0%25B5%25BC%25E0%25B4%25A3%25E0%25B4%2582" title="ജഢത്വാഘൂർണം — малајалски" lang="ml" hreflang="ml" data-title="ജഢത്വാഘൂർണം" data-language-autonym="മലയാളം" data-language-local-name="малајалски" class="interlanguage-link-target"><span>മലയാളം</span></a></li> <li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ms.wikipedia.org/wiki/Momen_inersia" title="Momen inersia — малајски" lang="ms" hreflang="ms" data-title="Momen inersia" data-language-autonym="Bahasa Melayu" data-language-local-name="малајски" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nl.wikipedia.org/wiki/Traagheidsmoment" title="Traagheidsmoment — холандски" lang="nl" hreflang="nl" data-title="Traagheidsmoment" data-language-autonym="Nederlands" data-language-local-name="холандски" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ja.wikipedia.org/wiki/%25E6%2585%25A3%25E6%2580%25A7%25E3%2583%25A2%25E3%2583%25BC%25E3%2583%25A1%25E3%2583%25B3%25E3%2583%2588" title="慣性モーメント — јапонски" lang="ja" hreflang="ja" data-title="慣性モーメント" data-language-autonym="日本語" data-language-local-name="јапонски" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-no mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://no.wikipedia.org/wiki/Treghetsmoment" title="Treghetsmoment — норвешки букмол" lang="nb" hreflang="nb" data-title="Treghetsmoment" data-language-autonym="Norsk bokmål" data-language-local-name="норвешки букмол" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nn.wikipedia.org/wiki/Tregleiksmoment" title="Tregleiksmoment — норвешки нинорск" lang="nn" hreflang="nn" data-title="Tregleiksmoment" data-language-autonym="Norsk nynorsk" data-language-local-name="норвешки нинорск" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uz.wikipedia.org/wiki/Inersiya_momenti" title="Inersiya momenti — узбечки" lang="uz" hreflang="uz" data-title="Inersiya momenti" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="узбечки" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pl.wikipedia.org/wiki/Moment_bezw%25C5%2582adno%25C5%259Bci" title="Moment bezwładności — полски" lang="pl" hreflang="pl" data-title="Moment bezwładności" data-language-autonym="Polski" data-language-local-name="полски" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pt.wikipedia.org/wiki/Momento_de_in%25C3%25A9rcia" title="Momento de inércia — португалски" lang="pt" hreflang="pt" data-title="Momento de inércia" data-language-autonym="Português" data-language-local-name="португалски" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ro.wikipedia.org/wiki/Moment_de_iner%25C8%259Bie" title="Moment de inerție — романски" lang="ro" hreflang="ro" data-title="Moment de inerție" data-language-autonym="Română" data-language-local-name="романски" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-ru badge-Q17559452 badge-recommendedarticle mw-list-item" title="препорачана статија"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582_%25D0%25B8%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D0%25B8%25D0%25B8" title="Момент инерции — руски" lang="ru" hreflang="ru" data-title="Момент инерции" data-language-autonym="Русский" data-language-local-name="руски" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sq.wikipedia.org/wiki/Momenti_i_Inercis%25C3%25AB" title="Momenti i Inercisë — албански" lang="sq" hreflang="sq" data-title="Momenti i Inercisë" data-language-autonym="Shqip" data-language-local-name="албански" class="interlanguage-link-target"><span>Shqip</span></a></li> <li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://simple.wikipedia.org/wiki/Moment_of_inertia" title="Moment of inertia — Simple English" lang="en-simple" hreflang="en-simple" data-title="Moment of inertia" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li> <li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sk.wikipedia.org/wiki/Moment_zotrva%25C4%258Dnosti" title="Moment zotrvačnosti — словачки" lang="sk" hreflang="sk" data-title="Moment zotrvačnosti" data-language-autonym="Slovenčina" data-language-local-name="словачки" class="interlanguage-link-target"><span>Slovenčina</span></a></li> <li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sl.wikipedia.org/wiki/Vztrajnostni_moment" title="Vztrajnostni moment — словенечки" lang="sl" hreflang="sl" data-title="Vztrajnostni moment" data-language-autonym="Slovenščina" data-language-local-name="словенечки" class="interlanguage-link-target"><span>Slovenščina</span></a></li> <li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sr.wikipedia.org/wiki/%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582_%25D0%25B8%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D0%25B8%25D1%2598%25D0%25B5" title="Момент инерције — српски" lang="sr" hreflang="sr" data-title="Момент инерције" data-language-autonym="Српски / srpski" data-language-local-name="српски" class="interlanguage-link-target"><span>Српски / srpski</span></a></li> <li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sh.wikipedia.org/wiki/Moment_inercije" title="Moment inercije — српскохрватски" lang="sh" hreflang="sh" data-title="Moment inercije" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="српскохрватски" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fi.wikipedia.org/wiki/Hitausmomentti" title="Hitausmomentti — фински" lang="fi" hreflang="fi" data-title="Hitausmomentti" data-language-autonym="Suomi" data-language-local-name="фински" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/Tr%25C3%25B6ghetsmoment" title="Tröghetsmoment — шведски" lang="sv" hreflang="sv" data-title="Tröghetsmoment" data-language-autonym="Svenska" data-language-local-name="шведски" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ta.wikipedia.org/wiki/%25E0%25AE%25A8%25E0%25AE%25BF%25E0%25AE%25B2%25E0%25AF%2588%25E0%25AE%25AE%25E0%25AE%25A4%25E0%25AF%258D_%25E0%25AE%25A4%25E0%25AE%25BF%25E0%25AE%25B0%25E0%25AF%2581%25E0%25AE%25AA%25E0%25AF%258D%25E0%25AE%25AA%25E0%25AF%2581%25E0%25AE%25A4%25E0%25AF%258D%25E0%25AE%25A4%25E0%25AE%25BF%25E0%25AE%25B1%25E0%25AE%25A9%25E0%25AF%258D" title="நிலைமத் திருப்புத்திறன் — тамилски" lang="ta" hreflang="ta" data-title="நிலைமத் திருப்புத்திறன்" data-language-autonym="தமிழ்" data-language-local-name="тамилски" class="interlanguage-link-target"><span>தமிழ்</span></a></li> <li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tt.wikipedia.org/wiki/%25C4%25B0nertsi%25C3%25A4_moment%25C4%25B1" title="İnertsiä momentı — татарски" lang="tt" hreflang="tt" data-title="İnertsiä momentı" data-language-autonym="Татарча / tatarça" data-language-local-name="татарски" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li> <li class="interlanguage-link interwiki-th mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://th.wikipedia.org/wiki/%25E0%25B9%2582%25E0%25B8%25A1%25E0%25B9%2580%25E0%25B8%25A1%25E0%25B8%2599%25E0%25B8%2595%25E0%25B9%258C%25E0%25B8%2584%25E0%25B8%25A7%25E0%25B8%25B2%25E0%25B8%25A1%25E0%25B9%2580%25E0%25B8%2589%25E0%25B8%25B7%25E0%25B9%2588%25E0%25B8%25AD%25E0%25B8%25A2" title="โมเมนต์ความเฉื่อย — тајландски" lang="th" hreflang="th" data-title="โมเมนต์ความเฉื่อย" data-language-autonym="ไทย" data-language-local-name="тајландски" class="interlanguage-link-target"><span>ไทย</span></a></li> <li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tg.wikipedia.org/wiki/%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582%25D0%25B8_%25D0%25B8%25D0%25BD%25D0%25B5%25D1%2580%25D1%2581%25D0%25B8%25D1%258F" title="Моменти инерсия — таџикистански" lang="tg" hreflang="tg" data-title="Моменти инерсия" data-language-autonym="Тоҷикӣ" data-language-local-name="таџикистански" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tr.wikipedia.org/wiki/Eylemsizlik_momenti" title="Eylemsizlik momenti — турски" lang="tr" hreflang="tr" data-title="Eylemsizlik momenti" data-language-autonym="Türkçe" data-language-local-name="турски" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uk.wikipedia.org/wiki/%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582_%25D1%2596%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D1%2596%25D1%2597" title="Момент інерції — украински" lang="uk" hreflang="uk" data-title="Момент інерції" data-language-autonym="Українська" data-language-local-name="украински" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ur.wikipedia.org/wiki/%25D8%25AC%25D9%2585%25D9%2588%25D8%25AF_%25DA%25A9%25D8%25A7_%25D9%2585%25D8%25B9%25DB%258C%25D8%25A7%25D8%25B1_%25D8%25A7%25D8%25AB%25D8%25B1" title="جمود کا معیار اثر — урду" lang="ur" hreflang="ur" data-title="جمود کا معیار اثر" data-language-autonym="اردو" data-language-local-name="урду" class="interlanguage-link-target"><span>اردو</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://vi.wikipedia.org/wiki/M%25C3%25B4_men_qu%25C3%25A1n_t%25C3%25ADnh" title="Mô men quán tính — виетнамски" lang="vi" hreflang="vi" data-title="Mô men quán tính" data-language-autonym="Tiếng Việt" data-language-local-name="виетнамски" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://wuu.wikipedia.org/wiki/%25E8%25BD%25AC%25E5%258A%25A8%25E6%2583%25AF%25E9%2587%258F" title="转动惯量 — ву" lang="wuu" hreflang="wuu" data-title="转动惯量" data-language-autonym="吴语" data-language-local-name="ву" class="interlanguage-link-target"><span>吴语</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh-yue.wikipedia.org/wiki/%25E6%2585%25A3%25E6%2580%25A7%25E7%259F%25A9" title="慣性矩 — кантонски" lang="yue" hreflang="yue" data-title="慣性矩" data-language-autonym="粵語" data-language-local-name="кантонски" class="interlanguage-link-target"><span>粵語</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh.wikipedia.org/wiki/%25E8%25BD%2589%25E5%258B%2595%25E6%2585%25A3%25E9%2587%258F" title="轉動慣量 — кинески" lang="zh" hreflang="zh" data-title="轉動慣量" data-language-autonym="中文" data-language-local-name="кинески" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-sr.svg" alt="Википедија" width="125" height="23" style="width: 7.8125em; height: 1.4375em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">Последната промена на страницава е извршена на 29 август 2024 г. во 22:15 ч.</li> <li id="footer-info-copyright">Содржината е достапна под <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.mk">CC BY-SA 4.0</a> освен ако не е поинаку наведено.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Заштита на личните податоци</a></li> <li id="footer-places-about"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%97%D0%B0_%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">За Википедија</a></li> <li id="footer-places-disclaimers"><a href="https://mk-m-wikipedia-org.translate.goog/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%98%D0%B0:%D0%9E%D0%B4%D1%80%D0%B5%D0%BA%D1%83%D0%B2%D0%B0%D1%9A%D0%B5_%D0%BE%D0%B4_%D0%BE%D0%B4%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%BD%D0%BE%D1%81%D1%82?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Одрекување од одговорност</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Правилник на однесување</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Програмери</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/mk.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Согласност за колачиња</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Услови на употреба</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mk.wikipedia.org/w/index.php?title%3D%25D0%259C%25D0%25BE%25D0%25BC%25D0%25B5%25D0%25BD%25D1%2582_%25D0%25BD%25D0%25B0_%25D0%25B8%25D0%25BD%25D0%25B5%25D1%2580%25D1%2586%25D0%25B8%25D1%2598%25D0%25B0%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Обично</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-hllr7","wgBackendResponseTime":537,"wgPageParseReport":{"limitreport":{"cputime":"0.838","walltime":"1.251","ppvisitednodes":{"value":6146,"limit":1000000},"postexpandincludesize":{"value":120363,"limit":2097152},"templateargumentsize":{"value":5496,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":119373,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 583.246 1 -total"," 37.63% 219.474 1 Предлошка:Reflist"," 26.66% 155.501 19 Предлошка:Наведена_книга"," 15.65% 91.256 1 Предлошка:Изведени_SI_единици_во_класичната_механика"," 13.79% 80.457 1 Предлошка:Classical_mechanics"," 12.28% 71.627 1 Предлошка:Странична_лента_со_расклопни_списоци"," 11.62% 67.747 1 Предлошка:Navbox"," 9.18% 53.516 45 Предлошка:Math"," 8.38% 48.857 1 Предлошка:Infobox_physical_quantity"," 6.60% 38.494 1 Предлошка:Инфокутија"]},"scribunto":{"limitreport-timeusage":{"value":"0.215","limit":"10.000"},"limitreport-memusage":{"value":3618440,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-d465dfd78-2gds4","timestamp":"20241126134529","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u041c\u043e\u043c\u0435\u043d\u0442 \u043d\u0430 \u0438\u043d\u0435\u0440\u0446\u0438\u0458\u0430","url":"https:\/\/mk.wikipedia.org\/wiki\/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%B8%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0","sameAs":"http:\/\/www.wikidata.org\/entity\/Q165618","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q165618","author":{"@type":"Organization","name":"\u0423\u0447\u0435\u0441\u043d\u0438\u0446\u0438 \u043d\u0430 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0438\u043d\u0438 \u043f\u0440\u043e\u0435\u043a\u0442\u0438"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434\u0430\u0446\u0438\u0458\u0430 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0458\u0430","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2018-11-09T18:29:59Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/da\/%D0%9C%D0%B0%D1%85%D0%BE%D0%B2%D0%B8%D0%BA.jpg"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('mk', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10