CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 83 results for author: <span class="mathjax">Valla, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Valla%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Valla, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Valla%2C+T&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Valla, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Valla%2C+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Valla%2C+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Valla%2C+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.14444">arXiv:2503.14444</a> <span> [<a href="https://arxiv.org/pdf/2503.14444">pdf</a>, <a href="https://arxiv.org/format/2503.14444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetoelastic coupling in intercalated transition metal dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kar%2C+A">A. Kar</a>, <a href="/search/cond-mat?searchtype=author&query=Basak%2C+R">R. Basak</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+X">Xue Li</a>, <a href="/search/cond-mat?searchtype=author&query=Korshunov%2C+A">A. Korshunov</a>, <a href="/search/cond-mat?searchtype=author&query=Subires%2C+D">D. Subires</a>, <a href="/search/cond-mat?searchtype=author&query=Phillips%2C+J">J. Phillips</a>, <a href="/search/cond-mat?searchtype=author&query=Lim%2C+C+-">C. -Y. Lim</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+F">Feng Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+L">Linxuan Song</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lau%2C+Y">Yong-Chang Lau</a>, <a href="/search/cond-mat?searchtype=author&query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&query=Gargiani%2C+P">P. Gargiani</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Plueckthun%2C+C">C. Plueckthun</a>, <a href="/search/cond-mat?searchtype=author&query=Francoual%2C+S">S. Francoual</a>, <a href="/search/cond-mat?searchtype=author&query=Jana%2C+A">A. Jana</a>, <a href="/search/cond-mat?searchtype=author&query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">A. Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Analytis%2C+J+G">James G. Analytis</a>, <a href="/search/cond-mat?searchtype=author&query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">E. Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Bosak%2C+A">A. Bosak</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+J">J. Dai</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.14444v1-abstract-short" style="display: inline;"> The large van der Waals gap in transition metal dichalcogenides (TMDs) offers an avenue to host external metal atoms that modify the ground state of these 2D materials. Here, we experimentally and theoretically address the charge correlations in a family of intercalated TMDs. While short-range charge fluctuations develop in Co$_{1/3}$TaS$_{2}$ and Fe$_{1/3}$TaS$_{2}$, long-range charge order switc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14444v1-abstract-full').style.display = 'inline'; document.getElementById('2503.14444v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.14444v1-abstract-full" style="display: none;"> The large van der Waals gap in transition metal dichalcogenides (TMDs) offers an avenue to host external metal atoms that modify the ground state of these 2D materials. Here, we experimentally and theoretically address the charge correlations in a family of intercalated TMDs. While short-range charge fluctuations develop in Co$_{1/3}$TaS$_{2}$ and Fe$_{1/3}$TaS$_{2}$, long-range charge order switches-on in Fe$_{1/3}$NbS$_{2}$ driven by the interplay of magnetic order and lattice degrees of freedom. The magnetoelastic coupling is demonstrated in Fe$_{1/3}$NbS$_{2}$ by the enhancement of the charge modulations upon magnetic field below T$_\mathrm{N}$, although Density Functional Perturbation Theory (DFPT) calculations predict negligible electron(spin)-phonon coupling. Furthermore, we show that Co-intercalated TaS$_2$ displays a kagome-like Fermi surface, hence opening the path to engineer electronic band structures and study the entanglement of spin, charge, and spin-phonon mechanisms in the large family of intercalated TMDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14444v1-abstract-full').style.display = 'none'; document.getElementById('2503.14444v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04814">arXiv:2502.04814</a> <span> [<a href="https://arxiv.org/pdf/2502.04814">pdf</a>, <a href="https://arxiv.org/format/2502.04814">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Interplay of Kondo Physics with Incommensurate Charge Density Waves in CeTe$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Trontl%2C+V+M">Vesna Miksic Trontl</a>, <a href="/search/cond-mat?searchtype=author&query=Klimovskikh%2C+I+I">Ilya I. Klimovskikh</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+A+K">Asish K. Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Vyalikh%2C+D+V">Denis V. Vyalikh</a>, <a href="/search/cond-mat?searchtype=author&query=Louat%2C+A">Alex Louat</a>, <a href="/search/cond-mat?searchtype=author&query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&query=Petrovic%2C+C">Cedomir Petrovic</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04814v1-abstract-short" style="display: inline;"> CeTe$_3$ is a 2-dimensional (2D) Van der Waals (VdW) material with incommensurate charge density waves (CDW), extremely high transition temperature ($T_{CDW}$) and a large momentum-dependent CDW gap that leaves a significant portion of the Fermi surface intact. It is also considered to be a weak Kondo system, a property unexpected for a material with incommensurate CDW, where each atomic site is s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04814v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04814v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04814v1-abstract-full" style="display: none;"> CeTe$_3$ is a 2-dimensional (2D) Van der Waals (VdW) material with incommensurate charge density waves (CDW), extremely high transition temperature ($T_{CDW}$) and a large momentum-dependent CDW gap that leaves a significant portion of the Fermi surface intact. It is also considered to be a weak Kondo system, a property unexpected for a material with incommensurate CDW, where each atomic site is slightly different. Here, we study the properties of the CDW state in several RTe$_3$ (R is rare earth) materials and examine the hybridization of itinerant states with the localized Ce $4f$ multiplet in CeTe$_3$ by using angle resolved photoemission spectroscopy (ARPES). We find that the renormalization of the itinerant states originating from the hybridization with the localized $4f$ states at $-260$ meV extends to the Fermi level. This, with remnants of another localized state at the Fermi level, supports the characterization of CeTe$_3$ as a weak Kondo material. Furthermore, we uncover a $k$-dependence of the hybridization with the states $-260$ meV, indicating that similar effect could be the reason for discrepancy between the heavy masses in specific heat and light ones in Shubnikov de Haas oscillations observed in other heavy fermion materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04814v1-abstract-full').style.display = 'none'; document.getElementById('2502.04814v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15111">arXiv:2409.15111</a> <span> [<a href="https://arxiv.org/pdf/2409.15111">pdf</a>, <a href="https://arxiv.org/format/2409.15111">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00661-7">10.1038/s43246-024-00661-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Density Waves and the Effects of Uniaxial Strain on the Electronic Structure of 2H-NbSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Klimovskikh%2C+I+I">Ilya I. Klimovskikh</a>, <a href="/search/cond-mat?searchtype=author&query=Berger%2C+H">Helmuth Berger</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15111v1-abstract-short" style="display: inline;"> Interplay of superconductivity and density wave orders has been at the forefront of research of correlated electronic phases for a long time. 2H-NbSe$_2$ is considered to be a prototype system for studying this interplay, where the balance between the two orders was proven to be sensitive to band filling and pressure. However, the origin of charge density wave in this material is still unresolved.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15111v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15111v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15111v1-abstract-full" style="display: none;"> Interplay of superconductivity and density wave orders has been at the forefront of research of correlated electronic phases for a long time. 2H-NbSe$_2$ is considered to be a prototype system for studying this interplay, where the balance between the two orders was proven to be sensitive to band filling and pressure. However, the origin of charge density wave in this material is still unresolved. Here, by using angle-resolved photoemission spectroscopy, we revisit the charge density wave order and study the effects of uniaxial strain on the electronic structure of 2H-NbSe$_2$. Our results indicate previously undetected signatures of charge density waves on the Fermi surface. The application of small amount of uniaxial strain induces substantial changes in the electronic structure and lowers its symmetry. This, and the altered lattice should affect both the charge density wave phase and superconductivity and should be observable in the macroscopic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15111v1-abstract-full').style.display = 'none'; document.getElementById('2409.15111v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Mater 5, 208 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.11212">arXiv:2406.11212</a> <span> [<a href="https://arxiv.org/pdf/2406.11212">pdf</a>, <a href="https://arxiv.org/format/2406.11212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-48883-0">10.1038/s41467-024-48883-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-Energy Electronic Structure in the Unconventional Charge-Ordered State of ScV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+X">Xiong Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Seewald%2C+E">Eric Seewald</a>, <a href="/search/cond-mat?searchtype=author&query=Ritz%2C+E">Ethan Ritz</a>, <a href="/search/cond-mat?searchtype=author&query=Pakhira%2C+S">Santanu Pakhira</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+D">Dihao Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Turkel%2C+S">Simon Turkel</a>, <a href="/search/cond-mat?searchtype=author&query=Shabani%2C+S">Sara Shabani</a>, <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">Turgut Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Dean%2C+C+R">Cory R. Dean</a>, <a href="/search/cond-mat?searchtype=author&query=Johnston%2C+D+C">David C. Johnston</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Birol%2C+T">Turan Birol</a>, <a href="/search/cond-mat?searchtype=author&query=Basov%2C+D+N">Dmitri N. Basov</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">Rafael M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Pasupathy%2C+A+N">Abhay N. Pasupathy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.11212v1-abstract-short" style="display: inline;"> Kagome vanadates {\it A}V$_3$Sb$_5$ display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScV$_6$Sn$_6$, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved phot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11212v1-abstract-full').style.display = 'inline'; document.getElementById('2406.11212v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.11212v1-abstract-full" style="display: none;"> Kagome vanadates {\it A}V$_3$Sb$_5$ display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScV$_6$Sn$_6$, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The ARPES measurements show minimal changes to the electronic structure after the onset of CDW. However, STM quasiparticle interference (QPI) measurements show strong dispersing features related to the CDW ordering vectors. A plausible explanation is the presence of a strong momentum-dependent scattering potential peaked at the CDW wavevector, associated with the existence of competing CDW instabilities. Our STM results further indicate that the bands most affected by the CDW are near vHS, analogous to the case of {\it A}V$_3$Sb$_5$ despite very different CDW wavevectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.11212v1-abstract-full').style.display = 'none'; document.getElementById('2406.11212v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 5008 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18519">arXiv:2405.18519</a> <span> [<a href="https://arxiv.org/pdf/2405.18519">pdf</a>, <a href="https://arxiv.org/format/2405.18519">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.224507">10.1103/PhysRevB.109.224507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shallow core levels, or how to determine the doping and $T_c$ of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ and Bi$_{2}$Sr$_2$CuO$_{6+未}$ without cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Pervan%2C+P">Petar Pervan</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">Ivo Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zebin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">Genda D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18519v1-abstract-short" style="display: inline;"> Determining the doping level in high-temperature cuprate superconductors is crucial for understanding the origin of superconductivity in these materials and for unlocking their full potential. However, accurately determining the doping level remains a significant challenge due to a complex interplay of factors and limitations in various measurement techniques. In particular, in Bi$_{2}$Sr$_2$CuO… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18519v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18519v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18519v1-abstract-full" style="display: none;"> Determining the doping level in high-temperature cuprate superconductors is crucial for understanding the origin of superconductivity in these materials and for unlocking their full potential. However, accurately determining the doping level remains a significant challenge due to a complex interplay of factors and limitations in various measurement techniques. In particular, in Bi$_{2}$Sr$_2$CuO$_{6+未}$ and Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, where the mobile carriers are introduced by non-stoichiometric oxygen $未$, the determination has been extremely problematic. Here, we study the doping dependence of the electronic structure of these materials in angle-resolved photoemission and find that both the doping level, $p$, and the superconducting transition temeprature, $T_c$ can be precisely determined from the binding energy of the Bi $5d$ core-levels. The measurements can be performed at room temperature, enabling the determination of $p$ and $T_c$ without cooling the samples. This should be very helpful for further studies of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18519v1-abstract-full').style.display = 'none'; document.getElementById('2405.18519v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. arXiv admin note: text overlap with arXiv:1811.05425</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 224507 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12287">arXiv:2403.12287</a> <span> [<a href="https://arxiv.org/pdf/2403.12287">pdf</a>, <a href="https://arxiv.org/format/2403.12287">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.mtadv.2024.100511">10.1016/j.mtadv.2024.100511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacing Quantum Spin Hall and Quantum Anomalous Hall insulators: Bi bilayer on MnBi$_2$Te$_4$-family materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Klimovskikh%2C+I+I">I. I. Klimovskikh</a>, <a href="/search/cond-mat?searchtype=author&query=Eremeev%2C+S+V">S. V. Eremeev</a>, <a href="/search/cond-mat?searchtype=author&query=Estyunin%2C+D+A">D. A. Estyunin</a>, <a href="/search/cond-mat?searchtype=author&query=Filnov%2C+S+O">S. O. Filnov</a>, <a href="/search/cond-mat?searchtype=author&query=Shimada%2C+K">K. Shimada</a>, <a href="/search/cond-mat?searchtype=author&query=Golyashov%2C+V+A">V. A. Golyashov</a>, <a href="/search/cond-mat?searchtype=author&query=Tereshchenko%2C+O+E">O. E. Tereshchenko</a>, <a href="/search/cond-mat?searchtype=author&query=Kokh%2C+K+A">K. A. Kokh</a>, <a href="/search/cond-mat?searchtype=author&query=Frolov%2C+A+S">A. S. Frolov</a>, <a href="/search/cond-mat?searchtype=author&query=Sergeev%2C+A+I">A. I. Sergeev</a>, <a href="/search/cond-mat?searchtype=author&query=Stolyarov%2C+V+S">V. S. Stolyarov</a>, <a href="/search/cond-mat?searchtype=author&query=Trontl%2C+V+M">V. Miksic Trontl</a>, <a href="/search/cond-mat?searchtype=author&query=Petaccia%2C+L">L. Petaccia</a>, <a href="/search/cond-mat?searchtype=author&query=Di+Santo%2C+G">G. Di Santo</a>, <a href="/search/cond-mat?searchtype=author&query=Tallarida%2C+M">M. Tallarida</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+J">J. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Shikin%2C+A+M">A. M. Shikin</a>, <a href="/search/cond-mat?searchtype=author&query=Chulkov%2C+E+V">E. V. Chulkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12287v1-abstract-short" style="display: inline;"> Meeting of non-trivial topology with magnetism results in novel phases of matter, such as Quantum Anomalous Hall (QAH) or axion insulator phases. Even more exotic states with high and tunable Chern numbers are expected at the contact of intrinsic magnetic topological insulators (IMTIs) and 2D topological insulators (TIs).Here we synthesize a heterostructures composed of 2D TI and 3D IMTIs, specifi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12287v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12287v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12287v1-abstract-full" style="display: none;"> Meeting of non-trivial topology with magnetism results in novel phases of matter, such as Quantum Anomalous Hall (QAH) or axion insulator phases. Even more exotic states with high and tunable Chern numbers are expected at the contact of intrinsic magnetic topological insulators (IMTIs) and 2D topological insulators (TIs).Here we synthesize a heterostructures composed of 2D TI and 3D IMTIs, specifically of bismuth bilayer on top of MnBi$_2$Te$_4$-family of compounds and study their electronic properties by means of angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT). The epitaxial interface is characterized by hybridized Bi and IMTI electronic states. The Bi bilayer-derived states on different members of MnBi$_2$Te$_4$-family of materials are similar, except in the region of mixing with the topological surface states of the substrate. In that region, the new, substrate dependent interface Dirac state is observed. Our \emph{ab initio} calculations show rich interface phases with emergence of exchange split 1D edge states, making the Bi/IMTI heterostructures promising playground for observation of novel members in the family of quantum Hall effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12287v1-abstract-full').style.display = 'none'; document.getElementById('2403.12287v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10490">arXiv:2402.10490</a> <span> [<a href="https://arxiv.org/pdf/2402.10490">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0201591">10.1063/5.0201591 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure-property relationship in an Al0.5TiZrPdCuNi high-entropy alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Babi%C4%87%2C+E">Emil Babi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Figueroa%2C+I+A">Ignacio A. Figueroa</a>, <a href="/search/cond-mat?searchtype=author&query=Trontl%2C+V+M">Vesna Mik拧i膰 Trontl</a>, <a href="/search/cond-mat?searchtype=author&query=Pervan%2C+P">Petar Pervan</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">Ivo Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Risti%C4%87%2C+R">Ramir Risti膰</a>, <a href="/search/cond-mat?searchtype=author&query=Feti%C4%87%2C+A+S">Amra Sal膷inovi膰 Feti膰</a>, <a href="/search/cond-mat?searchtype=author&query=Skoko%2C+%C5%BD">沤eljko Skoko</a>, <a href="/search/cond-mat?searchtype=author&query=Stare%C5%A1ini%C4%87%2C+D">Damir Stare拧ini膰</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Zadro%2C+K">Kre拧o Zadro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10490v1-abstract-short" style="display: inline;"> The valence band (VB) structure of an Al0.5TiZrPdCuNi high-entropy alloy (HEA) obtained from X-ray photoelectron spectroscopy has been compared to that recently calculated by Odbadrakh et al, 2019. Both experimental and theoretical VBs show split-band structures typical of alloys composed from the early (TE) and late (TL) transition metals. Accordingly, several properties of this alloy (both in th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10490v1-abstract-full').style.display = 'inline'; document.getElementById('2402.10490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10490v1-abstract-full" style="display: none;"> The valence band (VB) structure of an Al0.5TiZrPdCuNi high-entropy alloy (HEA) obtained from X-ray photoelectron spectroscopy has been compared to that recently calculated by Odbadrakh et al, 2019. Both experimental and theoretical VBs show split-band structures typical of alloys composed from the early (TE) and late (TL) transition metals. Accordingly, several properties of this alloy (both in the glassy and crystalline state) associated with the electronic structure (ES), are compared with those of similar TE-TL alloys. The comparison shows in addition to the usual dependence on the total TL content strong effect of alloying with Al on the density of states at the Fermi level, N(EF) and on the magnetic susceptibility of Al0.5TiZrPdCuNi HEA, which is like that of conventional glassy alloys, such as Zr-Cu-Al ones. Despite some similarity between the shapes of theoretical and corresponding experimental VBs there are significant quantitative differences between them which should be taken into account in any future studies of ES in HEAs and other compositionally complex alloys (CCA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10490v1-abstract-full').style.display = 'none'; document.getElementById('2402.10490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17143">arXiv:2312.17143</a> <span> [<a href="https://arxiv.org/pdf/2312.17143">pdf</a>, <a href="https://arxiv.org/format/2312.17143">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245156">10.1103/PhysRevB.108.245156 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of Dirac fermion and charge density wave in square-net-based semimetal LaAuSb2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xueliang Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+Z">Zhixiang Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+C">Chaoyue Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Fu%2C+H">Huixia Fu</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Petrovic%2C+C">Cedomir Petrovic</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+A">Aifeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17143v1-abstract-short" style="display: inline;"> We report a comprehensive study of magnetotransport properties, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations on self-flux grown LaAuSb$_2$ single crystals. Resistivity and Hall measurements reveal a charge density wave (CDW) transition at 77 K. MR and de Haas-Van Alphen (dHvA) measurements indicate that the transport properties of LaAuSb$_2$ a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17143v1-abstract-full').style.display = 'inline'; document.getElementById('2312.17143v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17143v1-abstract-full" style="display: none;"> We report a comprehensive study of magnetotransport properties, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations on self-flux grown LaAuSb$_2$ single crystals. Resistivity and Hall measurements reveal a charge density wave (CDW) transition at 77 K. MR and de Haas-Van Alphen (dHvA) measurements indicate that the transport properties of LaAuSb$_2$ are dominated by Dirac fermions that arise from Sb square nets. ARPES measurements and DFT calculations reveal an electronic structure with a common feature of the square-net-based topological semimetals, which is in good agreement with the magnetotransport properties. Our results indicate the coexistence of CDW and Dirac fermion in LaAuSb$_2$, both of which are linked to the bands arising from the Sb-square net, suggesting that the square net could serve as a structural motif to explore various electronic orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17143v1-abstract-full').style.display = 'none'; document.getElementById('2312.17143v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 245156 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14415">arXiv:2312.14415</a> <span> [<a href="https://arxiv.org/pdf/2312.14415">pdf</a>, <a href="https://arxiv.org/format/2312.14415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electronic structure, magnetic and transport properties of antiferromagnetic Weyl semimetal GdAlSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Laha%2C+A">Antu Laha</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Aryal%2C+N">Niraj Aryal</a>, <a href="/search/cond-mat?searchtype=author&query=Bozin%2C+E+S">Emil S. Bozin</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+J">Juntao Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Paone%2C+S">Sarah Paone</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Abeykoon%2C+M">Milinda Abeykoon</a>, <a href="/search/cond-mat?searchtype=author&query=Jing%2C+R">Ran Jing</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+W">Weiguo Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Pasupathy%2C+A+N">Abhay N. Pasupathy</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+M">Mengkun Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14415v1-abstract-short" style="display: inline;"> We report the topological electronic structure, magnetic, and magnetotransport properties of a noncentrosymmetric compound GdAlSi. Magnetic susceptibility shows an antiferromagnetic transition at $T_\mathrm{N}$ = 32 K. In-plane isothermal magnetization exhibits an unusual hysteresis behavior at higher magnetic field, rather than near zero field. Moreover, the hysteresis behavior is asymmetric unde… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14415v1-abstract-full').style.display = 'inline'; document.getElementById('2312.14415v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14415v1-abstract-full" style="display: none;"> We report the topological electronic structure, magnetic, and magnetotransport properties of a noncentrosymmetric compound GdAlSi. Magnetic susceptibility shows an antiferromagnetic transition at $T_\mathrm{N}$ = 32 K. In-plane isothermal magnetization exhibits an unusual hysteresis behavior at higher magnetic field, rather than near zero field. Moreover, the hysteresis behavior is asymmetric under positive and negative magnetic fields. First-principles calculations were performed on various magnetic configurations, revealing that the antiferromagnetic state is the ground state, and the spiral antiferromagnetic state is a close competing state. The calculations also reveal that GdAlSi hosts multiple Weyl points near the Fermi energy. The band structure measured by angle-resolved photoemission spectroscopy (ARPES) shows relatively good agreement with the theory, with the possibility of Weyl nodes slightly above the Fermi energy. Within the magnetic ordered state, we observe an exceptionally large anomalous Hall conductivity (AHC) of ~ 1310 $惟^{-1}$cm$^{-1}$ at 2 K. Interestingly, the anomalous Hall effect persists up to room temperature with a significant value of AHC (~ 155 $惟^{-1}$cm$^{-1}$). Our analysis indicates that the large AHC originates from the Berry curvature associated with the multiple pairs of Weyl points near Fermi energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14415v1-abstract-full').style.display = 'none'; document.getElementById('2312.14415v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, Accepted for publication in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09368">arXiv:2311.09368</a> <span> [<a href="https://arxiv.org/pdf/2311.09368">pdf</a>, <a href="https://arxiv.org/format/2311.09368">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.205157">10.1103/PhysRevB.108.205157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Possible Topological Superconductivity in a Topological Crystalline Insulator (Pb$_{1-x}$Sn$_x$)$_{1-y}$In$_y$Te </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">T. Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Sinkovic%2C+B">B. Sinkovic</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09368v1-abstract-short" style="display: inline;"> Superconductivity in topological insulators is expected to show very unconventional features such as $p+ip$ order parameter, Majorana fermions etc. However, the intrinsic superconductivity has been observed in a very limited number of materials in which the pairing symmetry is still a matter of debate. Here, we study the topological crystalline insulator (Pb$_{1-x}$Sn$_x$)$_{1-y}$In$_y$Te, where a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09368v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09368v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09368v1-abstract-full" style="display: none;"> Superconductivity in topological insulators is expected to show very unconventional features such as $p+ip$ order parameter, Majorana fermions etc. However, the intrinsic superconductivity has been observed in a very limited number of materials in which the pairing symmetry is still a matter of debate. Here, we study the topological crystalline insulator (Pb$_{1-x}$Sn$_x$)$_{1-y}$In$_y$Te, where a peculiar insulator to superconductor transition was previously reported near the gap inversion transition, when the system is nearly a 3-dimensional Dirac semimetal. Both the existence of superconductivity near the 3-dimensional Dirac semimetal and the occurrence of insulator to superconductor transition in an isotropic material is highly unusual. We suggest that the observed phenomena are related to an intrinsic instability of a 3-dimensional Dirac semimetal state in (Pb$_{1-x}$Sn$_x$)$_{1-y}$In$_y$Te and "flattening" of the bulk valence and conduction bands as they acquire a Mexican hat-like dispersion on the inverted side of the phase diagram. This favors the pairing instability if the chemical potential is pinned to these flat regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09368v1-abstract-full').style.display = 'none'; document.getElementById('2311.09368v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 205157 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.12109">arXiv:2209.12109</a> <span> [<a href="https://arxiv.org/pdf/2209.12109">pdf</a>, <a href="https://arxiv.org/format/2209.12109">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.245131">10.1103/PhysRevB.106.245131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic and magnetic properties of the topological semimetal SmMg$_2$Bi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Pakhira%2C+S">Santanu Pakhira</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+T">Tufan Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">T. Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Tsujikawa%2C+M">Masahito Tsujikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Shirai%2C+M">Masafumi Shirai</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">E. Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Johnston%2C+D+C">D. C. Johnston</a>, <a href="/search/cond-mat?searchtype=author&query=Pasupathy%2C+A+N">Abhay N. Pasupathy</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.12109v2-abstract-short" style="display: inline;"> Dirac semimetals show nontrivial physical properties and can host exotic quantum states like Weyl semimetals and topological insulators under suitable external conditions. Here, by combining angle-resolved photoemission spectroscopy measurements (ARPES) and first-principle calculations, we demonstrate that Zintl-phase compound SmMg$_2$Bi$_2$ belongs to the close proximity to a topological Dirac se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12109v2-abstract-full').style.display = 'inline'; document.getElementById('2209.12109v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.12109v2-abstract-full" style="display: none;"> Dirac semimetals show nontrivial physical properties and can host exotic quantum states like Weyl semimetals and topological insulators under suitable external conditions. Here, by combining angle-resolved photoemission spectroscopy measurements (ARPES) and first-principle calculations, we demonstrate that Zintl-phase compound SmMg$_2$Bi$_2$ belongs to the close proximity to a topological Dirac semimetallic state. ARPES results show a Dirac-like band crossing at the zone-center near the Fermi level ($E_\mathrm {F}$) which is further confirmed by first-principle calculations. Theoretical studies also reveal that SmMg$_2$Bi$_2$ belongs to a $Z_2$ topological class and hosts spin-polarized states around the $E_\mathrm {F}$. Zintl's theory predicts that the valence state of Sm in this material should be Sm$^{2+}$, however we detect many Sm-4$f$ multiplet states (flat-bands) whose energy positions suggest the presence of both Sm$^{2+}$ and Sm$^{3+}$. It is also evident that these flat-bands and other dispersive states are strongly hybridized when they cross each other. Due to the presence of Sm$^{3+}$ ions, the temperature dependence of magnetic susceptibility $蠂(T)$ shows Curie-Weiss-like contribution in the low temperature region, in addition to the Van Vleck-like behaviour expected for the Sm$^{2+}$ ions. The present study will help in better understanding of the electronic structure, magnetism and transport properties of related materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12109v2-abstract-full').style.display = 'none'; document.getElementById('2209.12109v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 245131 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03678">arXiv:2205.03678</a> <span> [<a href="https://arxiv.org/pdf/2205.03678">pdf</a>, <a href="https://arxiv.org/format/2205.03678">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-022-00474-2">10.1038/s41535-022-00474-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological electronic structure of YbMg$_2$Bi$_2$ and CaMg$_2$Bi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Roy%2C+T">Tufan Roy</a>, <a href="/search/cond-mat?searchtype=author&query=Pakhira%2C+S">Santanu Pakhira</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Ze-Bin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Tsujikawa%2C+M">Masahito Tsujikawa</a>, <a href="/search/cond-mat?searchtype=author&query=Shirai%2C+M">Masafumi Shirai</a>, <a href="/search/cond-mat?searchtype=author&query=Johnston%2C+D+C">D. C. Johnston</a>, <a href="/search/cond-mat?searchtype=author&query=Pasupathy%2C+A+N">Abhay N. Pasupathy</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03678v1-abstract-short" style="display: inline;"> Zintl compounds have been extensively studied for their outstanding thermoelectric properties, but their electronic structure remains largely unexplored. Here, we present a detailed investigation of the electronic structure of the isostructural thermopower materials YbMg$_2$Bi$_2$ and CaMg$_2$Bi$_2$ using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). The AR… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03678v1-abstract-full').style.display = 'inline'; document.getElementById('2205.03678v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03678v1-abstract-full" style="display: none;"> Zintl compounds have been extensively studied for their outstanding thermoelectric properties, but their electronic structure remains largely unexplored. Here, we present a detailed investigation of the electronic structure of the isostructural thermopower materials YbMg$_2$Bi$_2$ and CaMg$_2$Bi$_2$ using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT). The ARPES results show a significantly smaller Fermi surface and Fermi velocity in CaMg$_2$Bi$_2$ than in YbMg$_2$Bi$_2$. Our ARPES results also reveal that in the case of YbMg$_2$Bi$_2$, Yb-4$f$ states reside well below the Fermi level and likely have a negligible impact on transport properties. To properly model the position of 4$f$-states, as well as the overall electronic structure, a Hubbard $U$ at the Yb sites and spin-orbit coupling (SOC) have to be included in the DFT calculations. Interestingly, the theoretical results reveal that both materials belong to a $Z_2$ topological class and host robust topological surface states around $E_\mathrm {F}$. Due to the intrinsic hole doping, the topological states reside above the Fermi level, inaccessible by ARPES. Our results also suggest that in addition to SOC, vacancies and the resulting hole doping play an important role in the transport properties of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03678v1-abstract-full').style.display = 'none'; document.getElementById('2205.03678v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj quantum materials 7, 67 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13943">arXiv:2106.13943</a> <span> [<a href="https://arxiv.org/pdf/2106.13943">pdf</a>, <a href="https://arxiv.org/format/2106.13943">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsami.1c06821">10.1021/acsami.1c06821 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum size effects, multiple Dirac cones and edge states in ultrathin Bi(110) films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13943v1-abstract-short" style="display: inline;"> The presence of inherently strong spin-orbit coupling in bismuth, its unique layer-dependent band topology and high carrier mobility make it an interesting system for both fundamental studies and applications. Theoretically, it has been suggested that strong quantum size effects should be present in the Bi(110) films, with the possibility of Dirac fermion states in the odd-bilayer (BL) films, orig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13943v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13943v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13943v1-abstract-full" style="display: none;"> The presence of inherently strong spin-orbit coupling in bismuth, its unique layer-dependent band topology and high carrier mobility make it an interesting system for both fundamental studies and applications. Theoretically, it has been suggested that strong quantum size effects should be present in the Bi(110) films, with the possibility of Dirac fermion states in the odd-bilayer (BL) films, originating from dangling $p_z$ orbitals and quantum-spin hall (QSH) states in the even-bilayer films. However, the experimental verification of these claims has been lacking. Here, we study the electronic structure of Bi(110) films grown on a high-$T_c$ superconductor, Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) using angle-resolved photoemission spectroscopy (ARPES). We observe an oscillatory behavior of electronic structure with the film thickness and identify the Dirac-states in the odd-bilayer films, consistent with the theoretical predictions. In the even-bilayer films, we find another Dirac state that was predicted to play a crucial role in the QSH effect. In the low thickness limit, we observe several extremely one-dimensional states, probably originating from the edge-states of Bi(110) islands. Our results provide a much needed experimental insight into the electronic and structural properties of Bi(110) films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13943v1-abstract-full').style.display = 'none'; document.getElementById('2106.13943v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Mater. Interfaces 2021, 13, 33627-33634 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.10303">arXiv:2101.10303</a> <span> [<a href="https://arxiv.org/pdf/2101.10303">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.124801">10.1103/PhysRevMaterials.4.124801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Homogeneous superconducting gap in DBCO synthesized by oxide molecular beam epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Ze-Bin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Putzky%2C+D">Daniel Putzky</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+S">Shize Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Du%2C+Z">Zengyi Du</a>, <a href="/search/cond-mat?searchtype=author&query=Joo%2C+S+H">Sang Hyun Joo</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jinho Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Logvenov%2C+G">Gennady Logvenov</a>, <a href="/search/cond-mat?searchtype=author&query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&query=Fujita%2C+K">Kazuhiro Fujita</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Bozovic%2C+I">Ivan Bozovic</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">Ilya K. Drozdov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.10303v1-abstract-short" style="display: inline;"> Much of what is known about high-temperature cuprate superconductors stems from studies based on two surface analytical tools, angle-resolved photoemission spectroscopy (ARPES) and spectroscopic imaging scanning tunneling microscopy (SI-STM). A question of general interest is whether and when the surface properties probed by ARPES and SI-STM are representative of the intrinsic properties of bulk m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10303v1-abstract-full').style.display = 'inline'; document.getElementById('2101.10303v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.10303v1-abstract-full" style="display: none;"> Much of what is known about high-temperature cuprate superconductors stems from studies based on two surface analytical tools, angle-resolved photoemission spectroscopy (ARPES) and spectroscopic imaging scanning tunneling microscopy (SI-STM). A question of general interest is whether and when the surface properties probed by ARPES and SI-STM are representative of the intrinsic properties of bulk materials. We find this question is prominent in thin films of a rarely studied cuprate DBCO. We synthesize DBCO films by oxide molecular beam epitaxy and study them by in situ ARPES and SI-STM. Both ARPES and SI-STM show that the surface DBCO layer is different from the bulk of the film. It is heavily underdoped, while the doping level in the bulk is close to optimal doping evidenced by bulk-sensitive mutual inductance measurements. ARPES shows the typical electronic structure of a heavily underdoped CuO2 plane and two sets of one-dimensional bands originating from the CuO chains with one of them gapped. SI-STM reveals two different energy scales in the local density of states, with one corresponding to the superconductivity and the other one to the pseudogap. While the pseudogap shows large variations over the length scale of a few nanometers, the superconducting gap is very homogeneous. This indicates that the pseudogap and superconductivity are of different origins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10303v1-abstract-full').style.display = 'none'; document.getElementById('2101.10303v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12947">arXiv:2012.12947</a> <span> [<a href="https://arxiv.org/pdf/2012.12947">pdf</a>, <a href="https://arxiv.org/format/2012.12947">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/134/17002">10.1209/0295-5075/134/17002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hole-Like Fermi Surface in the Overdoped Non-Superconducting Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Pervan%2C+P">P. Pervan</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Zebin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12947v2-abstract-short" style="display: inline;"> In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12947v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12947v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12947v2-abstract-full" style="display: none;"> In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materials, that point seems to coincide with a Lifshitz transition, where the Fermi surface changes from the hole-like centered at ($蟺, 蟺$) to the electron-like, centered at the $螕$ point causing a loss of large momentum anti-ferromagnetic fluctuations. Here, we study the doping dependence of the electronic structure of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+未}$ in angle-resolved photoemission and find that the superconductivity vanishes at lower doping than at which the Lifshitz transition occurs. This requires a more detailed re-examination of a spin-fluctuation scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12947v2-abstract-full').style.display = 'none'; document.getElementById('2012.12947v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL 134 17002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05884">arXiv:2012.05884</a> <span> [<a href="https://arxiv.org/pdf/2012.05884">pdf</a>, <a href="https://arxiv.org/format/2012.05884">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0039059">10.1063/5.0039059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of a Dirac gap in ferromagnetic Cr$_x$(Bi$_{0.1}$Sb$_{0.9}$)$_{2-x}$Te$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C+K">Chung Koo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05884v1-abstract-short" style="display: inline;"> Magnetism breaks the time reversal symmetry expected to open a Dirac gap in 3D topological insulators that consequently leads to quantum anomalous Hall effect. The most common approach of inducing ferromagnetic state is by doping magnetic 3$d$ elements into bulk of 3D topological insulators. In Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$, the material where the quantum anomalous Hall effect w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05884v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05884v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05884v1-abstract-full" style="display: none;"> Magnetism breaks the time reversal symmetry expected to open a Dirac gap in 3D topological insulators that consequently leads to quantum anomalous Hall effect. The most common approach of inducing ferromagnetic state is by doping magnetic 3$d$ elements into bulk of 3D topological insulators. In Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$, the material where the quantum anomalous Hall effect was initially discovered at temperatures much lower than the ferromagnetic transition, $T_C$, the scanning tunneling microscopy studies have reported a large Dirac gap $\sim20-100$ meV. The discrepancy between the low temperature of quantum anomalous Hall effect ($\ll T_C$) and large spectroscopic Dirac gaps ($\gg T_C$) found in magnetic topological insulators remains puzzling. Here, we used angle-resolved photoemission spectroscopy to study the surface electronic structure of pristine and potassium doped surface of Cr$_{0.15}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.85}$Te$_3$. Upon potassium deposition, the $p$-type surface state of pristine sample was turned into an $n$-type, allowing spectroscopic observation of Dirac point. We find a gapless surface state, with no evidence of a large Dirac gap reported in tunneling studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05884v1-abstract-full').style.display = 'none'; document.getElementById('2012.05884v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Applied Physics 129, 083902 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14832">arXiv:2010.14832</a> <span> [<a href="https://arxiv.org/pdf/2010.14832">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/133/27002">10.1209/0295-5075/133/27002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi hole bands and quasi 2-dimensionality in Cr2Ge2Te6 studied by angle-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">T. Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Geilhufe%2C+R+M">R. M. Geilhufe</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Fernando%2C+G+W">G. W. Fernando</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">E. Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Sinkovic%2C+B">B. Sinkovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14832v2-abstract-short" style="display: inline;"> In the present work, we investigate the electronic structure of the two-dimensional (2D) ferromagnet Cr2Ge2Te6 by photoemission spectroscopy and ab initio calculations. Our results demonstrate the presence of multiple hole-type bands in the vicinity of the Fermi level indicating that the material can support high electrical conductivity by manipulating the chemical potential. Also, our photon ener… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14832v2-abstract-full').style.display = 'inline'; document.getElementById('2010.14832v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14832v2-abstract-full" style="display: none;"> In the present work, we investigate the electronic structure of the two-dimensional (2D) ferromagnet Cr2Ge2Te6 by photoemission spectroscopy and ab initio calculations. Our results demonstrate the presence of multiple hole-type bands in the vicinity of the Fermi level indicating that the material can support high electrical conductivity by manipulating the chemical potential. Also, our photon energy dependent angle resolved photoemission experiment revealed that several of the hole bands exhibit weak dispersion with varied incident photon energy providing experimental signature for its two dimensionality. These findings can pave the way for further studies towards the application of Cr2Ge2Te6 in electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14832v2-abstract-full').style.display = 'none'; document.getElementById('2010.14832v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12897">arXiv:2008.12897</a> <span> [<a href="https://arxiv.org/pdf/2008.12897">pdf</a>, <a href="https://arxiv.org/format/2008.12897">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-72487-5">10.1038/s41598-020-72487-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Valence band electronic structure of the van der Waals ferromagnetic insulators: VI$_3$ and CrI$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Petrovic%2C+C">C. Petrovic</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12897v1-abstract-short" style="display: inline;"> Ferromagnetic van der Waals (vdW) insulators are of great scientific interest for their promising applications in spintronics. It has been indicated that in the two materials within this class, CrI$_3$ and VI$_3$, the magnetic ground state, the band gap, and the Fermi level could be manipulated by varying the layer thickness, strain or doping. To understand how these factors impact the properties,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12897v1-abstract-full').style.display = 'inline'; document.getElementById('2008.12897v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12897v1-abstract-full" style="display: none;"> Ferromagnetic van der Waals (vdW) insulators are of great scientific interest for their promising applications in spintronics. It has been indicated that in the two materials within this class, CrI$_3$ and VI$_3$, the magnetic ground state, the band gap, and the Fermi level could be manipulated by varying the layer thickness, strain or doping. To understand how these factors impact the properties, a detailed understanding of the electronic structure would be required. However, the experimental studies of the electronic structure of these materials are still very sparse. Here, we present the detailed electronic structure of CrI$_3$ and VI$_3$ measured by angle-resolved photoemission spectroscopy (ARPES). Our results show a band-gap of the order of 1 eV, sharply contrasting some theoretical predictions such as Dirac half-metallicity and metallic phases, indicating that the intra-atomic interaction parameter (U) and spin-orbit coupling (SOC) were not properly accounted for in the calculations. We also find significant differences in the electronic properties of these two materials, in spite of similarities in their crystal structure. In CrI$_3$, the valence band maximum is dominated by the I 5{\it p}, whereas in VI$_3$ it is dominated by the V 3{\it d} derived states. Our results represent valuable input for further improvements in the theoretical modeling of these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12897v1-abstract-full').style.display = 'none'; document.getElementById('2008.12897v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 10 (2020) 15602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04272">arXiv:2007.04272</a> <span> [<a href="https://arxiv.org/pdf/2007.04272">pdf</a>, <a href="https://arxiv.org/format/2007.04272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202000038">10.1002/qute.202000038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of Suppression of Proximity Induced Superconductivity in Bi/Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+Z">Ze-Bin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04272v1-abstract-short" style="display: inline;"> Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topological superconductivity is thin bismuth films on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212). Here, we present angle-resolved and core-level photoemissio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04272v1-abstract-full').style.display = 'inline'; document.getElementById('2007.04272v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04272v1-abstract-full" style="display: none;"> Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topological superconductivity is thin bismuth films on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212). Here, we present angle-resolved and core-level photoemission spectroscopy studies of thin Bi films grown {\it in-situ} on as-grown Bi2212 that show the absence of proximity effect. We find that the electron transfer from the film to the substrate and the resulting severe underdoping of Bi2212 at the interface is a likely origin for the absence of proximity effect. We also propose a possible way of preventing a total loss of proximity effect in this system. Our results offer a better and more universal understanding of the film/cuprate interface and resolve many issues related to the proximity effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04272v1-abstract-full').style.display = 'none'; document.getElementById('2007.04272v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Quantum Technol. 2000038, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.02927">arXiv:1910.02927</a> <span> [<a href="https://arxiv.org/pdf/1910.02927">pdf</a>, <a href="https://arxiv.org/format/1910.02927">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.235132">10.1103/PhysRevB.100.235132 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical and photoemission investigation of structural and magnetic transitions in the iron-based superconductor Sr$_\mathbf{0.67}$Na$_\mathbf{0.33}$Fe$_\mathbf{2}$As$_\mathbf{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+J+W">J. W. Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zaki%2C+N">N. Zaki</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+Y+M">Y. M. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+H">H. Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+P+D">P. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X+J">X. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X+G">X. G. Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Homes%2C+C+C">C. C. Homes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.02927v2-abstract-short" style="display: inline;"> We report the temperature-dependent optical conductivity and ARPES studies of the iron-based superconductor (SC) Sr$_{0.67}$Na$_{0.33}$Fe$_2$As$_2$ in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions at $T_{\rm N}\simeq$125 K in the orthorhombic spin-density-wave (SDW)-like phase, and $T_r\simeq$42 K in the reentrant tetragonal double-Q magnetic pha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02927v2-abstract-full').style.display = 'inline'; document.getElementById('1910.02927v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.02927v2-abstract-full" style="display: none;"> We report the temperature-dependent optical conductivity and ARPES studies of the iron-based superconductor (SC) Sr$_{0.67}$Na$_{0.33}$Fe$_2$As$_2$ in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions at $T_{\rm N}\simeq$125 K in the orthorhombic spin-density-wave (SDW)-like phase, and $T_r\simeq$42 K in the reentrant tetragonal double-Q magnetic phase where both charge and SDW order exist; and below the SC transition at $T_c\simeq$10 K. The free-carrier component in the optical conductivity is described by two Drude contributions; one strong and broad, the other weak and narrow. The broad Drude component decreases dramatically below $T_{\rm N}$ and $T_r$, with much of its strength being transferred to a bound excitation in the mid-infrared, while the narrow Drude component shows no anomalies at either of the transitions, actually increasing in strength at low temperature while narrowing dramatically. The behavior of an infrared-active mode suggests zone-folding below $T_r$. Below $T_c$ the dramatic decrease in the low-frequency optical conductivity signals the formation of a SC energy gap. ARPES reveals hole-like bands at the center of the Brillouin zone (BZ), with both electron- and hole-like bands at the corners. Below $T_{\rm N}$, the hole pockets at the center of the BZ decrease in size, consistent with the behavior of the broad Drude component; while below $T_r$ the electron-like bands shift and split, giving rise to a low-energy excitation in the optical conductivity at ~20 meV. The magnetic states, with resulting SDW and charge-SDW order, respectively, lead to a significant reconstruction of the Fermi surface that has profound implications for the transport originating from the electron and hole pockets, but appears to have relatively little impact on the SC in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.02927v2-abstract-full').style.display = 'none'; document.getElementById('1910.02927v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages with 6 figures; 7 pages of supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 235132 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12293">arXiv:1909.12293</a> <span> [<a href="https://arxiv.org/pdf/1909.12293">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5128634">10.1063/1.5128634 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dirac energy spectrum and inverted band gap in metamorphic InAsSb/InSb superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Suchalkin%2C+S">Sergey Suchalkin</a>, <a href="/search/cond-mat?searchtype=author&query=Ermolaev%2C+M">Maksim Ermolaev</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Kipshidze%2C+G">Gela Kipshidze</a>, <a href="/search/cond-mat?searchtype=author&query=Smirnov%2C+D">Dmitry Smirnov</a>, <a href="/search/cond-mat?searchtype=author&query=Moon%2C+S">Seongphill Moon</a>, <a href="/search/cond-mat?searchtype=author&query=Ozerov%2C+M">Mykhaylo Ozerov</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Z">Zhigang Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxuan Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Svensson%2C+S+P">Stefan P. Svensson</a>, <a href="/search/cond-mat?searchtype=author&query=Sarney%2C+W+L">Wendy L. Sarney</a>, <a href="/search/cond-mat?searchtype=author&query=Belenky%2C+G">Gregory Belenky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12293v1-abstract-short" style="display: inline;"> A Dirac-type energy spectrum was demonstrated in gapless ultra-short-period metamorphic InAsSb/InSb superlattices by angle-resolved photoemission spectroscopy (ARPES_ measurements. The Fermi velocity value 7.4x10^5 m/s in a gapless superlattice with a period of 6.2nm is in a good agreement with the results of magneto-absorption experiments. An "inverted" bandgap opens in the center of the Brilloui… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12293v1-abstract-full').style.display = 'inline'; document.getElementById('1909.12293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12293v1-abstract-full" style="display: none;"> A Dirac-type energy spectrum was demonstrated in gapless ultra-short-period metamorphic InAsSb/InSb superlattices by angle-resolved photoemission spectroscopy (ARPES_ measurements. The Fermi velocity value 7.4x10^5 m/s in a gapless superlattice with a period of 6.2nm is in a good agreement with the results of magneto-absorption experiments. An "inverted" bandgap opens in the center of the Brillouin zone at higher temperatures and in the SL with a larger period. The ARPES data indicate the presence of a surface electron accumulation layer <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12293v1-abstract-full').style.display = 'none'; document.getElementById('1909.12293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.11645">arXiv:1909.11645</a> <span> [<a href="https://arxiv.org/pdf/1909.11645">pdf</a>, <a href="https://arxiv.org/format/1909.11645">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.241112">10.1103/PhysRevB.100.241112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Fermi Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.11645v2-abstract-short" style="display: inline;"> The effects of structural supermodulation with the period $位\approx26$ 脜\ along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the intrinsic electronic structure. Although predicted to affect the electronic structure of the Cu-O plane, the influence of supermodulation potential on Cu-O electro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11645v2-abstract-full').style.display = 'inline'; document.getElementById('1909.11645v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.11645v2-abstract-full" style="display: none;"> The effects of structural supermodulation with the period $位\approx26$ 脜\ along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the intrinsic electronic structure. Although predicted to affect the electronic structure of the Cu-O plane, the influence of supermodulation potential on Cu-O electrons has never been observed in photoemission. In the present study, we clearly see, for the first time, the effects on the Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ electronic structure - we observe a hybridization of the intrinsic bands with the supermodulation replica bands in the form of avoided crossings and a corresponding reconstruction of the Fermi surface. We estimate the hybridization gap, $2螖_h\sim25$ meV in the slightly underdoped samples. The hybridization weakens with doping and the anti-crossing can no longer be resolved in strongly overdoped samples. In contrast, the shadow replica, shifted by $(蟺, 蟺)$, is found not to hybridize with the original bands within our detection limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11645v2-abstract-full').style.display = 'none'; document.getElementById('1909.11645v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 241112 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.01370">arXiv:1905.01370</a> <span> [<a href="https://arxiv.org/pdf/1905.01370">pdf</a>, <a href="https://arxiv.org/format/1905.01370">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-14282-4">10.1038/s41467-020-14282-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disappearance of Superconductivity Due to Vanishing Coupling in the Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.01370v1-abstract-short" style="display: inline;"> In high-temperature cuprate superconductors, superconductivity is accompanied by a "plethora of orders", and phenomena that may compete, or cooperate with superconductivity, but which certainly complicate our understanding of origins of superconductivity in these materials. While prominent in the underdoped regime, these orders are known to significantly weaken or completely vanish with overdoping… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01370v1-abstract-full').style.display = 'inline'; document.getElementById('1905.01370v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.01370v1-abstract-full" style="display: none;"> In high-temperature cuprate superconductors, superconductivity is accompanied by a "plethora of orders", and phenomena that may compete, or cooperate with superconductivity, but which certainly complicate our understanding of origins of superconductivity in these materials. While prominent in the underdoped regime, these orders are known to significantly weaken or completely vanish with overdoping. Here, we approach the superconducting phase from the more conventional highly overdoped side. We present angle-resolved photoemission spectroscopy (ARPES) studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) single crystals cleaved and annealed in ozone to increase the doping all the way to the metallic, non-superconducting phase. We show that the mass renormalization in the antinodal region of the Fermi surface, associated with the structure in the quasiparticle self-energy, that possibly reflects the pairing interaction, monotonically weakens with increasing doping and completely disappears precisely where superconductivity disappears. This is the direct evidence that in the overdoped regime, superconductivity is determined by the coupling strength. A strong doping dependence and an abrupt disappearance above the transition temperature ($T_{\mathrm c}$) eliminate the conventional phononic mechanism of the observed mass renormalization and identify the onset of spin-fluctuations as its likely origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01370v1-abstract-full').style.display = 'none'; document.getElementById('1905.01370v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 11, 569 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03888">arXiv:1903.03888</a> <span> [<a href="https://arxiv.org/pdf/1903.03888">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> A New Magnetic Topological Quantum Material Candidate by Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gui%2C+X">Xin Gui</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">Ivo Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Cao%2C+H">Huibo Cao</a>, <a href="/search/cond-mat?searchtype=author&query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">Robert J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03888v1-abstract-short" style="display: inline;"> Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn$_2$P$_2$, a new quantum material specifically designed to engender unconventional electronic states plus magnetism. Eu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03888v1-abstract-full').style.display = 'inline'; document.getElementById('1903.03888v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03888v1-abstract-full" style="display: none;"> Magnetism, when combined with an unconventional electronic band structure, can give rise to forefront electronic properties such as the quantum anomalous Hall effect, axion electrodynamics, and Majorana fermions. Here we report the characterization of high-quality crystals of EuSn$_2$P$_2$, a new quantum material specifically designed to engender unconventional electronic states plus magnetism. EuSn$_2$P$_2$ has a layered, Bi$_2$Te$_3$-type structure. Ferromagnetic interactions dominate the Curie-Weiss susceptibility, but a transition to antiferromagnetic ordering occurs near 30 K. Neutron diffraction reveals that this is due to two-dimensional ferromagnetic spin alignment within individual Eu layers and antiferromagnetic alignment between layers - this magnetic state surrounds the Sn-P layers at low temperatures. The bulk electrical resistivity is sensitive to the magnetism. Electronic structure calculations reveal that EuSn$_2$P$_2$ might be a strong topological insulator, which can be a new magnetic topological quantum material (MTQM) candidate. The calculations show that surface states should be present, and they are indeed observed by ARPES measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03888v1-abstract-full').style.display = 'none'; document.getElementById('1903.03888v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 page, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05425">arXiv:1811.05425</a> <span> [<a href="https://arxiv.org/pdf/1811.05425">pdf</a>, <a href="https://arxiv.org/format/1811.05425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-07686-w">10.1038/s41467-018-07686-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase Diagram of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C+-">C. -K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Fujita%2C+K">K. Fujita</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Davis%2C+J+C+S">J. C. S茅amus Davis</a>, <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+P+D">P. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Bo%C5%BEovi%C4%87%2C+I">I. Bo啪ovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05425v1-abstract-short" style="display: inline;"> In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, $T_\mathrm{c}$, using the assumption tha… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05425v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05425v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05425v1-abstract-full" style="display: none;"> In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, $T_\mathrm{c}$, using the assumption that $T_\mathrm{c}$ dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to $T_\mathrm{c}=91$ K. We show that $p$ can be determined from the underlying Fermi surfaces and that $in-situ$ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of $2螖_0=(4\pm1)k_\mathrm{B}T_\mathrm{c}$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05425v1-abstract-full').style.display = 'none'; document.getElementById('1811.05425v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Comm. 9, 5210 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04811">arXiv:1805.04811</a> <span> [<a href="https://arxiv.org/pdf/1805.04811">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> In-situ angle-resolved photoemission spectroscopy of copper-oxide thin films synthesized by molecular beam epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C+K">Chung Koo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Fujita%2C+K">Kazuhiro Fujita</a>, <a href="/search/cond-mat?searchtype=author&query=Davis%2C+J+C+S">J. C. S茅amus Davis</a>, <a href="/search/cond-mat?searchtype=author&query=Bo%C5%BEovi%C4%87%2C+I">Ivan Bo啪ovi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04811v1-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is the key momentum-resolved technique for direct probing of the electronic structure of a material. However, since it is very surface-sensitive, it has been applied to a relatively small set of complex oxides that can be easily cleaved in ultra-high vacuum. Here we describe a new multi-module system at Brookhaven National Laboratory (BNL) in which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04811v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04811v1-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is the key momentum-resolved technique for direct probing of the electronic structure of a material. However, since it is very surface-sensitive, it has been applied to a relatively small set of complex oxides that can be easily cleaved in ultra-high vacuum. Here we describe a new multi-module system at Brookhaven National Laboratory (BNL) in which an oxide molecular beam epitaxy (OMBE) is interconnected with an ARPES and a spectroscopic-imaging scanning tunneling microscopy (SI-STM) module. This new capability largely expands the range of complex-oxide materials and artificial heterostructures accessible to these two most powerful and complementary techniques for studies of electronic structure of materials. We also present the first experimental results obtained using this system - the ARPES studies of electronic band structure of a La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) thin film grown by OMBE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04811v1-abstract-full').style.display = 'none'; document.getElementById('1805.04811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.09167">arXiv:1711.09167</a> <span> [<a href="https://arxiv.org/pdf/1711.09167">pdf</a>, <a href="https://arxiv.org/ps/1711.09167">ps</a>, <a href="https://arxiv.org/format/1711.09167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Realization of a Type-II Nodal-Line Semimetal in Mg$_3$Bi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">Ivo Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Kong%2C+T">Tai Kong</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+G">Guang Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+A">Angus Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Kushwaha%2C+S+K">Satya K. Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&query=Sinkovic%2C+B">Boris Sinkovic</a>, <a href="/search/cond-mat?searchtype=author&query=Jeng%2C+H">Horng-Tay Jeng</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">Robert J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.09167v1-abstract-short" style="display: inline;"> Nodal-line semimetals (NLSs) represent a new type of topological semimetallic beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The conventional NLS phase, in which the two bands forming the nodal line have opposite si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09167v1-abstract-full').style.display = 'inline'; document.getElementById('1711.09167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.09167v1-abstract-full" style="display: none;"> Nodal-line semimetals (NLSs) represent a new type of topological semimetallic beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The conventional NLS phase, in which the two bands forming the nodal line have opposite signs for their slopes along any direction perpendicular to the nodal line, has been proposed and realized in many compounds, whereas the exotic type-II NLS is very rare. Our first-principles calculations show that Mg$_3$Bi$_2$ is a material candidate that hosts a single type-II nodal loop around $螕$. The band crossing is close to the Fermi level and the two crossing bands have the same sign in their slopes along the radial direction of the loop, indicating the type-II nature of the nodal line. Spin-orbit coupling generates only a small energy gap ($\sim$35 meV) at the nodal points and does not negate the band dispersion of Mg$_3$Bi$_2$ that yields the type-II nodal line. Based on this prediction we have synthesized Mg$_3$Bi$_2$ single crystals and confirmed the presence of the type-II nodal lines in the material. Our angle-resolved photoemission spectroscopy (ARPES) measurements agree well with our first-principles results and thus establish Mg$_3$Bi$_2$ as an ideal materials platform for studying the exotic properties of type-II nodal line semimetals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.09167v1-abstract-full').style.display = 'none'; document.getElementById('1711.09167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.04289">arXiv:1707.04289</a> <span> [<a href="https://arxiv.org/pdf/1707.04289">pdf</a>, <a href="https://arxiv.org/format/1707.04289">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.156403">10.1103/PhysRevLett.120.156403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Band structure of a IV-VI black phosphorus analogue, the thermoelectric SnSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=von+Rohr%2C+F">F. von Rohr</a>, <a href="/search/cond-mat?searchtype=author&query=Pervan%2C+P">P. Pervan</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+P+K">P. K. Das</a>, <a href="/search/cond-mat?searchtype=author&query=Vobornik%2C+I">I. Vobornik</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.04289v2-abstract-short" style="display: inline;"> The success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust, isoelectronic, and share the same structure with black phosphorus. We measured the band structure of SnSe and found highly anisotropic valence bands that form several valley… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04289v2-abstract-full').style.display = 'inline'; document.getElementById('1707.04289v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.04289v2-abstract-full" style="display: none;"> The success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust, isoelectronic, and share the same structure with black phosphorus. We measured the band structure of SnSe and found highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown a great promise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.04289v2-abstract-full').style.display = 'none'; document.getElementById('1707.04289v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 156403 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.03274">arXiv:1706.03274</a> <span> [<a href="https://arxiv.org/pdf/1706.03274">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.apsusc.2017.02.160">10.1016/j.apsusc.2017.02.160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct Effects of Cr Bulk Doping and Surface Deposition on the Chemical Environment and Electronic Structure of the Topological Insulator Bi2Se3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yilmaza%2C+T">Turgut Yilmaza</a>, <a href="/search/cond-mat?searchtype=author&query=Hines%2C+W">William Hines</a>, <a href="/search/cond-mat?searchtype=author&query=Sun%2C+F">Fu-Chang Sun</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">Ivo Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Budnick%2C+J">Joseph Budnick</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Sinkovic%2C+B">Boris Sinkovic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.03274v1-abstract-short" style="display: inline;"> In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi2Se3 films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.03274v1-abstract-full" style="display: none;"> In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi2Se3 films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03274v1-abstract-full').style.display = 'none'; document.getElementById('1706.03274v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Surface Science, 407, 371-378 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.03536">arXiv:1606.03536</a> <span> [<a href="https://arxiv.org/pdf/1606.03536">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.167001">10.1103/PhysRevLett.114.167001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Orbit Interactions and the Nematicity Observed in the Fe-Based Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Johnson%2C+P+D">P. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+H+-">H. -B. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Rameau%2C+J+D">J. D. Rameau</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z+-">Z. -H. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Weinert%2C+M">M. Weinert</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.03536v1-abstract-short" style="display: inline;"> High-resolution angle-resolved photoelectron spectroscopy is used to examine the electronic band structure of FeTe$_{0.5}$Se$_{0.5}$ near the Brillouin zone center. A consistent separation of the $伪_{1}$ and $伪_{2}$ bands is observed with little $k_{z}$ dependence of the $伪_{1}$ band. First-principles calculations for bulk and thin films demonstrate that the antiferromagnetic coupling between the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03536v1-abstract-full').style.display = 'inline'; document.getElementById('1606.03536v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.03536v1-abstract-full" style="display: none;"> High-resolution angle-resolved photoelectron spectroscopy is used to examine the electronic band structure of FeTe$_{0.5}$Se$_{0.5}$ near the Brillouin zone center. A consistent separation of the $伪_{1}$ and $伪_{2}$ bands is observed with little $k_{z}$ dependence of the $伪_{1}$ band. First-principles calculations for bulk and thin films demonstrate that the antiferromagnetic coupling between the Fe atoms and hybridization-induced spin-orbit effects lifts the degeneracy of the Fe $d_{xz}$ and $d_{yz}$ orbitals at the zone center leading to orbital ordering. These experimental and computational results provide a natural microscopic basis for the nematicity observed in the Fe-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.03536v1-abstract-full').style.display = 'none'; document.getElementById('1606.03536v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, 20 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 167001 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.08226">arXiv:1601.08226</a> <span> [<a href="https://arxiv.org/pdf/1601.08226">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Differences in chemical doping matter - Superconductivity in Ti1-xTaxSe2 but not in Ti1-xNbxSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Luo%2C+H">Huixia Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Tao%2C+J">Jing Tao</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">Ivo Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Sahasrabudhe%2C+G+S">Girija S. Sahasrabudhe</a>, <a href="/search/cond-mat?searchtype=author&query=Osterhoudt%2C+G">Gavin Osterhoudt</a>, <a href="/search/cond-mat?searchtype=author&query=Sutton%2C+E">Erin Sutton</a>, <a href="/search/cond-mat?searchtype=author&query=Burch%2C+K+S">Kenneth S. Burch</a>, <a href="/search/cond-mat?searchtype=author&query=Seibel%2C+E+M">Elizabeth M. Seibel</a>, <a href="/search/cond-mat?searchtype=author&query=Krizan%2C+J+W">Jason W. Krizan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">Robert J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.08226v1-abstract-short" style="display: inline;"> We report that 1T-TiSe2, an archetypical layered transition metal dichalcogenide, becomes superconducting when Ta is substituted for Ti but not when Nb is substituted for Ti. This is unexpected because Nb and Ta should be chemically equivalent electron donors. Superconductivity emerges near x = 0.02 for Ti1-xTaxSe2, while for Ti1-xNbxSe2, no superconducting transitions are observed above 0.4 K. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08226v1-abstract-full').style.display = 'inline'; document.getElementById('1601.08226v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.08226v1-abstract-full" style="display: none;"> We report that 1T-TiSe2, an archetypical layered transition metal dichalcogenide, becomes superconducting when Ta is substituted for Ti but not when Nb is substituted for Ti. This is unexpected because Nb and Ta should be chemically equivalent electron donors. Superconductivity emerges near x = 0.02 for Ti1-xTaxSe2, while for Ti1-xNbxSe2, no superconducting transitions are observed above 0.4 K. The equivalent chemical nature of the dopants is confirmed by X-ray photoelectron spectroscopy. ARPES and Raman scattering studies show similarities and differences between the two systems, but the fundamental reasons why the Nb and Ta dopants yield such different behavior are unknown. We present a comparison of the electronic phase diagrams of many electron-doped 1T-TiSe2 systems, showing that they behave quite differently, which may have broad implications in the search for new superconductors. We propose that superconducting Ti0.8Ta0.2Se2 will be suitable for devices and other studies based on exfoliated crystal flakes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.08226v1-abstract-full').style.display = 'none'; document.getElementById('1601.08226v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 Figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.00528">arXiv:1512.00528</a> <span> [<a href="https://arxiv.org/pdf/1512.00528">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.045315">10.1103/PhysRevB.93.045315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A strong-topological-metal material with multiple Dirac cones </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Ji%2C+H">Huiwen Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Gibson%2C+Q+D">Q. D. Gibson</a>, <a href="/search/cond-mat?searchtype=author&query=Sahasrabudhe%2C+G">Girija Sahasrabudhe</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.00528v1-abstract-short" style="display: inline;"> We report a new, cleavable, strong-topological-metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00528v1-abstract-full').style.display = 'inline'; document.getElementById('1512.00528v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.00528v1-abstract-full" style="display: none;"> We report a new, cleavable, strong-topological-metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone with a largely linear dispersion over a 2 eV energy range. A third surface TRS-protected Dirac cone is predicted, and observed using ARPES, making Zr2Te2P the first system to realize TRS-protected Dirac cones at M points. The high anisotropy of this Dirac cone is similar to the one in the hypothetical Dirac semimetal BiO2. We propose that if EF can be tuned into the pseudogap where the Dirac dispersions exist, it may be possible to observe ultrahigh carrier mobility and large magnetoresistance in this material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.00528v1-abstract-full').style.display = 'none'; document.getElementById('1512.00528v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.03655">arXiv:1508.03655</a> <span> [<a href="https://arxiv.org/pdf/1508.03655">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms11456">10.1038/ncomms11456 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sn-doped Bi1.1Sb0.9Te2S, a bulk topological insulator with ideal properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushwaha%2C+S+K">S. K. Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Liang%2C+T">T. Liang</a>, <a href="/search/cond-mat?searchtype=author&query=Gyenis%2C+A">A. Gyenis</a>, <a href="/search/cond-mat?searchtype=author&query=Lapidus%2C+S+H">S. H. Lapidus</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Y">Yao Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+H">He Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Burch%2C+K+S">K. S. Burch</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+H">Huiwen Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Yazdani%2C+A">Ali Yazdani</a>, <a href="/search/cond-mat?searchtype=author&query=Ong%2C+N+P">N. P. Ong</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.03655v1-abstract-short" style="display: inline;"> A long-standing issue in topological insulator research has been to find a material that provides an ideal platform for characterizing topological surface states without interference from bulk electronic states and can reliably be fabricated as bulk crystals. This material would be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03655v1-abstract-full').style.display = 'inline'; document.getElementById('1508.03655v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.03655v1-abstract-full" style="display: none;"> A long-standing issue in topological insulator research has been to find a material that provides an ideal platform for characterizing topological surface states without interference from bulk electronic states and can reliably be fabricated as bulk crystals. This material would be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, have high surface state electronic mobility, and be growable as large, high quality bulk single crystals. Here we show that this major materials obstacle in the field is overcome by crystals of lightly Sn-doped Bi1.1Sb0.9Te2S (Sn-BSTS) grown by the Vertical Bridgeman method, which we characterize here via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies of the bulk and surface states, and X-ray diffraction and Raman scattering. We present this new material as a bulk topological insulator that can be reliably grown and studied in many laboratories around the world. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.03655v1-abstract-full').style.display = 'none'; document.getElementById('1508.03655v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.06870">arXiv:1506.06870</a> <span> [<a href="https://arxiv.org/pdf/1506.06870">pdf</a>, <a href="https://arxiv.org/format/1506.06870">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.256401">10.1103/PhysRevLett.114.256401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gapped Surface States in a Strong-Topological-Semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Gibson%2C+Q+D">Q. D. Gibson</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+H">Huiwen Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Caruso%2C+A+N">A. N. Caruso</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.06870v1-abstract-short" style="display: inline;"> A three-dimensional strong-topological-insulator or -semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur away from time-reversal-invariant momenta. The mirror-invariance of the system then becomes essential in protecting the existence of a surface Fermi sur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06870v1-abstract-full').style.display = 'inline'; document.getElementById('1506.06870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.06870v1-abstract-full" style="display: none;"> A three-dimensional strong-topological-insulator or -semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur away from time-reversal-invariant momenta. The mirror-invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi$_4$Se$_3$. Angle-resolved photoemission spectroscopy and \textit{ab initio} calculations reveal partial gapping of surface bands on the Bi$_2$Se$_3$-termination of Bi$_4$Se$_3$(111), where an 85 meV gap along $\bar螕\bar{K}$ closes to zero toward the mirror-invariant $\bar螕\bar{M}$ azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin-helicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.06870v1-abstract-full').style.display = 'none'; document.getElementById('1506.06870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 256401 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.03784">arXiv:1505.03784</a> <span> [<a href="https://arxiv.org/pdf/1505.03784">pdf</a>, <a href="https://arxiv.org/format/1505.03784">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.257402">10.1103/PhysRevLett.115.257402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface collective modes in the topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kogar%2C+A">A. Kogar</a>, <a href="/search/cond-mat?searchtype=author&query=Vig%2C+S">S. Vig</a>, <a href="/search/cond-mat?searchtype=author&query=Thaler%2C+A">A. Thaler</a>, <a href="/search/cond-mat?searchtype=author&query=Wong%2C+M+H">M. H. Wong</a>, <a href="/search/cond-mat?searchtype=author&query=Xiao%2C+Y">Y. Xiao</a>, <a href="/search/cond-mat?searchtype=author&query=Reig-i-Plessis%2C+D">D. Reig-i-Plessis</a>, <a href="/search/cond-mat?searchtype=author&query=Cho%2C+G+Y">G. Y. Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z">Z. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Schneeloch%2C+J">J. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R">R. Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">G. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Hughes%2C+T+L">T. L. Hughes</a>, <a href="/search/cond-mat?searchtype=author&query=MacDougall%2C+G+J">G. J. MacDougall</a>, <a href="/search/cond-mat?searchtype=author&query=Chiang%2C+T+-">T. -C. Chiang</a>, <a href="/search/cond-mat?searchtype=author&query=Abbamonte%2C+P">P. Abbamonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.03784v2-abstract-short" style="display: inline;"> We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the "spin plasmon" predicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03784v2-abstract-full').style.display = 'inline'; document.getElementById('1505.03784v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.03784v2-abstract-full" style="display: none;"> We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi$_2$Se$_3$ and Bi$_{0.5}$Sb$_{1.5}$Te$_{3-x}$Se$_{x}$. Our goal was to identify the "spin plasmon" predicted by Raghu and co-workers [S. Raghu, et al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface, $蠂"(\textbf{q},蠅)$, at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03784v2-abstract-full').style.display = 'none'; document.getElementById('1505.03784v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 257402 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.02696">arXiv:1502.02696</a> <span> [<a href="https://arxiv.org/pdf/1502.02696">pdf</a>, <a href="https://arxiv.org/format/1502.02696">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.195321">10.1103/PhysRevB.91.195321 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface-state-dominated transport in crystals of the topological crystalline insulator In-doped Pb$_{1-x}$Sn$_x$Te </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+X">Xugang He</a>, <a href="/search/cond-mat?searchtype=author&query=Schneeloch%2C+J+A">John A. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T">Tiansheng Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">Ivo Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Ku%2C+W">Wei Ku</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.02696v1-abstract-short" style="display: inline;"> Three-dimensional topological insulators and topological crystalline insulators represent new quantum states of matter, which are predicted to have insulating bulk states and spin-momentum-locked gapless surface states. Experimentally, it has proven difficult to achieve the high bulk resistivity that would allow surface states to dominate the transport properties over a substantial temperature ran… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02696v1-abstract-full').style.display = 'inline'; document.getElementById('1502.02696v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.02696v1-abstract-full" style="display: none;"> Three-dimensional topological insulators and topological crystalline insulators represent new quantum states of matter, which are predicted to have insulating bulk states and spin-momentum-locked gapless surface states. Experimentally, it has proven difficult to achieve the high bulk resistivity that would allow surface states to dominate the transport properties over a substantial temperature range. Here we report a series of indium-doped Pb$_{1-x}$Sn$_x$Te compounds that manifest huge bulk resistivities together with strong evidence of topological surface states, based on thickness-dependent transport studies and magnetoresistance measurements. For these bulk-insulating materials, the surface states determine the resistivity for temperatures approaching 30 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.02696v1-abstract-full').style.display = 'none'; document.getElementById('1502.02696v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 195321 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6543">arXiv:1412.6543</a> <span> [<a href="https://arxiv.org/pdf/1412.6543">pdf</a>, <a href="https://arxiv.org/format/1412.6543">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3648">10.1038/nphys3648 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of the chiral magnetic effect in ZrTe5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Kharzeev%2C+D+E">Dmitri E. Kharzeev</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Schneeloch%2C+J+A">J. A. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6543v1-abstract-short" style="display: inline;"> The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin $1/2$ particles with a definite projection of spin on momentum) -- a dramatic phenomenon arising from a collective motion of particles and antipartic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6543v1-abstract-full').style.display = 'inline'; document.getElementById('1412.6543v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6543v1-abstract-full" style="display: none;"> The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin $1/2$ particles with a definite projection of spin on momentum) -- a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the first observation of chiral magnetic effect through the measurement of magneto-transport in zirconium pentatelluride, ZrTe_5. Our angle-resolved photoemission spectroscopy experiments show that this material's electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. The observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6543v1-abstract-full').style.display = 'none'; document.getElementById('1412.6543v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 12, 550-554 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.2718">arXiv:1412.2718</a> <span> [<a href="https://arxiv.org/pdf/1412.2718">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1424322112">10.1073/pnas.1424322112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging Dirac-Mass Disorder from Magnetic Dopant-Atoms in the Ferromagnetic Topological Insulator Cr$_x$(Bi$_{0.1}$Sb$_{0.9}$)$_{2-x}$Te$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Lee%2C+I">Inhee Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+C+K">Chung Koo Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+J">Jinho Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Billinge%2C+S+J+L">S. J. L. Billinge</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Schneeloch%2C+J+A">J. A. Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+T+S">T. S. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Tranquada%2C+J+M">J. M. Tranquada</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Davis%2C+J+C+S">J. C. S茅amus Davis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.2718v1-abstract-short" style="display: inline;"> To achieve and utilize the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TI),it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely used approach. But it is unknown how the spatial arrangements of the magnetic dopant atoms inf… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2718v1-abstract-full').style.display = 'inline'; document.getElementById('1412.2718v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.2718v1-abstract-full" style="display: none;"> To achieve and utilize the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TI),it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely used approach. But it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr$_{0.08}$(Bi$_{0.1}$Sb$_{0.9}$)$_{1.92}$Te$_3$. Simultaneous visualization of the Dirac-mass gap $螖(r)$ reveals its intense disorder, which we demonstrate directly is related to fluctuations in $n(r)$, the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of $螖(r)$ consistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship $螖(r)\propto n(r)$ is confirmed throughout, and exhibits an electron-dopant interaction energy $J^*$=145$meV\cdot nm^2$. These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal-symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2718v1-abstract-full').style.display = 'none'; document.getElementById('1412.2718v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 112, 1316 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.4432">arXiv:1408.4432</a> <span> [<a href="https://arxiv.org/pdf/1408.4432">pdf</a>, <a href="https://arxiv.org/format/1408.4432">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.037001">10.1103/PhysRevLett.114.037001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiparticle Interference, quasiparticle interactions and the origin of the charge density-wave in 2H-NbSe$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Arguello%2C+C+J">C. J. Arguello</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenthal%2C+E+P">E. P. Rosenthal</a>, <a href="/search/cond-mat?searchtype=author&query=Andrade%2C+E+F">E. F. Andrade</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+W">W. Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Yeh%2C+P+C">P. C. Yeh</a>, <a href="/search/cond-mat?searchtype=author&query=Zaki%2C+N">N. Zaki</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">S. Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Fernandes%2C+R+M">R. M. Fernandes</a>, <a href="/search/cond-mat?searchtype=author&query=Millis%2C+A+J">A. J. Millis</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Osgood%2C+R+M">R. M. Osgood Jr.</a>, <a href="/search/cond-mat?searchtype=author&query=Pasupathy%2C+A+N">A. N. Pasupathy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.4432v2-abstract-short" style="display: inline;"> We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe$_{2}$, that we measure by scanning tunneling spectroscopic imaging. We show from the momentum and energy dependence of the quasiparticle interference that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe$_{2}$. We d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4432v2-abstract-full').style.display = 'inline'; document.getElementById('1408.4432v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.4432v2-abstract-full" style="display: none;"> We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe$_{2}$, that we measure by scanning tunneling spectroscopic imaging. We show from the momentum and energy dependence of the quasiparticle interference that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe$_{2}$. We demonstrate that by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wavevector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. In 2H-NbSe$_{2}$, we use this combination to show that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the CDW ordering wave vector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4432v2-abstract-full').style.display = 'none'; document.getElementById('1408.4432v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 13 pages, 4 figures (single column). In this version: More references included, larger figures. First version did not contained the supplementary material. This version includes the supplementary material within the same file (8 pages, 7 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.3576">arXiv:1407.3576</a> <span> [<a href="https://arxiv.org/pdf/1407.3576">pdf</a>, <a href="https://arxiv.org/format/1407.3576">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.216601">10.1103/PhysRevLett.113.216601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure basis for the titanic magnetoresistance in WTe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Ali%2C+M+N">Mazhar N. Ali</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.3576v1-abstract-short" style="display: inline;"> The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anis… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3576v1-abstract-full').style.display = 'inline'; document.getElementById('1407.3576v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.3576v1-abstract-full" style="display: none;"> The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. A change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior of the magnetoresistance in WTe$_2$ was identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3576v1-abstract-full').style.display = 'none'; document.getElementById('1407.3576v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 216601 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.4184">arXiv:1403.4184</a> <span> [<a href="https://arxiv.org/pdf/1403.4184">pdf</a>, <a href="https://arxiv.org/format/1403.4184">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.113.067003">10.1103/PhysRevLett.113.067003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of a Proximity Effect in a Topological Insulator on a Cuprate Superconductor: Bi2Se3/Bi2Sr2CaCu2O8 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">T. Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Sadowski%2C+J+T">J. T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Caruso%2C+A+N">A. N. Caruso</a>, <a href="/search/cond-mat?searchtype=author&query=Sinkovic%2C+B">B. Sinkovic</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.4184v1-abstract-short" style="display: inline;"> Proximity-induced superconductivity in a 3D topological insulator represents a new avenue for observing zero-energy Majorana fermions inside vortex cores. Relatively small gaps and low transition temperatures of conventional s-wave superconductors put the hard constraints on these experiments. Significantly larger gaps and higher transition temperatures in cuprate superconductors might be an attra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4184v1-abstract-full').style.display = 'inline'; document.getElementById('1403.4184v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.4184v1-abstract-full" style="display: none;"> Proximity-induced superconductivity in a 3D topological insulator represents a new avenue for observing zero-energy Majorana fermions inside vortex cores. Relatively small gaps and low transition temperatures of conventional s-wave superconductors put the hard constraints on these experiments. Significantly larger gaps and higher transition temperatures in cuprate superconductors might be an attractive alternative to considerably relax these constraints, but it is not clear whether the proximity effect would be effective in heterostructures involving cuprates and topological insulators. Here, we present angle-resolved photoemission studies of thin Bi2Se3 films grown in-situ on optimally doped Bi2Sr2CaCu2O8 substrates that show the absence of proximity-induced gaps on the surfaces of Bi2Se3 films as thin as a 1.5 quintuple layer. These results suggest that the superconducting proximity effect between a cuprate superconductor and a topological insulator is strongly suppressed, likely due to a very short coherence length along the c-axis, incompatible crystal and pairing symmetries at the interface, small size of the topological surface state Fermi surface and adverse effects of a strong spin-orbit coupling in the topological material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4184v1-abstract-full').style.display = 'none'; document.getElementById('1403.4184v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work presented at the March Meeting of American Physical Society in Denver on March 3, 2014</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 113, 067003 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.4163">arXiv:1403.4163</a> <span> [<a href="https://arxiv.org/pdf/1403.4163">pdf</a>, <a href="https://arxiv.org/format/1403.4163">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.146403">10.1103/PhysRevLett.112.146403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inducing Lifshitz transition by extrinsic doping of surface bands in topological crystalline insulator Pb$_{1-x}$Sn$_{x}$Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pletikosi%C4%87%2C+I">Ivo Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">Genda D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.4163v1-abstract-short" style="display: inline;"> Narrow gap semiconductor Pb$_{1-x}$Sn$_{x}$Se was investigated for topologically protected surface states in its rock-salt structural phase for x=0.45, 0.23, 0.15, and 0. Angle-resolved photoelectron spectroscopy of intrinsically p-doped samples showed clear indication of two Dirac cones, eccentric about the time-reversal invariant point X of the surface Brillouin zone for all but the x=0 sample.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4163v1-abstract-full').style.display = 'inline'; document.getElementById('1403.4163v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.4163v1-abstract-full" style="display: none;"> Narrow gap semiconductor Pb$_{1-x}$Sn$_{x}$Se was investigated for topologically protected surface states in its rock-salt structural phase for x=0.45, 0.23, 0.15, and 0. Angle-resolved photoelectron spectroscopy of intrinsically p-doped samples showed clear indication of two Dirac cones, eccentric about the time-reversal invariant point X of the surface Brillouin zone for all but the x=0 sample. Adsorption of alkalies gradually filled the surface bands with electrons, driving the x>0 topological crystalline insulator systems through Lifshitz transitions, and from a hole- to electron-like Fermi surface. The electron-doped bands in x>0 samples exhibited the full configuration of the Dirac cones, also confirming electron-hole symmetry of the surface bands. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.4163v1-abstract-full').style.display = 'none'; document.getElementById('1403.4163v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 146403 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.3870">arXiv:1403.3870</a> <span> [<a href="https://arxiv.org/pdf/1403.3870">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4871280">10.1063/1.4871280 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Kushwaha%2C+S+K">S. K. Kushwaha</a>, <a href="/search/cond-mat?searchtype=author&query=Gibson%2C+Q+D">Q. D. Gibson</a>, <a href="/search/cond-mat?searchtype=author&query=Xiong%2C+J">J. Xiong</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Ong%2C+N+P">N. P. Ong</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.3870v1-abstract-short" style="display: inline;"> A comparative study of the properties of topological insulator Bi2Te2Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.3870v1-abstract-full').style.display = 'inline'; document.getElementById('1403.3870v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.3870v1-abstract-full" style="display: none;"> A comparative study of the properties of topological insulator Bi2Te2Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 x 1014 cm-3. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (EF) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, that the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near EF. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.3870v1-abstract-full').style.display = 'none'; document.getElementById('1403.3870v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.3811">arXiv:1311.3811</a> <span> [<a href="https://arxiv.org/pdf/1311.3811">pdf</a>, <a href="https://arxiv.org/format/1311.3811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms3772">10.1038/ncomms3772 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The mechanism of caesium intercalation of graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Petrovic%2C+M">M. Petrovic</a>, <a href="/search/cond-mat?searchtype=author&query=Rakic%2C+I+S">I. Srut Rakic</a>, <a href="/search/cond-mat?searchtype=author&query=Runte%2C+S">S. Runte</a>, <a href="/search/cond-mat?searchtype=author&query=Busse%2C+C">C. Busse</a>, <a href="/search/cond-mat?searchtype=author&query=Sadowski%2C+J+T">J. T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&query=Lazic%2C+P">P. Lazic</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z+-">Z. -H. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Milun%2C+M">M. Milun</a>, <a href="/search/cond-mat?searchtype=author&query=Pervan%2C+P">P. Pervan</a>, <a href="/search/cond-mat?searchtype=author&query=Atodiresei%2C+N">N. Atodiresei</a>, <a href="/search/cond-mat?searchtype=author&query=Brako%2C+R">R. Brako</a>, <a href="/search/cond-mat?searchtype=author&query=Sokcevic%2C+D">D. Sokcevic</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Michely%2C+T">T. Michely</a>, <a href="/search/cond-mat?searchtype=author&query=Kralj%2C+M">M. Kralj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.3811v2-abstract-short" style="display: inline;"> Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene can be manipulated by inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3811v2-abstract-full').style.display = 'inline'; document.getElementById('1311.3811v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.3811v2-abstract-full" style="display: none;"> Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene can be manipulated by inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers, but the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali-atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also play a role for intercalation of layered materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.3811v2-abstract-full').style.display = 'none'; document.getElementById('1311.3811v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures in published form, supplementary information available</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 4:2772 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.4950">arXiv:1306.4950</a> <span> [<a href="https://arxiv.org/pdf/1306.4950">pdf</a>, <a href="https://arxiv.org/format/1306.4950">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.041101">10.1103/PhysRevB.88.041101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Persistent Coherence and Spin-Polarization of Topological Surface States on Topological Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z+-">Z. -H. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">E. Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.4950v1-abstract-short" style="display: inline;"> Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin-structure of the topological states… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4950v1-abstract-full').style.display = 'inline'; document.getElementById('1306.4950v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.4950v1-abstract-full" style="display: none;"> Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin-structure of the topological states on the surface of a model topological insulator, Bi2Se3, at elevated temperatures in spin and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room temperature electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.4950v1-abstract-full').style.display = 'none'; document.getElementById('1306.4950v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 041101(R) (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0043">arXiv:1306.0043</a> <span> [<a href="https://arxiv.org/pdf/1306.0043">pdf</a>, <a href="https://arxiv.org/format/1306.0043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.125414">10.1103/PhysRevB.88.125414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gyenis%2C+A">A. Gyenis</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Nadj-Perge%2C+S">S. Nadj-Perge</a>, <a href="/search/cond-mat?searchtype=author&query=Jeong%2C+O+B">O. B. Jeong</a>, <a href="/search/cond-mat?searchtype=author&query=Seo%2C+J">J. Seo</a>, <a href="/search/cond-mat?searchtype=author&query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Yazdani%2C+A">A. Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0043v2-abstract-short" style="display: inline;"> Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0043v2-abstract-full').style.display = 'inline'; document.getElementById('1306.0043v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0043v2-abstract-full" style="display: none;"> Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb$_{1-x}$Sn$_{x}$Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb$_{0.77}$Sn$_{0.23}$Se and PbSe have different topological nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0043v2-abstract-full').style.display = 'none'; document.getElementById('1306.0043v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 125414 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.3558">arXiv:1305.3558</a> <span> [<a href="https://arxiv.org/pdf/1305.3558">pdf</a>, <a href="https://arxiv.org/format/1305.3558">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.081108">10.1103/PhysRevB.88.081108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Termination dependent topological surface states of the natural superlattice phase Bi$_4$Se$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Gibson%2C+Q+D">Q. D. Gibson</a>, <a href="/search/cond-mat?searchtype=author&query=Schoop%2C+L+M">L. M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+H">Huiwen Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Nadj-Perge%2C+S">S. Nadj-Perge</a>, <a href="/search/cond-mat?searchtype=author&query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&query=Beidenkopf%2C+H">H. Beidenkopf</a>, <a href="/search/cond-mat?searchtype=author&query=Sadowski%2C+J+T">J. T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Yazdani%2C+A">A. Yazdani</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.3558v3-abstract-short" style="display: inline;"> We describe the topological surface states of Bi$_4$Se$_3$, a compound in the infinitely adaptive Bi$_2$-Bi$_2$Se$_3$ natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab-ini… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3558v3-abstract-full').style.display = 'inline'; document.getElementById('1305.3558v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.3558v3-abstract-full" style="display: none;"> We describe the topological surface states of Bi$_4$Se$_3$, a compound in the infinitely adaptive Bi$_2$-Bi$_2$Se$_3$ natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab-initio density functional theory calculations. Topological surface states are observed on both surfaces, but with markedly different dispersions and Kramers point energies. Bi$_4$Se$_3$ therefore represents the only known compound with different topological states on differently terminated surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3558v3-abstract-full').style.display = 'none'; document.getElementById('1305.3558v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures references added Published in PRB: http://link.aps.org/doi/10.1103/PhysRevB.88.081108</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.1774">arXiv:1303.1774</a> <span> [<a href="https://arxiv.org/pdf/1303.1774">pdf</a>, <a href="https://arxiv.org/format/1303.1774">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physc.2012.04.005">10.1016/j.physc.2012.04.005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Angle-Resolved Photoemission from Cuprates with Static Stripes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.1774v1-abstract-short" style="display: inline;"> 25 years after discovery of high-temperature superconductivity (HTSC) in La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), the HTSC continues to pose some of the biggest challenges in materials science. Cuprates are fundamentally different from conventional superconductors in that the metallic conductivity and superconductivity are induced by doping carriers into an antiferromagnetically ordered correlated insulato… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.1774v1-abstract-full').style.display = 'inline'; document.getElementById('1303.1774v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.1774v1-abstract-full" style="display: none;"> 25 years after discovery of high-temperature superconductivity (HTSC) in La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), the HTSC continues to pose some of the biggest challenges in materials science. Cuprates are fundamentally different from conventional superconductors in that the metallic conductivity and superconductivity are induced by doping carriers into an antiferromagnetically ordered correlated insulator. In such systems, the normal state is expected to be quite different from a Landau-Fermi liquid - the basis for the conventional BCS theory of superconductivity. The situation is additionally complicated by the fact that cuprates are susceptible to charge/spin ordering tendencies, especially in the low-doping regime. The role of such tendencies on the phenomenon of superconductivity is still not completely clear. Here, we present studies of the electronic structure in cuprates where the superconductivity is strongly suppressed as static spin and charge orders or stripes develop near the doping level of $x =1/8$ and outside of the superconducting dome, for $x<0.055$. We discuss the relationship between the stripes, superconductivity, pseudogap and the observed electronic excitations in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.1774v1-abstract-full').style.display = 'none'; document.getElementById('1303.1774v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 13 figures. arXiv admin note: substantial text overlap with arXiv:cond-mat/0612672</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica C: Superconductivity, Volume 481, 1 November 2012, Pages 66-74, ISSN 0921-4534 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.5830">arXiv:1209.5830</a> <span> [<a href="https://arxiv.org/pdf/1209.5830">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms2701">10.1038/ncomms2701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Symmetry Protected Josephson Supercurrents in Three-Dimensional Topological Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cho%2C+S">Sungjae Cho</a>, <a href="/search/cond-mat?searchtype=author&query=Dellabetta%2C+B">Brian Dellabetta</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+A">Alina Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Schneeloch%2C+J">John Schneeloch</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+Z">Zhijun Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&query=Gilbert%2C+M+J">Matthew J. Gilbert</a>, <a href="/search/cond-mat?searchtype=author&query=Mason%2C+N">Nadya Mason</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.5830v2-abstract-short" style="display: inline;"> Coupling the surface state of a topological insulator (TI) to an s-wave superconductor is predicted to produce the long-sought Majorana quasiparticle excitations. However, superconductivity has not been measured in surface states when the bulk charge carriers are fully depleted, i.e., in the true topological regime that is relevant for investigating Majorana modes. Here, we report measurements of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5830v2-abstract-full').style.display = 'inline'; document.getElementById('1209.5830v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.5830v2-abstract-full" style="display: none;"> Coupling the surface state of a topological insulator (TI) to an s-wave superconductor is predicted to produce the long-sought Majorana quasiparticle excitations. However, superconductivity has not been measured in surface states when the bulk charge carriers are fully depleted, i.e., in the true topological regime that is relevant for investigating Majorana modes. Here, we report measurements of DC Josephson effects in TI-superconductor junctions as the chemical potential is moved from the bulk bands into the band gap, or through the true topological regime characterized by the presence of only surface currents. We examine the relative behavior of the system at different bulk/surface ratios, determining the effects of strong bulk/surface mixing, disorder, and magnetic field. We compare our results to 3D quantum transport simulations to conclude that the supercurrent is largely carried by surface states, due to the inherent topology of the bands, and that it is robust against disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.5830v2-abstract-full').style.display = 'none'; document.getElementById('1209.5830v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.2741">arXiv:1208.2741</a> <span> [<a href="https://arxiv.org/pdf/1208.2741">pdf</a>, <a href="https://arxiv.org/format/1208.2741">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.86.241101">10.1103/PhysRevB.86.241101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological insulator in a Bi-Bi$_2$Se$_3$ infinitely adaptive superlattice phase </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&query=Ji%2C+H">Huiwen Ji</a>, <a href="/search/cond-mat?searchtype=author&query=Schoop%2C+L+M">L. M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&query=Pan%2C+Z+-">Z. -H. Pan</a>, <a href="/search/cond-mat?searchtype=author&query=Sadowski%2C+J+T">J. T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">E. Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A+V">A. V. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Caruso%2C+A+N">A. N. Caruso</a>, <a href="/search/cond-mat?searchtype=author&query=Gibson%2C+Q+D">Q. D. Gibson</a>, <a href="/search/cond-mat?searchtype=author&query=M%7Fuchler%2C+L">L. Muchler</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.2741v2-abstract-short" style="display: inline;"> We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ layers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.2741v2-abstract-full').style.display = 'inline'; document.getElementById('1208.2741v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.2741v2-abstract-full" style="display: none;"> We report spin- and angle-resolved photoemission studies of a topological insulator from the infinitely adaptive series between elemental Bi and Bi$_2$Se$_3$. The compound, based on Bi$_4$Se$_3$, is a 1:1 natural superlattice of alternating Bi$_2$ layers and Bi$_2$Se$_3$ layers; the inclusion of S allows the growth of large crystals, with the formula Bi$_4$Se$_{2.6}$S$_{0.4}$. The crystals cleave along the interfaces between the Bi$_2$ and Bi$_2$Se$_3$ layers, with the surfaces obtained having alternating Bi or Se termination. The resulting terraces, observed by photoemission electron microscopy, create avenues suitable for the study of one-dimensional topological physics. The electronic structure, determined by spin- and angle- resolved photoemission spectroscopy, shows the existence of a surface state that forms a large, hexagonally shaped Fermi surface around the $螕$ point of the surface Brillouin zone, with the spin structure indicating that this material is a topological insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.2741v2-abstract-full').style.display = 'none'; document.getElementById('1208.2741v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version, 5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 86, 241101(R) (2012) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Valla%2C+T&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Valla%2C+T&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Valla%2C+T&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>