CINXE.COM
Search results for: iron oxide nanoparticles
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: iron oxide nanoparticles</title> <meta name="description" content="Search results for: iron oxide nanoparticles"> <meta name="keywords" content="iron oxide nanoparticles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="iron oxide nanoparticles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="iron oxide nanoparticles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3353</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: iron oxide nanoparticles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3353</span> Iron Oxide Nanoparticles: Synthesis, Properties, and Environmental Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shalini%20Rajput">Shalini Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Mohan"> Dinesh Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is the most important and essential resources for existing of life on the earth. Water quality is gradually decreasing due to increasing urbanization and industrialization and various other developmental activities. It can pose a threat to the environment and public health therefore it is necessary to remove hazardous contaminants from wastewater prior to its discharge to the environment. Recently, magnetic iron oxide nanoparticles have been arise as significant materials due to its distinct properties. This article focuses on the synthesis method with a possible mechanism, structure and application of magnetic iron oxide nanoparticles. The various characterization techniques including X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray, Fourier transform infrared spectroscopy and vibrating sample magnetometer are useful to describe the physico-chemical properties of nanoparticles. Nanosized iron oxide particles utilized for remediation of contaminants from aqueous medium through adsorption process. Due to magnetic properties, nanoparticles can be easily separate from aqueous media. Considering the importance and emerging trend of nanotechnology, iron oxide nanoparticles as nano-adsorbent can be of great importance in the field of wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/19335/iron-oxide-nanoparticles-synthesis-properties-and-environmental-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3352</span> Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nano Particles on the Amyloid Fibril Aggregations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Jomehpour">Dalia Jomehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Sheikhlary"> Sara Sheikhlary</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Heydari"> Esmaeil Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossien%20Majles%20Ara"> Mohammad Hossien Majles Ara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report fulvic acid-coated iron oxide nanoparticles of 10.7 ± 2.7 nm size, which serve to inhibit amyloid fibrillation formation. Although the effect of fulvic acid on tau fibrils was investigated, to our best knowledge, its inhibitory impacts on amyloid aggregation formation have been assessed neither in-vitro nor in-vivo. On the other hand, iron oxide nanoparticles exhibit anti-amyloid activity on their own. This study investigates the inhibitory effect of fulvic acid coated iron oxide nanoparticles on amyloid aggregations formed from the commonly used in-vitro model, lysozyme from chicken egg white. FESEM, XRD, and FTIR characterization confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the fulvic acid coated iron oxide nanoparticles were verified by Thioflavin T assay, circular dichroism (CD), and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y human cell line was assessed through an MTT assay. Our results indicate that fulvic acid coated iron oxide nanoparticles can efficiently inhibit the formation of amyloid aggregations while exhibiting negligible in-vitro toxicity; thus, they can be used as anti-amyloid agents in the development of the potential drug for neurodegenerative diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvic%20acid%20coated%20iron%20oxide%20nanoparticles" title=" fulvic acid coated iron oxide nanoparticles"> fulvic acid coated iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=fulvic%20acid" title=" fulvic acid"> fulvic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloid%20inhibitor" title=" amyloid inhibitor"> amyloid inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a> </p> <a href="https://publications.waset.org/abstracts/152105/inhibitory-impacts-of-fulvic-acid-coated-iron-oxide-nano-particles-on-the-amyloid-fibril-aggregations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3351</span> Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhas%20Pednekar">Suhas Pednekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Chavan"> Prashant Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Chaughule"> Ramesh Chaughule</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Patkar"> Deepak Patkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20drug" title="cancer drug">cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20size" title=" hydrodynamic size"> hydrodynamic size</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a> </p> <a href="https://publications.waset.org/abstracts/64976/iron-oxide-magnetic-nanoparticles-as-mri-contrast-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3350</span> Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Karunakaran">G. Karunakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jagathambal"> M. Jagathambal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Van%20Minh"> N. Van Minh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kolesnikov"> E. Kolesnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gusev"> A. Gusev</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20V.%20Zakharova"> O. V. Zakharova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Scripnikova"> E. V. Scripnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20D.%20Vishnyakova"> E. D. Vishnyakova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kuznetsov"> D. Kuznetsov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe<sub>2</sub>O<sub>3</sub>NPs influence on flax (<em>Linum usitatissimum</em> L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe<sub>2</sub>O<sub>3</sub>NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalase" title="catalase">catalase</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Linum%20usitatissimum%20L." title=" Linum usitatissimum L."> Linum usitatissimum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-nutrient" title=" nano-nutrient"> nano-nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase" title=" peroxidase"> peroxidase</a> </p> <a href="https://publications.waset.org/abstracts/70716/green-synthesized-iron-oxide-nanoparticles-a-nano-nutrient-for-the-growth-and-enhancement-of-flax-linum-usitatissimum-l-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3349</span> Application of Nanoparticles in Biomedical and MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raziyeh%20Mohammadi">Raziyeh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical" title=" biomedical"> biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spions" title=" spions"> spions</a> </p> <a href="https://publications.waset.org/abstracts/145609/application-of-nanoparticles-in-biomedical-and-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3348</span> Adsorption of Reactive Dye Using Entrapped nZVI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Gomathi%20Priya">P. Gomathi Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Thenmozhi"> M. E. Thenmozhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20ferrous%20sulfate%20solution" title="ammonium ferrous sulfate solution">ammonium ferrous sulfate solution</a>, <a href="https://publications.waset.org/abstracts/search?q=barium" title=" barium"> barium</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate%20beads" title=" alginate beads"> alginate beads</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20black%20WNN%20dye" title=" reactive black WNN dye"> reactive black WNN dye</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20valent%20iron%20nanoparticles" title=" zero valent iron nanoparticles"> zero valent iron nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/85605/adsorption-of-reactive-dye-using-entrapped-nzvi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3347</span> Synthesis of Size-Tunable and Stable Iron Nanoparticles for Cancer Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambika%20Selvaraj">Ambika Selvaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic iron oxide nanoparticles (IO) of < 20nm (superparamagnetic) become promising tool in cancer therapy, and integrated nanodevices for cancer detection and screening. The obstacles include particle heterogeneity and cost. It can be overcome by developing monodispersed nanoparticles in economical approach. We have successfully synthesized < 7 nm IO by low temperature controlled technique, in which Fe0 is sandwiched between stabilizer and Fe2+. Size analysis showed the excellent size control from 31 nm at 33°C to 6.8 nm at 10°C. Resultant monodispersed IO were found to be stable for > 50 reuses, proved its applicability in biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20synthesis" title="low temperature synthesis">low temperature synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20iron%20nanoparticles" title=" hybrid iron nanoparticles"> hybrid iron nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a> </p> <a href="https://publications.waset.org/abstracts/53512/synthesis-of-size-tunable-and-stable-iron-nanoparticles-for-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3346</span> Speciation of Iron(III) Oxide Nanoparticles and other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Paul%20Herring">M. Paul Herring</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavrent%20Khachatryan"> Lavrent Khachatryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Barry%20Dellinger"> Barry Dellinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1-MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron(III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by g-factors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77K after accumulation over a multitude of experiments. Additionally, a high valence Fe(IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe(IV)---O2•- were detected from the quenching area of Zone 1 in the gas-phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20trapping" title="cryogenic trapping">cryogenic trapping</a>, <a href="https://publications.waset.org/abstracts/search?q=EPFRs" title=" EPFRs"> EPFRs</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title=" dendrimer"> dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe2O3%20doped%20silica" title=" Fe2O3 doped silica"> Fe2O3 doped silica</a>, <a href="https://publications.waset.org/abstracts/search?q=soot" title=" soot"> soot</a> </p> <a href="https://publications.waset.org/abstracts/25947/speciation-of-ironiii-oxide-nanoparticles-and-other-paramagnetic-intermediates-during-high-temperature-oxidative-pyrolysis-of-1-methylnaphthalene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3345</span> Development of Enzymatic Amperometric Biosensors with Carbon Nanotubes Decorated with Iron Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uc-Cayetano%20E.%20G.">Uc-Cayetano E. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ake-Uh%20O.%20E."> Ake-Uh O. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Villanueva-Mena%20I.%20E."> Villanueva-Mena I. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ordonez%20L.%20C."> Ordonez L. C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) and other graphitic nanostructures are materials with extraordinary physical, physicochemical and electrochemical properties which are being aggressively investigated for a variety of sensing applications. Thus, sensing of biological molecules such as proteins, DNA, glucose and other enzymes using either single wall or multiwall carbon nanotubes (MWCNTs) has been widely reported. Despite the current progress in this area, the electrochemical response of CNTs used in a variety of sensing arrangements still needs to be improved. An alternative towards the enhancement of this CNTs' electrochemical response is to chemically (or physically) modify its surface. The influence of the decoration with iron oxide nanoparticles in different types of MWCNTs on the amperometric sensing of glucose, urea, and cholesterol in solution is investigated. Commercial MWCNTs were oxidized in acid media and subsequently decorated with iron oxide nanoparticles; finally, the enzymes glucose oxidase, urease, and cholesterol oxidase are chemically immobilized to oxidized and decorated MWCNTs for glucose, urease, and cholesterol electrochemical sensing. The results of the electrochemical characterizations consistently show that the presence of iron oxide nanoparticles decorating the surface of MWCNTs enhance the amperometric response and the sensitivity to increments in glucose, urease, and cholesterol concentration when compared to non-decorated MWCNTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WCNTs" title="WCNTs">WCNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=decoration" title=" decoration"> decoration</a> </p> <a href="https://publications.waset.org/abstracts/106360/development-of-enzymatic-amperometric-biosensors-with-carbon-nanotubes-decorated-with-iron-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3344</span> Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yameen%20Ahmed">Yameen Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Hussain"> Jamshid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ullah"> Farman Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Asif"> Sohaib Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide" title="cobalt oxide">cobalt oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/142865/green-synthesis-of-copper-oxide-and-cobalt-oxide-nanoparticles-using-spinacia-oleracea-leaf-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3343</span> First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolja%20Them">Kolja Them</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyal%20Chikhaliwala"> Priyal Chikhaliwala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudeshna%20Chandra"> Sudeshna Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noninvasive%20imaging" title="noninvasive imaging">noninvasive imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigens" title=" tumor antigens"> tumor antigens</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody%20conjugated%20iron%20oxide%20nanoparticles" title=" antibody conjugated iron oxide nanoparticles"> antibody conjugated iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multicolor%20magnetic%20particle%20imaging" title=" multicolor magnetic particle imaging"> multicolor magnetic particle imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20diagnosis" title=" cancer diagnosis"> cancer diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/73134/first-experimental-evidence-on-feasibility-of-molecular-magnetic-particle-imaging-of-tumor-marker-alpha-1-fetoprotein-using-antibody-conjugated-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3342</span> Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=May%20Thant%20Zin">May Thant Zin</a>, <a href="https://publications.waset.org/abstracts/search?q=Josephine%20Borja"> Josephine Borja</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirofumi%20Hinode"> Hirofumi Hinode</a>, <a href="https://publications.waset.org/abstracts/search?q=Winarto%20Kurniawan"> Winarto Kurniawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has multiple and enormous advantages for all application. Therefore, this research is carried out to synthesize and characterize bimetallic iron with copper nano-particles. After synthesizing nano zero valent iron by reduction of ferric chloride by sodium borohydride under nitrogen purging environment, bimetallic iron with copper nanoparticles are synthesized by varying different loads of copper chloride. Due to different standard potential (E0) values of copper and iron, copper is coupled with iron at (Cu to Fe ratio of 1:5, 1:6.7, 1:10, 1:20). It is found that the resulted bimetallic Fe/Cu nanoparticles are composing phases of iron and copper. According to the diffraction patterns indicating the state of chemical combination of the bimetallic nanoparticles, the particles are well-combined and crystalline sizes are less than 1000 Ao (or 100 nm). Specifically, particle sizes of synthesized bimetallic Fe/Cu nanoparticles are ranging from 44.583 nm to 85.149 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/3276/synthesis-of-bimetallic-fecu-nanoparticles-with-different-copper-loading-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3341</span> PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Ha%C5%82upka-Bryl">Magdalena Hałupka-Bryl</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Bednarowicz"> Magdalena Bednarowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryszard%20Krzyminiewski"> Ryszard Krzyminiewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukio%20Nagasaki"> Yukio Nagasaki </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=targeted%20drug%20delivery" title="targeted drug delivery">targeted drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title=" biodistribution"> biodistribution</a> </p> <a href="https://publications.waset.org/abstracts/29050/peg-b-poly4-vinylbenzyl-phosphonate-coated-magnetic-iron-oxide-nanoparticles-as-drug-carrier-system-biological-and-physicochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3340</span> Removal of Iron (II) from Wastewater in Oil Field Using 3-(P-Methyl) Phenyl-5-Thionyl-1,2,4-Triazoline Assembled on Silver Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20S.%20Azzam">E. M. S. Azzam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Ahmed"> S. A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Mohamed"> H. H. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Adly"> M. A. Adly</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20M.%20Gad"> E. A. M. Gad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we prepared 3-(p-methyl) phenyl-5-thionyl-1,2,4-triazoline (C1). The nanostructure of the prepared C1 compound was fabricated by assembling on silver nanoparticles. The UV and TEM analyses confirm the assembling of C1 compound on silver nanoparticles. The effect of C1 compound on the removal of Iron (II) from Iron contaminated samples and industrial wastewater samples (produced water from oil processing facility) were studied before and after their assembling on silver nanoparticles. The removal of Iron was studied at different concentrations of FeSO4 solution (5, 14 and 39 mg/l) and field sample concentration (661 mg/l). In addition, the removal of Iron (II) was investigated at different times. The Prepared compound and its nanostructure with AgNPs show highly efficient in removing the Iron ions. Quantum chemical descriptors using DFT was discussed. The output of the study pronounces that the C1 molecule can act as chelating agent for Iron (II). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triazole%20derivatives" title="triazole derivatives">triazole derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20%28II%29" title=" iron (II)"> iron (II)</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20field" title=" oil field"> oil field</a> </p> <a href="https://publications.waset.org/abstracts/93747/removal-of-iron-ii-from-wastewater-in-oil-field-using-3-p-methyl-phenyl-5-thionyl-124-triazoline-assembled-on-silver-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3339</span> Detection of Epinephrine in Chicken Serum at Iron Oxide Screen Print Modified Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwole%20Opeyemi%20Dina">Oluwole Opeyemi Dina</a>, <a href="https://publications.waset.org/abstracts/search?q=Saheed%20E.%20Elugoke"> Saheed E. Elugoke</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Olutope%20Fayemi"> Peter Olutope Fayemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Omolola%20E.%20Fayemi"> Omolola E. Fayemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the detection of epinephrine (EP) at Fe₃O₄ modified screen printed silver electrode (SPSE). The iron oxide (Fe₃O₄) nanoparticles were characterized with UV-visible spectroscopy, Fourier-Transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM) prior to the modification of the SPSE. The EP oxidation peak current (Iap) increased with an increase in the concentration of EP as well as the scan rate (from 25 - 400 mVs⁻¹). Using cyclic voltammetry (CV), the relationship between Iap and EP concentration was linear over a range of 3.8 -118.9 µM and 118.9-175 µM with a detection limit of 41.99 µM and 83.16 µM, respectively. Selective detection of EP in the presence of ascorbic acid was also achieved at this electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=screenprint%20electrode" title="screenprint electrode">screenprint electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticle" title=" iron oxide nanoparticle"> iron oxide nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=epinephrine" title=" epinephrine"> epinephrine</a>, <a href="https://publications.waset.org/abstracts/search?q=serum" title=" serum"> serum</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltametry" title=" cyclic voltametry"> cyclic voltametry</a> </p> <a href="https://publications.waset.org/abstracts/144358/detection-of-epinephrine-in-chicken-serum-at-iron-oxide-screen-print-modified-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3338</span> Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalthoum%20Riahi">Kalthoum Riahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20T.%20Rietberg"> Max T. Rietberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Perez%20y%20Perez"> Javier Perez y Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Corn%C3%A9%20Dijkstra"> Corné Dijkstra</a>, <a href="https://publications.waset.org/abstracts/search?q=Bennie%20ten%20Haken"> Bennie ten Haken</a>, <a href="https://publications.waset.org/abstracts/search?q=Lejla%20Alic"> Lejla Alic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MNPs" title=" MNPs"> MNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20magnetic%20susceptibility" title=" differential magnetic susceptibility"> differential magnetic susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=DMS" title=" DMS"> DMS</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particle%20imaging" title=" magnetic particle imaging"> magnetic particle imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=MPI" title=" MPI"> MPI</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20relaxation" title=" magnetic relaxation"> magnetic relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=Synomag%C2%AE-D" title=" Synomag®-D"> Synomag®-D</a> </p> <a href="https://publications.waset.org/abstracts/131147/effect-of-changing-iron-content-and-excitation-frequency-on-magnetic-particle-imaging-signal-a-comparative-study-of-synomag-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3337</span> Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Kavas">Huseyin Kavas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=FMR" title=" FMR"> FMR</a> </p> <a href="https://publications.waset.org/abstracts/158967/self-assembly-of-monodisperse-oleic-acid-capped-superparamagnetic-iron-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3336</span> Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Justo%20Ambuchi">John Justo Ambuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaohan%20Zhang"> Zhaohan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujie%20Feng"> Yujie Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20granular%20sludge" title="anaerobic granular sludge">anaerobic granular sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20polymeric%20substances" title=" extracellular polymeric substances"> extracellular polymeric substances</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-wall%20carbon%20nanotubes" title=" multi-wall carbon nanotubes"> multi-wall carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/56240/biogas-enhancement-using-iron-oxide-nanoparticles-and-multi-wall-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3335</span> Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nithin%20Krisshna%20Gunasekaran">Nithin Krisshna Gunasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathima%20Prabhu%20Tumkur"> Prathima Prabhu Tumkur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Nazario%20Bayon"> Nicole Nazario Bayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Prabhakaran"> Krishnan Prabhakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Hall"> Joseph C. Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Govindarajan%20T.%20Ramesh"> Govindarajan T. Ramesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cerium%20oxide" title=" cerium oxide"> cerium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric" title=" turmeric"> turmeric</a> </p> <a href="https://publications.waset.org/abstracts/147482/turmeric-mediated-synthesis-and-characterization-of-cerium-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3334</span> Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolja%20Them">Kolja Them</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Salamon"> Johannes Salamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Ittrich"> Harald Ittrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kaul"> Michael Kaul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Knopp"> Tobias Knopp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20imaging" title="biomedical imaging">biomedical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles" title=" iron oxide nanoparticles"> iron oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particle%20imaging" title=" magnetic particle imaging"> magnetic particle imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20imaging" title=" stem cell imaging"> stem cell imaging</a> </p> <a href="https://publications.waset.org/abstracts/35704/immobilized-iron-oxide-nanoparticles-for-stem-cell-reconstruction-in-magnetic-particle-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3333</span> Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humaira%20Khan">Humaira Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Javed"> Mohsin Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sammia%20Shahid"> Sammia Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles%20and%20copper-doped%20ZnO%20nanoparticles" title=" ZnO nanoparticles and copper-doped ZnO nanoparticles"> ZnO nanoparticles and copper-doped ZnO nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/81655/synthesis-spectral-characterization-and-photocatalytic-applications-of-graphene-oxide-nanocomposite-with-copper-doped-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3332</span> An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Singh">S. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Patel"> P. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kachhadiya"> D. Kachhadiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Dharaskar"> Swapnil Dharaskar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20oxide%20nanoparticles" title="aluminium oxide nanoparticles">aluminium oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide%20nanoparticles" title=" cobalt oxide nanoparticles"> cobalt oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20additives" title=" fuel additives"> fuel additives</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20characteristics" title=" fuel characteristics"> fuel characteristics</a> </p> <a href="https://publications.waset.org/abstracts/72707/an-experimental-investigation-on-the-fuel-characteristics-of-nano-aluminium-oxide-and-nano-cobalt-oxide-particles-blended-in-diesel-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3331</span> Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Pulit-Prociak">Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Dlugosz"> Olga Dlugosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20system" title=" drug delivery system"> drug delivery system</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/138037/studies-on-modified-zinc-oxide-nanoparticles-as-potential-drug-carrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3330</span> Synthesis of Nickel Oxide Nanoparticles in Presence of Sodium Dodecyl Sulphate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fereshteh%20Chekin">Fereshteh Chekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Sadeghi"> Sepideh Sadeghi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel nanoparticles have attracted much attention because of applications in catalysis, medical diagnostics and magnetic applications. In this work, we reported a simple and low-cost procedure to synthesize nickel oxide nanoparticles (NiO-NPs) by using sodium dodecyl sulphate (SDS) and gelatin as stabilizer. The synthesized NiO-NPs were characterized by a variety of means such as transmission electron microscope (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis spectroscopy. The results show that the NiO nanoparticles with high crystalline can be obtained using this simple method. The grain size measured by TEM was 16 in presence of SDS, which agrees well with the XRD data. SDS plays an important role in the formation of the NiO nanoparticles. Moreover, the NiO nanoparticles have been used as a solid phase catalyst for the decomposition of hydrazine hydrate at room temperatures. The decomposition process has been monitored by UV–vis analysis. The present study showed that nanoparticles are not poisoned after their repeated use in decomposition of hydrazine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20oxide%20nanoparticles" title="nickel oxide nanoparticles">nickel oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20dodecyl%20sulphate" title=" sodium dodecyl sulphate"> sodium dodecyl sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilizer" title=" stabilizer"> stabilizer</a> </p> <a href="https://publications.waset.org/abstracts/14906/synthesis-of-nickel-oxide-nanoparticles-in-presence-of-sodium-dodecyl-sulphate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3329</span> Ficus Microcarpa Fruit Derived Iron Oxide Nanomaterials and Its Anti-bacterial, Antioxidant and Anticancer Efficacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Abdullah%20Alatawi">Fuad Abdullah Alatawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial infections-based diseases are a significant public health issue around the world, mainly when antibiotic-resistant bacterium types evolve. In this research, we explored the anti-bacterial and anti-cancer potency of iron-oxide (Fe₂O₃) nanoparticles prepared from F. macrocarpa fruit extract. The chemical composition of F. macrocarpa fruit extract was used as a reducing and capping agent for nanoparticles’ synthesis was examined by GC-MS/MS analysis. Then, the prepared nanoparticles were confirmed by various biophysical techniques, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis Spectroscopy, and Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDAX), and Dynamic Light Scattering (DLS). Also, the antioxidant capacity of fruit extract was determined through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Fluorescence Recovery After Photobleaching (FRAP), Superoxide Dismutase (SOD) assays. Furthermore, the cytotoxicity activities of Fe₂O₃ NPs were determined using the (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) test on MCF-7 cells. In the antibacterial assay, lethal doses of the Fe₂O₃NPs effectively inhibited the growth of gram-negative and gram-positive bacteria. The surface damage, ROS production, and protein leakage are the antibacterial mechanisms of Fe₂O₃NPs. Concerning antioxidant activity, the fruit extracts of F. macrocarpa had strong antioxidant properties, which were confirmed by DPPH, ABTS, FRAP, and SOD assays. In addition, the F. microcarpa-derived iron oxide nanomaterials greatly reduced the cell viability of (MCF-7). The GC-MS/MS analysis revealed the presence of 25 main bioactive compounds in the F. microcarpa extract. Overall, the finding of this research revealed that F. microcarpa-derived Fe₂O₃ nanoparticles could be employed as an alternative therapeutic agent to cure microbial infection and breast cancer in humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ficus%20microcarpa" title="ficus microcarpa">ficus microcarpa</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/151783/ficus-microcarpa-fruit-derived-iron-oxide-nanomaterials-and-its-anti-bacterial-antioxidant-and-anticancer-efficacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3328</span> Embryotoxicity of Nano-Iron Oxide (Fe2O3) to Bio-Indicator of Pollution of Land Helix Aspersa </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Besnaci">S. Besnaci</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bensoltane"> S. Bensoltane</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Locif"> H. Locif</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saadi"> S. Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To validate an ecotoxicological approach to assessing toxicological effects caused by the oxide powder of nano-iron Fe2O3, we searched in the ecotoxicology laboratory cell bodies bio accumulators and bio-indicators of soil pollution the snail Helix aspersa. In this study, we evaluated the toxicity of nano Fe2O3 during a very sensitive phase of development H.aspersa (embryonic stage). During embryonic development, we observed in treated with various concentrations of nano Fe2O3 (1.25 g/l, 1.5 g/l, and 2 g/l) compared to control, the deformation of the membrane of the egg and accumulation of this molecule at the rear of the egg proven by the photographs, as with the influence on the hatching percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eggs" title="eggs">eggs</a>, <a href="https://publications.waset.org/abstracts/search?q=embryotoxicity" title=" embryotoxicity"> embryotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe2O3" title=" Fe2O3"> Fe2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=Helix%20aspersa" title=" Helix aspersa"> Helix aspersa</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/18500/embryotoxicity-of-nano-iron-oxide-fe2o3-to-bio-indicator-of-pollution-of-land-helix-aspersa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3327</span> An Efficient Green Catalyst for Chemo-Selectiveoxidative Coupling of Thiols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kolvari">E. Kolvari</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Koukabi"> N. Koukabi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sabet"> A. Sabet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fakhraee"> A. Fakhraee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramezanpour"> M. Ramezanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A green and efficient method for oxidation of thiols to the corresponding disulfides is reported using free nano-iron oxide in the H2O2 and methanol as solvent at room tempereture. H2O2 is anoxidant for S-S coupling variety aromatic of thiols to corresponding disulfide in the presence of supported iron oxide as recoverable catalyst. This reaction is clean, fast, mild and easy work-up with no side reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thiol" title="thiol">thiol</a>, <a href="https://publications.waset.org/abstracts/search?q=disulfide" title=" disulfide"> disulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20nano-iron%20oxide" title=" free nano-iron oxide"> free nano-iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=H2O2" title=" H2O2"> H2O2</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a> </p> <a href="https://publications.waset.org/abstracts/11505/an-efficient-green-catalyst-for-chemo-selectiveoxidative-coupling-of-thiols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3326</span> Effect of Graphene Oxide Nanoparticles on a Heavy Oilfield: Interfacial Tension, Wettability and Oil Displacement Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimena%20Lizeth%20Gomez%20Delgado">Jimena Lizeth Gomez Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhon%20Jairo%20Rodriguez"> Jhon Jairo Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Santos"> Nicolas Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Mejia%20Ospino"> Enrique Mejia Ospino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has played an important role in the hydrocarbon industry, recently , due to the unique properties of graphene oxide nanoparticles, they have been incorporated in different studies enhanced oil recovery. Nonetheless, very few studies have used graphene oxide nanoparticles in coreflooding experiments. Herein, the use of Graphene oxide (GO) nanoparticle was explored, exploited and evaluated. The performance of Graphene oxide nanoparticles on the interfacial properties in the presence of different electrolyte concentrations representative of field brine and pH conditions was investigated. Moreover, wettability behavior of the nanofluid at the oil/sand interface was studied used contact angle and Amott Harvey evaluation. Experimental result shows that the adsorption of GO on the sandstone surface changes the wettability of the sandstone from being strongly crude oil-wet to intermediate crude oil-wettability. At 900 ppm formation brine with 8 pH solution and 0.09 wt% nanoparticles concentration, Graphene oxide nanofluid exhibited better performance under the different electrolyte concentration studied. Finally, heavy oil displacement test in sandstone cores showed that oil recovery of Graphene oxide nanofluid had 7% incremental oil recovery over conventional waterflooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=coreflooding" title=" coreflooding"> coreflooding</a> </p> <a href="https://publications.waset.org/abstracts/177299/effect-of-graphene-oxide-nanoparticles-on-a-heavy-oilfield-interfacial-tension-wettability-and-oil-displacement-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3325</span> Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bita%20Bayatsarmadi">Bita Bayatsarmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-Zhang%20Qiao"> Shi-Zhang Qiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-catalyst" title="electro-catalyst">electro-catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=mesopore%20structure" title=" mesopore structure"> mesopore structure</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20reduction%20reaction" title=" oxygen reduction reaction"> oxygen reduction reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=soft-template" title=" soft-template"> soft-template</a> </p> <a href="https://publications.waset.org/abstracts/30351/porous-carbon-nanoparticels-co-doped-with-nitrogen-and-iron-as-an-efficient-catalyst-for-oxygen-reduction-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3324</span> Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tefera%20Worku%20Mekonnen">Tefera Worku Mekonnen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiseh%20Chih%20Tsai"> Hiseh Chih Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cisplatin-release" title="cisplatin-release">cisplatin-release</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide" title=" iron oxide"> iron oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ovalbumin" title=" ovalbumin"> ovalbumin</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28amidoamine%29%20dendrimer" title=" poly(amidoamine) dendrimer"> poly(amidoamine) dendrimer</a> </p> <a href="https://publications.waset.org/abstracts/151735/polyamidoamine-dendrimer-cisplatin-nanocomplex-mixed-with-multifunctional-ovalbumin-coated-iron-oxide-nanoparticles-for-immuno-chemotherapeutics-with-m1-polarization-of-macrophages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=111">111</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=112">112</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20nanoparticles&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>