CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;23 of 23 results for author: <span class="mathjax">Castellano, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Castellano%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Castellano, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Castellano%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Castellano, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18283">arXiv:2407.18283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18283">pdf</a>, <a href="https://arxiv.org/format/2407.18283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> The role of gouge production in the seismic behavior of rough faults: A numerical study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">Miguel Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Milanese%2C+E">Enrico Milanese</a>, <a href="/search/physics?searchtype=author&amp;query=Cattania%2C+C">Camilla Cattania</a>, <a href="/search/physics?searchtype=author&amp;query=Kammer%2C+D+S">David S. Kammer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18283v2-abstract-short" style="display: inline;"> Fault zones mature through the accumulation of earthquakes and the wearing of contact asperities at multiple scales. This study examines how wear-induced gouge production affects the evolution of fault seismicity, focusing on earthquake nucleation, recurrence, and moment partitioning. Using 2D quasi-dynamic simulations integrating rate-and-state friction with Archard&#39;s law of wear, we model the sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18283v2-abstract-full').style.display = 'inline'; document.getElementById('2407.18283v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18283v2-abstract-full" style="display: none;"> Fault zones mature through the accumulation of earthquakes and the wearing of contact asperities at multiple scales. This study examines how wear-induced gouge production affects the evolution of fault seismicity, focusing on earthquake nucleation, recurrence, and moment partitioning. Using 2D quasi-dynamic simulations integrating rate-and-state friction with Archard&#39;s law of wear, we model the space-time distribution of gouge and its effect on the critical slip distance. The study reveals a shift from single to multi-rupture nucleation, marked by increased foreshock activity. The recurrence interval undergoes two separate phases: an initial phase of steady increase followed by a secondary phase of unpredictable behavior. Finally, we observe a transition in the moment partitioning from faster to slower slip rates and a decrease in the moment released per cycle relative to the case where no gouge formation is simulated. This research sheds light on wear-driven mechanisms affecting fault slip behavior, offering valuable insights into how the evolution of gouge along a fault affects its seismic potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18283v2-abstract-full').style.display = 'none'; document.getElementById('2407.18283v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00669">arXiv:2405.00669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.00669">pdf</a>, <a href="https://arxiv.org/format/2405.00669">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450617">10.1051/0004-6361/202450617 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Euclid preparation. LIII. LensMC, weak lensing cosmic shear measurement with forward modelling and Markov Chain Monte Carlo sampling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Euclid+Collaboration"> Euclid Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Congedo%2C+G">G. Congedo</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+L">L. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Taylor%2C+A+N">A. N. Taylor</a>, <a href="/search/physics?searchtype=author&amp;query=Cross%2C+N">N. Cross</a>, <a href="/search/physics?searchtype=author&amp;query=Duncan%2C+C+A+J">C. A. J. Duncan</a>, <a href="/search/physics?searchtype=author&amp;query=Kitching%2C+T">T. Kitching</a>, <a href="/search/physics?searchtype=author&amp;query=Martinet%2C+N">N. Martinet</a>, <a href="/search/physics?searchtype=author&amp;query=Matthew%2C+S">S. Matthew</a>, <a href="/search/physics?searchtype=author&amp;query=Schrabback%2C+T">T. Schrabback</a>, <a href="/search/physics?searchtype=author&amp;query=Tewes%2C+M">M. Tewes</a>, <a href="/search/physics?searchtype=author&amp;query=Welikala%2C+N">N. Welikala</a>, <a href="/search/physics?searchtype=author&amp;query=Aghanim%2C+N">N. Aghanim</a>, <a href="/search/physics?searchtype=author&amp;query=Amara%2C+A">A. Amara</a>, <a href="/search/physics?searchtype=author&amp;query=Andreon%2C+S">S. Andreon</a>, <a href="/search/physics?searchtype=author&amp;query=Auricchio%2C+N">N. Auricchio</a>, <a href="/search/physics?searchtype=author&amp;query=Baldi%2C+M">M. Baldi</a>, <a href="/search/physics?searchtype=author&amp;query=Bardelli%2C+S">S. Bardelli</a>, <a href="/search/physics?searchtype=author&amp;query=Bender%2C+R">R. Bender</a>, <a href="/search/physics?searchtype=author&amp;query=Bodendorf%2C+C">C. Bodendorf</a>, <a href="/search/physics?searchtype=author&amp;query=Bonino%2C+D">D. Bonino</a>, <a href="/search/physics?searchtype=author&amp;query=Branchini%2C+E">E. Branchini</a>, <a href="/search/physics?searchtype=author&amp;query=Brescia%2C+M">M. Brescia</a>, <a href="/search/physics?searchtype=author&amp;query=Brinchmann%2C+J">J. Brinchmann</a>, <a href="/search/physics?searchtype=author&amp;query=Camera%2C+S">S. Camera</a> , et al. (217 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00669v4-abstract-short" style="display: inline;"> LensMC is a weak lensing shear measurement method developed for Euclid and Stage-IV surveys. It is based on forward modelling in order to deal with convolution by a point spread function (PSF) with comparable size to many galaxies; sampling the posterior distribution of galaxy parameters via Markov Chain Monte Carlo; and marginalisation over nuisance parameters for each of the 1.5 billion galaxies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00669v4-abstract-full').style.display = 'inline'; document.getElementById('2405.00669v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00669v4-abstract-full" style="display: none;"> LensMC is a weak lensing shear measurement method developed for Euclid and Stage-IV surveys. It is based on forward modelling in order to deal with convolution by a point spread function (PSF) with comparable size to many galaxies; sampling the posterior distribution of galaxy parameters via Markov Chain Monte Carlo; and marginalisation over nuisance parameters for each of the 1.5 billion galaxies observed by Euclid. We quantified the scientific performance through high-fidelity images based on the Euclid Flagship simulations and emulation of the Euclid VIS images; realistic clustering with a mean surface number density of 250 arcmin$^{-2}$ ($I_{\rm E}&lt;29.5$) for galaxies, and 6 arcmin$^{-2}$ ($I_{\rm E}&lt;26$) for stars; and a diffraction-limited chromatic PSF with a full width at half maximum of $0.^{\!\prime\prime}2$ and spatial variation across the field of view. LensMC measured objects with a density of 90 arcmin$^{-2}$ ($I_{\rm E}&lt;26.5$) in 4500 deg$^2$. The total shear bias was broken down into measurement (our main focus here) and selection effects (which will be addressed elsewhere). We found measurement multiplicative and additive biases of $m_1=(-3.6\pm0.2)\times10^{-3}$, $m_2=(-4.3\pm0.2)\times10^{-3}$, $c_1=(-1.78\pm0.03)\times10^{-4}$, $c_2=(0.09\pm0.03)\times10^{-4}$; a large detection bias with a multiplicative component of $1.2\times10^{-2}$ and an additive component of $-3\times10^{-4}$; and a measurement PSF leakage of $伪_1=(-9\pm3)\times10^{-4}$ and $伪_2=(2\pm3)\times10^{-4}$. When model bias is suppressed, the obtained measurement biases are close to Euclid requirement and largely dominated by undetected faint galaxies ($-5\times10^{-3}$). Although significant, model bias will be straightforward to calibrate given the weak sensitivity. LensMC is publicly available at https://gitlab.com/gcongedo/LensMC <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00669v4-abstract-full').style.display = 'none'; document.getElementById('2405.00669v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 18 figures, and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 691, A319 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07814">arXiv:2209.07814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07814">pdf</a>, <a href="https://arxiv.org/format/2209.07814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmps.2022.105193">10.1016/j.jmps.2022.105193 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleation of frictional slip: A yielding or a fracture process? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">Miguel Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Lorez%2C+F">Flavio Lorez</a>, <a href="/search/physics?searchtype=author&amp;query=Kammer%2C+D">David Kammer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07814v1-abstract-short" style="display: inline;"> The onset of frictional sliding between contacting bodies under shear load is nucleated by the quasi-static growth of localized slip patches. After reaching a certain critical size, these patches become unstable and continue growing dynamically, eventually causing the sliding of the entire interface. Two different theories have been used to compute the nucleation length of such patches depending o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07814v1-abstract-full').style.display = 'inline'; document.getElementById('2209.07814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07814v1-abstract-full" style="display: none;"> The onset of frictional sliding between contacting bodies under shear load is nucleated by the quasi-static growth of localized slip patches. After reaching a certain critical size, these patches become unstable and continue growing dynamically, eventually causing the sliding of the entire interface. Two different theories have been used to compute the nucleation length of such patches depending on the dominant process driving their growth. If it is only the yielding of contact asperities (large-scale yielding), a stress criterion is applied, based on linear stability analysis, whereas if fracture dominates, an energy criterion is applied, based on fracture mechanics and classical nucleation theory. Both approaches contain important underlying assumptions that are well-suited to describe either one situation or the other. However, what happens in-between is not captured by any of them. In this work, we use numerical simulations to study what is the dominant underlying process driving nucleation for different conditions of heterogeneity and what are the implications for nucleation dynamics and the onset of frictional sliding. We show that large frictional heterogeneities enable a transition from a yielding-driven nucleation phase to a fracture-driven one. This transition occurs only above a certain level of heterogeneity and can either be quasi-static (stable) or dynamic (unstable), depending on the correlation length of frictional strength along the interface and the difference in strength between the strongest and the weakest point (the amplitude). Unstable transitions generate localized dynamic slip events, whose magnitude increases with higher correlation length and decreases with larger amplitude. Our work sheds new light on the role of heterogeneity and fracture in the nucleation of frictional slip, bridging the gap between the two main governing theories for nucleation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07814v1-abstract-full').style.display = 'none'; document.getElementById('2209.07814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06104">arXiv:2006.06104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.06104">pdf</a>, <a href="https://arxiv.org/format/2006.06104">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> The nuclear pore complex as an entropic gate: theory and simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">Mike Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Wolf%2C+S">Steffen Wolf</a>, <a href="/search/physics?searchtype=author&amp;query=Koslowski%2C+T">Thorsten Koslowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06104v1-abstract-short" style="display: inline;"> Protein chains of the (FG)$_n$ ($n \simeq$ 300) type cap the cytoplasmatic side of the nucleopore complex, which connects the nucleus to the remainder of an eukaryotic cell. We study the properties of three fundamental polymer models that represent these filaments using Monte Carlo computer simulations. Random walks and the worm like chain model cannot account for the unusual size selectivity of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06104v1-abstract-full').style.display = 'inline'; document.getElementById('2006.06104v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06104v1-abstract-full" style="display: none;"> Protein chains of the (FG)$_n$ ($n \simeq$ 300) type cap the cytoplasmatic side of the nucleopore complex, which connects the nucleus to the remainder of an eukaryotic cell. We study the properties of three fundamental polymer models that represent these filaments using Monte Carlo computer simulations. Random walks and the worm like chain model cannot account for the unusual size selectivity of the pore, while a two-dimensional arrangement of intrinsically disordered block copolymers with a high content of $伪$-helices is in agreement with the biochemical findings. We predict a linear increase of the free energy barrier of protein transport through the pore with increasing protein diameter, which can be probed experimentally using atomic force microscopy or optical tweezers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06104v1-abstract-full').style.display = 'none'; document.getElementById('2006.06104v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This document is the unedited version of a manuscript that has been submitted to a scientific journal for consideration as publication and may be downloaded for personal use only</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.03589">arXiv:2002.03589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.03589">pdf</a>, <a href="https://arxiv.org/format/2002.03589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-020-02372-y">10.1007/s10909-020-02372-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-flight performance of the LEKIDs of the OLIMPO experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Paiella%2C+A">A. Paiella</a>, <a href="/search/physics?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/physics?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Columbro%2C+F">F. Columbro</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A. Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Alessandro%2C+G">G. D&#39;Alessandro</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/physics?searchtype=author&amp;query=De+Petris%2C+M">M. De Petris</a>, <a href="/search/physics?searchtype=author&amp;query=Gordon%2C+S">S. Gordon</a>, <a href="/search/physics?searchtype=author&amp;query=Lamagna%2C+L">L. Lamagna</a>, <a href="/search/physics?searchtype=author&amp;query=Magneville%2C+C">C. Magneville</a>, <a href="/search/physics?searchtype=author&amp;query=Masi%2C+S">S. Masi</a>, <a href="/search/physics?searchtype=author&amp;query=Mauskopf%2C+P">P. Mauskopf</a>, <a href="/search/physics?searchtype=author&amp;query=Pettinari%2C+G">G. Pettinari</a>, <a href="/search/physics?searchtype=author&amp;query=Piacentini%2C+F">F. Piacentini</a>, <a href="/search/physics?searchtype=author&amp;query=Pisano%2C+G">G. Pisano</a>, <a href="/search/physics?searchtype=author&amp;query=Polenta%2C+G">G. Polenta</a>, <a href="/search/physics?searchtype=author&amp;query=Presta%2C+G">G. Presta</a>, <a href="/search/physics?searchtype=author&amp;query=Tommasi%2C+E">E. Tommasi</a>, <a href="/search/physics?searchtype=author&amp;query=Tucker%2C+C">C. Tucker</a>, <a href="/search/physics?searchtype=author&amp;query=Vdovin%2C+V">V. Vdovin</a>, <a href="/search/physics?searchtype=author&amp;query=Volpe%2C+A">A. Volpe</a>, <a href="/search/physics?searchtype=author&amp;query=Yvon%2C+D">D. Yvon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.03589v1-abstract-short" style="display: inline;"> We describe the in-flight performance of the horn-coupled Lumped Element Kinetic Inductance Detector arrays of the balloon-borne OLIMPO experiment. These arrays have been designed to match the spectral bands of OLIMPO: 150, 250, 350, and 460 GHz, and they have been operated at 0.3 K and at an altitude of 37.8 km during the stratospheric flight of the OLIMPO payload, in Summer 2018. During the firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03589v1-abstract-full').style.display = 'inline'; document.getElementById('2002.03589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.03589v1-abstract-full" style="display: none;"> We describe the in-flight performance of the horn-coupled Lumped Element Kinetic Inductance Detector arrays of the balloon-borne OLIMPO experiment. These arrays have been designed to match the spectral bands of OLIMPO: 150, 250, 350, and 460 GHz, and they have been operated at 0.3 K and at an altitude of 37.8 km during the stratospheric flight of the OLIMPO payload, in Summer 2018. During the first hours of flight, we tuned the detectors and verified their large dynamics under the radiative background variations due to elevation increase of the telescope and to the insertion of the plug-in room-temperature differential Fourier transform spectrometer into the optical chain. We have found that the detector noise equivalent powers are close to be photon-noise limited and lower than those measured on the ground. Moreover, the data contamination due to primary cosmic rays hitting the arrays is less than 3% for all the pixels of all the arrays, and less than 1% for most of the pixels. These results can be considered the first step of KID technology validation in a representative space environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.03589v1-abstract-full').style.display = 'none'; document.getElementById('2002.03589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Low Temperature Physics 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08660">arXiv:1905.08660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.08660">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.9b00912">10.1021/acsphotonics.9b00912 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Controllable and Highly Propagative Hybrid Surface Plasmon-Phonon Polariton in a CdZnO-based Two-Interface System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tamayo-Arriola%2C+J">J. Tamayo-Arriola</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+E+M">E. Mart铆nez Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Bajo%2C+M+M">M. Montes Bajo</a>, <a href="/search/physics?searchtype=author&amp;query=Huerta-Barber%C3%A0%2C+A">A. Huerta-Barber脿</a>, <a href="/search/physics?searchtype=author&amp;query=Mu%C3%B1oz%2C+E">E. Mu帽oz</a>, <a href="/search/physics?searchtype=author&amp;query=Mu%C3%B1oz-Sanjos%C3%A9%2C+V">V. Mu帽oz-Sanjos茅</a>, <a href="/search/physics?searchtype=author&amp;query=Hierro%2C+A">A. Hierro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08660v1-abstract-short" style="display: inline;"> The development of new nanophotonic devices requires the understanding and modulation of the propagating surface plasmon and phonon modes arising in plasmonic and polar dielectric materials, respectively. Here we explore the CdZnO alloy as a plasmonic material, with a tunable plasma frequency and reduced losses compared to pure CdO. By means of attenuated total reflectance, we experimentally obser&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08660v1-abstract-full').style.display = 'inline'; document.getElementById('1905.08660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08660v1-abstract-full" style="display: none;"> The development of new nanophotonic devices requires the understanding and modulation of the propagating surface plasmon and phonon modes arising in plasmonic and polar dielectric materials, respectively. Here we explore the CdZnO alloy as a plasmonic material, with a tunable plasma frequency and reduced losses compared to pure CdO. By means of attenuated total reflectance, we experimentally observe the hybridization of the surface plasmon polariton (SPP) with the surface phonon polariton (SPhP) in the air-CdZnO-sapphire three-layer system. We show how through the precise control of the CdZnO thickness, the resonance frequencies of the hybrid surface plasmon-phonon polariton (SPPP) are tuned in the mid-infrared, and the nature of the hybrid mode turns from a plasmon-like behavior in the thicker films to a phonon-like behavior in the thinnest films. The presence of sapphire phonons not only allows the hybrid mode to be formed, but also improves its characteristics with respect to the bare SPP. The reduced damping of the phonon oscillators allows to reduce the losses of the hybrid mode, enhancing the propagation length above 500 microns, one order of magnitude larger than that of typical SPPs, clearing the path for its application on emerging devices such as plasmonic waveguides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08660v1-abstract-full').style.display = 'none'; document.getElementById('1905.08660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supporting Information available</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics, 6 (2019) 2816-2822 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.01890">arXiv:1904.01890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.01890">pdf</a>, <a href="https://arxiv.org/format/1904.01890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/1182/1/012005">10.1088/1742-6596/1182/1/012005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinetic Inductance Detectors and readout electronics for the OLIMPO experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Paiella%2C+A">A. Paiella</a>, <a href="/search/physics?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Columbro%2C+F">F. Columbro</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A. Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Alessandro%2C+G">G. D&#39;Alessandro</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/physics?searchtype=author&amp;query=Gordon%2C+S">S. Gordon</a>, <a href="/search/physics?searchtype=author&amp;query=Lamagna%2C+L">L. Lamagna</a>, <a href="/search/physics?searchtype=author&amp;query=Mani%2C+H">H. Mani</a>, <a href="/search/physics?searchtype=author&amp;query=Masi%2C+S">S. Masi</a>, <a href="/search/physics?searchtype=author&amp;query=Mauskopf%2C+P">P. Mauskopf</a>, <a href="/search/physics?searchtype=author&amp;query=Pettinari%2C+G">G. Pettinari</a>, <a href="/search/physics?searchtype=author&amp;query=Piacentini%2C+F">F. Piacentini</a>, <a href="/search/physics?searchtype=author&amp;query=Presta%2C+G">G. Presta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.01890v1-abstract-short" style="display: inline;"> Kinetic Inductance Detectors (KIDs) are superconductive low$-$temperature detectors useful for astrophysics and particle physics. We have developed arrays of lumped elements KIDs (LEKIDs) sensitive to microwave photons, optimized for the four horn-coupled focal planes of the OLIMPO balloon-borne telescope, working in the spectral bands centered at 150 GHz, 250 GHz, 350 GHz, and 460 GHz. This is ai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01890v1-abstract-full').style.display = 'inline'; document.getElementById('1904.01890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.01890v1-abstract-full" style="display: none;"> Kinetic Inductance Detectors (KIDs) are superconductive low$-$temperature detectors useful for astrophysics and particle physics. We have developed arrays of lumped elements KIDs (LEKIDs) sensitive to microwave photons, optimized for the four horn-coupled focal planes of the OLIMPO balloon-borne telescope, working in the spectral bands centered at 150 GHz, 250 GHz, 350 GHz, and 460 GHz. This is aimed at measuring the spectrum of the Sunyaev-Zel&#39;dovich effect for a number of galaxy clusters, and will validate LEKIDs technology in a space-like environment. Our detectors are optimized for an intermediate background level, due to the presence of residual atmosphere and room--temperature optical system and they operate at a temperature of 0.3 K. The LEKID planar superconducting circuits are designed to resonate between 100 and 600 MHz, and to match the impedance of the feeding waveguides; the measured quality factors of the resonators are in the $10^{4}-10^{5}$ range, and they have been tuned to obtain the needed dynamic range. The readout electronics is composed of a $cold$ $part$, which includes a low noise amplifier, a dc$-$block, coaxial cables, and power attenuators; and a $room-temperature$ $part$, FPGA$-$based, including up and down-conversion microwave components (IQ modulator, IQ demodulator, amplifiers, bias tees, attenuators). In this contribution, we describe the optimization, fabrication, characterization and validation of the OLIMPO detector system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.01890v1-abstract-full').style.display = 'none'; document.getElementById('1904.01890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of WOLTE13, September 10-13, 2018 Sorrento, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics: Conference Series 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00598">arXiv:1810.00598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.00598">pdf</a>, <a href="https://arxiv.org/format/1810.00598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/01/039">10.1088/1475-7516/2019/01/039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinetic Inductance Detectors for the OLIMPO experiment: design and pre-flight characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Paiella%2C+A">A. Paiella</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A. Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=Lamagna%2C+L">L. Lamagna</a>, <a href="/search/physics?searchtype=author&amp;query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/physics?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Columbro%2C+F">F. Columbro</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Alessandro%2C+G">G. D&#39;Alessandro</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/physics?searchtype=author&amp;query=Gordon%2C+S">S. Gordon</a>, <a href="/search/physics?searchtype=author&amp;query=Masi%2C+S">S. Masi</a>, <a href="/search/physics?searchtype=author&amp;query=Mauskopf%2C+P">P. Mauskopf</a>, <a href="/search/physics?searchtype=author&amp;query=Pettinari%2C+G">G. Pettinari</a>, <a href="/search/physics?searchtype=author&amp;query=Piacentini%2C+F">F. Piacentini</a>, <a href="/search/physics?searchtype=author&amp;query=Pisano%2C+G">G. Pisano</a>, <a href="/search/physics?searchtype=author&amp;query=Presta%2C+G">G. Presta</a>, <a href="/search/physics?searchtype=author&amp;query=Tucker%2C+C">C. Tucker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00598v2-abstract-short" style="display: inline;"> We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zel&#39;dovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00598v2-abstract-full').style.display = 'inline'; document.getElementById('1810.00598v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00598v2-abstract-full" style="display: none;"> We designed, fabricated, and characterized four arrays of horn--coupled, lumped element kinetic inductance detectors (LEKIDs), optimized to work in the spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m aperture telescope, aimed at spectroscopic measurements of the Sunyaev-Zel&#39;dovich (SZ) effect. OLIMPO will also validate the LEKID technology in a representative space environment. The corrected focal plane is filled with diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels respectively at 150, 250, 350, and 460$\:$GHz. Here we report on the full electrical and optical characterization performed on these detector arrays before the flight. In a dark laboratory cryostat, we measured the resonator electrical parameters, such as the quality factors and the electrical responsivities, at a base temperature of 300$\:$mK. The measured average resonator $Q$s are 1.7$\times{10^4}$, 7.0$\times{10^4}$, 1.0$\times{10^4}$, and 1.0$\times{10^4}$ for the 150, 250, 350, and 460$\:$GHz arrays, respectively. The average electrical phase responsivities on resonance are 1.4$\:$rad/pW, 1.5$\:$rad/pW, 2.1$\:$rad/pW, and 2.1$\:$rad/pW; the electrical noise equivalent powers are 45$\:\rm{aW/\sqrt{Hz}}$, 160$\:\rm{aW/\sqrt{Hz}}$, 80$\:\rm{aW/\sqrt{Hz}}$, and 140$\:\rm{aW/\sqrt{Hz}}$, at 12 Hz. In the OLIMPO cryostat, we measured the optical properties, such as the noise equivalent temperatures (NET) and the spectral responses. The measured NET$_{\rm RJ}$s are $200\:渭\rm{K\sqrt{s}}$, $240\:渭\rm{K\sqrt{s}}$, $240\:渭\rm{K\sqrt{s}}$, and $\:340渭\rm{K\sqrt{s}}$, at 12 Hz; under 78, 88, 92, and 90 mK Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and 460 GHz arrays. The spectral responses were characterized with the OLIMPO differential Fourier transform spectrometer (DFTS) up to THz frequencies, with a resolution of 1.8 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00598v2-abstract-full').style.display = 'none'; document.getElementById('1810.00598v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published on JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.05228">arXiv:1803.05228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.05228">pdf</a>, <a href="https://arxiv.org/format/1803.05228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.infrared.2018.02.008">10.1016/j.infrared.2018.02.008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra High Molecular Weight Polyethylene: optical features at millimeter wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=D%27Alessandro%2C+G">G. D&#39;Alessandro</a>, <a href="/search/physics?searchtype=author&amp;query=Paiella%2C+A">A. Paiella</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A. Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/physics?searchtype=author&amp;query=Lamagna%2C+L">L. Lamagna</a>, <a href="/search/physics?searchtype=author&amp;query=Masi%2C+S">S. Masi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.05228v1-abstract-short" style="display: inline;"> The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver&#39;s cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5m) of these parts, re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05228v1-abstract-full').style.display = 'inline'; document.getElementById('1803.05228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.05228v1-abstract-full" style="display: none;"> The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver&#39;s cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5m) of these parts, resulting in heavy structural and optical requirements on the material to be used. Ultra High Molecular Weight (UHMW) polyethylene (PE) features high resistance to traction and good transmissivity in the frequency range of interest. In this paper, we discuss the possibility of using UHMW PE for windows and lenses in experiments working at millimeter wavelengths, by measuring its optical properties: emissivity, transmission and refraction index. Our measurements show that the material is well suited to this purpose. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.05228v1-abstract-full').style.display = 'none'; document.getElementById('1803.05228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Infrared Physics and Technology, Volume 90, May 2018, Pages 59-65 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.04184">arXiv:1802.04184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.04184">pdf</a>, <a href="https://arxiv.org/ps/1802.04184">ps</a>, <a href="https://arxiv.org/format/1802.04184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.02.093">10.1016/j.nima.2018.02.093 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Measurements by Means of Transition Radiation in novel Linacs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Marongiu%2C+M">M. Marongiu</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">M. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Chiadroni%2C+E">E. Chiadroni</a>, <a href="/search/physics?searchtype=author&amp;query=Cianchi%2C+A">A. Cianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Franzini%2C+G">G. Franzini</a>, <a href="/search/physics?searchtype=author&amp;query=Giribono%2C+A">A. Giribono</a>, <a href="/search/physics?searchtype=author&amp;query=Mostacci%2C+A">A. Mostacci</a>, <a href="/search/physics?searchtype=author&amp;query=Palumbo%2C+L">L. Palumbo</a>, <a href="/search/physics?searchtype=author&amp;query=Shpakov%2C+V">V. Shpakov</a>, <a href="/search/physics?searchtype=author&amp;query=Stella%2C+A">A. Stella</a>, <a href="/search/physics?searchtype=author&amp;query=Variola%2C+A">A. Variola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.04184v1-abstract-short" style="display: inline;"> Advanced linear accelerator design may use Optical Transition Radiation (OTR) screens to measure beam spot size; for instance, such screens are foreseen in plasma based accelerators (EuPRAXIA@SPARC_LAB) or Compton machines (Gamma Beam Source@ELI-NP). Optical Transition Radiation angular distribution strongly depends on beam energy. Since OTR screens are typically placed in several positions along&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04184v1-abstract-full').style.display = 'inline'; document.getElementById('1802.04184v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.04184v1-abstract-full" style="display: none;"> Advanced linear accelerator design may use Optical Transition Radiation (OTR) screens to measure beam spot size; for instance, such screens are foreseen in plasma based accelerators (EuPRAXIA@SPARC_LAB) or Compton machines (Gamma Beam Source@ELI-NP). Optical Transition Radiation angular distribution strongly depends on beam energy. Since OTR screens are typically placed in several positions along the Linac to monitor the beam envelope, one may perform a distributed energy measurement along the machine. Furthermore, a single shot energy measurement can be useful in plasma accelerators to measure shot to shot energy variations after the plasma interaction. Preliminary measurements of OTR angular distribution of about 100 MeV electrons have been performed at the SPARC_LAB facility. In this paper, we discuss the sensitivity of this measurement to beam divergence and others parameters, as well as the resolution required and the needed upgrades of conventional OTR diagnostics, using as an example the data collected at SPARC_LAB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.04184v1-abstract-full').style.display = 'none'; document.getElementById('1802.04184v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, NIM-A proceedings of EAAC2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.03253">arXiv:1802.03253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.03253">pdf</a>, <a href="https://arxiv.org/format/1802.03253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.02.059">10.1016/j.nima.2018.02.059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent studies on single-shot diagnostics for plasma accelerators at SPARC_LAB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bisesto%2C+F+G">F. G. Bisesto</a>, <a href="/search/physics?searchtype=author&amp;query=Anania%2C+M+P">M. P. Anania</a>, <a href="/search/physics?searchtype=author&amp;query=Botton%2C+M">M. Botton</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">M. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Chiadroni%2C+E">E. Chiadroni</a>, <a href="/search/physics?searchtype=author&amp;query=Cianchi%2C+A">A. Cianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Curcio%2C+A">A. Curcio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferrario%2C+M">M. Ferrario</a>, <a href="/search/physics?searchtype=author&amp;query=Galletti%2C+M">M. Galletti</a>, <a href="/search/physics?searchtype=author&amp;query=Henis%2C+Z">Z. Henis</a>, <a href="/search/physics?searchtype=author&amp;query=Pompili%2C+R">R. Pompili</a>, <a href="/search/physics?searchtype=author&amp;query=Schleifer%2C+E">E. Schleifer</a>, <a href="/search/physics?searchtype=author&amp;query=Shpakov%2C+V">V. Shpakov</a>, <a href="/search/physics?searchtype=author&amp;query=Zigler%2C+A">A. Zigler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.03253v1-abstract-short" style="display: inline;"> Plasma wakefield acceleration is the most promising acceleration technique for compact and cheap accelerators, thanks to the high accelerating gradients achievable. Nevertheless, this approach still suffers of shot-to-shot instabilities, mostly related to experimental parameters fluctuations. Therefore, the use of single shot diagnostics is needed to properly understand the acceleration mechanism.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03253v1-abstract-full').style.display = 'inline'; document.getElementById('1802.03253v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.03253v1-abstract-full" style="display: none;"> Plasma wakefield acceleration is the most promising acceleration technique for compact and cheap accelerators, thanks to the high accelerating gradients achievable. Nevertheless, this approach still suffers of shot-to-shot instabilities, mostly related to experimental parameters fluctuations. Therefore, the use of single shot diagnostics is needed to properly understand the acceleration mechanism. In this work, we present two diagnostics to probe electron beams from laser-plasma interactions, one relying on Electro Optical Sampling (EOS) for laser-solid matter interactions, the other one based on Optical Transition Radiation (OTR) for single shot measurements of the transverse emittance of plasma accelerated electron beams, both developed at the SPARC_LAB Test Facility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.03253v1-abstract-full').style.display = 'none'; document.getElementById('1802.03253v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.08717">arXiv:1801.08717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.08717">pdf</a>, <a href="https://arxiv.org/format/1801.08717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.01.094">10.1016/j.nima.2018.01.094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EuPRAXIA@SPARC_LAB Design study towards a compact FEL facility at LNF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ferrario%2C+M">M. Ferrario</a>, <a href="/search/physics?searchtype=author&amp;query=Alesini%2C+D">D. Alesini</a>, <a href="/search/physics?searchtype=author&amp;query=Anania%2C+M+P">M. P. Anania</a>, <a href="/search/physics?searchtype=author&amp;query=Artioli%2C+M">M. Artioli</a>, <a href="/search/physics?searchtype=author&amp;query=Bacci%2C+A">A. Bacci</a>, <a href="/search/physics?searchtype=author&amp;query=Bartocci%2C+S">S. Bartocci</a>, <a href="/search/physics?searchtype=author&amp;query=Bedogni%2C+R">R. Bedogni</a>, <a href="/search/physics?searchtype=author&amp;query=Bellaveglia%2C+M">M. Bellaveglia</a>, <a href="/search/physics?searchtype=author&amp;query=Biagioni%2C+A">A. Biagioni</a>, <a href="/search/physics?searchtype=author&amp;query=Bisesto%2C+F">F. Bisesto</a>, <a href="/search/physics?searchtype=author&amp;query=Brandi%2C+F">F. Brandi</a>, <a href="/search/physics?searchtype=author&amp;query=Brentegani%2C+E">E. Brentegani</a>, <a href="/search/physics?searchtype=author&amp;query=Broggi%2C+F">F. Broggi</a>, <a href="/search/physics?searchtype=author&amp;query=Buonomo%2C+B">B. Buonomo</a>, <a href="/search/physics?searchtype=author&amp;query=Campana%2C+P+L">P. L. Campana</a>, <a href="/search/physics?searchtype=author&amp;query=Campogiani%2C+G">G. Campogiani</a>, <a href="/search/physics?searchtype=author&amp;query=Cannaos%2C+C">C. Cannaos</a>, <a href="/search/physics?searchtype=author&amp;query=Cantarella%2C+S">S. Cantarella</a>, <a href="/search/physics?searchtype=author&amp;query=Cardelli%2C+F">F. Cardelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carpanese%2C+M">M. Carpanese</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">M. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Castorina%2C+G">G. Castorina</a>, <a href="/search/physics?searchtype=author&amp;query=Lasheras%2C+N+C">N. Catalan Lasheras</a>, <a href="/search/physics?searchtype=author&amp;query=Chiadroni%2C+E">E. Chiadroni</a>, <a href="/search/physics?searchtype=author&amp;query=Cianchi%2C+A">A. Cianchi</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.08717v1-abstract-short" style="display: inline;"> On the wake of the results obtained so far at the SPARC\_LAB test-facility at the Laboratori Nazionali di Frascati (Italy), we are currently investigating the possibility to design and build a new multi-disciplinary user-facility, equipped with a soft X-ray Free Electron Laser (FEL) driven by a $\sim$1 GeV high brightness linac based on plasma accelerator modules. This design study is performed in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08717v1-abstract-full').style.display = 'inline'; document.getElementById('1801.08717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.08717v1-abstract-full" style="display: none;"> On the wake of the results obtained so far at the SPARC\_LAB test-facility at the Laboratori Nazionali di Frascati (Italy), we are currently investigating the possibility to design and build a new multi-disciplinary user-facility, equipped with a soft X-ray Free Electron Laser (FEL) driven by a $\sim$1 GeV high brightness linac based on plasma accelerator modules. This design study is performed in synergy with the EuPRAXIA design study. In this paper we report about the recent progresses in the on going design study of the new facility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08717v1-abstract-full').style.display = 'none'; document.getElementById('1801.08717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.08403">arXiv:1801.08403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.08403">pdf</a>, <a href="https://arxiv.org/format/1801.08403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6668/aac1d4">10.1088/1361-6668/aac1d4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Al/Ti/Al phonon-mediated KIDs for UV-VIS light detection over large areas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Sueur%2C+H+l">H. le Sueur</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo%2C+M">M. Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cosmelli%2C+C">C. Cosmelli</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Goupy%2C+J">J. Goupy</a>, <a href="/search/physics?searchtype=author&amp;query=Minutolo%2C+L">L. Minutolo</a>, <a href="/search/physics?searchtype=author&amp;query=Monfardini%2C+A">A. Monfardini</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.08403v2-abstract-short" style="display: inline;"> The development of wide-area cryogenic light detectors with baseline energy resolution lower than 20 eV RMS is essential for next generation bolometric experiments searching for rare interactions. Indeed the simultaneous readout of the light and heat signals will enable background suppression through particle identification. Because of their excellent intrinsic energy resolution, as well as their&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08403v2-abstract-full').style.display = 'inline'; document.getElementById('1801.08403v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.08403v2-abstract-full" style="display: none;"> The development of wide-area cryogenic light detectors with baseline energy resolution lower than 20 eV RMS is essential for next generation bolometric experiments searching for rare interactions. Indeed the simultaneous readout of the light and heat signals will enable background suppression through particle identification. Because of their excellent intrinsic energy resolution, as well as their well-established reproducibility, Kinetic Inductance Detectors (KIDs) are good candidates for the development of next generation light detectors. The CALDER project is investigating the potential of phonon-mediated KIDs. The first phase of the project allowed to reach a baseline resolution of 80 eV using a single KID made of aluminium on a 2x2 cm\tmrsup{$2$} silicon substrate acting as photon absorber. In this paper we present a new prototype detector implementing a trilayer aluminium-titanium-aluminium KID. Taking advantage of the superconducting proximity effect the baseline resolution improves down to 26 eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08403v2-abstract-full').style.display = 'none'; document.getElementById('1801.08403v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to SUST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Supercond. Sci. Technol. 31 (2018) 075002 (6pp) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.04483">arXiv:1705.04483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.04483">pdf</a>, <a href="https://arxiv.org/format/1705.04483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> High-sensitivity Kinetic Inductance Detectors for CALDER </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cosmelli%2C+C">C. Cosmelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.04483v1-abstract-short" style="display: inline;"> Providing a background discrimination tool is crucial for enhancing the sensitivity of next-generation experiments searching for neutrinoless double- beta decay. The development of high-sensitivity (&lt; 20 eV RMS) cryogenic light detectors allows simultaneous read-out of the light and heat signals and enables background suppression through particle identification. The Cryogenic wide- Area Light Dete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04483v1-abstract-full').style.display = 'inline'; document.getElementById('1705.04483v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.04483v1-abstract-full" style="display: none;"> Providing a background discrimination tool is crucial for enhancing the sensitivity of next-generation experiments searching for neutrinoless double- beta decay. The development of high-sensitivity (&lt; 20 eV RMS) cryogenic light detectors allows simultaneous read-out of the light and heat signals and enables background suppression through particle identification. The Cryogenic wide- Area Light Detector with Excellent Resolution (CALDER) R&amp;D already proved the potential of this technique using the phonon-mediated Kinetic Inductance Detectors (KIDs) approach. The first array prototype with 4 Aluminum KIDs on a 2 $\times$ 2 cm2 Silicon substrate showed a baseline resolution of 154 $\pm$ 7 eV RMS. Improving the design and the readout of the resonator, the next CALDER prototype featured an energy resolution of 82 $\pm$ 4 eV, by sampling the same substrate with a single Aluminum KID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.04483v1-abstract-full').style.display = 'none'; document.getElementById('1705.04483v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.04512">arXiv:1607.04512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.04512">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10762-016-0343-0">10.1007/s10762-016-0343-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> THz Discrimination of materials: demonstration of a bioinspired apparatus based on metasurfaces selective filters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Carelli%2C+P">P. Carelli</a>, <a href="/search/physics?searchtype=author&amp;query=Chiarello%2C+F">F. Chiarello</a>, <a href="/search/physics?searchtype=author&amp;query=Torrioli%2C+G">G. Torrioli</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.04512v1-abstract-short" style="display: inline;"> We present an apparatus for terahertz fingerprint discrimination of materials designed to be fast, simple, compact and economical in order to be suitable for preliminary on-field analysis. The system working principles, bioinspired by the human vision of colors, are based on the use of microfabricated metamaterials selective filters and of a very compact optics based on metallic ellipsoidal mirror&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04512v1-abstract-full').style.display = 'inline'; document.getElementById('1607.04512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.04512v1-abstract-full" style="display: none;"> We present an apparatus for terahertz fingerprint discrimination of materials designed to be fast, simple, compact and economical in order to be suitable for preliminary on-field analysis. The system working principles, bioinspired by the human vision of colors, are based on the use of microfabricated metamaterials selective filters and of a very compact optics based on metallic ellipsoidal mirrors in air. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods and grease in an accurate and reproducible manner. We present the system and the obtained results and discuss issues and possible developments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04512v1-abstract-full').style.display = 'none'; document.getElementById('1607.04512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, to be submitted to Infrared Milli Terahz Waves</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.04565">arXiv:1606.04565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1606.04565">pdf</a>, <a href="https://arxiv.org/format/1606.04565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4974082">10.1063/1.4974082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cosmelli%2C+C">C. Cosmelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.04565v2-abstract-short" style="display: inline;"> The development of wide-area cryogenic light detectors with good energy resolution is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally-multiplexed K&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04565v2-abstract-full').style.display = 'inline'; document.getElementById('1606.04565v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.04565v2-abstract-full" style="display: none;"> The development of wide-area cryogenic light detectors with good energy resolution is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. To satisfy the large surface requirement (several cm$^2$) KIDs are deposited on an insulating substrate that converts the impinging photons into phonons. A fraction of phonons is absorbed by the KID, producing a signal proportional to the energy of the original photons. The potential of this technique was proved by the CALDER project, that reached a baseline resolution of 154$\pm$7 eV RMS by sampling a 2$\times$2 cm$^2$ Silicon substrate with 4 Aluminum KIDs. In this paper we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82$\pm$4 eV by sampling the same substrate with a single Aluminum KID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.04565v2-abstract-full').style.display = 'none'; document.getElementById('1606.04565v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 110, 033504 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.08901">arXiv:1512.08901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.08901">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> CALDER: cryogenic light detector for rare events search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo%2C+M">M. Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A. Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=Cosmelli%2C+C">C. Cosmelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=De+Bernardis%2C+P">P. De Bernardis</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Masi%2C+S">S. Masi</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.08901v1-abstract-short" style="display: inline;"> The CALDER project aims at developing cryogenic light detectors with high sensitivity to UV and visible light, to be used for particle tagging in massive bolometers. Indeed the sensitivity of CUORE can be increased by a factor of 3, thanks to the reduction of the $伪$-background, obtained by detecting the Cherenkov light (100 eV) emitted by $尾/纬$ events. Currently used light detectors have not the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08901v1-abstract-full').style.display = 'inline'; document.getElementById('1512.08901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.08901v1-abstract-full" style="display: none;"> The CALDER project aims at developing cryogenic light detectors with high sensitivity to UV and visible light, to be used for particle tagging in massive bolometers. Indeed the sensitivity of CUORE can be increased by a factor of 3, thanks to the reduction of the $伪$-background, obtained by detecting the Cherenkov light (100 eV) emitted by $尾/纬$ events. Currently used light detectors have not the features required to address this task, so we decided to develop a new light detector using Kinetic Inductance Detector as a sensor. This approach is very challenging and requires an intensive R$\&amp;$D to be satisfied. The first results of this activity are shown in the following. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.08901v1-abstract-full').style.display = 'none'; document.getElementById('1512.08901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">XVI International Workshop on Neutrino Telescopes, Venice. in PoS(NEUTEL2015)076</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS (NEUTEL 2015) 076 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05038">arXiv:1511.05038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.05038">pdf</a>, <a href="https://arxiv.org/format/1511.05038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-015-1358-y">10.1007/s10909-015-1358-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of the KID-Based Light Detectors of CALDER </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A. Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=Cosmelli%2C+C">C. Cosmelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05038v2-abstract-short" style="display: inline;"> The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of $5\times5$ cm$^2$ and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05038v2-abstract-full').style.display = 'inline'; document.getElementById('1511.05038v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05038v2-abstract-full" style="display: none;"> The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of $5\times5$ cm$^2$ and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0-30 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05038v2-abstract-full').style.display = 'none'; document.getElementById('1511.05038v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.04666">arXiv:1505.04666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.04666">pdf</a>, <a href="https://arxiv.org/format/1505.04666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4929977">10.1063/1.4929977 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy resolution and efficiency of phonon-mediated Kinetic Inductance Detectors for light detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A. Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=Cosmelli%2C+C">C. Cosmelli</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.04666v2-abstract-short" style="display: inline;"> The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detecto&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.04666v2-abstract-full').style.display = 'inline'; document.getElementById('1505.04666v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.04666v2-abstract-full" style="display: none;"> The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm$^2$ are needed. For this reason, we are developing phonon-mediated detectors. In this paper we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2$\times$2 cm$^2$ silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution $蟽_E=154\pm7$ eV and an (18$\pm$2)$\%$ efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.04666v2-abstract-full').style.display = 'none'; document.getElementById('1505.04666v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 107, 093508 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.01318">arXiv:1505.01318</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.01318">pdf</a>, <a href="https://arxiv.org/format/1505.01318">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-015-3575-6">10.1140/epjc/s10052-015-3575-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CALDER - Neutrinoless double-beta decay identification in TeO$_2$ bolometers with kinetic inductance detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo%2C+M">M. Calvo</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M+G">M. G. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Coppolecchia%2C+A">A Coppolecchia</a>, <a href="/search/physics?searchtype=author&amp;query=Cosmelli%2C+C">C. Cosmelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=de+Bernardis%2C+P">P. de Bernardis</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Masi%2C+S">S. Masi</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.01318v2-abstract-short" style="display: inline;"> Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO$_2$ bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from $伪$ radioactivity. This is possible if, i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01318v2-abstract-full').style.display = 'inline'; document.getElementById('1505.01318v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.01318v2-abstract-full" style="display: none;"> Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO$_2$ bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from $伪$ radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the $尾$ signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO$_2$ bolometers coupled to new light detectors based on kinetic inductance detectors. The R&amp;D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.01318v2-abstract-full').style.display = 'none'; document.getElementById('1505.01318v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, added reference to first results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J. C75 (2015) 8, 353 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.3669">arXiv:1407.3669</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.3669">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Technical Design Report EuroGammaS proposal for the ELI-NP Gamma beam System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adriani%2C+O">O. Adriani</a>, <a href="/search/physics?searchtype=author&amp;query=Albergo%2C+S">S. Albergo</a>, <a href="/search/physics?searchtype=author&amp;query=Alesini%2C+D">D. Alesini</a>, <a href="/search/physics?searchtype=author&amp;query=Anania%2C+M">M. Anania</a>, <a href="/search/physics?searchtype=author&amp;query=Angal-Kalinin%2C+D">D. Angal-Kalinin</a>, <a href="/search/physics?searchtype=author&amp;query=Antici%2C+P">P. Antici</a>, <a href="/search/physics?searchtype=author&amp;query=Bacci%2C+A">A. Bacci</a>, <a href="/search/physics?searchtype=author&amp;query=Bedogni%2C+R">R. Bedogni</a>, <a href="/search/physics?searchtype=author&amp;query=Bellaveglia%2C+M">M. Bellaveglia</a>, <a href="/search/physics?searchtype=author&amp;query=Biscari%2C+C">C. Biscari</a>, <a href="/search/physics?searchtype=author&amp;query=Bliss%2C+N">N. Bliss</a>, <a href="/search/physics?searchtype=author&amp;query=Boni%2C+R">R. Boni</a>, <a href="/search/physics?searchtype=author&amp;query=Boscolo%2C+M">M. Boscolo</a>, <a href="/search/physics?searchtype=author&amp;query=Broggi%2C+F">F. Broggi</a>, <a href="/search/physics?searchtype=author&amp;query=Cardarelli%2C+P">P. Cardarelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cassou%2C+K">K. Cassou</a>, <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">M. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Catani%2C+L">L. Catani</a>, <a href="/search/physics?searchtype=author&amp;query=Chaikovska%2C+I">I. Chaikovska</a>, <a href="/search/physics?searchtype=author&amp;query=Chiadroni%2C+E">E. Chiadroni</a>, <a href="/search/physics?searchtype=author&amp;query=Chiche%2C+R">R. Chiche</a>, <a href="/search/physics?searchtype=author&amp;query=Cianchi%2C+A">A. Cianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Clarke%2C+J">J. Clarke</a>, <a href="/search/physics?searchtype=author&amp;query=Clozza%2C+A">A. Clozza</a>, <a href="/search/physics?searchtype=author&amp;query=Coppola%2C+M">M. Coppola</a> , et al. (84 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.3669v1-abstract-short" style="display: inline;"> The machine described in this document is an advanced Source of up to 20 MeV Gamma Rays based on Compton back-scattering, i.e. collision of an intense high power laser beam and a high brightness electron beam with maximum kinetic energy of about 720 MeV. Fully equipped with collimation and characterization systems, in order to generate, form and fully measure the physical characteristics of the pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3669v1-abstract-full').style.display = 'inline'; document.getElementById('1407.3669v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.3669v1-abstract-full" style="display: none;"> The machine described in this document is an advanced Source of up to 20 MeV Gamma Rays based on Compton back-scattering, i.e. collision of an intense high power laser beam and a high brightness electron beam with maximum kinetic energy of about 720 MeV. Fully equipped with collimation and characterization systems, in order to generate, form and fully measure the physical characteristics of the produced Gamma Ray beam. The quality, i.e. phase space density, of the two colliding beams will be such that the emitted Gamma ray beam is characterized by energy tunability, spectral density, bandwidth, polarization, divergence and brilliance compatible with the requested performances of the ELI-NP user facility, to be built in Romania as the Nuclear Physics oriented Pillar of the European Extreme Light Infrastructure. This document illustrates the Technical Design finally produced by the EuroGammaS Collaboration, after a thorough investigation of the machine expected performances within the constraints imposed by the ELI-NP tender for the Gamma Beam System (ELI-NP-GBS), in terms of available budget, deadlines for machine completion and performance achievement, compatibility with lay-out and characteristics of the planned civil engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.3669v1-abstract-full').style.display = 'none'; document.getElementById('1407.3669v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1307.7967">arXiv:1307.7967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1307.7967">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> IRIDE White Book, An Interdisciplinary Research Infrastructure based on Dual Electron linacs&amp;lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Alesini%2C+D">D. Alesini</a>, <a href="/search/physics?searchtype=author&amp;query=Alessandroni%2C+M">M. Alessandroni</a>, <a href="/search/physics?searchtype=author&amp;query=Anania%2C+M+P">M. P. Anania</a>, <a href="/search/physics?searchtype=author&amp;query=Andreas%2C+S">S. Andreas</a>, <a href="/search/physics?searchtype=author&amp;query=Angelone%2C+M">M. Angelone</a>, <a href="/search/physics?searchtype=author&amp;query=Arcovito%2C+A">A. Arcovito</a>, <a href="/search/physics?searchtype=author&amp;query=Arnesano%2C+F">F. Arnesano</a>, <a href="/search/physics?searchtype=author&amp;query=Artioli%2C+M">M. Artioli</a>, <a href="/search/physics?searchtype=author&amp;query=Avaldi%2C+L">L. Avaldi</a>, <a href="/search/physics?searchtype=author&amp;query=Babusci%2C+D">D. Babusci</a>, <a href="/search/physics?searchtype=author&amp;query=Bacci%2C+A">A. Bacci</a>, <a href="/search/physics?searchtype=author&amp;query=Balerna%2C+A">A. Balerna</a>, <a href="/search/physics?searchtype=author&amp;query=Bartalucci%2C+S">S. Bartalucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bedogni%2C+R">R. Bedogni</a>, <a href="/search/physics?searchtype=author&amp;query=Bellaveglia%2C+M">M. Bellaveglia</a>, <a href="/search/physics?searchtype=author&amp;query=Bencivenga%2C+F">F. Bencivenga</a>, <a href="/search/physics?searchtype=author&amp;query=Benfatto%2C+M">M. Benfatto</a>, <a href="/search/physics?searchtype=author&amp;query=Biedron%2C+S">S. Biedron</a>, <a href="/search/physics?searchtype=author&amp;query=Bocci%2C+V">V. Bocci</a>, <a href="/search/physics?searchtype=author&amp;query=Bolognesi%2C+M">M. Bolognesi</a>, <a href="/search/physics?searchtype=author&amp;query=Bolognesi%2C+P">P. Bolognesi</a>, <a href="/search/physics?searchtype=author&amp;query=Boni%2C+R">R. Boni</a>, <a href="/search/physics?searchtype=author&amp;query=Bonifacio%2C+R">R. Bonifacio</a>, <a href="/search/physics?searchtype=author&amp;query=Boscolo%2C+M">M. Boscolo</a>, <a href="/search/physics?searchtype=author&amp;query=Boscherini%2C+F">F. Boscherini</a> , et al. (189 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1307.7967v1-abstract-short" style="display: inline;"> This report describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity &#39;particle factory&#39;, based on a combination of a high duty cycle radio-frequency superconducting electron linac and of high ener&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.7967v1-abstract-full').style.display = 'inline'; document.getElementById('1307.7967v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1307.7967v1-abstract-full" style="display: none;"> This report describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity &#39;particle factory&#39;, based on a combination of a high duty cycle radio-frequency superconducting electron linac and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE will contribute to open new avenues of discoveries and to address most important riddles: What does matter consist of? What is the structure of proteins that have a fundamental role in life processes? What can we learn from protein structure to improve the treatment of diseases and to design more efficient drugs? But also how does an electronic chip behave under the effect of radiations? How can the heat flow in a large heat exchanger be optimized? The scientific potential of IRIDE is far reaching and justifies the construction of such a large facility in Italy in synergy with the national research institutes and companies and in the framework of the European and international research. It will impact also on R&amp;D work for ILC, FEL, and will be complementarity to other large scale accelerator projects. IRIDE is also intended to be realized in subsequent stages of development depending on the assigned priorities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1307.7967v1-abstract-full').style.display = 'none'; document.getElementById('1307.7967v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">270 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0007081">arXiv:physics/0007081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0007081">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Measurement of the temporal response of ferroelectric cathodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Castellano%2C+M">M. Castellano</a>, <a href="/search/physics?searchtype=author&amp;query=Ferrario%2C+M">M. Ferrario</a>, <a href="/search/physics?searchtype=author&amp;query=Tazzioli%2C+F">F. Tazzioli</a>, <a href="/search/physics?searchtype=author&amp;query=Catani%2C+L">L. Catani</a>, <a href="/search/physics?searchtype=author&amp;query=Giannessi%2C+L">L. Giannessi</a>, <a href="/search/physics?searchtype=author&amp;query=Boscolo%2C+I">I. Boscolo</a>, <a href="/search/physics?searchtype=author&amp;query=Cialdi%2C+S">S. Cialdi</a>, <a href="/search/physics?searchtype=author&amp;query=Valentini%2C+M">M. Valentini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0007081v2-abstract-short" style="display: inline;"> Ferroelectric ceramics are tested as photocathodes at INFN Frascati Laboratories. In order to characterize them for use in linac injectors it is important to measure the temporal shape of the emitted current. With a duration of the laser pulse of 25 ps, the required resolution is a few ps. An apparatus has been set up for the purpose, consisting of a 30 kV electron gun, a microwave deflecting ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0007081v2-abstract-full').style.display = 'inline'; document.getElementById('physics/0007081v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0007081v2-abstract-full" style="display: none;"> Ferroelectric ceramics are tested as photocathodes at INFN Frascati Laboratories. In order to characterize them for use in linac injectors it is important to measure the temporal shape of the emitted current. With a duration of the laser pulse of 25 ps, the required resolution is a few ps. An apparatus has been set up for the purpose, consisting of a 30 kV electron gun, a microwave deflecting cavity which translates the temporal distribution of the electron bunch into a spatial one, a fluorescent screen on which the deflected beam traces a sector of a circle and various focusing and charge measuring items. The image on the screen is detected via a CCD camera and a frame grabber. We describe the performance of the apparatus and some preliminary temporal distribution measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0007081v2-abstract-full').style.display = 'none'; document.getElementById('physics/0007081v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2000; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2000; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2000. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LINAC2000-MOC10 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> eConf C000821 (2000) MOc10 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10