CINXE.COM

Binomial distribution - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Binomial distribution - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"dce1d9bd-a1b9-46f0-9762-44da861112d7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Binomial_distribution","wgTitle":"Binomial distribution","wgCurRevisionId":1268319981,"wgRevisionId":1268319981,"wgArticleId":3876,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 German-language sources (de)","CS1 maint: bot: original URL status unknown","Articles with short description","Short description matches Wikidata","Wikipedia articles needing clarification from July 2012","Wikipedia articles needing clarification from March 2023","Commons category link is on Wikidata","Discrete distributions","Factorial and binomial topics","Conjugate prior distributions","Exponential family distributions"],"wgPageViewLanguage":"en", "wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Binomial_distribution","wgRelevantArticleId":3876,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q185547","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/75/Binomial_distribution_pmf.svg/1200px-Binomial_distribution_pmf.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="799"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/75/Binomial_distribution_pmf.svg/800px-Binomial_distribution_pmf.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="533"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/7/75/Binomial_distribution_pmf.svg/640px-Binomial_distribution_pmf.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="426"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Binomial distribution - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Binomial_distribution"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Binomial_distribution&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Binomial_distribution"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Binomial_distribution rootpage-Binomial_distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Binomial+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Binomial+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Binomial+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Binomial+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Probability_mass_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_mass_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Probability mass function</span> </div> </a> <ul id="toc-Probability_mass_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cumulative_distribution_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cumulative_distribution_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Cumulative distribution function</span> </div> </a> <ul id="toc-Cumulative_distribution_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Expected_value_and_variance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Expected_value_and_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Expected value and variance</span> </div> </a> <ul id="toc-Expected_value_and_variance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higher_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higher_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Higher moments</span> </div> </a> <ul id="toc-Higher_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mode" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mode"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Mode</span> </div> </a> <ul id="toc-Mode-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Median" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Median"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Median</span> </div> </a> <ul id="toc-Median-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tail_bounds" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tail_bounds"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Tail bounds</span> </div> </a> <ul id="toc-Tail_bounds-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Statistical_inference" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Statistical_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Statistical inference</span> </div> </a> <button aria-controls="toc-Statistical_inference-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Statistical inference subsection</span> </button> <ul id="toc-Statistical_inference-sublist" class="vector-toc-list"> <li id="toc-Estimation_of_parameters" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Estimation_of_parameters"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Estimation of parameters</span> </div> </a> <ul id="toc-Estimation_of_parameters-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Confidence_intervals_for_the_parameter_p" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Confidence_intervals_for_the_parameter_p"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Confidence intervals for the parameter p</span> </div> </a> <ul id="toc-Confidence_intervals_for_the_parameter_p-sublist" class="vector-toc-list"> <li id="toc-Wald_method" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Wald_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Wald method</span> </div> </a> <ul id="toc-Wald_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Agresti–Coull_method" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Agresti–Coull_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>Agresti–Coull method</span> </div> </a> <ul id="toc-Agresti–Coull_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arcsine_method" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Arcsine_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.3</span> <span>Arcsine method</span> </div> </a> <ul id="toc-Arcsine_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Wilson_(score)_method" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Wilson_(score)_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.4</span> <span>Wilson (score) method</span> </div> </a> <ul id="toc-Wilson_(score)_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Comparison" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Comparison"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.5</span> <span>Comparison</span> </div> </a> <ul id="toc-Comparison-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Related_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Related distributions</span> </div> </a> <button aria-controls="toc-Related_distributions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Related distributions subsection</span> </button> <ul id="toc-Related_distributions-sublist" class="vector-toc-list"> <li id="toc-Sums_of_binomials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sums_of_binomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Sums of binomials</span> </div> </a> <ul id="toc-Sums_of_binomials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_binomial_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_binomial_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Poisson binomial distribution</span> </div> </a> <ul id="toc-Poisson_binomial_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ratio_of_two_binomial_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ratio_of_two_binomial_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Ratio of two binomial distributions</span> </div> </a> <ul id="toc-Ratio_of_two_binomial_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conditional_binomials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conditional_binomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Conditional binomials</span> </div> </a> <ul id="toc-Conditional_binomials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bernoulli_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bernoulli_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Bernoulli distribution</span> </div> </a> <ul id="toc-Bernoulli_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Normal_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Normal_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Normal approximation</span> </div> </a> <ul id="toc-Normal_approximation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Poisson approximation</span> </div> </a> <ul id="toc-Poisson_approximation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Limiting_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Limiting_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>Limiting distributions</span> </div> </a> <ul id="toc-Limiting_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Beta_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Beta_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span>Beta distribution</span> </div> </a> <ul id="toc-Beta_distribution-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computational_methods" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computational_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Computational methods</span> </div> </a> <button aria-controls="toc-Computational_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computational methods subsection</span> </button> <ul id="toc-Computational_methods-sublist" class="vector-toc-list"> <li id="toc-Random_number_generation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Random_number_generation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Random number generation</span> </div> </a> <ul id="toc-Random_number_generation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Binomial distribution</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 52 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-52" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">52 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%D9%8A%D8%B9_%D8%AB%D9%86%D8%A7%D8%A6%D9%8A_%D8%A7%D9%84%D8%AD%D8%AF%D9%8A%D9%86" title="توزيع ثنائي الحدين – Arabic" lang="ar" hreflang="ar" data-title="توزيع ثنائي الحدين" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Distribuci%C3%B3n_bin%C3%B3mica" title="Distribución binómica – Asturian" lang="ast" hreflang="ast" data-title="Distribución binómica" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%A6%E0%A7%8D%E0%A6%AC%E0%A6%BF%E0%A6%AA%E0%A6%A6%E0%A7%80_%E0%A6%AC%E0%A6%A8%E0%A7%8D%E0%A6%9F%E0%A6%A8" title="দ্বিপদী বন্টন – Bangla" lang="bn" hreflang="bn" data-title="দ্বিপদী বন্টন" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%91%D1%96%D0%BD%D0%BE%D0%BC%D0%BD%D0%B0%D0%B5_%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BA%D0%B0%D0%B2%D0%B0%D0%BD%D0%BD%D0%B5" title="Біномнае размеркаванне – Belarusian" lang="be" hreflang="be" data-title="Біномнае размеркаванне" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_binomial" title="Distribució binomial – Catalan" lang="ca" hreflang="ca" data-title="Distribució binomial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Binomick%C3%A9_rozd%C4%9Blen%C3%AD" title="Binomické rozdělení – Czech" lang="cs" hreflang="cs" data-title="Binomické rozdělení" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Binomialfordelingen" title="Binomialfordelingen – Danish" lang="da" hreflang="da" data-title="Binomialfordelingen" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Binomialverteilung" title="Binomialverteilung – German" lang="de" hreflang="de" data-title="Binomialverteilung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Binoomjaotus" title="Binoomjaotus – Estonian" lang="et" hreflang="et" data-title="Binoomjaotus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B9%CF%89%CE%BD%CF%85%CE%BC%CE%B9%CE%BA%CE%AE_%CE%BA%CE%B1%CF%84%CE%B1%CE%BD%CE%BF%CE%BC%CE%AE" title="Διωνυμική κατανομή – Greek" lang="el" hreflang="el" data-title="Διωνυμική κατανομή" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distribuci%C3%B3n_binomial" title="Distribución binomial – Spanish" lang="es" hreflang="es" data-title="Distribución binomial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Banaketa_binomial" title="Banaketa binomial – Basque" lang="eu" hreflang="eu" data-title="Banaketa binomial" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%D8%AF%D9%88%D8%AC%D9%85%D9%84%D9%87%E2%80%8C%D8%A7%DB%8C" title="توزیع دوجمله‌ای – Persian" lang="fa" hreflang="fa" data-title="توزیع دوجمله‌ای" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://fr.wikipedia.org/wiki/Loi_binomiale" title="Loi binomiale – French" lang="fr" hreflang="fr" data-title="Loi binomiale" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distribuci%C3%B3n_binomial" title="Distribución binomial – Galician" lang="gl" hreflang="gl" data-title="Distribución binomial" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%B4%ED%95%AD_%EB%B6%84%ED%8F%AC" title="이항 분포 – Korean" lang="ko" hreflang="ko" data-title="이항 분포" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%A6%E0%A5%8D%E0%A4%B5%E0%A4%BF%E0%A4%AA%E0%A4%A6_%E0%A4%B5%E0%A4%BF%E0%A4%A4%E0%A4%B0%E0%A4%A3" title="द्विपद वितरण – Hindi" lang="hi" hreflang="hi" data-title="द्विपद वितरण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Distribusi_binomial" title="Distribusi binomial – Indonesian" lang="id" hreflang="id" data-title="Distribusi binomial" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_binomiale" title="Distribuzione binomiale – Italian" lang="it" hreflang="it" data-title="Distribuzione binomiale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%A4%D7%9C%D7%92%D7%95%D7%AA_%D7%91%D7%99%D7%A0%D7%95%D7%9E%D7%99%D7%AA" title="התפלגות בינומית – Hebrew" lang="he" hreflang="he" data-title="התפלגות בינומית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%91%D0%B8%D0%BD%D0%BE%D0%BC%D0%B4%D1%8B%D2%9B_%D2%AF%D0%BB%D0%B5%D1%81%D1%82%D1%96%D1%80%D1%96%D0%BB%D1%83" title="Биномдық үлестірілу – Kazakh" lang="kk" hreflang="kk" data-title="Биномдық үлестірілу" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Binomi%C4%81lais_sadal%C4%ABjums" title="Binomiālais sadalījums – Latvian" lang="lv" hreflang="lv" data-title="Binomiālais sadalījums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Binominis_skirstinys" title="Binominis skirstinys – Lithuanian" lang="lt" hreflang="lt" data-title="Binominis skirstinys" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Binomi%C3%A1lis_eloszl%C3%A1s" title="Binomiális eloszlás – Hungarian" lang="hu" hreflang="hu" data-title="Binomiális eloszlás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%91%D0%B8%D0%BD%D0%BE%D0%BC%D0%BD%D0%B0_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B1%D0%B0" title="Биномна распределба – Macedonian" lang="mk" hreflang="mk" data-title="Биномна распределба" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Taburan_binomial" title="Taburan binomial – Malay" lang="ms" hreflang="ms" data-title="Taburan binomial" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Binomiale_verdeling" title="Binomiale verdeling – Dutch" lang="nl" hreflang="nl" data-title="Binomiale verdeling" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%A0%85%E5%88%86%E5%B8%83" title="二項分布 – Japanese" lang="ja" hreflang="ja" data-title="二項分布" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Binomisk_fordeling" title="Binomisk fordeling – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Binomisk fordeling" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Binomisk_fordeling" title="Binomisk fordeling – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Binomisk fordeling" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Binomial_taqsimot" title="Binomial taqsimot – Uzbek" lang="uz" hreflang="uz" data-title="Binomial taqsimot" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozk%C5%82ad_dwumianowy" title="Rozkład dwumianowy – Polish" lang="pl" hreflang="pl" data-title="Rozkład dwumianowy" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_binomial" title="Distribuição binomial – Portuguese" lang="pt" hreflang="pt" data-title="Distribuição binomial" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Distribu%C8%9Bia_binomial%C4%83" title="Distribuția binomială – Romanian" lang="ro" hreflang="ro" data-title="Distribuția binomială" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BD%D0%BE%D0%BC%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5" title="Биномиальное распределение – Russian" lang="ru" hreflang="ru" data-title="Биномиальное распределение" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Shp%C3%ABrndarja_binomiale" title="Shpërndarja binomiale – Albanian" lang="sq" hreflang="sq" data-title="Shpërndarja binomiale" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Binomial_distribution" title="Binomial distribution – Simple English" lang="en-simple" hreflang="en-simple" data-title="Binomial distribution" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Binomick%C3%A9_rozdelenie" title="Binomické rozdelenie – Slovak" lang="sk" hreflang="sk" data-title="Binomické rozdelenie" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Binomska_porazdelitev" title="Binomska porazdelitev – Slovenian" lang="sl" hreflang="sl" data-title="Binomska porazdelitev" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Binomna_raspodela" title="Binomna raspodela – Serbian" lang="sr" hreflang="sr" data-title="Binomna raspodela" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Sebaran_binomial" title="Sebaran binomial – Sundanese" lang="su" hreflang="su" data-title="Sebaran binomial" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Binomijakauma" title="Binomijakauma – Finnish" lang="fi" hreflang="fi" data-title="Binomijakauma" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Binomialf%C3%B6rdelning" title="Binomialfördelning – Swedish" lang="sv" hreflang="sv" data-title="Binomialfördelning" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Distribusyong_binomial" title="Distribusyong binomial – Tagalog" lang="tl" hreflang="tl" data-title="Distribusyong binomial" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%88%E0%AE%B0%E0%AF%81%E0%AE%B1%E0%AF%81%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%AA%E0%AF%8D_%E0%AE%AA%E0%AE%B0%E0%AE%B5%E0%AE%B2%E0%AF%8D" title="ஈருறுப்புப் பரவல் – Tamil" lang="ta" hreflang="ta" data-title="ஈருறுப்புப் பரவல்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%81%E0%B8%88%E0%B8%81%E0%B9%81%E0%B8%88%E0%B8%87%E0%B8%97%E0%B8%A7%E0%B8%B4%E0%B8%99%E0%B8%B2%E0%B8%A1" title="การแจกแจงทวินาม – Thai" lang="th" hreflang="th" data-title="การแจกแจงทวินาม" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Binom_da%C4%9F%C4%B1l%C4%B1m%C4%B1" title="Binom dağılımı – Turkish" lang="tr" hreflang="tr" data-title="Binom dağılımı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%91%D1%96%D0%BD%D0%BE%D0%BC%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B8%D0%B9_%D1%80%D0%BE%D0%B7%D0%BF%D0%BE%D0%B4%D1%96%D0%BB" title="Біноміальний розподіл – Ukrainian" lang="uk" hreflang="uk" data-title="Біноміальний розподіл" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AF%D9%88_%D8%B1%D9%82%D9%85%DB%8C_%D8%AA%D9%88%D8%B2%DB%8C%D8%B9" title="دو رقمی توزیع – Urdu" lang="ur" hreflang="ur" data-title="دو رقمی توزیع" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A2n_ph%E1%BB%91i_nh%E1%BB%8B_th%E1%BB%A9c" title="Phân phối nhị thức – Vietnamese" lang="vi" hreflang="vi" data-title="Phân phối nhị thức" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E4%BA%8C%E9%A0%85%E5%88%86%E4%BD%88" title="二項分佈 – Cantonese" lang="yue" hreflang="yue" data-title="二項分佈" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%BA%8C%E9%A0%85%E5%BC%8F%E5%88%86%E5%B8%83" title="二項式分布 – Chinese" lang="zh" hreflang="zh" data-title="二項式分布" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q185547#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Binomial_distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Binomial_distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Binomial_distribution"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Binomial_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Binomial_distribution&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Binomial_distribution"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Binomial_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Binomial_distribution&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Binomial_distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Binomial_distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Binomial_distribution&amp;oldid=1268319981" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Binomial_distribution&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Binomial_distribution&amp;id=1268319981&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBinomial_distribution"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBinomial_distribution"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Binomial_distribution&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Binomial_distribution&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Binomial_distributions" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q185547" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability distribution</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Binomial model" redirects here. For the binomial model in options pricing, see <a href="/wiki/Binomial_options_pricing_model" title="Binomial options pricing model">Binomial options pricing model</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1259743904">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1);padding:0.3em 0.4em}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist"><caption class="infobox-title">Binomial distribution</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability mass function</div><span typeof="mw:File"><a href="/wiki/File:Binomial_distribution_pmf.svg" class="mw-file-description" title="Probability mass function for the binomial distribution"><img alt="Probability mass function for the binomial distribution" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Binomial_distribution_pmf.svg/300px-Binomial_distribution_pmf.svg.png" decoding="async" width="300" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/Binomial_distribution_pmf.svg/450px-Binomial_distribution_pmf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/Binomial_distribution_pmf.svg/600px-Binomial_distribution_pmf.svg.png 2x" data-file-width="434" data-file-height="289" /></a></span></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:Binomial_distribution_cdf.svg" class="mw-file-description" title="Cumulative distribution function for the binomial distribution"><img alt="Cumulative distribution function for the binomial distribution" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Binomial_distribution_cdf.svg/300px-Binomial_distribution_cdf.svg.png" decoding="async" width="300" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Binomial_distribution_cdf.svg/450px-Binomial_distribution_cdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/55/Binomial_distribution_cdf.svg/600px-Binomial_distribution_cdf.svg.png 2x" data-file-width="640" data-file-height="480" /></a></span></td></tr><tr><th scope="row" class="infobox-label">Notation</th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(n,p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(n,p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58280f6b0f1a1b474a7047c07943f908e775aa71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.171ex; height:2.843ex;" alt="{\displaystyle B(n,p)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \{0,1,2,\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \{0,1,2,\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc276297ae0fc59977699b50d120092fb616bb00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.873ex; height:2.843ex;" alt="{\displaystyle n\in \{0,1,2,\ldots \}}"></span> &#8211; number of trials<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33c3a52aa7b2d00227e85c641cca67e85583c43c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.752ex; height:2.843ex;" alt="{\displaystyle p\in [0,1]}"></span> &#8211; success probability for each trial<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=1-p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22e387fe24ba3da5f9a0dc424923cdfc2c08990c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.34ex; height:2.509ex;" alt="{\displaystyle q=1-p}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{0,1,\ldots ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{0,1,\ldots ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32b6be671ec370d41685c66622c8b541116866c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.309ex; height:2.843ex;" alt="{\displaystyle k\in \{0,1,\ldots ,n\}}"></span> &#8211; number of successes</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_mass_function" title="Probability mass function">PMF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {n}{k}}p^{k}q^{n-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {n}{k}}p^{k}q^{n-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20edfc22372742d64909cf7c7f97593bade88338" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.507ex; height:6.176ex;" alt="{\displaystyle {\binom {n}{k}}p^{k}q^{n-k}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{q}(n-\lfloor k\rfloor ,1+\lfloor k\rfloor )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>,</mo> <mn>1</mn> <mo>+</mo> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{q}(n-\lfloor k\rfloor ,1+\lfloor k\rfloor )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fb1d2742d9450195d6f8155a44eae165eb40ea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.645ex; height:3.009ex;" alt="{\displaystyle I_{q}(n-\lfloor k\rfloor ,1+\lfloor k\rfloor )}"></span> (the <a href="/wiki/Beta_function#Incomplete_beta_function" title="Beta function">regularized incomplete beta function</a>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d6eb41e0e5e136f594b1a703d2f371d9a5e0c27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.009ex;" alt="{\displaystyle np}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor np\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>n</mi> <mi>p</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor np\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0273d137830eeaf408348219fe159f8f97d53ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.629ex; height:2.843ex;" alt="{\displaystyle \lfloor np\rfloor }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lceil np\rceil }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2308;<!-- ⌈ --></mo> <mi>n</mi> <mi>p</mi> <mo fence="false" stretchy="false">&#x2309;<!-- ⌉ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lceil np\rceil }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7ade49121f3f129664d81676c95c51302a43653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.629ex; height:2.843ex;" alt="{\displaystyle \lceil np\rceil }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor (n+1)p\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor (n+1)p\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcda6d9602cb8abc4e83e4a1b19ed23bc5062932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.441ex; height:2.843ex;" alt="{\displaystyle \lfloor (n+1)p\rfloor }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lceil (n+1)p\rceil -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2308;<!-- ⌈ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo fence="false" stretchy="false">&#x2309;<!-- ⌉ --></mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lceil (n+1)p\rceil -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a054d92b493838f6bfe891a53e1629bdf8f85fb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.444ex; height:2.843ex;" alt="{\displaystyle \lceil (n+1)p\rceil -1}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle npq=np(1-p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle npq=np(1-p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8d284719a2524ed948d98054608bdeac05d344c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.278ex; height:2.843ex;" alt="{\displaystyle npq=np(1-p)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {q-p}{\sqrt {npq}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <msqrt> <mi>n</mi> <mi>p</mi> <mi>q</mi> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {q-p}{\sqrt {npq}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d444fad2af6ac72538c9a3f57a7b0bab6b2ca6fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:6.406ex; height:6.176ex;" alt="{\displaystyle {\frac {q-p}{\sqrt {npq}}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Excess kurtosis</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1-6pq}{npq}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mi>p</mi> <mi>q</mi> </mrow> <mrow> <mi>n</mi> <mi>p</mi> <mi>q</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1-6pq}{npq}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ebfa3016450291a45a550007269491b841263ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:8.24ex; height:5.843ex;" alt="{\displaystyle {\frac {1-6pq}{npq}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">Entropy</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}\log _{2}(2\pi enpq)+O\left({\frac {1}{n}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>e</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}\log _{2}(2\pi enpq)+O\left({\frac {1}{n}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80dd2bb6dc89a676674079f3d70d78285ce7174c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.085ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{2}}\log _{2}(2\pi enpq)+O\left({\frac {1}{n}}\right)}"></span><br /> in <a href="/wiki/Shannon_(unit)" title="Shannon (unit)">shannons</a>. For <a href="/wiki/Nat_(unit)" title="Nat (unit)">nats</a>, use the natural log in the log.</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q+pe^{t})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>q</mi> <mo>+</mo> <mi>p</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q+pe^{t})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ba4e2f1a111de13a9aab0be599278330c7bcd60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.017ex; height:3.009ex;" alt="{\displaystyle (q+pe^{t})^{n}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (q+pe^{it})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>q</mi> <mo>+</mo> <mi>p</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>t</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (q+pe^{it})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e98ad235a77669a9b8b3426fa73427bc0ce935c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.584ex; height:3.176ex;" alt="{\displaystyle (q+pe^{it})^{n}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability-generating_function" title="Probability-generating function">PGF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(z)=[q+pz]^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>q</mi> <mo>+</mo> <mi>p</mi> <mi>z</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(z)=[q+pz]^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40494c697ce2f88ebb396ac0191946285cadcbdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.502ex; height:2.843ex;" alt="{\displaystyle G(z)=[q+pz]^{n}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{n}(p)={\frac {n}{pq}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{n}(p)={\frac {n}{pq}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c465cbbf5c0c8c8e201ae4da50823e4f61f25d41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.48ex; height:5.176ex;" alt="{\displaystyle g_{n}(p)={\frac {n}{pq}}}"></span><br />(for fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>)</td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on <a href="/wiki/Statistics" title="Statistics">statistics</a></td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></th></tr><tr><td class="sidebar-image"><span class="skin-invert" typeof="mw:File"><a href="/wiki/File:Standard_deviation_diagram_micro.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/250px-Standard_deviation_diagram_micro.svg.png" decoding="async" width="250" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/375px-Standard_deviation_diagram_micro.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/500px-Standard_deviation_diagram_micro.svg.png 2x" data-file-width="400" data-file-height="200" /></a></span></td></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability" title="Probability">Probability</a> <ul><li><a href="/wiki/Probability_axioms" title="Probability axioms">Axioms</a></li></ul></li> <li><a href="/wiki/Determinism" title="Determinism">Determinism</a> <ul><li><a href="/wiki/Deterministic_system" title="Deterministic system">System</a></li></ul></li> <li><a href="/wiki/Indeterminism" title="Indeterminism">Indeterminism</a></li> <li><a href="/wiki/Randomness" title="Randomness">Randomness</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li> <li><a href="/wiki/Sample_space" title="Sample space">Sample space</a></li> <li><a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">Event</a> <ul><li><a href="/wiki/Collectively_exhaustive_events" title="Collectively exhaustive events">Collectively exhaustive events</a></li> <li><a href="/wiki/Elementary_event" title="Elementary event">Elementary event</a></li> <li><a href="/wiki/Mutual_exclusivity" title="Mutual exclusivity">Mutual exclusivity</a></li> <li><a href="/wiki/Outcome_(probability)" title="Outcome (probability)">Outcome</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li></ul></li> <li><a href="/wiki/Experiment_(probability_theory)" title="Experiment (probability theory)">Experiment</a> <ul><li><a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a></li></ul></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a> <ul><li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a></li> <li><a class="mw-selflink selflink">Binomial distribution</a></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential distribution</a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal distribution</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto distribution</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a></li></ul></li> <li><a href="/wiki/Probability_measure" title="Probability measure">Probability measure</a></li> <li><a href="/wiki/Random_variable" title="Random variable">Random variable</a> <ul><li><a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></li> <li><a href="/wiki/Continuous_or_discrete_variable" title="Continuous or discrete variable">Continuous or discrete</a></li> <li><a href="/wiki/Expected_value" title="Expected value">Expected value</a></li> <li><a href="/wiki/Variance" title="Variance">Variance</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Realization_(probability)" title="Realization (probability)">Observed value</a></li> <li><a href="/wiki/Random_walk" title="Random walk">Random walk</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">Stochastic process</a></li></ul></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Complementary_event" title="Complementary event">Complementary event</a></li> <li><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Joint probability</a></li> <li><a href="/wiki/Marginal_distribution" title="Marginal distribution">Marginal probability</a></li> <li><a href="/wiki/Conditional_probability" title="Conditional probability">Conditional probability</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">Independence</a></li> <li><a href="/wiki/Conditional_independence" title="Conditional independence">Conditional independence</a></li> <li><a href="/wiki/Law_of_total_probability" title="Law of total probability">Law of total probability</a></li> <li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers</a></li> <li><a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a></li> <li><a href="/wiki/Boole%27s_inequality" title="Boole&#39;s inequality">Boole's inequality</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li> <li><a href="/wiki/Tree_diagram_(probability_theory)" title="Tree diagram (probability theory)">Tree diagram</a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_fundamentals" title="Template:Probability fundamentals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_fundamentals" title="Template talk:Probability fundamentals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_fundamentals" title="Special:EditPage/Template:Probability fundamentals"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Pascal%27s_triangle;_binomial_distribution.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Pascal%27s_triangle%3B_binomial_distribution.svg/280px-Pascal%27s_triangle%3B_binomial_distribution.svg.png" decoding="async" width="280" height="243" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/17/Pascal%27s_triangle%3B_binomial_distribution.svg/420px-Pascal%27s_triangle%3B_binomial_distribution.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/17/Pascal%27s_triangle%3B_binomial_distribution.svg/560px-Pascal%27s_triangle%3B_binomial_distribution.svg.png 2x" data-file-width="794" data-file-height="688" /></a><figcaption>Binomial distribution for <span class="texhtml">p = 0.5</span><br />with <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">k</span> as in <a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a><br /><br />The probability that a ball in a <a href="/wiki/Bean_machine" class="mw-redirect" title="Bean machine">Galton box</a> with 8 layers (<span class="texhtml"><i>n</i> = 8</span>) ends up in the central bin (<span class="texhtml"><i>k</i> = 4</span>) is <span class="texhtml">70/256</span>.</figcaption></figure> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <b>binomial distribution</b> with parameters <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">p</span> is the <a href="/wiki/Discrete_probability_distribution" class="mw-redirect" title="Discrete probability distribution">discrete probability distribution</a> of the number of successes in a sequence of <span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a> <a href="/wiki/Experiment_(probability_theory)" title="Experiment (probability theory)">experiments</a>, each asking a <a href="/wiki/Yes%E2%80%93no_question" title="Yes–no question">yes–no question</a>, and each with its own <a href="/wiki/Boolean-valued_function" title="Boolean-valued function">Boolean</a>-valued <a href="/wiki/Outcome_(probability)" title="Outcome (probability)">outcome</a>: <i>success</i> (with probability <span class="texhtml mvar" style="font-style:italic;">p</span>) or <i>failure</i> (with probability <span class="texhtml"><i>q</i> = 1 − <i>p</i></span>). A single success/failure experiment is also called a <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a> or Bernoulli experiment, and a sequence of outcomes is called a <a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a>; for a single trial, i.e., <span class="texhtml"><i>n</i> = 1</span>, the binomial distribution is a <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a>. The binomial distribution is the basis for the <a href="/wiki/Binomial_test" title="Binomial test">binomial test</a> of <a href="/wiki/Statistical_significance" title="Statistical significance">statistical significance</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>The binomial distribution is frequently used to model the number of successes in a sample of size <span class="texhtml mvar" style="font-style:italic;">n</span> drawn <a href="/wiki/With_replacement" class="mw-redirect" title="With replacement">with replacement</a> from a population of size <span class="texhtml mvar" style="font-style:italic;">N</span>. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a <a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">hypergeometric distribution</a>, not a binomial one. However, for <span class="texhtml mvar" style="font-style:italic;">N</span> much larger than <span class="texhtml mvar" style="font-style:italic;">n</span>, the binomial distribution remains a good approximation, and is widely used. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=1" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Probability_mass_function">Probability mass function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=2" title="Edit section: Probability mass function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the <a href="/wiki/Random_variable" title="Random variable">random variable</a> <span class="texhtml mvar" style="font-style:italic;">X</span> follows the binomial distribution with parameters <span class="texhtml"><i>n</i> ∈ <a href="/wiki/Natural_number" title="Natural number"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span></a></span> and <span class="texhtml"><i>p</i> ∈ <span class="texhtml">&#91;0, 1&#93;</span></span>, we write <span class="texhtml"><i>X</i> ~ <i>B</i>(<i>n</i>, <i>p</i>)</span>. The probability of getting exactly <span class="texhtml mvar" style="font-style:italic;">k</span> successes in <span class="texhtml mvar" style="font-style:italic;">n</span> independent Bernoulli trials (with the same rate <span class="texhtml mvar" style="font-style:italic;">p</span>) is given by the <a href="/wiki/Probability_mass_function" title="Probability mass function">probability mass function</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k,n,p)=\Pr(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k,n,p)=\Pr(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ad3f324ca5778bd1cae96fed07ce09063a71a1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:43.131ex; height:6.176ex;" alt="{\displaystyle f(k,n,p)=\Pr(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}"></span></dd></dl> <p>for <span class="texhtml"><i>k</i> = 0, 1, 2, ..., <i>n</i></span>, where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d33401621fb832dd2f9783e80a906d562f669008" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.511ex; height:6.343ex;" alt="{\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}}"></span></dd></dl> <p>is the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a>. The formula can be understood as follows: <span class="texhtml"><i>p</i><sup><i>k</i></sup> <i>q</i><sup><i>n</i>−<i>k</i></sup></span> is the probability of obtaining the sequence of <span class="texhtml mvar" style="font-style:italic;">n</span> independent Bernoulli trials in which <span class="texhtml mvar" style="font-style:italic;">k</span> trials are "successes" and the remaining <span class="texhtml"><i>n</i> − <i>k</i></span> trials result in "failure". Since the trials are independent with probabilities remaining constant between them, any sequence of <span class="texhtml mvar" style="font-style:italic;">n</span> trials with <span class="texhtml mvar" style="font-style:italic;">k</span> successes (and <span class="texhtml"><i>n</i> − <i>k</i></span> failures) has the same probability of being achieved (regardless of positions of successes within the sequence). There are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\binom {n}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\binom {n}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c4f99a2b24b9135bb87a91746d846a3f84833c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.116ex; height:3.176ex;" alt="{\textstyle {\binom {n}{k}}}"></span> such sequences, since the binomial coefficient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\binom {n}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\binom {n}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c4f99a2b24b9135bb87a91746d846a3f84833c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.116ex; height:3.176ex;" alt="{\textstyle {\binom {n}{k}}}"></span> counts the number of ways to choose the positions of the <span class="texhtml mvar" style="font-style:italic;">k</span> successes among the <span class="texhtml mvar" style="font-style:italic;">n</span> trials. The binomial distribution is concerned with the probability of obtaining <i>any</i> of these sequences, meaning the probability of obtaining one of them (<span class="texhtml"><i>p</i><sup><i>k</i></sup> <i>q</i><sup><i>n</i>−<i>k</i></sup></span>) must be added <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\binom {n}{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\binom {n}{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c4f99a2b24b9135bb87a91746d846a3f84833c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.116ex; height:3.176ex;" alt="{\textstyle {\binom {n}{k}}}"></span> times, hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \Pr(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \Pr(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1f238b0228e33bf8e82bf61dce5f262b54acf64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.401ex; height:3.176ex;" alt="{\textstyle \Pr(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}"></span>. </p><p>In creating reference tables for binomial distribution probability, usually, the table is filled in up to <span class="texhtml"><i>n</i>/2</span> values. This is because for <span class="texhtml"><i>k</i> &gt; <i>n</i>/2</span>, the probability can be calculated by its complement as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k,n,p)=f(n-k,n,1-p).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k,n,p)=f(n-k,n,1-p).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57c0fe9d29eeb85a1937b53dde044616752b1011" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.846ex; height:2.843ex;" alt="{\displaystyle f(k,n,p)=f(n-k,n,1-p).}"></span></dd></dl> <p>Looking at the expression <span class="texhtml"><i>f</i>(<i>k</i>, <i>n</i>, <i>p</i>)</span> as a function of <span class="texhtml mvar" style="font-style:italic;">k</span>, there is a <span class="texhtml mvar" style="font-style:italic;">k</span> value that maximizes it. This <span class="texhtml mvar" style="font-style:italic;">k</span> value can be found by calculating </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f(k+1,n,p)}{f(k,n,p)}}={\frac {(n-k)p}{(k+1)(1-p)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mi>p</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f(k+1,n,p)}{f(k,n,p)}}={\frac {(n-k)p}{(k+1)(1-p)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d211bc315502f007bd8fb7f9d8c244d59b39ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.71ex; height:6.509ex;" alt="{\displaystyle {\frac {f(k+1,n,p)}{f(k,n,p)}}={\frac {(n-k)p}{(k+1)(1-p)}}}"></span></dd></dl> <p>and comparing it to 1. There is always an integer <span class="texhtml mvar" style="font-style:italic;">M</span> that satisfies<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+1)p-1\leq M&lt;(n+1)p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>M</mi> <mo>&lt;</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+1)p-1\leq M&lt;(n+1)p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c70d7a3d60734136e1f05651e856e4fdb28274ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.041ex; height:2.843ex;" alt="{\displaystyle (n+1)p-1\leq M&lt;(n+1)p.}"></span></dd></dl> <p><span class="texhtml"><i>f</i>(<i>k</i>, <i>n</i>, <i>p</i>)</span> is monotone increasing for <span class="texhtml"><i>k</i> &lt; <i>M</i></span> and monotone decreasing for <span class="texhtml"><i>k</i> &gt; <i>M</i></span>, with the exception of the case where <span class="texhtml">(<i>n</i> + 1)<i>p</i></span> is an integer. In this case, there are two values for which <span class="texhtml mvar" style="font-style:italic;">f</span> is maximal: <span class="texhtml">(<i>n</i> + 1) <i>p</i></span> and <span class="texhtml">(<i>n</i> + 1) <i>p</i> − 1</span>. <span class="texhtml mvar" style="font-style:italic;">M</span> is the <i>most probable</i> outcome (that is, the most likely, although this can still be unlikely overall) of the Bernoulli trials and is called the <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a>. </p><p>Equivalently, <span class="texhtml"><i>M</i> − <i>p</i> &lt; <i>np</i> ≤ <i>M</i> + 1 − <i>p</i></span>. Taking the <a href="/wiki/Floor_and_ceiling_functions" title="Floor and ceiling functions">floor function</a>, we obtain <span class="texhtml"><i>M</i> = floor(<i>np</i>)</span>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=3" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose a <a href="/wiki/Fair_coin" title="Fair coin">biased coin</a> comes up heads with probability 0.3 when tossed. The probability of seeing exactly 4 heads in 6 tosses is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(4,6,0.3)={\binom {6}{4}}0.3^{4}(1-0.3)^{6-4}=0.059535.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>0.3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mn>6</mn> <mn>4</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mn>0.3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>0.3</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> <mo>=</mo> <mn>0.059535.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(4,6,0.3)={\binom {6}{4}}0.3^{4}(1-0.3)^{6-4}=0.059535.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/341ee6e07355e681839edfb828fbcacb2c0f7912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:46.629ex; height:6.176ex;" alt="{\displaystyle f(4,6,0.3)={\binom {6}{4}}0.3^{4}(1-0.3)^{6-4}=0.059535.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Cumulative_distribution_function">Cumulative distribution function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=4" title="Edit section: Cumulative distribution function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> can be expressed as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)=\Pr(X\leq k)=\sum _{i=0}^{\lfloor k\rfloor }{n \choose i}p^{i}(1-p)^{n-i},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)=\Pr(X\leq k)=\sum _{i=0}^{\lfloor k\rfloor }{n \choose i}p^{i}(1-p)^{n-i},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8689ba703ee51a5f66f605ea1f293fc74fa380b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.404ex; height:7.676ex;" alt="{\displaystyle F(k;n,p)=\Pr(X\leq k)=\sum _{i=0}^{\lfloor k\rfloor }{n \choose i}p^{i}(1-p)^{n-i},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor k\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor k\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a64054ec38bec048113dd328cf867e9e62b581d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.276ex; height:2.843ex;" alt="{\displaystyle \lfloor k\rfloor }"></span> is the "floor" under <span class="texhtml"><i>k</i></span>, i.e. the <a href="/wiki/Floor_and_ceiling_functions" title="Floor and ceiling functions">greatest integer</a> less than or equal to <span class="texhtml"><i>k</i></span>. </p><p>It can also be represented in terms of the <a href="/wiki/Regularized_incomplete_beta_function" class="mw-redirect" title="Regularized incomplete beta function">regularized incomplete beta function</a>, as follows:<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F(k;n,p)&amp;=\Pr(X\leq k)\\&amp;=I_{1-p}(n-k,k+1)\\&amp;=(n-k){n \choose k}\int _{0}^{1-p}t^{n-k-1}(1-t)^{k}\,dt,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </msubsup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}F(k;n,p)&amp;=\Pr(X\leq k)\\&amp;=I_{1-p}(n-k,k+1)\\&amp;=(n-k){n \choose k}\int _{0}^{1-p}t^{n-k-1}(1-t)^{k}\,dt,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f874721853e1614ba99af968f826aefd075e143" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:48.836ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}F(k;n,p)&amp;=\Pr(X\leq k)\\&amp;=I_{1-p}(n-k,k+1)\\&amp;=(n-k){n \choose k}\int _{0}^{1-p}t^{n-k-1}(1-t)^{k}\,dt,\end{aligned}}}"></span></dd></dl> <p>which is equivalent to the <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution functions</a> of the <a href="/wiki/Beta_distribution" title="Beta distribution">beta distribution</a> and of the <a href="/wiki/F-distribution" title="F-distribution"><span class="texhtml mvar" style="font-style:italic;">F</span>-distribution</a>:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)=F_{\text{beta-distribution}}\left(x=1-p;\alpha =n-k,\beta =k+1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>beta-distribution</mtext> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo>;</mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)=F_{\text{beta-distribution}}\left(x=1-p;\alpha =n-k,\beta =k+1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34f92250fe71290d61de0333a7ddd9b568942e59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.835ex; height:2.843ex;" alt="{\displaystyle F(k;n,p)=F_{\text{beta-distribution}}\left(x=1-p;\alpha =n-k,\beta =k+1\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)=F_{F{\text{-distribution}}}\left(x={\frac {1-p}{p}}{\frac {k+1}{n-k}};d_{1}=2(n-k),d_{2}=2(k+1)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>-distribution</mtext> </mrow> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>;</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)=F_{F{\text{-distribution}}}\left(x={\frac {1-p}{p}}{\frac {k+1}{n-k}};d_{1}=2(n-k),d_{2}=2(k+1)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54cdde2f8cc02dcf7f7c8a128bf830215faaaf6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:75.375ex; height:6.176ex;" alt="{\displaystyle F(k;n,p)=F_{F{\text{-distribution}}}\left(x={\frac {1-p}{p}}{\frac {k+1}{n-k}};d_{1}=2(n-k),d_{2}=2(k+1)\right).}"></span></dd></dl> <p>Some closed-form bounds for the cumulative distribution function are given <a href="#Tail_bounds">below</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=5" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Expected_value_and_variance">Expected value and variance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=6" title="Edit section: Expected value and variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>X</i> ~ <i>B</i>(<i>n</i>, <i>p</i>)</span>, that is, <span class="texhtml"><i>X</i></span> is a binomially distributed random variable, <span class="texhtml mvar" style="font-style:italic;">n</span> being the total number of experiments and <i>p</i> the probability of each experiment yielding a successful result, then the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of <span class="texhtml"><i>X</i></span> is:<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]=np.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]=np.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f16b365410a1b23b5592c53d3ae6354f1a79aff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.166ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [X]=np.}"></span></dd></dl> <p>This follows from the linearity of the expected value along with the fact that <span class="texhtml mvar" style="font-style:italic;">X</span> is the sum of <span class="texhtml mvar" style="font-style:italic;">n</span> identical Bernoulli random variables, each with expected value <span class="texhtml mvar" style="font-style:italic;">p</span>. In other words, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\ldots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\ldots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac794f5521dcce89913085a6d566e7cdb615dbb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\ldots ,X_{n}}"></span> are identical (and independent) Bernoulli random variables with parameter <span class="texhtml mvar" style="font-style:italic;">p</span>, then <span class="texhtml"><i>X</i> = <i>X</i><sub>1</sub> + ... + <i>X</i><sub><i>n</i></sub></span> and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]=\operatorname {E} [X_{1}+\cdots +X_{n}]=\operatorname {E} [X_{1}]+\cdots +\operatorname {E} [X_{n}]=p+\cdots +p=np.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>p</mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]=\operatorname {E} [X_{1}+\cdots +X_{n}]=\operatorname {E} [X_{1}]+\cdots +\operatorname {E} [X_{n}]=p+\cdots +p=np.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f238d520c68a1d1b9b318492ddda39f4cc45bb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:68.884ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [X]=\operatorname {E} [X_{1}+\cdots +X_{n}]=\operatorname {E} [X_{1}]+\cdots +\operatorname {E} [X_{n}]=p+\cdots +p=np.}"></span></dd></dl> <p>The <a href="/wiki/Variance" title="Variance">variance</a> is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=npq=np(1-p).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=npq=np(1-p).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca514f76e21fa0f7b2d2fd8193c4cf4c2cf866e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.63ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X)=npq=np(1-p).}"></span></dd></dl> <p>This similarly follows from the fact that the variance of a sum of independent random variables is the sum of the variances. </p> <div class="mw-heading mw-heading3"><h3 id="Higher_moments">Higher moments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=7" title="Edit section: Higher moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first 6 <a href="/wiki/Central_moment" title="Central moment">central moments</a>, defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{c}=\operatorname {E} \left[(X-\operatorname {E} [X])^{c}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{c}=\operatorname {E} \left[(X-\operatorname {E} [X])^{c}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c5ea3e05b674668550675c3c4593c725a1ec86b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.751ex; height:2.843ex;" alt="{\displaystyle \mu _{c}=\operatorname {E} \left[(X-\operatorname {E} [X])^{c}\right]}"></span>, are given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mu _{1}&amp;=0,\\\mu _{2}&amp;=np(1-p),\\\mu _{3}&amp;=np(1-p)(1-2p),\\\mu _{4}&amp;=np(1-p)(1+(3n-6)p(1-p)),\\\mu _{5}&amp;=np(1-p)(1-2p)(1+(10n-12)p(1-p)),\\\mu _{6}&amp;=np(1-p)(1-30p(1-p)(1-4p(1-p))+5np(1-p)(5-26p(1-p))+15n^{2}p^{2}(1-p)^{2}).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mn>10</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>12</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>30</mn> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mn>5</mn> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>5</mn> <mo>&#x2212;<!-- − --></mo> <mn>26</mn> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mn>15</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mu _{1}&amp;=0,\\\mu _{2}&amp;=np(1-p),\\\mu _{3}&amp;=np(1-p)(1-2p),\\\mu _{4}&amp;=np(1-p)(1+(3n-6)p(1-p)),\\\mu _{5}&amp;=np(1-p)(1-2p)(1+(10n-12)p(1-p)),\\\mu _{6}&amp;=np(1-p)(1-30p(1-p)(1-4p(1-p))+5np(1-p)(5-26p(1-p))+15n^{2}p^{2}(1-p)^{2}).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28c1eb8cb4c395baf1beb5ba3054cd0dab131e9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:95.622ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}\mu _{1}&amp;=0,\\\mu _{2}&amp;=np(1-p),\\\mu _{3}&amp;=np(1-p)(1-2p),\\\mu _{4}&amp;=np(1-p)(1+(3n-6)p(1-p)),\\\mu _{5}&amp;=np(1-p)(1-2p)(1+(10n-12)p(1-p)),\\\mu _{6}&amp;=np(1-p)(1-30p(1-p)(1-4p(1-p))+5np(1-p)(5-26p(1-p))+15n^{2}p^{2}(1-p)^{2}).\end{aligned}}}"></span></dd></dl> <p>The non-central moments satisfy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} [X]&amp;=np,\\\operatorname {E} [X^{2}]&amp;=np(1-p)+n^{2}p^{2},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} [X]&amp;=np,\\\operatorname {E} [X^{2}]&amp;=np(1-p)+n^{2}p^{2},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3f2b3a9af52fc1ea633476400290069fc3ae7b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.483ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {E} [X]&amp;=np,\\\operatorname {E} [X^{2}]&amp;=np(1-p)+n^{2}p^{2},\end{aligned}}}"></span></dd></dl> <p>and in general <sup id="cite_ref-Andreas2008_7-0" class="reference"><a href="#cite_note-Andreas2008-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nguyen2021_8-0" class="reference"><a href="#cite_note-Nguyen2021-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X^{c}]=\sum _{k=0}^{c}\left\{{c \atop k}\right\}n^{\underline {k}}p^{k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </munderover> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>c</mi> <mi>k</mi> </mfrac> </mrow> <mo>}</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>k</mi> <mo>&#x005F;<!-- _ --></mo> </munder> </mrow> </msup> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X^{c}]=\sum _{k=0}^{c}\left\{{c \atop k}\right\}n^{\underline {k}}p^{k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db435ced7af59fa481fe26a023a1429d18a6a83a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.305ex; height:7.009ex;" alt="{\displaystyle \operatorname {E} [X^{c}]=\sum _{k=0}^{c}\left\{{c \atop k}\right\}n^{\underline {k}}p^{k},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \left\{{c \atop k}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>c</mi> <mi>k</mi> </mfrac> </mrow> <mo>}</mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \left\{{c \atop k}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12bac7c5417d94b0e4afe33363f1f1b6abc06428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.124ex; height:3.176ex;" alt="{\displaystyle \textstyle \left\{{c \atop k}\right\}}"></span> are the <a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling numbers of the second kind</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{\underline {k}}=n(n-1)\cdots (n-k+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>k</mi> <mo>&#x005F;<!-- _ --></mo> </munder> </mrow> </msup> <mo>=</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{\underline {k}}=n(n-1)\cdots (n-k+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f07c553938ed18bdb5fee981a95a9b50af9b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.941ex; height:3.176ex;" alt="{\displaystyle n^{\underline {k}}=n(n-1)\cdots (n-k+1)}"></span> is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>th <a href="/wiki/Falling_and_rising_factorials" title="Falling and rising factorials">falling power</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. A simple bound <sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> follows by bounding the Binomial moments via the <a href="/wiki/Poisson_distribution#Higher_moments" title="Poisson distribution">higher Poisson moments</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X^{c}]\leq \left({\frac {c}{\ln(c/(np)+1)}}\right)^{c}\leq (np)^{c}\exp \left({\frac {c^{2}}{2np}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>n</mi> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X^{c}]\leq \left({\frac {c}{\ln(c/(np)+1)}}\right)^{c}\leq (np)^{c}\exp \left({\frac {c^{2}}{2np}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4150b3bc8d3ada7391088c4493928df6798680" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:49.398ex; height:6.509ex;" alt="{\displaystyle \operatorname {E} [X^{c}]\leq \left({\frac {c}{\ln(c/(np)+1)}}\right)^{c}\leq (np)^{c}\exp \left({\frac {c^{2}}{2np}}\right).}"></span></dd></dl> <p>This shows that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=O({\sqrt {np}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=O({\sqrt {np}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e92fb16bfa3a153ae951523ff7f44f6ddd8881" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.188ex; height:3.176ex;" alt="{\displaystyle c=O({\sqrt {np}})}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X^{c}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X^{c}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5989f9c9f5202059ad1c0a4026d267ee2a975761" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.818ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [X^{c}]}"></span> is at most a constant factor away from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]^{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]^{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74d46bd564a6f77db38e12b156443bdbc3262cfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.801ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [X]^{c}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Mode">Mode</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=8" title="Edit section: Mode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Usually the <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> of a binomial <span class="texhtml"><i>B</i>(<i>n</i>, <i>p</i>)</span> distribution is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor (n+1)p\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor (n+1)p\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcda6d9602cb8abc4e83e4a1b19ed23bc5062932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.441ex; height:2.843ex;" alt="{\displaystyle \lfloor (n+1)p\rfloor }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor \cdot \rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor \cdot \rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddb5178c0fbe4ac275f1083ee8f1a6e0feb8f872" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.712ex; height:2.843ex;" alt="{\displaystyle \lfloor \cdot \rfloor }"></span> is the <a href="/wiki/Floor_function" class="mw-redirect" title="Floor function">floor function</a>. However, when <span class="texhtml">(<i>n</i> + 1)<i>p</i></span> is an integer and <span class="texhtml"><i>p</i></span> is neither 0 nor 1, then the distribution has two modes: <span class="texhtml">(<i>n</i> + 1)<i>p</i></span> and <span class="texhtml">(<i>n</i> + 1)<i>p</i> − 1</span>. When <span class="texhtml"><i>p</i></span> is equal to 0 or 1, the mode will be 0 and <span class="texhtml"><i>n</i></span> correspondingly. These cases can be summarized as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{mode}}={\begin{cases}\lfloor (n+1)\,p\rfloor &amp;{\text{if }}(n+1)p{\text{ is 0 or a noninteger}},\\(n+1)\,p\ {\text{ and }}\ (n+1)\,p-1&amp;{\text{if }}(n+1)p\in \{1,\dots ,n\},\\n&amp;{\text{if }}(n+1)p=n+1.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>mode</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;is 0 or a noninteger</mtext> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{mode}}={\begin{cases}\lfloor (n+1)\,p\rfloor &amp;{\text{if }}(n+1)p{\text{ is 0 or a noninteger}},\\(n+1)\,p\ {\text{ and }}\ (n+1)\,p-1&amp;{\text{if }}(n+1)p\in \{1,\dots ,n\},\\n&amp;{\text{if }}(n+1)p=n+1.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74519d31faaf11d1b8e90572aeaa12fae140584e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:71.82ex; height:8.843ex;" alt="{\displaystyle {\text{mode}}={\begin{cases}\lfloor (n+1)\,p\rfloor &amp;{\text{if }}(n+1)p{\text{ is 0 or a noninteger}},\\(n+1)\,p\ {\text{ and }}\ (n+1)\,p-1&amp;{\text{if }}(n+1)p\in \{1,\dots ,n\},\\n&amp;{\text{if }}(n+1)p=n+1.\end{cases}}}"></span></dd></dl> <p><b>Proof:</b> Let </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k)={\binom {n}{k}}p^{k}q^{n-k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k)={\binom {n}{k}}p^{k}q^{n-k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f3731d97f73b24bb16c939f34ad4bc0324ab1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.551ex; height:6.176ex;" alt="{\displaystyle f(k)={\binom {n}{k}}p^{k}q^{n-k}.}"></span></dd></dl> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3e6ac10fa45fb984d886065f959a6bdd467b5e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p=0}"></span> only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc54adf96acf7e2466de00b7739144d36840108f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.25ex; height:2.843ex;" alt="{\displaystyle f(0)}"></span> has a nonzero value with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(0)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(0)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00884d9c3ef0dbc18fe185a4444f1da931c8ba0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.511ex; height:2.843ex;" alt="{\displaystyle f(0)=1}"></span>. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c29a2f2fb3f642618036ed7a79712202e7ada924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p=1}"></span> we find <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(n)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(n)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b18729f39cdba4b90c6c24c34cf558e826d0d1f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.744ex; height:2.843ex;" alt="{\displaystyle f(n)=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce7d839a238fc7f702f16f17238b97af187713f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.56ex; height:2.843ex;" alt="{\displaystyle f(k)=0}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\neq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\neq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebe6b432697569196d816b5f1c4582a685ab6b36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.704ex; height:2.676ex;" alt="{\displaystyle k\neq n}"></span>. This proves that the mode is 0 for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3e6ac10fa45fb984d886065f959a6bdd467b5e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c29a2f2fb3f642618036ed7a79712202e7ada924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p=1}"></span>. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;p&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;p&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea074f5b36db6eff17f1aa84d73e30e3de12c4d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.691ex; height:2.509ex;" alt="{\displaystyle 0&lt;p&lt;1}"></span>. We find </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f(k+1)}{f(k)}}={\frac {(n-k)p}{(k+1)(1-p)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mi>p</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f(k+1)}{f(k)}}={\frac {(n-k)p}{(k+1)(1-p)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4cd7ba8eb9f47c813648663c1937f5f01ecb0cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.078ex; height:6.509ex;" alt="{\displaystyle {\frac {f(k+1)}{f(k)}}={\frac {(n-k)p}{(k+1)(1-p)}}}"></span>.</dd></dl> <p>From this follows </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}k&gt;(n+1)p-1\Rightarrow f(k+1)&lt;f(k)\\k=(n+1)p-1\Rightarrow f(k+1)=f(k)\\k&lt;(n+1)p-1\Rightarrow f(k+1)&gt;f(k)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>k</mi> <mo>&gt;</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>&lt;</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}k&gt;(n+1)p-1\Rightarrow f(k+1)&lt;f(k)\\k=(n+1)p-1\Rightarrow f(k+1)=f(k)\\k&lt;(n+1)p-1\Rightarrow f(k+1)&gt;f(k)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e3d2862e74e83011904c0e11b0257d678441df8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:36.754ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}k&gt;(n+1)p-1\Rightarrow f(k+1)&lt;f(k)\\k=(n+1)p-1\Rightarrow f(k+1)=f(k)\\k&lt;(n+1)p-1\Rightarrow f(k+1)&gt;f(k)\end{aligned}}}"></span></dd></dl> <p>So when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+1)p-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+1)p-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd23b263c6e010f3bad0f3f6fed1e55b94cd440a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.379ex; height:2.843ex;" alt="{\displaystyle (n+1)p-1}"></span> is an integer, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+1)p-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+1)p-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd23b263c6e010f3bad0f3f6fed1e55b94cd440a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.379ex; height:2.843ex;" alt="{\displaystyle (n+1)p-1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+1)p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+1)p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0dc4e70c7a15d023d2652d5b69f22203e6cb476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.376ex; height:2.843ex;" alt="{\displaystyle (n+1)p}"></span> is a mode. In the case that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+1)p-1\notin \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2209;<!-- ∉ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+1)p-1\notin \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed5c94d4e8ee065391e22672e3551bb6cef768ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.77ex; height:2.843ex;" alt="{\displaystyle (n+1)p-1\notin \mathbb {Z} }"></span>, then only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor (n+1)p-1\rfloor +1=\lfloor (n+1)p\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>p</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor (n+1)p-1\rfloor +1=\lfloor (n+1)p\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2a5233bb21b7f40b1dbc83747e05e19eef2b90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.986ex; height:2.843ex;" alt="{\displaystyle \lfloor (n+1)p-1\rfloor +1=\lfloor (n+1)p\rfloor }"></span> is a mode.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Median">Median</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=9" title="Edit section: Median"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, there is no single formula to find the <a href="/wiki/Median" title="Median">median</a> for a binomial distribution, and it may even be non-unique. However, several special results have been established: </p> <ul><li>If <span class="texhtml"><i>np</i></span> is an integer, then the mean, median, and mode coincide and equal <span class="texhtml"><i>np</i></span>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup></li> <li>Any median <span class="texhtml"><i>m</i></span> must lie within the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor np\rfloor \leq m\leq \lceil np\rceil }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>n</mi> <mi>p</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2308;<!-- ⌈ --></mo> <mi>n</mi> <mi>p</mi> <mo fence="false" stretchy="false">&#x2309;<!-- ⌉ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor np\rfloor \leq m\leq \lceil np\rceil }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d225e6448db67792cc4a040fbee79c3d8289b61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.495ex; height:2.843ex;" alt="{\displaystyle \lfloor np\rfloor \leq m\leq \lceil np\rceil }"></span>.<sup id="cite_ref-KaasBuhrman_13-0" class="reference"><a href="#cite_note-KaasBuhrman-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></li> <li>A median <span class="texhtml"><i>m</i></span> cannot lie too far away from the mean:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |m-np|\leq \min\{{\ln 2},\max\{p,1-p\}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mo movablelimits="true" form="prefix">min</mo> <mo fence="false" stretchy="false">{</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> </mrow> <mo>,</mo> <mo movablelimits="true" form="prefix">max</mo> <mo fence="false" stretchy="false">{</mo> <mi>p</mi> <mo>,</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo fence="false" stretchy="false">}</mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |m-np|\leq \min\{{\ln 2},\max\{p,1-p\}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c522650ed3e564296011ddb76ad36cf8ac979a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.586ex; height:2.843ex;" alt="{\displaystyle |m-np|\leq \min\{{\ln 2},\max\{p,1-p\}\}}"></span> .<sup id="cite_ref-Hamza_14-0" class="reference"><a href="#cite_note-Hamza-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup></li> <li>The median is unique and equal to <span class="texhtml"><i>m</i> = <a href="/wiki/Rounding" title="Rounding">round</a>(<i>np</i>)</span> when <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>m</i> − <i>np</i></span>&#124; ≤ min&#123;<i>p</i>, 1 − <i>p</i>&#125;</span> (except for the case when <span class="texhtml"><i>p</i> = 1/2</span> and <span class="texhtml"><i>n</i></span> is odd).<sup id="cite_ref-KaasBuhrman_13-1" class="reference"><a href="#cite_note-KaasBuhrman-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></li> <li>When <span class="texhtml"><i>p</i></span> is a rational number (with the exception of <span class="texhtml"><i>p</i> = 1/2</span>\ and <span class="texhtml"><i>n</i></span> odd) the median is unique.<sup id="cite_ref-Nowakowski_15-0" class="reference"><a href="#cite_note-Nowakowski-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></li> <li>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008c655cf27de670fe571a82643461724e00977b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:6.356ex; height:5.176ex;" alt="{\displaystyle p={\frac {1}{2}}}"></span> and <span class="texhtml"><i>n</i></span> is odd, any number <span class="texhtml"><i>m</i></span> in the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}{\bigl (}n-1{\bigr )}\leq m\leq {\frac {1}{2}}{\bigl (}n+1{\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}{\bigl (}n-1{\bigr )}\leq m\leq {\frac {1}{2}}{\bigl (}n+1{\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/196fcb881a40cabb4d7be54ba1bbaa25b3303e8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.289ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{2}}{\bigl (}n-1{\bigr )}\leq m\leq {\frac {1}{2}}{\bigl (}n+1{\bigr )}}"></span> is a median of the binomial distribution. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008c655cf27de670fe571a82643461724e00977b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:6.356ex; height:5.176ex;" alt="{\displaystyle p={\frac {1}{2}}}"></span> and <span class="texhtml"><i>n</i></span> is even, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m={\frac {n}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m={\frac {n}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55789405263d50f683a0b51b06e5f8eb12c9c749" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.37ex; height:4.676ex;" alt="{\displaystyle m={\frac {n}{2}}}"></span> is the unique median.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Tail_bounds">Tail bounds</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=10" title="Edit section: Tail bounds"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <span class="texhtml"><i>k</i> ≤ <i>np</i></span>, upper bounds can be derived for the lower tail of the cumulative distribution function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)=\Pr(X\leq k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)=\Pr(X\leq k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cff50b24b2c6bb76c17d87066dd440a7f62c61e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.085ex; height:2.843ex;" alt="{\displaystyle F(k;n,p)=\Pr(X\leq k)}"></span>, the probability that there are at most <span class="texhtml"><i>k</i></span> successes. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X\geq k)=F(n-k;n,1-p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2265;<!-- ≥ --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(X\geq k)=F(n-k;n,1-p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/298cf38295eca689d2ab8ade2c5f6c8a38278628" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.323ex; height:2.843ex;" alt="{\displaystyle \Pr(X\geq k)=F(n-k;n,1-p)}"></span>, these bounds can also be seen as bounds for the upper tail of the cumulative distribution function for <span class="texhtml"><i>k</i> ≥ <i>np</i></span>. </p><p><a href="/wiki/Hoeffding%27s_inequality" title="Hoeffding&#39;s inequality">Hoeffding's inequality</a> yields the simple bound </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)\leq \exp \left(-2n\left(p-{\frac {k}{n}}\right)^{2}\right),\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>n</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)\leq \exp \left(-2n\left(p-{\frac {k}{n}}\right)^{2}\right),\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/635aca348a43ff429a04bb8deb156df33a9b162b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-right: -0.229ex; width:35.296ex; height:7.509ex;" alt="{\displaystyle F(k;n,p)\leq \exp \left(-2n\left(p-{\frac {k}{n}}\right)^{2}\right),\!}"></span></dd></dl> <p>which is however not very tight. In particular, for <span class="texhtml"><i>p</i> = 1</span>, we have that <span class="texhtml"><i>F</i>(<i>k</i>; <i>n</i>, <i>p</i>) = 0</span> (for fixed <span class="texhtml"><i>k</i></span>, <span class="texhtml"><i>n</i></span> with <span class="texhtml"><i>k</i> &lt; <i>n</i></span>), but Hoeffding's bound evaluates to a positive constant. </p><p>A sharper bound can be obtained from the <a href="/wiki/Chernoff_bound" title="Chernoff bound">Chernoff bound</a>:<sup id="cite_ref-ag_16-0" class="reference"><a href="#cite_note-ag-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)\leq \exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>D</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> <mo>&#x2225;<!-- ∥ --></mo> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)\leq \exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/676c3163837a46726f25e1aa2954d7e4d66f91ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.254ex; height:6.176ex;" alt="{\displaystyle F(k;n,p)\leq \exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right)}"></span></dd></dl> <p>where <span class="texhtml"><i>D</i>(<i>a</i> ∥ <i>p</i>)</span> is the <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">relative entropy (or Kullback-Leibler divergence)</a> between an <span class="texhtml"><i>a</i></span>-coin and a <span class="texhtml"><i>p</i></span>-coin (i.e. between the <span class="texhtml">Bernoulli(<i>a</i>)</span> and <span class="texhtml">Bernoulli(<i>p</i>)</span> distribution): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(a\parallel p)=(a)\ln {\frac {a}{p}}+(1-a)\ln {\frac {1-a}{1-p}}.\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2225;<!-- ∥ --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>.</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(a\parallel p)=(a)\ln {\frac {a}{p}}+(1-a)\ln {\frac {1-a}{1-p}}.\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78138dc698bf7b307d8e415f614120992df4228c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.204ex; width:38.631ex; height:5.676ex;" alt="{\displaystyle D(a\parallel p)=(a)\ln {\frac {a}{p}}+(1-a)\ln {\frac {1-a}{1-p}}.\!}"></span></dd></dl> <p>Asymptotically, this bound is reasonably tight; see <sup id="cite_ref-ag_16-1" class="reference"><a href="#cite_note-ag-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> for details. </p><p>One can also obtain <i>lower</i> bounds on the tail <span class="texhtml"><i>F</i>(<i>k</i>; <i>n</i>, <i>p</i>)</span>, known as anti-concentration bounds. By approximating the binomial coefficient with <a href="/wiki/Stirling%27s_approximation" title="Stirling&#39;s approximation">Stirling's formula</a> it can be shown that<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)\geq {\frac {1}{\sqrt {8n{\tfrac {k}{n}}(1-{\tfrac {k}{n}})}}}\exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>8</mn> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>D</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> <mo>&#x2225;<!-- ∥ --></mo> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)\geq {\frac {1}{\sqrt {8n{\tfrac {k}{n}}(1-{\tfrac {k}{n}})}}}\exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22aafed1f95ec195f0eb30627ecd1dc9c7751d5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:50.462ex; height:8.343ex;" alt="{\displaystyle F(k;n,p)\geq {\frac {1}{\sqrt {8n{\tfrac {k}{n}}(1-{\tfrac {k}{n}})}}}\exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right),}"></span></dd></dl> <p>which implies the simpler but looser bound </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,p)\geq {\frac {1}{\sqrt {2n}}}\exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>n</mi> </msqrt> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>D</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> <mo>&#x2225;<!-- ∥ --></mo> <mi>p</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,p)\geq {\frac {1}{\sqrt {2n}}}\exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/219600d2b4a4c5eaf6ba269a6ec0a5af2be1dfd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:40.617ex; height:6.509ex;" alt="{\displaystyle F(k;n,p)\geq {\frac {1}{\sqrt {2n}}}\exp \left(-nD\left({\frac {k}{n}}\parallel p\right)\right).}"></span></dd></dl> <p>For <span class="texhtml"><i>p</i> = 1/2</span> and <span class="texhtml"><i>k</i> ≥ 3<i>n</i>/8</span> for even <span class="texhtml"><i>n</i></span>, it is possible to make the denominator constant:<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(k;n,{\tfrac {1}{2}})\geq {\frac {1}{15}}\exp \left(-16n\left({\frac {1}{2}}-{\frac {k}{n}}\right)^{2}\right).\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>15</mn> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>16</mn> <mi>n</mi> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(k;n,{\tfrac {1}{2}})\geq {\frac {1}{15}}\exp \left(-16n\left({\frac {1}{2}}-{\frac {k}{n}}\right)^{2}\right).\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3720d25b301005114222afac7e21694a36120de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-right: -0.204ex; width:41.299ex; height:7.509ex;" alt="{\displaystyle F(k;n,{\tfrac {1}{2}})\geq {\frac {1}{15}}\exp \left(-16n\left({\frac {1}{2}}-{\frac {k}{n}}\right)^{2}\right).\!}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Statistical_inference">Statistical inference</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=11" title="Edit section: Statistical inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Estimation_of_parameters">Estimation of parameters</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=12" title="Edit section: Estimation of parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Beta_distribution#Bayesian_inference" title="Beta distribution">Beta distribution §&#160;Bayesian inference</a></div> <p>When <span class="texhtml"><i>n</i></span> is known, the parameter <span class="texhtml"><i>p</i></span> can be estimated using the proportion of successes: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}={\frac {x}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}={\frac {x}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b0c61b30ac9345956b8060d277981ad355e4fb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:7.425ex; height:4.676ex;" alt="{\displaystyle {\widehat {p}}={\frac {x}{n}}.}"></span></dd></dl> <p>This estimator is found using <a href="/wiki/Maximum_likelihood_estimator" class="mw-redirect" title="Maximum likelihood estimator">maximum likelihood estimator</a> and also the <a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">method of moments</a>. This estimator is <a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">unbiased</a> and uniformly with <a href="/wiki/Minimum-variance_unbiased_estimator" title="Minimum-variance unbiased estimator">minimum variance</a>, proven using <a href="/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem" title="Lehmann–Scheffé theorem">Lehmann–Scheffé theorem</a>, since it is based on a <a href="/wiki/Minimal_sufficient" class="mw-redirect" title="Minimal sufficient">minimal sufficient</a> and <a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">complete</a> statistic (i.e.: <span class="texhtml"><i>x</i></span>). It is also <a href="/wiki/Consistent_estimator" title="Consistent estimator">consistent</a> both in probability and in <a href="/wiki/Mean_squared_error" title="Mean squared error">MSE</a>. This statistic is <a href="/wiki/Asymptotic_distribution" title="Asymptotic distribution">asymptotically</a> <a href="/wiki/Normal_distribution" title="Normal distribution">normal</a> thanks to the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>, because it is the same as taking the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">mean</a> over Bernoulli samples. It has a variance of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle var({\widehat {p}})={\frac {p(1-p)}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mi>a</mi> <mi>r</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle var({\widehat {p}})={\frac {p(1-p)}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8675d99cf6368fb2399becfb9a21aa0b763fec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.66ex; height:5.676ex;" alt="{\displaystyle var({\widehat {p}})={\frac {p(1-p)}{n}}}"></span>, a property which is used in various ways, such as in <a href="/wiki/Binomial_proportion_confidence_interval#Wald_interval" title="Binomial proportion confidence interval">Wald's confidence intervals</a>. </p><p>A closed form <a href="/wiki/Bayes_estimator" title="Bayes estimator">Bayes estimator</a> for <span class="texhtml"><i>p</i></span> also exists when using the <a href="/wiki/Beta_distribution" title="Beta distribution">Beta distribution</a> as a <a href="/wiki/Conjugate_prior" title="Conjugate prior">conjugate</a> <a href="/wiki/Prior_distribution" class="mw-redirect" title="Prior distribution">prior distribution</a>. When using a general <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Beta} (\alpha ,\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Beta</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Beta} (\alpha ,\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a028b0242ef2a39b1118715997163faedb09dd87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.408ex; height:2.843ex;" alt="{\displaystyle \operatorname {Beta} (\alpha ,\beta )}"></span> as a prior, the <a href="/wiki/Bayes_estimator#Posterior_mean" title="Bayes estimator">posterior mean</a> estimator is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}_{b}={\frac {x+\alpha }{n+\alpha +\beta }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}_{b}={\frac {x+\alpha }{n+\alpha +\beta }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0384bcce10ab80362df2b483fe0ed07eda3f717" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-left: -0.089ex; width:16.863ex; height:5.509ex;" alt="{\displaystyle {\widehat {p}}_{b}={\frac {x+\alpha }{n+\alpha +\beta }}.}"></span></dd></dl> <p>The Bayes estimator is <a href="/wiki/Asymptotic_efficiency_(Bayes)" class="mw-redirect" title="Asymptotic efficiency (Bayes)">asymptotically efficient</a> and as the sample size approaches infinity (<span class="texhtml"><i>n</i> → ∞</span>), it approaches the <a href="/wiki/Maximum_likelihood_estimation" title="Maximum likelihood estimation">MLE</a> solution.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> The Bayes estimator is <a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">biased</a> (how much depends on the priors), <a href="/wiki/Bayes_estimator#Admissibility" title="Bayes estimator">admissible</a> and <a href="/wiki/Consistent_estimator" title="Consistent estimator">consistent</a> in probability. Using the Bayesian estimator with the Beta distribution can be used with <a href="/wiki/Thompson_sampling" title="Thompson sampling">Thompson sampling</a>. </p><p>For the special case of using the <a href="/wiki/Standard_uniform_distribution" class="mw-redirect" title="Standard uniform distribution">standard uniform distribution</a> as a <a href="/wiki/Non-informative_prior" class="mw-redirect" title="Non-informative prior">non-informative prior</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Beta} (\alpha =1,\beta =1)=U(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Beta</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Beta} (\alpha =1,\beta =1)=U(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9759f630300f34fb942fd7a706465f1b6c9a61c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.979ex; height:2.843ex;" alt="{\displaystyle \operatorname {Beta} (\alpha =1,\beta =1)=U(0,1)}"></span>, the posterior mean estimator becomes: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}_{b}={\frac {x+1}{n+2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}_{b}={\frac {x+1}{n+2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bae5563c78c303f0b2f1aaba1785f561d9f5399" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:12.365ex; height:5.343ex;" alt="{\displaystyle {\widehat {p}}_{b}={\frac {x+1}{n+2}}.}"></span></dd></dl> <p>(A <a href="/wiki/Bayes_estimator#Posterior_mode" title="Bayes estimator">posterior mode</a> should just lead to the standard estimator.) This method is called the <a href="/wiki/Rule_of_succession" title="Rule of succession">rule of succession</a>, which was introduced in the 18th century by <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a>. </p><p>When relying on <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a>, the prior is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Beta} (\alpha ={\frac {1}{2}},\beta ={\frac {1}{2}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Beta</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Beta} (\alpha ={\frac {1}{2}},\beta ={\frac {1}{2}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1814522a54e5770330bee8cd04faa202ee111440" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.602ex; height:5.176ex;" alt="{\displaystyle \operatorname {Beta} (\alpha ={\frac {1}{2}},\beta ={\frac {1}{2}})}"></span>,<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> which leads to the estimator: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}_{Jeffreys}={\frac {x+{\frac {1}{2}}}{n+1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> <mi>e</mi> <mi>f</mi> <mi>f</mi> <mi>r</mi> <mi>e</mi> <mi>y</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}_{Jeffreys}={\frac {x+{\frac {1}{2}}}{n+1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d910b4ab13feed021c4ffeae6183662b31b3f35b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:18.801ex; height:6.509ex;" alt="{\displaystyle {\widehat {p}}_{Jeffreys}={\frac {x+{\frac {1}{2}}}{n+1}}.}"></span></dd></dl> <p>When estimating <span class="texhtml"><i>p</i></span> with very rare events and a small <span class="texhtml"><i>n</i></span> (e.g.: if <span class="texhtml"><i>x</i> = 0</span>), then using the standard estimator leads to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e2f106c2630fab48ac3c4fc2b59a70b3b67a45a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.357ex; height:2.509ex;" alt="{\displaystyle {\widehat {p}}=0,}"></span> which sometimes is unrealistic and undesirable. In such cases there are various alternative estimators.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> One way is to use the Bayes estimator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c962fa336a394ce7cc1591b7fd38b5971e53e101" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:2.386ex; height:2.676ex;" alt="{\displaystyle {\widehat {p}}_{b}}"></span>, leading to: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}_{b}={\frac {1}{n+2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}_{b}={\frac {1}{n+2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc9a3a404ea6597b660bfbb2d38461448bce8731" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:12.365ex; height:5.343ex;" alt="{\displaystyle {\widehat {p}}_{b}={\frac {1}{n+2}}.}"></span></dd></dl> <p>Another method is to use the upper bound of the <a href="/wiki/Confidence_interval" title="Confidence interval">confidence interval</a> obtained using the <a href="/wiki/Rule_of_three_(statistics)" title="Rule of three (statistics)">rule of three</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p}}_{\text{rule of 3}}={\frac {3}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>rule of 3</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p}}_{\text{rule of 3}}={\frac {3}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c3ae5c0117971e485de1f9e78bb6640ad8fc8dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:13.712ex; height:5.176ex;" alt="{\displaystyle {\widehat {p}}_{\text{rule of 3}}={\frac {3}{n}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Confidence_intervals_for_the_parameter_p">Confidence intervals for the parameter p</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=13" title="Edit section: Confidence intervals for the parameter p"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Binomial_proportion_confidence_interval" title="Binomial proportion confidence interval">Binomial proportion confidence interval</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Z-test#Comparing_the_Proportions_of_Two_Binomials" title="Z-test">Z-test §&#160;Comparing the Proportions of Two Binomials</a></div> <p>Even for quite large values of <i>n</i>, the actual distribution of the mean is significantly nonnormal.<sup id="cite_ref-Brown2001_22-0" class="reference"><a href="#cite_note-Brown2001-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Because of this problem several methods to estimate confidence intervals have been proposed. </p><p>In the equations for confidence intervals below, the variables have the following meaning: </p> <ul><li><i>n</i><sub>1</sub> is the number of successes out of <i>n</i>, the total number of trials</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p\,}}={\frac {n_{1}}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p\,}}={\frac {n_{1}}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b69e98db6d3007b699801c5e8d7f363e1d46059" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.089ex; width:8.029ex; height:4.676ex;" alt="{\displaystyle {\widehat {p\,}}={\frac {n_{1}}{n}}}"></span> is the proportion of successes</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-{\tfrac {1}{2}}\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-{\tfrac {1}{2}}\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e26f1c45ea84772da6e541b6303f6af26c33e94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.149ex; height:3.509ex;" alt="{\displaystyle 1-{\tfrac {1}{2}}\alpha }"></span> <a href="/wiki/Quantile" title="Quantile">quantile</a> of a <a href="/wiki/Standard_normal_distribution" class="mw-redirect" title="Standard normal distribution">standard normal distribution</a> (i.e., <a href="/wiki/Probit" title="Probit">probit</a>) corresponding to the target error rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>. For example, for a 95% <a href="/wiki/Confidence_level" class="mw-redirect" title="Confidence level">confidence level</a> the error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>&#160;=&#160;0.05, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-{\tfrac {1}{2}}\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-{\tfrac {1}{2}}\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e26f1c45ea84772da6e541b6303f6af26c33e94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.149ex; height:3.509ex;" alt="{\displaystyle 1-{\tfrac {1}{2}}\alpha }"></span>&#160;=&#160;0.975 and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>&#160;=&#160;1.96.</li></ul> <div class="mw-heading mw-heading4"><h4 id="Wald_method">Wald method</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=14" title="Edit section: Wald method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Binomial_proportion_confidence_interval#Wald_interval" title="Binomial proportion confidence interval">Binomial proportion confidence interval §&#160;Wald interval</a></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {p\,}}\pm z{\sqrt {\frac {{\widehat {p\,}}(1-{\widehat {p\,}})}{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {p\,}}\pm z{\sqrt {\frac {{\widehat {p\,}}(1-{\widehat {p\,}})}{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/135d45c9aa84fb7acdd0605a076eed8cfdfa364c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-left: -0.089ex; width:18.306ex; height:7.676ex;" alt="{\displaystyle {\widehat {p\,}}\pm z{\sqrt {\frac {{\widehat {p\,}}(1-{\widehat {p\,}})}{n}}}.}"></span></dd></dl> <p>A <a href="/wiki/Continuity_correction" title="Continuity correction">continuity correction</a> of <span class="texhtml">0.5/<i>n</i></span> may be added.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (July 2012)">clarification needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading4"><h4 id="Agresti–Coull_method"><span id="Agresti.E2.80.93Coull_method"></span>Agresti–Coull method</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=15" title="Edit section: Agresti–Coull method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Binomial_proportion_confidence_interval#Agresti–Coull_interval" title="Binomial proportion confidence interval">Binomial proportion confidence interval §&#160;Agresti–Coull interval</a></div> <p><sup id="cite_ref-Agresti1988_23-0" class="reference"><a href="#cite_note-Agresti1988-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {p}}\pm z{\sqrt {\frac {{\tilde {p}}(1-{\tilde {p}})}{n+z^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {p}}\pm z{\sqrt {\frac {{\tilde {p}}(1-{\tilde {p}})}{n+z^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/290a7265491fabdde9b7cf4c816499fab7884ebc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; margin-left: -0.089ex; width:17.068ex; height:7.676ex;" alt="{\displaystyle {\tilde {p}}\pm z{\sqrt {\frac {{\tilde {p}}(1-{\tilde {p}})}{n+z^{2}}}}}"></span></dd></dl> <p>Here the estimate of <span class="texhtml"><i>p</i></span> is modified to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {p}}={\frac {n_{1}+{\frac {1}{2}}z^{2}}{n+z^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {p}}={\frac {n_{1}+{\frac {1}{2}}z^{2}}{n+z^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb017e9c9b6c319d82e8772a8b8fcffa857f82ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-left: -0.089ex; width:14.475ex; height:6.843ex;" alt="{\displaystyle {\tilde {p}}={\frac {n_{1}+{\frac {1}{2}}z^{2}}{n+z^{2}}}}"></span></dd></dl> <p>This method works well for <span class="texhtml"><i>n</i> &gt; 10</span> and <span class="texhtml"><i>n</i><sub>1</sub> ≠ 0, <i>n</i></span>.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> See here for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\leq 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\leq 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9a7cb82f506cef64150cbde33514a8d87ed40ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.818ex; height:2.343ex;" alt="{\displaystyle n\leq 10}"></span>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> For <span class="texhtml"><i>n</i><sub>1</sub> = 0, <i>n</i></span> use the Wilson (score) method below. </p> <div class="mw-heading mw-heading4"><h4 id="Arcsine_method">Arcsine method</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=16" title="Edit section: Arcsine method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Binomial_proportion_confidence_interval#Arcsine_transformation" title="Binomial proportion confidence interval">Binomial proportion confidence interval §&#160;Arcsine transformation</a></div> <p><sup id="cite_ref-Pires00_26-0" class="reference"><a href="#cite_note-Pires00-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin ^{2}\left(\arcsin \left({\sqrt {\widehat {p\,}}}\right)\pm {\frac {z}{2{\sqrt {n}}}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </msqrt> </mrow> <mo>)</mo> </mrow> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin ^{2}\left(\arcsin \left({\sqrt {\widehat {p\,}}}\right)\pm {\frac {z}{2{\sqrt {n}}}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/187fa36ccf594df63b4f3ffddbad4fc7d162c10a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:28.12ex; height:6.509ex;" alt="{\displaystyle \sin ^{2}\left(\arcsin \left({\sqrt {\widehat {p\,}}}\right)\pm {\frac {z}{2{\sqrt {n}}}}\right).}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Wilson_(score)_method"><span id="Wilson_.28score.29_method"></span>Wilson (score) method</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=17" title="Edit section: Wilson (score) method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval" title="Binomial proportion confidence interval">Binomial proportion confidence interval §&#160;Wilson score interval</a></div> <p>The notation in the formula below differs from the previous formulas in two respects:<sup id="cite_ref-Wilson1927_27-0" class="reference"><a href="#cite_note-Wilson1927-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Firstly, <span class="texhtml"><i>z</i><sub><i>x</i></sub></span> has a slightly different interpretation in the formula below: it has its ordinary meaning of 'the <span class="texhtml"><i>x</i></span>th quantile of the standard normal distribution', rather than being a shorthand for 'the <span class="texhtml">(1 − <i>x</i>)</span>th quantile'.</li> <li>Secondly, this formula does not use a plus-minus to define the two bounds. Instead, one may use <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z_{\alpha /2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=z_{\alpha /2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c222ea3cd0e608193653d94bed365b0bcad8f6e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:8.196ex; height:2.509ex;" alt="{\displaystyle z=z_{\alpha /2}}"></span> to get the lower bound, or use <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z_{1-\alpha /2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=z_{1-\alpha /2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c307e50a7e05de6301d2c8683121c800d837cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.296ex; height:2.509ex;" alt="{\displaystyle z=z_{1-\alpha /2}}"></span> to get the upper bound. For example: for a 95% confidence level the error <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>&#160;=&#160;0.05, so one gets the lower bound by using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z_{\alpha /2}=z_{0.025}=-1.96}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0.025</mn> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1.96</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=z_{\alpha /2}=z_{0.025}=-1.96}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c0d5cf99cb562c9ee4821e146c5ff4d3a3541bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.394ex; height:3.009ex;" alt="{\displaystyle z=z_{\alpha /2}=z_{0.025}=-1.96}"></span>, and one gets the upper bound by using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=z_{1-\alpha /2}=z_{0.975}=1.96}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0.975</mn> </mrow> </msub> <mo>=</mo> <mn>1.96</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=z_{1-\alpha /2}=z_{0.975}=1.96}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82c2f0af5cfa66de895ba743ca3d0fabed3bc42b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.686ex; height:3.009ex;" alt="{\displaystyle z=z_{1-\alpha /2}=z_{0.975}=1.96}"></span>.</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\widehat {p\,}}+{\frac {z^{2}}{2n}}+z{\sqrt {{\frac {{\widehat {p\,}}(1-{\widehat {p\,}})}{n}}+{\frac {z^{2}}{4n^{2}}}}}}{1+{\frac {z^{2}}{n}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>p</mi> <mspace width="thinmathspace" /> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\widehat {p\,}}+{\frac {z^{2}}{2n}}+z{\sqrt {{\frac {{\widehat {p\,}}(1-{\widehat {p\,}})}{n}}+{\frac {z^{2}}{4n^{2}}}}}}{1+{\frac {z^{2}}{n}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1964bbe6154395fd9ef387633409a484b42fb88f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:27.09ex; height:10.676ex;" alt="{\displaystyle {\frac {{\widehat {p\,}}+{\frac {z^{2}}{2n}}+z{\sqrt {{\frac {{\widehat {p\,}}(1-{\widehat {p\,}})}{n}}+{\frac {z^{2}}{4n^{2}}}}}}{1+{\frac {z^{2}}{n}}}}}"></span><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Comparison">Comparison</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=18" title="Edit section: Comparison"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The so-called "exact" (<a href="/wiki/Binomial_proportion_confidence_interval#Clopper–Pearson_interval" title="Binomial proportion confidence interval">Clopper–Pearson</a>) method is the most conservative.<sup id="cite_ref-Brown2001_22-1" class="reference"><a href="#cite_note-Brown2001-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> (<i>Exact</i> does not mean perfectly accurate; rather, it indicates that the estimates will not be less conservative than the true value.) </p><p>The Wald method, although commonly recommended in textbooks, is the most biased.<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="what sense of bias is this (July 2012)">clarification needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Related_distributions">Related distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=19" title="Edit section: Related distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Sums_of_binomials">Sums of binomials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=20" title="Edit section: Sums of binomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>X</i> ~ B(<i>n</i>, <i>p</i>)</span> and <span class="texhtml"><i>Y</i> ~ B(<i>m</i>, <i>p</i>)</span> are independent binomial variables with the same probability <span class="texhtml"><i>p</i></span>, then <span class="texhtml"><i>X</i> + <i>Y</i></span> is again a binomial variable; its distribution is <span class="texhtml"><i>Z</i> = <i>X</i> + <i>Y</i> ~ B(<i>n</i> + <i>m</i>, <i>p</i>)</span>:<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {P} (Z=k)&amp;=\sum _{i=0}^{k}\left[{\binom {n}{i}}p^{i}(1-p)^{n-i}\right]\left[{\binom {m}{k-i}}p^{k-i}(1-p)^{m-k+i}\right]\\&amp;={\binom {n+m}{k}}p^{k}(1-p)^{n+m-k}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">P</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Z</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mi>i</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>m</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {P} (Z=k)&amp;=\sum _{i=0}^{k}\left[{\binom {n}{i}}p^{i}(1-p)^{n-i}\right]\left[{\binom {m}{k-i}}p^{k-i}(1-p)^{m-k+i}\right]\\&amp;={\binom {n+m}{k}}p^{k}(1-p)^{n+m-k}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38fc38e9a5e2c49743f45b4dab5dae6230ab2ad5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:64.119ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {P} (Z=k)&amp;=\sum _{i=0}^{k}\left[{\binom {n}{i}}p^{i}(1-p)^{n-i}\right]\left[{\binom {m}{k-i}}p^{k-i}(1-p)^{m-k+i}\right]\\&amp;={\binom {n+m}{k}}p^{k}(1-p)^{n+m-k}\end{aligned}}}"></span></dd></dl> <p>A Binomial distributed random variable <span class="texhtml"><i>X</i> ~ B(<i>n</i>, <i>p</i>)</span> can be considered as the sum of <span class="texhtml"><i>n</i></span> Bernoulli distributed random variables. So the sum of two Binomial distributed random variables <span class="texhtml"><i>X</i> ~ B(<i>n</i>, <i>p</i>)</span> and <span class="texhtml"><i>Y</i> ~ B(<i>m</i>, <i>p</i>)</span> is equivalent to the sum of <span class="texhtml"><i>n</i> + <i>m</i></span> Bernoulli distributed random variables, which means <span class="texhtml"><i>Z</i> = <i>X</i> + <i>Y</i> ~ B(<i>n</i> + <i>m</i>, <i>p</i>)</span>. This can also be proven directly using the addition rule. </p><p>However, if <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> do not have the same probability <span class="texhtml"><i>p</i></span>, then the variance of the sum will be <a href="/wiki/Binomial_sum_variance_inequality" title="Binomial sum variance inequality">smaller than the variance of a binomial variable</a> distributed as <span class="texhtml">B(<i>n</i> + <i>m</i>, <span style="text-decoration:overline;"><i>p</i></span>)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Poisson_binomial_distribution">Poisson binomial distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=21" title="Edit section: Poisson binomial distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The binomial distribution is a special case of the <a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial distribution</a>, which is the distribution of a sum of <span class="texhtml"><i>n</i></span> independent non-identical <a href="/wiki/Bernoulli_trials" class="mw-redirect" title="Bernoulli trials">Bernoulli trials</a> <span class="texhtml">B(<i>p</i><sub><i>i</i></sub>)</span>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Ratio_of_two_binomial_distributions">Ratio of two binomial distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=22" title="Edit section: Ratio of two binomial distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This result was first derived by Katz and coauthors in 1978.<sup id="cite_ref-Katz1978_31-0" class="reference"><a href="#cite_note-Katz1978-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>Let <span class="nowrap"><i>X</i> ~ B(<i>n</i>, <i>p</i><sub>1</sub>)</span> and <span class="nowrap"><i>Y</i> ~ B(<i>m</i>, <i>p</i><sub>2</sub>)</span> be independent. Let <span class="nowrap"><i>T</i> = (<i>X</i>/<i>n</i>) / (<i>Y</i>/<i>m</i>)</span>. </p><p>Then log(<i>T</i>) is approximately normally distributed with mean log(<i>p</i><sub>1</sub>/<i>p</i><sub>2</sub>) and variance <span class="nowrap">((1/<i>p</i><sub>1</sub>) − 1)/<i>n</i> + ((1/<i>p</i><sub>2</sub>) − 1)/<i>m</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Conditional_binomials">Conditional binomials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=23" title="Edit section: Conditional binomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>X</i>&#160;~&#160;B(<i>n</i>,&#160;<i>p</i>) and <i>Y</i>&#160;|&#160;<i>X</i>&#160;~&#160;B(<i>X</i>,&#160;<i>q</i>) (the conditional distribution of <i>Y</i>, given&#160;<i>X</i>), then <i>Y</i> is a simple binomial random variable with distribution <i>Y</i>&#160;~&#160;B(<i>n</i>,&#160;<i>pq</i>). </p><p>For example, imagine throwing <i>n</i> balls to a basket <i>U<sub>X</sub></i> and taking the balls that hit and throwing them to another basket <i>U<sub>Y</sub></i>. If <i>p</i> is the probability to hit <i>U<sub>X</sub></i> then <i>X</i>&#160;~&#160;B(<i>n</i>,&#160;<i>p</i>) is the number of balls that hit <i>U<sub>X</sub></i>. If <i>q</i> is the probability to hit <i>U<sub>Y</sub></i> then the number of balls that hit <i>U<sub>Y</sub></i> is <i>Y</i>&#160;~&#160;B(<i>X</i>,&#160;<i>q</i>) and therefore <i>Y</i>&#160;~&#160;B(<i>n</i>,&#160;<i>pq</i>). </p> <style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsed" style="border:1px #aaa solid; width:60%"><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">[Proof]</div><div class="hidden-content mw-collapsible-content" style=""> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim B(n,p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim B(n,p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d561b3cbc6297b3cd2313ac82686b3e553613d4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.25ex; height:2.843ex;" alt="{\displaystyle X\sim B(n,p)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim B(X,q)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim B(X,q)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80067d26d13b2cfe5aaf9d681d31d9dff37ab15c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.529ex; height:2.843ex;" alt="{\displaystyle Y\sim B(X,q)}"></span>, by the <a href="/wiki/Law_of_total_probability" title="Law of total probability">law of total probability</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;=\sum _{k=m}^{n}\Pr[Y=m\mid X=k]\Pr[X=k]\\[2pt]&amp;=\sum _{k=m}^{n}{\binom {n}{k}}{\binom {k}{m}}p^{k}q^{m}(1-p)^{n-k}(1-q)^{k-m}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.5em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>=</mo> <mi>m</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;=\sum _{k=m}^{n}\Pr[Y=m\mid X=k]\Pr[X=k]\\[2pt]&amp;=\sum _{k=m}^{n}{\binom {n}{k}}{\binom {k}{m}}p^{k}q^{m}(1-p)^{n-k}(1-q)^{k-m}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e8f896e04f3bc2c13d2eed61e48bd43e63f6406" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:54.832ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;=\sum _{k=m}^{n}\Pr[Y=m\mid X=k]\Pr[X=k]\\[2pt]&amp;=\sum _{k=m}^{n}{\binom {n}{k}}{\binom {k}{m}}p^{k}q^{m}(1-p)^{n-k}(1-q)^{k-m}\end{aligned}}}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tbinom {n}{k}}{\tbinom {k}{m}}={\tbinom {n}{m}}{\tbinom {n-m}{k-m}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tbinom {n}{k}}{\tbinom {k}{m}}={\tbinom {n}{m}}{\tbinom {n-m}{k-m}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80ba6b905e89e0126dcfd8efb68da4343816a6f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.844ex; height:3.676ex;" alt="{\displaystyle {\tbinom {n}{k}}{\tbinom {k}{m}}={\tbinom {n}{m}}{\tbinom {n-m}{k-m}},}"></span> the equation above can be expressed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr[Y=m]=\sum _{k=m}^{n}{\binom {n}{m}}{\binom {n-m}{k-m}}p^{k}q^{m}(1-p)^{n-k}(1-q)^{k-m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr[Y=m]=\sum _{k=m}^{n}{\binom {n}{m}}{\binom {n-m}{k-m}}p^{k}q^{m}(1-p)^{n-k}(1-q)^{k-m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8369ef846ffda72900efc67b334923f70ce48ca5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:58.961ex; height:6.843ex;" alt="{\displaystyle \Pr[Y=m]=\sum _{k=m}^{n}{\binom {n}{m}}{\binom {n-m}{k-m}}p^{k}q^{m}(1-p)^{n-k}(1-q)^{k-m}}"></span></dd></dl> <p>Factoring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{k}=p^{m}p^{k-m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{k}=p^{m}p^{k-m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73ea54fd82c24fc3d2ff34aa753e4a8d0f3e1928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:13.27ex; height:3.009ex;" alt="{\displaystyle p^{k}=p^{m}p^{k-m}}"></span> and pulling all the terms that don't depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> out of the sum now yields </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;={\binom {n}{m}}p^{m}q^{m}\left(\sum _{k=m}^{n}{\binom {n-m}{k-m}}p^{k-m}(1-p)^{n-k}(1-q)^{k-m}\right)\\[2pt]&amp;={\binom {n}{m}}(pq)^{m}\left(\sum _{k=m}^{n}{\binom {n-m}{k-m}}\left(p(1-q)\right)^{k-m}(1-p)^{n-k}\right)\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.5em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;={\binom {n}{m}}p^{m}q^{m}\left(\sum _{k=m}^{n}{\binom {n-m}{k-m}}p^{k-m}(1-p)^{n-k}(1-q)^{k-m}\right)\\[2pt]&amp;={\binom {n}{m}}(pq)^{m}\left(\sum _{k=m}^{n}{\binom {n-m}{k-m}}\left(p(1-q)\right)^{k-m}(1-p)^{n-k}\right)\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caaa36dbcb3b4c43d7d5310533ef9d4809ba9db8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:69.347ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;={\binom {n}{m}}p^{m}q^{m}\left(\sum _{k=m}^{n}{\binom {n-m}{k-m}}p^{k-m}(1-p)^{n-k}(1-q)^{k-m}\right)\\[2pt]&amp;={\binom {n}{m}}(pq)^{m}\left(\sum _{k=m}^{n}{\binom {n-m}{k-m}}\left(p(1-q)\right)^{k-m}(1-p)^{n-k}\right)\end{aligned}}}"></span></dd></dl> <p>After substituting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=k-m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=k-m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdf7683643649a372695b1d64a30c53b9b97ed61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.993ex; height:2.343ex;" alt="{\displaystyle i=k-m}"></span> in the expression above, we get </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr[Y=m]={\binom {n}{m}}(pq)^{m}\left(\sum _{i=0}^{n-m}{\binom {n-m}{i}}(p-pq)^{i}(1-p)^{n-m-i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr[Y=m]={\binom {n}{m}}(pq)^{m}\left(\sum _{i=0}^{n-m}{\binom {n-m}{i}}(p-pq)^{i}(1-p)^{n-m-i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54401b2dd0936ca0904832912df2fe9b2c3d5153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:64.468ex; height:7.509ex;" alt="{\displaystyle \Pr[Y=m]={\binom {n}{m}}(pq)^{m}\left(\sum _{i=0}^{n-m}{\binom {n-m}{i}}(p-pq)^{i}(1-p)^{n-m-i}\right)}"></span></dd></dl> <p>Notice that the sum (in the parentheses) above equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (p-pq+1-p)^{n-m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (p-pq+1-p)^{n-m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e23cb4a5499f3511ab15ddbea5052ee0c5a9faa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.011ex; height:3.009ex;" alt="{\displaystyle (p-pq+1-p)^{n-m}}"></span> by the <a href="/wiki/Binomial_theorem" title="Binomial theorem">binomial theorem</a>. Substituting this in finally yields </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;={\binom {n}{m}}(pq)^{m}(p-pq+1-p)^{n-m}\\[4pt]&amp;={\binom {n}{m}}(pq)^{m}(1-pq)^{n-m}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>=</mo> <mi>m</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;={\binom {n}{m}}(pq)^{m}(p-pq+1-p)^{n-m}\\[4pt]&amp;={\binom {n}{m}}(pq)^{m}(1-pq)^{n-m}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/324b106ed5f362da979eebfc0feaa94b44b713b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:45.746ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\Pr[Y=m]&amp;={\binom {n}{m}}(pq)^{m}(p-pq+1-p)^{n-m}\\[4pt]&amp;={\binom {n}{m}}(pq)^{m}(1-pq)^{n-m}\end{aligned}}}"></span></dd></dl> <p>and thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim B(n,pq)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>p</mi> <mi>q</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim B(n,pq)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c96528879e268db412c4037915b32d7b30097251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.113ex; height:2.843ex;" alt="{\displaystyle Y\sim B(n,pq)}"></span> as desired. </p> </div></div> <div class="mw-heading mw-heading3"><h3 id="Bernoulli_distribution">Bernoulli distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=24" title="Edit section: Bernoulli distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a> is a special case of the binomial distribution, where <span class="texhtml"><i>n</i> = 1</span>. Symbolically, <span class="texhtml"><i>X</i> ~ B(1, <i>p</i>)</span> has the same meaning as <span class="texhtml"><i>X</i> ~ Bernoulli(<i>p</i>)</span>. Conversely, any binomial distribution, <span class="texhtml">B(<i>n</i>, <i>p</i>)</span>, is the distribution of the sum of <span class="texhtml"><i>n</i></span> independent <a href="/wiki/Bernoulli_trials" class="mw-redirect" title="Bernoulli trials">Bernoulli trials</a>, <span class="texhtml">Bernoulli(<i>p</i>)</span>, each with the same probability <span class="texhtml"><i>p</i></span>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Normal_approximation">Normal approximation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=25" title="Edit section: Normal approximation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Binomial_proportion_confidence_interval#Normal_approximation_interval" title="Binomial proportion confidence interval">Binomial proportion confidence interval §&#160;Normal approximation interval</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Binomial_Distribution.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Binomial_Distribution.svg/250px-Binomial_Distribution.svg.png" decoding="async" width="250" height="239" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Binomial_Distribution.svg/375px-Binomial_Distribution.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Binomial_Distribution.svg/500px-Binomial_Distribution.svg.png 2x" data-file-width="1008" data-file-height="962" /></a><figcaption>Binomial <a href="/wiki/Probability_mass_function" title="Probability mass function">probability mass function</a> and normal <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> approximation for <span class="texhtml"><i>n</i> = 6</span> and <span class="texhtml"><i>p</i> = 0.5</span></figcaption></figure> <p>If <span class="texhtml"><i>n</i></span> is large enough, then the skew of the distribution is not too great. In this case a reasonable approximation to <span class="texhtml">B(<i>n</i>, <i>p</i>)</span> is given by the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {N}}(np,\,np(1-p)),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mi>p</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {N}}(np,\,np(1-p)),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/395141e8dc8a7820bd37c569a38cd91d1ff3b22c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.062ex; width:18.324ex; height:3.009ex;" alt="{\displaystyle {\mathcal {N}}(np,\,np(1-p)),}"></span></dd></dl> <p>and this basic approximation can be improved in a simple way by using a suitable <a href="/wiki/Continuity_correction" title="Continuity correction">continuity correction</a>. The basic approximation generally improves as <span class="texhtml"><i>n</i></span> increases (at least 20) and is better when <span class="texhtml"><i>p</i></span> is not near to 0 or 1.<sup id="cite_ref-bhh_33-0" class="reference"><a href="#cite_note-bhh-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> Various <a href="/wiki/Rule_of_thumb" title="Rule of thumb">rules of thumb</a> may be used to decide whether <span class="texhtml"><i>n</i></span> is large enough, and <span class="texhtml"><i>p</i></span> is far enough from the extremes of zero or one: </p> <ul><li>One rule<sup id="cite_ref-bhh_33-1" class="reference"><a href="#cite_note-bhh-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> is that for <span class="texhtml"><i>n</i> &gt; 5</span> the normal approximation is adequate if the absolute value of the skewness is strictly less than 0.3; that is, if <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|1-2p|}{\sqrt {np(1-p)}}}={\frac {1}{\sqrt {n}}}\left|{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}\,\right|&lt;0.3.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>n</mi> </msqrt> </mfrac> </mrow> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> </mrow> <mo>|</mo> </mrow> <mo>&lt;</mo> <mn>0.3.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|1-2p|}{\sqrt {np(1-p)}}}={\frac {1}{\sqrt {n}}}\left|{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}\,\right|&lt;0.3.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f67b44fc8960728dec49878de2b4c9428233cee7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.26ex; height:7.509ex;" alt="{\displaystyle {\frac {|1-2p|}{\sqrt {np(1-p)}}}={\frac {1}{\sqrt {n}}}\left|{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}\,\right|&lt;0.3.}"></span></dd></dl></li></ul> <p>This can be made precise using the <a href="/wiki/Berry%E2%80%93Esseen_theorem" title="Berry–Esseen theorem">Berry–Esseen theorem</a>. </p> <ul><li>A stronger rule states that the normal approximation is appropriate only if everything within 3 standard deviations of its mean is within the range of possible values; that is, only if <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu \pm 3\sigma =np\pm 3{\sqrt {np(1-p)}}\in (0,n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x00B1;<!-- ± --></mo> <mn>3</mn> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mi>n</mi> <mi>p</mi> <mo>&#x00B1;<!-- ± --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu \pm 3\sigma =np\pm 3{\sqrt {np(1-p)}}\in (0,n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0827e237f6a46cbfd1dd8ec2419d5af49cde0e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.157ex; height:4.843ex;" alt="{\displaystyle \mu \pm 3\sigma =np\pm 3{\sqrt {np(1-p)}}\in (0,n).}"></span></dd></dl></li></ul> <dl><dd>This 3-standard-deviation rule is equivalent to the following conditions, which also imply the first rule above. <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1c6e9fbd88e78967f28dc5d9e1081181c441a76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.758ex; height:6.176ex;" alt="{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}"></span></dd></dl></dd></dl> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214851843"><div class="hidden-begin mw-collapsible mw-collapsed" style="border:1px #aaa solid; width:66%"><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">[Proof]</div><div class="hidden-content mw-collapsible-content" style=""> <p>The rule <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np\pm 3{\sqrt {np(1-p)}}\in (0,n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> <mo>&#x00B1;<!-- ± --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np\pm 3{\sqrt {np(1-p)}}\in (0,n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bd5334c1ccc22971961aa61efa72e5a3c936191" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.678ex; height:4.843ex;" alt="{\displaystyle np\pm 3{\sqrt {np(1-p)}}\in (0,n)}"></span> is totally equivalent to request that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np-3{\sqrt {np(1-p)}}&gt;0\quad {\text{and}}\quad np+3{\sqrt {np(1-p)}}&lt;n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>&gt;</mo> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mi>p</mi> <mo>+</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>&lt;</mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np-3{\sqrt {np(1-p)}}&gt;0\quad {\text{and}}\quad np+3{\sqrt {np(1-p)}}&lt;n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6edeb2608a88760fc7bc8c49cf6a1544b4535aa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:54.667ex; height:4.843ex;" alt="{\displaystyle np-3{\sqrt {np(1-p)}}&gt;0\quad {\text{and}}\quad np+3{\sqrt {np(1-p)}}&lt;n.}"></span></dd></dl> <p>Moving terms around yields: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np&gt;3{\sqrt {np(1-p)}}\quad {\text{and}}\quad n(1-p)&gt;3{\sqrt {np(1-p)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> <mo>&gt;</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np&gt;3{\sqrt {np(1-p)}}\quad {\text{and}}\quad n(1-p)&gt;3{\sqrt {np(1-p)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ece1ff0b306f376e61399a9b497254d78d458e5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:52.241ex; height:4.843ex;" alt="{\displaystyle np&gt;3{\sqrt {np(1-p)}}\quad {\text{and}}\quad n(1-p)&gt;3{\sqrt {np(1-p)}}.}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;p&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;p&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea074f5b36db6eff17f1aa84d73e30e3de12c4d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.691ex; height:2.509ex;" alt="{\displaystyle 0&lt;p&lt;1}"></span>, we can apply the square power and divide by the respective factors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e608560d4c63c8192e3cec7075696cd7e566d0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.618ex; height:3.009ex;" alt="{\displaystyle np^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n(1-p)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n(1-p)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d909137fd4ebb23868930aed92a67d3d02e1b8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.431ex; height:3.176ex;" alt="{\displaystyle n(1-p)^{2}}"></span>, to obtain the desired conditions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1c6e9fbd88e78967f28dc5d9e1081181c441a76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.758ex; height:6.176ex;" alt="{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}"></span></dd></dl> <p>Notice that these conditions automatically imply that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a2966b368b6eeb84ae2104cffbcf74e35a6d17e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;9}"></span>. On the other hand, apply again the square root and divide by 3, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {1-p}{p}}}&gt;0\quad {\text{and}}\quad {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {p}{1-p}}}&gt;0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>n</mi> </msqrt> <mn>3</mn> </mfrac> </mrow> <mo>&gt;</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msqrt> </mrow> <mo>&gt;</mo> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>n</mi> </msqrt> <mn>3</mn> </mfrac> </mrow> <mo>&gt;</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </msqrt> </mrow> <mo>&gt;</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {1-p}{p}}}&gt;0\quad {\text{and}}\quad {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {p}{1-p}}}&gt;0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dc495e4a45bc89d43ac89d9f899e65dfec47bbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.756ex; height:7.509ex;" alt="{\displaystyle {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {1-p}{p}}}&gt;0\quad {\text{and}}\quad {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {p}{1-p}}}&gt;0.}"></span></dd></dl> <p>Subtracting the second set of inequalities from the first one yields: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}&gt;-{\frac {\sqrt {n}}{3}};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>n</mi> </msqrt> <mn>3</mn> </mfrac> </mrow> <mo>&gt;</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </msqrt> </mrow> <mo>&gt;</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>n</mi> </msqrt> <mn>3</mn> </mfrac> </mrow> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}&gt;-{\frac {\sqrt {n}}{3}};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b21050d0dff35d3a9baaa3b2b153cd7eff39d1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:36.49ex; height:7.509ex;" alt="{\displaystyle {\frac {\sqrt {n}}{3}}&gt;{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}&gt;-{\frac {\sqrt {n}}{3}};}"></span></dd></dl> <p>and so, the desired first rule is satisfied, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}\,\right|&lt;{\frac {\sqrt {n}}{3}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </msqrt> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> </mrow> <mo>|</mo> </mrow> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi>n</mi> </msqrt> <mn>3</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}\,\right|&lt;{\frac {\sqrt {n}}{3}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c777de17db149740cfbcb5d0ebfba3518d33e74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.098ex; height:7.509ex;" alt="{\displaystyle \left|{\sqrt {\frac {1-p}{p}}}-{\sqrt {\frac {p}{1-p}}}\,\right|&lt;{\frac {\sqrt {n}}{3}}.}"></span></dd></dl> </div></div> <ul><li>Another commonly used rule is that both values <span class="texhtml"><i>np</i></span> and <span class="texhtml"><i>n</i>(1 − <i>p</i>)</span> must be greater than<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> or equal to&#160;5. However, the specific number varies from source to source, and depends on how good an approximation one wants. In particular, if one uses&#160;9 instead of&#160;5, the rule implies the results stated in the previous paragraphs.</li></ul> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214851843"><div class="hidden-begin mw-collapsible mw-collapsed" style="border:1px #aaa solid; width:66%"><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">[Proof]</div><div class="hidden-content mw-collapsible-content" style=""> <p>Assume that both values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d6eb41e0e5e136f594b1a703d2f371d9a5e0c27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.009ex;" alt="{\displaystyle np}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n(1-p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n(1-p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e66f82bbfdaa65adface0109e2254643c8303de8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.376ex; height:2.843ex;" alt="{\displaystyle n(1-p)}"></span> are greater than&#160;9. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;p&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;p&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea074f5b36db6eff17f1aa84d73e30e3de12c4d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.691ex; height:2.509ex;" alt="{\displaystyle 0&lt;p&lt;1}"></span>, we easily have that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np\geq 9&gt;9(1-p)\quad {\text{and}}\quad n(1-p)\geq 9&gt;9p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>9</mn> <mo>&gt;</mo> <mn>9</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2265;<!-- ≥ --></mo> <mn>9</mn> <mo>&gt;</mo> <mn>9</mn> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np\geq 9&gt;9(1-p)\quad {\text{and}}\quad n(1-p)\geq 9&gt;9p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09bcf26e04790231ae63b77e394ab9549773ca28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.175ex; height:2.843ex;" alt="{\displaystyle np\geq 9&gt;9(1-p)\quad {\text{and}}\quad n(1-p)\geq 9&gt;9p.}"></span></dd></dl> <p>We only have to divide now by the respective factors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9633a8692121eedfa99cace406205e5d1511ef8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.172ex; height:2.509ex;" alt="{\displaystyle 1-p}"></span>, to deduce the alternative form of the 3-standard-deviation rule: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mi>p</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mi>n</mi> <mo>&gt;</mo> <mn>9</mn> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1c6e9fbd88e78967f28dc5d9e1081181c441a76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.758ex; height:6.176ex;" alt="{\displaystyle n&gt;9\left({\frac {1-p}{p}}\right)\quad {\text{and}}\quad n&gt;9\left({\frac {p}{1-p}}\right).}"></span></dd></dl> </div></div> <p>The following is an example of applying a <a href="/wiki/Continuity_correction" title="Continuity correction">continuity correction</a>. Suppose one wishes to calculate <span class="texhtml">Pr(<i>X</i> ≤ 8)</span> for a binomial random variable <span class="texhtml"><i>X</i></span>. If <span class="texhtml"><i>Y</i></span> has a distribution given by the normal approximation, then <span class="texhtml">Pr(<i>X</i> ≤ 8)</span> is approximated by <span class="texhtml">Pr(<i>Y</i> ≤ 8.5)</span>. The addition of 0.5 is the continuity correction; the uncorrected normal approximation gives considerably less accurate results. </p><p>This approximation, known as <a href="/wiki/De_Moivre%E2%80%93Laplace_theorem" title="De Moivre–Laplace theorem">de Moivre–Laplace theorem</a>, is a huge time-saver when undertaking calculations by hand (exact calculations with large <span class="texhtml"><i>n</i></span> are very onerous); historically, it was the first use of the normal distribution, introduced in <a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a>'s book <i><a href="/wiki/The_Doctrine_of_Chances" title="The Doctrine of Chances">The Doctrine of Chances</a></i> in 1738. Nowadays, it can be seen as a consequence of the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a> since <span class="texhtml">B(<i>n</i>, <i>p</i>)</span> is a sum of <span class="texhtml"><i>n</i></span> independent, identically distributed <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli variables</a> with parameter&#160;<span class="texhtml"><i>p</i></span>. This fact is the basis of a <a href="/wiki/Hypothesis_test" class="mw-redirect" title="Hypothesis test">hypothesis test</a>, a "proportion z-test", for the value of <span class="texhtml"><i>p</i></span> using <span class="texhtml"><i>x</i>/<i>n</i></span>, the sample proportion and estimator of <span class="texhtml"><i>p</i></span>, in a <a href="/wiki/Common_test_statistics" class="mw-redirect" title="Common test statistics">common test statistic</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, suppose one randomly samples <span class="texhtml"><i>n</i></span> people out of a large population and ask them whether they agree with a certain statement. The proportion of people who agree will of course depend on the sample. If groups of <i>n</i> people were sampled repeatedly and truly randomly, the proportions would follow an approximate normal distribution with mean equal to the true proportion <i>p</i> of agreement in the population and with standard deviation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ={\sqrt {\frac {p(1-p)}{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mi>n</mi> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ={\sqrt {\frac {p(1-p)}{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8efa9446419873f73391bd63522026579865e1b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:15.739ex; height:7.676ex;" alt="{\displaystyle \sigma ={\sqrt {\frac {p(1-p)}{n}}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Poisson_approximation">Poisson approximation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=26" title="Edit section: Poisson approximation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The binomial distribution converges towards the <a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a> as the number of trials goes to infinity while the product <span class="texhtml"><i>np</i></span> converges to a finite limit. Therefore, the Poisson distribution with parameter <span class="texhtml"><i>λ</i> = <i>np</i></span> can be used as an approximation to <span class="texhtml">B(<i>n</i>, <i>p</i>)</span> of the binomial distribution if <span class="texhtml"><i>n</i></span> is sufficiently large and <span class="texhtml"><i>p</i></span> is sufficiently small. According to rules of thumb, this approximation is good if <span class="texhtml"><i>n</i> ≥ 20</span> and <span class="texhtml"><i>p</i> ≤ 0.05</span><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> such that <span class="texhtml"><i>np</i> ≤ 1</span>, or if <span class="texhtml"><i>n</i> &gt; 50</span> and <span class="texhtml"><i>p</i> &lt; 0.1</span> such that <span class="texhtml"><i>np</i> &lt; 5</span>,<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> or if <span class="texhtml"><i>n</i> ≥ 100</span> and <span class="texhtml"><i>np</i> ≤ 10</span>.<sup id="cite_ref-nist_39-0" class="reference"><a href="#cite_note-nist-39"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p>Concerning the accuracy of Poisson approximation, see Novak,<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> ch. 4, and references therein. </p> <div class="mw-heading mw-heading3"><h3 id="Limiting_distributions">Limiting distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=27" title="Edit section: Limiting distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><i><a href="/wiki/Poisson_limit_theorem" title="Poisson limit theorem">Poisson limit theorem</a></i>: As <span class="texhtml"><i>n</i></span> approaches <span class="texhtml">∞</span> and <span class="texhtml"><i>p</i></span> approaches 0 with the product <span class="texhtml"><i>np</i></span> held fixed, the <span class="texhtml">Binomial(<i>n</i>, <i>p</i>)</span> distribution approaches the <a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a> with <a href="/wiki/Expected_value" title="Expected value">expected value</a> <span class="texhtml"><i>λ</i> = <i>np</i></span>.<sup id="cite_ref-nist_39-1" class="reference"><a href="#cite_note-nist-39"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></li> <li><i><a href="/wiki/De_Moivre%E2%80%93Laplace_theorem" title="De Moivre–Laplace theorem">de Moivre–Laplace theorem</a></i>: As <span class="texhtml"><i>n</i></span> approaches <span class="texhtml">∞</span> while <span class="texhtml"><i>p</i></span> remains fixed, the distribution of <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X-np}{\sqrt {np(1-p)}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>p</mi> </mrow> <msqrt> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {X-np}{\sqrt {np(1-p)}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cac4977ac98028e7199c2665e93b80e847c0ab5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:12.706ex; height:6.676ex;" alt="{\displaystyle {\frac {X-np}{\sqrt {np(1-p)}}}}"></span></dd></dl></li></ul> <dl><dd>approaches the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> with expected value&#160;0 and <a href="/wiki/Variance" title="Variance">variance</a>&#160;1. This result is sometimes loosely stated by saying that the distribution of <span class="texhtml"><i>X</i></span> is <a href="/wiki/Asymptotic_normality" class="mw-redirect" title="Asymptotic normality">asymptotically normal</a> with expected value&#160;0 and <a href="/wiki/Variance" title="Variance">variance</a>&#160;1. This result is a specific case of the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Beta_distribution">Beta distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=28" title="Edit section: Beta distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The binomial distribution and beta distribution are different views of the same model of repeated Bernoulli trials. The binomial distribution is the <a href="/wiki/Probability_mass_function" title="Probability mass function">PMF</a> of <span class="texhtml mvar" style="font-style:italic;">k</span> successes given <span class="texhtml mvar" style="font-style:italic;">n</span> independent events each with a probability <span class="texhtml mvar" style="font-style:italic;">p</span> of success. Mathematically, when <span class="texhtml"><i>α</i> = <i>k</i> + 1</span> and <span class="texhtml"><i>β</i> = <i>n</i> &#8722; <i>k</i> + 1</span>, the beta distribution and the binomial distribution are related by<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="Is the left hand side referring to a probability density, and the right hand side to a probability mass function? Clearly a beta distributed random variable can not be a scalar multiple of a binomial random variable given that the former is continuous and the latter discrete. In any case, it would seem to be more correct to say that this relationship means that the PDF of one is related to the PMF of the other, rather than appearing to say that the _distributions_ (often interchangeable with their CDFs) are directly related to one another. (March 2023)">clarification needed</span></a></i>&#93;</sup> a factor of <span class="texhtml"><i>n</i> + 1</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Beta} (p;\alpha ;\beta )=(n+1)B(k;n;p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Beta</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>;</mo> <mi>&#x03B1;<!-- α --></mi> <mo>;</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>;</mo> <mi>n</mi> <mo>;</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Beta} (p;\alpha ;\beta )=(n+1)B(k;n;p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961beb7816eba573d7bccf5de9b90fdd1b1f3997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.333ex; height:2.843ex;" alt="{\displaystyle \operatorname {Beta} (p;\alpha ;\beta )=(n+1)B(k;n;p)}"></span></dd></dl> <p><a href="/wiki/Beta_distribution" title="Beta distribution">Beta distributions</a> also provide a family of <a href="/wiki/Prior_distribution" class="mw-redirect" title="Prior distribution">prior probability distributions</a> for binomial distributions in <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a>:<sup id="cite_ref-MacKay_42-0" class="reference"><a href="#cite_note-MacKay-42"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(p;\alpha ,\beta )={\frac {p^{\alpha -1}(1-p)^{\beta -1}}{\operatorname {Beta} (\alpha ,\beta )}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>;</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>Beta</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(p;\alpha ,\beta )={\frac {p^{\alpha -1}(1-p)^{\beta -1}}{\operatorname {Beta} (\alpha ,\beta )}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/470eca5417087ae4bc2425a8188b32f50b3aa437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.003ex; height:6.676ex;" alt="{\displaystyle P(p;\alpha ,\beta )={\frac {p^{\alpha -1}(1-p)^{\beta -1}}{\operatorname {Beta} (\alpha ,\beta )}}.}"></span></dd></dl> <p>Given a uniform prior, the posterior distribution for the probability of success <span class="texhtml mvar" style="font-style:italic;">p</span> given <span class="texhtml mvar" style="font-style:italic;">n</span> independent events with <span class="texhtml mvar" style="font-style:italic;">k</span> observed successes is a beta distribution.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Computational_methods">Computational methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=29" title="Edit section: Computational methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Random_number_generation">Random number generation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=30" title="Edit section: Random number generation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Pseudo-random_number_sampling" class="mw-redirect" title="Pseudo-random number sampling">Pseudo-random number sampling</a></div> <p>Methods for <a href="/wiki/Random_number_generation" title="Random number generation">random number generation</a> where the <a href="/wiki/Marginal_distribution" title="Marginal distribution">marginal distribution</a> is a binomial distribution are well-established.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> One way to generate <a href="/wiki/Random_variate" title="Random variate">random variates</a> samples from a binomial distribution is to use an inversion algorithm. To do so, one must calculate the probability that <span class="texhtml">Pr(<i>X</i> = <i>k</i>)</span> for all values <span class="texhtml mvar" style="font-style:italic;">k</span> from <span class="texhtml">0</span> through <span class="texhtml mvar" style="font-style:italic;">n</span>. (These probabilities should sum to a value close to one, in order to encompass the entire sample space.) Then by using a <a href="/wiki/Pseudorandom_number_generator" title="Pseudorandom number generator">pseudorandom number generator</a> to generate samples uniformly between 0 and 1, one can transform the calculated samples into discrete numbers by using the probabilities calculated in the first step. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=31" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This distribution was derived by <a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a>. He considered the case where <span class="texhtml"><i>p</i> = <i>r</i>/(<i>r</i> + <i>s</i>)</span> where <span class="texhtml"><i>p</i></span> is the probability of success and <span class="texhtml"><i>r</i></span> and <span class="texhtml"><i>s</i></span> are positive integers. <a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Blaise Pascal</a> had earlier considered the case where <span class="texhtml"><i>p</i> = 1/2</span>, tabulating the corresponding binomial coefficients in what is now recognized as <a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a>.<sup id="cite_ref-:1_46-0" class="reference"><a href="#cite_note-:1-46"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=32" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <ul><li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic regression</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial distribution</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial distribution</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial distribution</a></li> <li>Binomial measure, an example of a <a href="/wiki/Multifractal_system" title="Multifractal system">multifractal</a> <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measure</a>.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Statistical_mechanics" title="Statistical mechanics">Statistical mechanics</a></li> <li><a href="/wiki/Piling-up_lemma" title="Piling-up lemma">Piling-up lemma</a>, the resulting probability when <a href="/wiki/XOR" class="mw-redirect" title="XOR">XOR</a>-ing independent Boolean variables</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=33" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWestland2020" class="citation book cs1">Westland, J. Christopher (2020). <i>Audit Analytics: Data Science for the Accounting Profession</i>. Chicago, IL, USA: Springer. p.&#160;53. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-49091-1" title="Special:BookSources/978-3-030-49091-1"><bdi>978-3-030-49091-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Audit+Analytics%3A+Data+Science+for+the+Accounting+Profession&amp;rft.place=Chicago%2C+IL%2C+USA&amp;rft.pages=53&amp;rft.pub=Springer&amp;rft.date=2020&amp;rft.isbn=978-3-030-49091-1&amp;rft.aulast=Westland&amp;rft.aufirst=J.+Christopher&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeller1968" class="citation book cs1">Feller, W. (1968). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr01wfel"><i>An Introduction to Probability Theory and Its Applications</i></a></span> (Third&#160;ed.). New York: Wiley. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr01wfel/page/n167">151</a> (theorem in section VI.3).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Probability+Theory+and+Its+Applications&amp;rft.place=New+York&amp;rft.pages=151+%28theorem+in+section+VI.3%29&amp;rft.edition=Third&amp;rft.pub=Wiley&amp;rft.date=1968&amp;rft.aulast=Feller&amp;rft.aufirst=W.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontopr01wfel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWadsworth1960" class="citation book cs1">Wadsworth, G. P. (1960). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr0000wads"><i>Introduction to Probability and Random Variables</i></a></span>. New York: McGraw-Hill. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr0000wads/page/52">52</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability+and+Random+Variables&amp;rft.place=New+York&amp;rft.pages=52&amp;rft.pub=McGraw-Hill&amp;rft.date=1960&amp;rft.aulast=Wadsworth&amp;rft.aufirst=G.+P.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontopr0000wads&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJowett1963" class="citation journal cs1">Jowett, G. H. (1963). "The Relationship Between the Binomial and F Distributions". <i>Journal of the Royal Statistical Society, Series D</i>. <b>13</b> (1): <span class="nowrap">55–</span>57. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2986663">10.2307/2986663</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2986663">2986663</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society%2C+Series+D&amp;rft.atitle=The+Relationship+Between+the+Binomial+and+F+Distributions&amp;rft.volume=13&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E55-%3C%2Fspan%3E57&amp;rft.date=1963&amp;rft_id=info%3Adoi%2F10.2307%2F2986663&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2986663%23id-name%3DJSTOR&amp;rft.aulast=Jowett&amp;rft.aufirst=G.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">See <a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Expectation_of_Binomial_Distribution">Proof Wiki</a></span> </li> <li id="cite_note-Andreas2008-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Andreas2008_7-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnoblauch2008" class="citation cs2">Knoblauch, Andreas (2008), <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/40233780">"Closed-Form Expressions for the Moments of the Binomial Probability Distribution"</a>, <i>SIAM Journal on Applied Mathematics</i>, <b>69</b> (1): <span class="nowrap">197–</span>204, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F070700024">10.1137/070700024</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/40233780">40233780</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Applied+Mathematics&amp;rft.atitle=Closed-Form+Expressions+for+the+Moments+of+the+Binomial+Probability+Distribution&amp;rft.volume=69&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E197-%3C%2Fspan%3E204&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1137%2F070700024&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F40233780%23id-name%3DJSTOR&amp;rft.aulast=Knoblauch&amp;rft.aufirst=Andreas&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F40233780&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Nguyen2021-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nguyen2021_8-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNguyen2021" class="citation cs2">Nguyen, Duy (2021), <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/abs/10.1080/00031305.2019.1679257?journalCode=utas20">"A probabilistic approach to the moments of binomial random variables and application"</a>, <i>The American Statistician</i>, <b>75</b> (1): <span class="nowrap">101–</span>103, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00031305.2019.1679257">10.1080/00031305.2019.1679257</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:209923008">209923008</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Statistician&amp;rft.atitle=A+probabilistic+approach+to+the+moments+of+binomial+random+variables+and+application&amp;rft.volume=75&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E101-%3C%2Fspan%3E103&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1080%2F00031305.2019.1679257&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A209923008%23id-name%3DS2CID&amp;rft.aulast=Nguyen&amp;rft.aufirst=Duy&amp;rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Fabs%2F10.1080%2F00031305.2019.1679257%3FjournalCode%3Dutas20&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._Ahle2022" class="citation cs2">D. Ahle, Thomas (2022), "Sharp and Simple Bounds for the raw Moments of the Binomial and Poisson Distributions", <i>Statistics &amp; Probability Letters</i>, <b>182</b>: 109306, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.17027">2103.17027</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.spl.2021.109306">10.1016/j.spl.2021.109306</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+%26+Probability+Letters&amp;rft.atitle=Sharp+and+Simple+Bounds+for+the+raw+Moments+of+the+Binomial+and+Poisson+Distributions&amp;rft.volume=182&amp;rft.pages=109306&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2103.17027&amp;rft_id=info%3Adoi%2F10.1016%2Fj.spl.2021.109306&amp;rft.aulast=D.+Ahle&amp;rft.aufirst=Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">See also <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNicolas2019" class="citation web cs1">Nicolas, André (January 7, 2019). <a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/117940">"Finding mode in Binomial distribution"</a>. <i><a href="/wiki/Stack_Exchange" title="Stack Exchange">Stack Exchange</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Stack+Exchange&amp;rft.atitle=Finding+mode+in+Binomial+distribution&amp;rft.date=2019-01-07&amp;rft.aulast=Nicolas&amp;rft.aufirst=Andr%C3%A9&amp;rft_id=https%3A%2F%2Fmath.stackexchange.com%2Fq%2F117940&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeumann1966" class="citation journal cs1 cs1-prop-foreign-lang-source">Neumann, P. (1966). "Über den Median der Binomial- and Poissonverteilung". <i>Wissenschaftliche Zeitschrift der Technischen Universität Dresden</i> (in German). <b>19</b>: <span class="nowrap">29–</span>33.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wissenschaftliche+Zeitschrift+der+Technischen+Universit%C3%A4t+Dresden&amp;rft.atitle=%C3%9Cber+den+Median+der+Binomial-+and+Poissonverteilung&amp;rft.volume=19&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E29-%3C%2Fspan%3E33&amp;rft.date=1966&amp;rft.aulast=Neumann&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", <a href="/wiki/The_Mathematical_Gazette" title="The Mathematical Gazette">The Mathematical Gazette</a> 94, 331-332.</span> </li> <li id="cite_note-KaasBuhrman-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-KaasBuhrman_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KaasBuhrman_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaasBuhrman1980" class="citation journal cs1">Kaas, R.; Buhrman, J.M. (1980). "Mean, Median and Mode in Binomial Distributions". <i>Statistica Neerlandica</i>. <b>34</b> (1): <span class="nowrap">13–</span>18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1467-9574.1980.tb00681.x">10.1111/j.1467-9574.1980.tb00681.x</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistica+Neerlandica&amp;rft.atitle=Mean%2C+Median+and+Mode+in+Binomial+Distributions&amp;rft.volume=34&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E13-%3C%2Fspan%3E18&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1467-9574.1980.tb00681.x&amp;rft.aulast=Kaas&amp;rft.aufirst=R.&amp;rft.au=Buhrman%2C+J.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Hamza-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hamza_14-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamza1995" class="citation journal cs1">Hamza, K. (1995). "The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions". <i>Statistics &amp; Probability Letters</i>. <b>23</b>: <span class="nowrap">21–</span>25. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0167-7152%2894%2900090-U">10.1016/0167-7152(94)00090-U</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+%26+Probability+Letters&amp;rft.atitle=The+smallest+uniform+upper+bound+on+the+distance+between+the+mean+and+the+median+of+the+binomial+and+Poisson+distributions&amp;rft.volume=23&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E21-%3C%2Fspan%3E25&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1016%2F0167-7152%2894%2900090-U&amp;rft.aulast=Hamza&amp;rft.aufirst=K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Nowakowski-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nowakowski_15-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNowakowski2021" class="citation journal cs1">Nowakowski, Sz. (2021). "Uniqueness of a Median of a Binomial Distribution with Rational Probability". <i>Advances in Mathematics: Scientific Journal</i>. <b>10</b> (4): <span class="nowrap">1951–</span>1958. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2004.03280">2004.03280</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.37418%2Famsj.10.4.9">10.37418/amsj.10.4.9</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1857-8365">1857-8365</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:215238991">215238991</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Mathematics%3A+Scientific+Journal&amp;rft.atitle=Uniqueness+of+a+Median+of+a+Binomial+Distribution+with+Rational+Probability&amp;rft.volume=10&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1951-%3C%2Fspan%3E1958&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2004.03280&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A215238991%23id-name%3DS2CID&amp;rft.issn=1857-8365&amp;rft_id=info%3Adoi%2F10.37418%2Famsj.10.4.9&amp;rft.aulast=Nowakowski&amp;rft.aufirst=Sz.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-ag-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-ag_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ag_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArratiaGordon1989" class="citation journal cs1">Arratia, R.; Gordon, L. (1989). "Tutorial on large deviations for the binomial distribution". <i>Bulletin of Mathematical Biology</i>. <b>51</b> (1): <span class="nowrap">125–</span>131. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02458840">10.1007/BF02458840</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/2706397">2706397</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189884382">189884382</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bulletin+of+Mathematical+Biology&amp;rft.atitle=Tutorial+on+large+deviations+for+the+binomial+distribution&amp;rft.volume=51&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E125-%3C%2Fspan%3E131&amp;rft.date=1989&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189884382%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F2706397&amp;rft_id=info%3Adoi%2F10.1007%2FBF02458840&amp;rft.aulast=Arratia&amp;rft.aufirst=R.&amp;rft.au=Gordon%2C+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_B._Ash1990" class="citation book cs1">Robert B. Ash (1990). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/informationtheor00ashr"><i>Information Theory</i></a></span>. Dover Publications. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/informationtheor00ashr/page/n81">115</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780486665214" title="Special:BookSources/9780486665214"><bdi>9780486665214</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Information+Theory&amp;rft.pages=115&amp;rft.pub=Dover+Publications&amp;rft.date=1990&amp;rft.isbn=9780486665214&amp;rft.au=Robert+B.+Ash&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Finformationtheor00ashr&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatoušekVondrak" class="citation web cs1">Matoušek, J.; Vondrak, J. <a rel="nofollow" class="external text" href="https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf">"The Probabilistic Method"</a> <span class="cs1-format">(PDF)</span>. <i>lecture notes</i>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/matousek-vondrak-prob-ln.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=lecture+notes&amp;rft.atitle=The+Probabilistic+Method&amp;rft.aulast=Matou%C5%A1ek&amp;rft.aufirst=J.&amp;rft.au=Vondrak%2C+J.&amp;rft_id=https%3A%2F%2Fwww.cs.cmu.edu%2Fafs%2Fcs.cmu.edu%2Facademic%2Fclass%2F15859-f09%2Fwww%2Fhandouts%2Fmatousek-vondrak-prob-ln.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilcox1979" class="citation journal cs1">Wilcox, Rand R. (1979). <a rel="nofollow" class="external text" href="http://journals.sagepub.com/doi/10.1177/001316447903900302">"Estimating the Parameters of the Beta-Binomial Distribution"</a>. <i>Educational and Psychological Measurement</i>. <b>39</b> (3): <span class="nowrap">527–</span>535. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1177%2F001316447903900302">10.1177/001316447903900302</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-1644">0013-1644</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121331083">121331083</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Educational+and+Psychological+Measurement&amp;rft.atitle=Estimating+the+Parameters+of+the+Beta-Binomial+Distribution&amp;rft.volume=39&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E527-%3C%2Fspan%3E535&amp;rft.date=1979&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121331083%23id-name%3DS2CID&amp;rft.issn=0013-1644&amp;rft_id=info%3Adoi%2F10.1177%2F001316447903900302&amp;rft.aulast=Wilcox&amp;rft.aufirst=Rand+R.&amp;rft_id=http%3A%2F%2Fjournals.sagepub.com%2Fdoi%2F10.1177%2F001316447903900302&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Marko Lalovic (<a rel="nofollow" class="external free" href="https://stats.stackexchange.com/users/105848/marko-lalovic">https://stats.stackexchange.com/users/105848/marko-lalovic</a>), Jeffreys prior for binomial likelihood, URL (version: 2019-03-04): <a rel="nofollow" class="external free" href="https://stats.stackexchange.com/q/275608">https://stats.stackexchange.com/q/275608</a></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRazzaghi2002" class="citation journal cs1">Razzaghi, Mehdi (2002). <a rel="nofollow" class="external text" href="https://doi.org/10.22237%2Fjmasm%2F1036110000">"On the estimation of binomial success probability with zero occurrence in sample"</a>. <i>Journal of Modern Applied Statistical Methods</i>. <b>1</b> (2): <span class="nowrap">326–</span>332. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22237%2Fjmasm%2F1036110000">10.22237/jmasm/1036110000</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Modern+Applied+Statistical+Methods&amp;rft.atitle=On+the+estimation+of+binomial+success+probability+with+zero+occurrence+in+sample&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E326-%3C%2Fspan%3E332&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.22237%2Fjmasm%2F1036110000&amp;rft.aulast=Razzaghi&amp;rft.aufirst=Mehdi&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.22237%252Fjmasm%252F1036110000&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Brown2001-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Brown2001_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Brown2001_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrownCaiDasGupta2001" class="citation cs2">Brown, Lawrence D.; Cai, T. Tony; DasGupta, Anirban (2001), <a rel="nofollow" class="external text" href="http://www-stat.wharton.upenn.edu/~tcai/paper/html/Binomial-StatSci.html">"Interval Estimation for a Binomial Proportion"</a>, <i>Statistical Science</i>, <b>16</b> (2): <span class="nowrap">101–</span>133, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.323.7752">10.1.1.323.7752</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Fss%2F1009213286">10.1214/ss/1009213286</a><span class="reference-accessdate">, retrieved <span class="nowrap">2015-01-05</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistical+Science&amp;rft.atitle=Interval+Estimation+for+a+Binomial+Proportion&amp;rft.volume=16&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E101-%3C%2Fspan%3E133&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.323.7752%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1214%2Fss%2F1009213286&amp;rft.aulast=Brown&amp;rft.aufirst=Lawrence+D.&amp;rft.au=Cai%2C+T.+Tony&amp;rft.au=DasGupta%2C+Anirban&amp;rft_id=http%3A%2F%2Fwww-stat.wharton.upenn.edu%2F~tcai%2Fpaper%2Fhtml%2FBinomial-StatSci.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Agresti1988-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-Agresti1988_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAgrestiCoull1998" class="citation cs2">Agresti, Alan; Coull, Brent A. (May 1998), <a rel="nofollow" class="external text" href="http://www.stat.ufl.edu/~aa/articles/agresti_coull_1998.pdf">"Approximate is better than 'exact' for interval estimation of binomial proportions"</a> <span class="cs1-format">(PDF)</span>, <i>The American Statistician</i>, <b>52</b> (2): <span class="nowrap">119–</span>126, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2685469">10.2307/2685469</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2685469">2685469</a><span class="reference-accessdate">, retrieved <span class="nowrap">2015-01-05</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+American+Statistician&amp;rft.atitle=Approximate+is+better+than+%27exact%27+for+interval+estimation+of+binomial+proportions&amp;rft.volume=52&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E119-%3C%2Fspan%3E126&amp;rft.date=1998-05&amp;rft_id=info%3Adoi%2F10.2307%2F2685469&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2685469%23id-name%3DJSTOR&amp;rft.aulast=Agresti&amp;rft.aufirst=Alan&amp;rft.au=Coull%2C+Brent+A.&amp;rft_id=http%3A%2F%2Fwww.stat.ufl.edu%2F~aa%2Farticles%2Fagresti_coull_1998.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGulotta" class="citation web cs1">Gulotta, Joseph. <a rel="nofollow" class="external text" href="https://pellucid.atlassian.net/wiki/spaces/PEL/pages/25722894/Agresti-Coull+Interval+Method#:~:text=The%20Agresti%2DCoull%20Interval%20Method,%2C%20or%20per%20100%2C000%2C%20etc">"Agresti-Coull Interval Method"</a>. <i>pellucid.atlassian.net</i><span class="reference-accessdate">. Retrieved <span class="nowrap">18 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=pellucid.atlassian.net&amp;rft.atitle=Agresti-Coull+Interval+Method&amp;rft.aulast=Gulotta&amp;rft.aufirst=Joseph&amp;rft_id=https%3A%2F%2Fpellucid.atlassian.net%2Fwiki%2Fspaces%2FPEL%2Fpages%2F25722894%2FAgresti-Coull%2BInterval%2BMethod%23%3A~%3Atext%3DThe%2520Agresti%252DCoull%2520Interval%2520Method%2C%252C%2520or%2520per%2520100%252C000%252C%2520etc&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm">"Confidence intervals"</a>. <i>itl.nist.gov</i><span class="reference-accessdate">. Retrieved <span class="nowrap">18 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=itl.nist.gov&amp;rft.atitle=Confidence+intervals&amp;rft_id=https%3A%2F%2Fwww.itl.nist.gov%2Fdiv898%2Fhandbook%2Fprc%2Fsection2%2Fprc241.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Pires00-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pires00_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPires2002" class="citation book cs1">Pires, M. A. (2002). <a rel="nofollow" class="external text" href="https://www.math.tecnico.ulisboa.pt/~apires/PDFs/AP_COMPSTAT02.pdf">"Confidence intervals for a binomial proportion: comparison of methods and software evaluation"</a> <span class="cs1-format">(PDF)</span>. In Klinke, S.; Ahrend, P.; Richter, L. (eds.). <i>Proceedings of the Conference CompStat 2002</i>. Short Communications and Posters. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/https://www.math.tecnico.ulisboa.pt/~apires/PDFs/AP_COMPSTAT02.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Confidence+intervals+for+a+binomial+proportion%3A+comparison+of+methods+and+software+evaluation&amp;rft.btitle=Proceedings+of+the+Conference+CompStat+2002&amp;rft.date=2002&amp;rft.aulast=Pires&amp;rft.aufirst=M.+A.&amp;rft_id=https%3A%2F%2Fwww.math.tecnico.ulisboa.pt%2F~apires%2FPDFs%2FAP_COMPSTAT02.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Wilson1927-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wilson1927_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson1927" class="citation cs2">Wilson, Edwin B. (June 1927), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150113082307/http://psych.stanford.edu/~jlm/pdfs/Wison27SingleProportion.pdf">"Probable inference, the law of succession, and statistical inference"</a> <span class="cs1-format">(PDF)</span>, <i>Journal of the American Statistical Association</i>, <b>22</b> (158): <span class="nowrap">209–</span>212, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2276774">10.2307/2276774</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2276774">2276774</a>, archived from <a rel="nofollow" class="external text" href="http://psych.stanford.edu/~jlm/pdfs/Wison27SingleProportion.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2015-01-13<span class="reference-accessdate">, retrieved <span class="nowrap">2015-01-05</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Statistical+Association&amp;rft.atitle=Probable+inference%2C+the+law+of+succession%2C+and+statistical+inference&amp;rft.volume=22&amp;rft.issue=158&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E209-%3C%2Fspan%3E212&amp;rft.date=1927-06&amp;rft_id=info%3Adoi%2F10.2307%2F2276774&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2276774%23id-name%3DJSTOR&amp;rft.aulast=Wilson&amp;rft.aufirst=Edwin+B.&amp;rft_id=http%3A%2F%2Fpsych.stanford.edu%2F~jlm%2Fpdfs%2FWison27SingleProportion.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm">"Confidence intervals"</a>. <i>Engineering Statistics Handbook</i>. NIST/Sematech. 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-07-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Confidence+intervals&amp;rft.btitle=Engineering+Statistics+Handbook&amp;rft.pub=NIST%2FSematech&amp;rft.date=2012&amp;rft_id=http%3A%2F%2Fwww.itl.nist.gov%2Fdiv898%2Fhandbook%2Fprc%2Fsection2%2Fprc241.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDekkingKraaikampLopohaaMeester2005" class="citation book cs1">Dekking, F.M.; Kraaikamp, C.; Lopohaa, H.P.; Meester, L.E. (2005). <a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9781852338961"><i>A Modern Introduction of Probability and Statistics</i></a> (1&#160;ed.). Springer-Verlag London. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84628-168-6" title="Special:BookSources/978-1-84628-168-6"><bdi>978-1-84628-168-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Modern+Introduction+of+Probability+and+Statistics&amp;rft.edition=1&amp;rft.pub=Springer-Verlag+London&amp;rft.date=2005&amp;rft.isbn=978-1-84628-168-6&amp;rft.aulast=Dekking&amp;rft.aufirst=F.M.&amp;rft.au=Kraaikamp%2C+C.&amp;rft.au=Lopohaa%2C+H.P.&amp;rft.au=Meester%2C+L.E.&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9781852338961&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWang1993" class="citation journal cs1">Wang, Y. H. (1993). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303182353/http://www3.stat.sinica.edu.tw/statistica/oldpdf/A3n23.pdf">"On the number of successes in independent trials"</a> <span class="cs1-format">(PDF)</span>. <i>Statistica Sinica</i>. <b>3</b> (2): <span class="nowrap">295–</span>312. Archived from <a rel="nofollow" class="external text" href="http://www3.stat.sinica.edu.tw/statistica/oldpdf/A3n23.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-03.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistica+Sinica&amp;rft.atitle=On+the+number+of+successes+in+independent+trials&amp;rft.volume=3&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E295-%3C%2Fspan%3E312&amp;rft.date=1993&amp;rft.aulast=Wang&amp;rft.aufirst=Y.+H.&amp;rft_id=http%3A%2F%2Fwww3.stat.sinica.edu.tw%2Fstatistica%2Foldpdf%2FA3n23.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Katz1978-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Katz1978_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzBaptistaAzenPike1978" class="citation journal cs1">Katz, D.; et&#160;al. (1978). "Obtaining confidence intervals for the risk ratio in cohort studies". <i>Biometrics</i>. <b>34</b> (3): <span class="nowrap">469–</span>474. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2530610">10.2307/2530610</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2530610">2530610</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrics&amp;rft.atitle=Obtaining+confidence+intervals+for+the+risk+ratio+in+cohort+studies&amp;rft.volume=34&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E469-%3C%2Fspan%3E474&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.2307%2F2530610&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2530610%23id-name%3DJSTOR&amp;rft.aulast=Katz&amp;rft.aufirst=D.&amp;rft.au=Baptista%2C+J.&amp;rft.au=Azen%2C+S.+P.&amp;rft.au=Pike%2C+M.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaboga" class="citation web cs1">Taboga, Marco. <a rel="nofollow" class="external text" href="https://www.statlect.com/probability-distributions/binomial-distribution#hid3">"Lectures on Probability Theory and Mathematical Statistics"</a>. <i>statlect.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">18 December</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=statlect.com&amp;rft.atitle=Lectures+on+Probability+Theory+and+Mathematical+Statistics&amp;rft.aulast=Taboga&amp;rft.aufirst=Marco&amp;rft_id=https%3A%2F%2Fwww.statlect.com%2Fprobability-distributions%2Fbinomial-distribution%23hid3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-bhh-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-bhh_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bhh_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBox,_Hunter_and_Hunter1978" class="citation book cs1">Box, Hunter and Hunter (1978). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/statisticsforexp00geor"><i>Statistics for experimenters</i></a></span>. Wiley. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/statisticsforexp00geor/page/130">130</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780471093152" title="Special:BookSources/9780471093152"><bdi>9780471093152</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistics+for+experimenters&amp;rft.pages=130&amp;rft.pub=Wiley&amp;rft.date=1978&amp;rft.isbn=9780471093152&amp;rft.au=Box%2C+Hunter+and+Hunter&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fstatisticsforexp00geor&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen2011" class="citation book cs1">Chen, Zac (2011). <i>H2 Mathematics Handbook</i> (1&#160;ed.). Singapore: Educational Publishing House. p.&#160;350. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9789814288484" title="Special:BookSources/9789814288484"><bdi>9789814288484</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=H2+Mathematics+Handbook&amp;rft.place=Singapore&amp;rft.pages=350&amp;rft.edition=1&amp;rft.pub=Educational+Publishing+House&amp;rft.date=2011&amp;rft.isbn=9789814288484&amp;rft.aulast=Chen&amp;rft.aufirst=Zac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20230529211919/https://stats.libretexts.org/Courses/Las_Positas_College/Math_40:_Statistics_and_Probability/06:_Continuous_Random_Variables_and_the_Normal_Distribution/6.04:_Normal_Approximation_to_the_Binomial_Distribution">"6.4: Normal Approximation to the Binomial Distribution - Statistics LibreTexts"</a>. 2023-05-29. Archived from the original on 2023-05-29<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-10-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=6.4%3A+Normal+Approximation+to+the+Binomial+Distribution+-+Statistics+LibreTexts&amp;rft.date=2023-05-29&amp;rft_id=https%3A%2F%2Fstats.libretexts.org%2FCourses%2FLas_Positas_College%2FMath_40%3A_Statistics_and_Probability%2F06%3A_Continuous_Random_Variables_and_the_Normal_Distribution%2F6.04%3A_Normal_Approximation_to_the_Binomial_Distribution&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><a href="/wiki/NIST" class="mw-redirect" title="NIST">NIST</a>/<a href="/wiki/SEMATECH" title="SEMATECH">SEMATECH</a>, <a rel="nofollow" class="external text" href="http://www.itl.nist.gov/div898/handbook/prc/section2/prc24.htm">"7.2.4. Does the proportion of defectives meet requirements?"</a> <i>e-Handbook of Statistical Methods.</i></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20230328081322/https://online.stat.psu.edu/stat414/lesson/12/12.4">"12.4 – Approximating the Binomial Distribution | STAT 414"</a>. <i>Pennstate: Statistics Online Courses</i>. 2023-03-28. Archived from the original on 2023-03-28<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Pennstate%3A+Statistics+Online+Courses&amp;rft.atitle=12.4+%E2%80%93+Approximating+the+Binomial+Distribution+%7C+STAT+414&amp;rft.date=2023-03-28&amp;rft_id=https%3A%2F%2Fonline.stat.psu.edu%2Fstat414%2Flesson%2F12%2F12.4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_news" title="Template:Cite news">cite news</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen2011" class="citation book cs1">Chen, Zac (2011). <i>H2 mathematics handbook</i> (1&#160;ed.). Singapore: Educational publishing house. p.&#160;348. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9789814288484" title="Special:BookSources/9789814288484"><bdi>9789814288484</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=H2+mathematics+handbook&amp;rft.place=Singapore&amp;rft.pages=348&amp;rft.edition=1&amp;rft.pub=Educational+publishing+house&amp;rft.date=2011&amp;rft.isbn=9789814288484&amp;rft.aulast=Chen&amp;rft.aufirst=Zac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-nist-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-nist_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-nist_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/NIST" class="mw-redirect" title="NIST">NIST</a>/<a href="/wiki/SEMATECH" title="SEMATECH">SEMATECH</a>, <a rel="nofollow" class="external text" href="http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm">"6.3.3.1. Counts Control Charts"</a>, <i>e-Handbook of Statistical Methods.</i></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20230313085931/https://mathcenter.oxford.emory.edu/site/math117/connectingPoissonAndBinomial/">"The Connection Between the Poisson and Binomial Distributions"</a>. 2023-03-13. Archived from the original on 2023-03-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-10-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Connection+Between+the+Poisson+and+Binomial+Distributions&amp;rft.date=2023-03-13&amp;rft_id=https%3A%2F%2Fmathcenter.oxford.emory.edu%2Fsite%2Fmath117%2FconnectingPoissonAndBinomial%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: bot: original URL status unknown (<a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">link</a>)</span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Novak S.Y. (2011) Extreme value methods with applications to finance. London: CRC/ Chapman &amp; Hall/Taylor &amp; Francis. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781-43983-5746" title="Special:BookSources/9781-43983-5746">9781-43983-5746</a>.</span> </li> <li id="cite_note-MacKay-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-MacKay_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacKay2003" class="citation book cs1">MacKay, David (2003). <i>Information Theory, Inference and Learning Algorithms</i>. Cambridge University Press; First Edition. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521642989" title="Special:BookSources/978-0521642989"><bdi>978-0521642989</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Information+Theory%2C+Inference+and+Learning+Algorithms&amp;rft.pub=Cambridge+University+Press%3B+First+Edition&amp;rft.date=2003&amp;rft.isbn=978-0521642989&amp;rft.aulast=MacKay&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.statlect.com/probability-distributions/beta-distribution">"Beta distribution"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Beta+distribution&amp;rft_id=https%3A%2F%2Fwww.statlect.com%2Fprobability-distributions%2Fbeta-distribution&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">Devroye, Luc (1986) <i>Non-Uniform Random Variate Generation</i>, New York: Springer-Verlag. (See especially <a rel="nofollow" class="external text" href="http://luc.devroye.org/chapter_ten.pdf">Chapter X, Discrete Univariate Distributions</a>)</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKachitvichyanukulSchmeiser1988" class="citation journal cs1">Kachitvichyanukul, V.; Schmeiser, B. W. (1988). "Binomial random variate generation". <i>Communications of the ACM</i>. <b>31</b> (2): <span class="nowrap">216–</span>222. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F42372.42381">10.1145/42372.42381</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18698828">18698828</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+of+the+ACM&amp;rft.atitle=Binomial+random+variate+generation&amp;rft.volume=31&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E216-%3C%2Fspan%3E222&amp;rft.date=1988&amp;rft_id=info%3Adoi%2F10.1145%2F42372.42381&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18698828%23id-name%3DS2CID&amp;rft.aulast=Kachitvichyanukul&amp;rft.aufirst=V.&amp;rft.au=Schmeiser%2C+B.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:1-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-:1_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz2009" class="citation book cs1">Katz, Victor (2009). "14.3: Elementary Probability". <i>A History of Mathematics: An Introduction</i>. Addison-Wesley. p.&#160;491. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-321-38700-4" title="Special:BookSources/978-0-321-38700-4"><bdi>978-0-321-38700-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=14.3%3A+Elementary+Probability&amp;rft.btitle=A+History+of+Mathematics%3A+An+Introduction&amp;rft.pages=491&amp;rft.pub=Addison-Wesley&amp;rft.date=2009&amp;rft.isbn=978-0-321-38700-4&amp;rft.aulast=Katz&amp;rft.aufirst=Victor&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">Mandelbrot, B. B., Fisher, A. J., &amp; Calvet, L. E. (1997). A multifractal model of asset returns. <i>3.2 The Binomial Measure is the Simplest Example of a Multifractal</i></span> </li> </ol></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Except the trivial case <span class="texhtml"><i>p</i> = 0</span>, which must be checked separately.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=34" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHirsch1957" class="citation book cs1">Hirsch, Werner Z. (1957). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=KostAAAAIAAJ&amp;pg=PA140">"Binomial Distribution—Success or Failure, How Likely Are They?"</a>. <i>Introduction to Modern Statistics</i>. New York: MacMillan. pp.&#160;<span class="nowrap">140–</span>153.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Binomial+Distribution%E2%80%94Success+or+Failure%2C+How+Likely+Are+They%3F&amp;rft.btitle=Introduction+to+Modern+Statistics&amp;rft.place=New+York&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E140-%3C%2Fspan%3E153&amp;rft.pub=MacMillan&amp;rft.date=1957&amp;rft.aulast=Hirsch&amp;rft.aufirst=Werner+Z.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DKostAAAAIAAJ%26pg%3DPA140&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeterWassermanWhitmore1988" class="citation book cs1">Neter, John; Wasserman, William; Whitmore, G. A. (1988). <i>Applied Statistics</i> (Third&#160;ed.). Boston: Allyn &amp; Bacon. pp.&#160;<span class="nowrap">185–</span>192. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-205-10328-6" title="Special:BookSources/0-205-10328-6"><bdi>0-205-10328-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applied+Statistics&amp;rft.place=Boston&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E185-%3C%2Fspan%3E192&amp;rft.edition=Third&amp;rft.pub=Allyn+%26+Bacon&amp;rft.date=1988&amp;rft.isbn=0-205-10328-6&amp;rft.aulast=Neter&amp;rft.aufirst=John&amp;rft.au=Wasserman%2C+William&amp;rft.au=Whitmore%2C+G.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABinomial+distribution" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Binomial_distribution&amp;action=edit&amp;section=35" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Binomial_distributions" class="extiw" title="commons:Category:Binomial distributions">Binomial distributions</a></span>.</div></div> </div><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wikifunctions-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Wikifunctions-logo.svg/40px-Wikifunctions-logo.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Wikifunctions-logo.svg/60px-Wikifunctions-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Wikifunctions-logo.svg/80px-Wikifunctions-logo.svg.png 2x" data-file-width="512" data-file-height="513" /></a></span></div> <div class="side-box-text plainlist"><a href="/wiki/Wikifunctions" title="Wikifunctions">Wikifunctions</a> has <b><a href="https://www.wikifunctions.org/wiki/Z20094" class="extiw" title="f:Z20094">a function related to this topic</a></b>.</div></div> </div> <ul><li>Interactive graphic: <a rel="nofollow" class="external text" href="http://www.math.wm.edu/~leemis/chart/UDR/UDR.html">Univariate Distribution Relationships</a></li> <li><a rel="nofollow" class="external text" href="http://www.fxsolver.com/browse/formulas/Binomial+distribution">Binomial distribution formula calculator</a></li> <li>Difference of two binomial variables: <a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/1065487">X-Y</a> or <a rel="nofollow" class="external text" href="https://math.stackexchange.com/q/562119">|X-Y|</a></li> <li><a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=Prob+x+%3E+19+if+x+is+binomial+with+n+%3D+36++and+p+%3D+.6">Querying the binomial probability distribution in WolframAlpha</a></li> <li>Confidence (credible) intervals for binomial probability, p: <a rel="nofollow" class="external text" href="https://causascientia.org/math_stat/ProportionCI.html">online calculator</a> available at <a rel="nofollow" class="external text" href="https://causascientia.org">causaScientia.org</a></li></ul> <div style="clear:both;" class=""></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)587" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)587" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford&#39;s law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a class="mw-selflink selflink">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf&#39;s law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling&#39;s T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks&#39;s lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher&#39;s z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson&#39;s SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student&#39;s t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens&#39;s sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_variate_beta_distribution" title="Matrix variate beta distribution">Matrix beta</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐5b65fffc7d‐gb7zw Cached time: 20250216163120 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.358 seconds Real time usage: 1.718 seconds Preprocessor visited node count: 13318/1000000 Post‐expand include size: 213209/2097152 bytes Template argument size: 19322/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 187985/5000000 bytes Lua time usage: 0.688/10.000 seconds Lua memory usage: 7353037/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1275.270 1 -total 27.61% 352.109 2 Template:Reflist 16.88% 215.229 168 Template:Math 12.50% 159.411 14 Template:Cite_book 12.10% 154.284 1 Template:Probability_fundamentals 11.92% 152.037 1 Template:Sidebar 8.28% 105.575 4 Template:Navbox 8.14% 103.815 1 Template:ProbDistributions 7.87% 100.350 1 Template:Short_description 6.71% 85.607 3 Template:Fix-span --> <!-- Saved in parser cache with key enwiki:pcache:3876:|#|:idhash:canonical and timestamp 20250216163120 and revision id 1268319981. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Binomial_distribution&amp;oldid=1268319981">https://en.wikipedia.org/w/index.php?title=Binomial_distribution&amp;oldid=1268319981</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Discrete_distributions" title="Category:Discrete distributions">Discrete distributions</a></li><li><a href="/wiki/Category:Factorial_and_binomial_topics" title="Category:Factorial and binomial topics">Factorial and binomial topics</a></li><li><a href="/wiki/Category:Conjugate_prior_distributions" title="Category:Conjugate prior distributions">Conjugate prior distributions</a></li><li><a href="/wiki/Category:Exponential_family_distributions" title="Category:Exponential family distributions">Exponential family distributions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:CS1_maint:_bot:_original_URL_status_unknown" title="Category:CS1 maint: bot: original URL status unknown">CS1 maint: bot: original URL status unknown</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_July_2012" title="Category:Wikipedia articles needing clarification from July 2012">Wikipedia articles needing clarification from July 2012</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_March_2023" title="Category:Wikipedia articles needing clarification from March 2023">Wikipedia articles needing clarification from March 2023</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 January 2025, at 05:20<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Binomial_distribution&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Binomial distribution</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>52 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-zzfwx","wgBackendResponseTime":151,"wgPageParseReport":{"limitreport":{"cputime":"1.358","walltime":"1.718","ppvisitednodes":{"value":13318,"limit":1000000},"postexpandincludesize":{"value":213209,"limit":2097152},"templateargumentsize":{"value":19322,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":187985,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1275.270 1 -total"," 27.61% 352.109 2 Template:Reflist"," 16.88% 215.229 168 Template:Math"," 12.50% 159.411 14 Template:Cite_book"," 12.10% 154.284 1 Template:Probability_fundamentals"," 11.92% 152.037 1 Template:Sidebar"," 8.28% 105.575 4 Template:Navbox"," 8.14% 103.815 1 Template:ProbDistributions"," 7.87% 100.350 1 Template:Short_description"," 6.71% 85.607 3 Template:Fix-span"]},"scribunto":{"limitreport-timeusage":{"value":"0.688","limit":"10.000"},"limitreport-memusage":{"value":7353037,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-5b65fffc7d-gb7zw","timestamp":"20250216163120","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Binomial distribution","url":"https:\/\/en.wikipedia.org\/wiki\/Binomial_distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q185547","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q185547","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-02-15T22:38:26Z","dateModified":"2025-01-09T05:20:05Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/75\/Binomial_distribution_pmf.svg","headline":"probability distribution"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10