CINXE.COM

Search results for: endocrine disrupting

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: endocrine disrupting</title> <meta name="description" content="Search results for: endocrine disrupting"> <meta name="keywords" content="endocrine disrupting"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="endocrine disrupting" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="endocrine disrupting"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 229</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: endocrine disrupting</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Adverse Effects on Liver Function in Male Rats after Exposure to a Mixture of Endocrine Disrupting Pesticides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Aiche">Mohamed Amine Aiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkhansa%20Yahia"> Elkhansa Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Mallem"> Leila Mallem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salah%20Boulakoud"> Mohamed Salah Boulakoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exposure to endocrine disrupting (ED) during life may cause long-term health effects, the population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products. Previous research indicates that a wide range of pesticides may act as endocrine disrupters. The azole fungicides propiconazole and propineb have been shown to react through several endocrine disrupting mechanisms, and to induce various endocrine disrupting effects. The purpose of this study was to evaluate the effects of two fungicides; propiconazole and propineb tested separately and in combination, on liver function. The experimental was applied on male Wistar rats dosed orally with Propiconazole 60 mg/kg/day, Propineb 100 mg/kg/day and their mixture 30 mg Propiconazole/kg/day + 50 mg Propineb /kg/day for 4 weeks, for result, a significant increase in liver weights in both treated groups with propineb, propiconazole and their mixture by reference with controls group. Also, highly significant mean values of markers of liver function such as transaminases (ALT/AST) and the activity of alkaline phosphatase (ALP) in all treated groups. The antioxidant activity showed a significant decrease in the hepatic glutathione content (GSH) and glutathione peroxidase (GPX) in all treated groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting" title="endocrine disrupting">endocrine disrupting</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20mixture" title=" pesticide mixture"> pesticide mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=propineb" title=" propineb"> propineb</a>, <a href="https://publications.waset.org/abstracts/search?q=propiconazole" title=" propiconazole"> propiconazole</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/14958/adverse-effects-on-liver-function-in-male-rats-after-exposure-to-a-mixture-of-endocrine-disrupting-pesticides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Bhanjana">Gaurav Bhanjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganga%20Ram%20Chaudhary"> Ganga Ram Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar"> Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Dilbaghi"> Neeraj Dilbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC&ndash;MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptors" title=" endocrine disruptors"> endocrine disruptors</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy" title=" microscopy"> microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/76775/nanomaterial-based-electrochemical-sensors-for-endocrine-disrupting-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Interaction Between Gut Microorganisms and Endocrine Disruptors - Effects on Hyperglycaemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthika%20Durairaj">Karthika Durairaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Buvaneswari%20G."> Buvaneswari G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gowdham%20M."> Gowdham M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20M."> Gilles M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Velmurugan%20G."> Velmurugan G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hyperglycaemia is the primary cause of metabolic illness. Recently, researchers focused on the possibility that chemical exposure could promote metabolic disease. Hyperglycaemia causes a variety of metabolic diseases dependent on its etiologic conditions. According to animal and population-based research, individual chemical exposure causes health problems through alteration of endocrine function with the influence of microbial influence. We were intrigued by the function of gut microbiota variation in high fat and chemically induced hyperglycaemia. Methodology: C57/Bl6 mice were subjected to two different treatments to generate the etiologic-based diabetes model: I – a high-fat diet with a 45 kcal diet, and II - endocrine disrupting chemicals (EDCs) cocktail. The mice were monitored periodically for changes in body weight and fasting glucose. After 120 days of the experiment, blood anthropometry, faecal metagenomics and metabolomics were performed and analyzed through statistical analysis using one-way ANOVA and student’s t-test. Results: After 120 days of exposure, we found hyperglycaemic changes in both experimental models. The treatment groups also differed in terms of plasma lipid levels, creatinine, and hepatic markers. To determine the influence on glucose metabolism, microbial profiling and metabolite levels were significantly different between groups. The gene expression studies associated with glucose metabolism vary between hosts and their treatments. Conclusion: This research will result in the identification of biomarkers and molecular targets for better diabetes control and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperglycaemia" title="hyperglycaemia">hyperglycaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine-disrupting%20chemicals" title=" endocrine-disrupting chemicals"> endocrine-disrupting chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20metabolism" title=" host metabolism"> host metabolism</a> </p> <a href="https://publications.waset.org/abstracts/185837/interaction-between-gut-microorganisms-and-endocrine-disruptors-effects-on-hyperglycaemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Occurrence and Fate of EDCs in Wastewater and Aquatic Environments in the West Bank of Palestine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wa%60d%20Odeh">Wa`d Odeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alon%20Tal"> Alon Tal</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Abed%20Rabbo"> Alfred Abed Rabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Al%20Khatib"> Nader Al Khatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Shai%20Arnon"> Shai Arnon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of endocrine disrupting compounds (EDCs) in raw sewage and effluents from wastewater treatment plants (WWTPs) has been increasingly studied in the last few decades. Higher risks are said to characterize situations where raw sewage streams are found to be flowing, or where partial and inadequate wastewater treatment exists. Such conditions are prevalent in the West Bank area of Palestine. To our knowledge, no previous data concerning the occurrence and fate of EDCs in the aquatic environment has ever been systematically evaluated in the region. Hence, the main objective of this study was to identify the occurrence and concentrations of major EDCs in raw sewage, wastewater effluents produced by treatment plants and in the receiving environments, including streams and groundwater in the West Bank, Palestine. Water samples were collected and analyzed for four times during the years of 2013 and 2014. Two large-scale conventional activated sludge WWTPs, two wastewater watercourses, one naturally perennial stream, and five groundwater locations close to wastewater sources were sampled and analyzed by GC/MS following EPA methods (525.2). Five EDCs (estriol, estrone, testosterone, bisphenol A, and octylphenol) were detected in trace concentrations (ng/l) in wastewater streams and at inputs to WWTPs. WWTPs were not able to achieve complete removal of all EDCs, and EDCs were still found in the effluents. In this regard, the most significant environmental estrogenic impact was due to estrone concentrations. Nevertheless, no EDCs were detected in groundwater. Yet, in order for effluents to be reused, significant improvement in treatment infrastructure should be a top priority for environmental managers in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting%20compounds" title="endocrine disrupting compounds">endocrine disrupting compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20sewage%20streams" title=" raw sewage streams"> raw sewage streams</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20activated%20sludge%20WWTPs" title=" conventional activated sludge WWTPs"> conventional activated sludge WWTPs</a>, <a href="https://publications.waset.org/abstracts/search?q=WWTPs%20effluents" title=" WWTPs effluents"> WWTPs effluents</a> </p> <a href="https://publications.waset.org/abstracts/23538/occurrence-and-fate-of-edcs-in-wastewater-and-aquatic-environments-in-the-west-bank-of-palestine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Sogani">Monika Sogani</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Syed"> Zainab Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20C.%20Fisher"> Adrian C. Fisher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting%20compounds" title="endocrine disrupting compounds">endocrine disrupting compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ethinylestradiol" title=" ethinylestradiol"> ethinylestradiol</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20electrochemical%20remediation%20systems" title=" microbial electrochemical remediation systems"> microbial electrochemical remediation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/102308/microbial-electrochemical-remediation-system-integrating-wastewater-treatment-with-simultaneous-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Oxidative and Hormonal Disruptions Underlie Bisphenol A: Induced Testicular Toxicity in Male Rabbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadry%20M.%20Sadek">Kadry M. Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20K.%20Abouzed"> Tarek K. Abouzed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mousa%20A.%20Ayoub"> Mousa A. Ayoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of endocrine-disrupting compounds, such as bisphenol A (BPA), in the environment can cause serious health problems. However, there are controversial opinions. This study investigated the reproductive, metabolic, oxidative and immunologic-disrupting effects of bisphenol A in male rabbits. Rabbits were divided into five groups. The first four rabbit groups were administered oral BPA (1, 10, 50, or 100 mg/kg/day) for ten weeks. The fifth group was administered corn oil as the vehicle. BPA significantly decreased serum testosterone, estradiol and the free androgen index (FAI) and significantly increased sex hormone binding globulin (SHBG) compared with the placebo group. The higher doses of BPA showed a significant decrease in follicular stimulating hormone (FSH) and luteinizing hormone (LH). A significant increase in blood glucose levels was identified in the BPA groups. The non-significant difference in insulin levels is a novel finding. The cumulative testicular toxicity of BPA was clearly demonstrated by the dose-dependent decrease in absolute testes weight, primary measures of semen quality and a significant increase in testicular malonaldehyde (MDA). Moreover, BPA significantly decreased total antioxidant capacity (TAC) and significantly increased immunoglobulin G (IgG) at the highest concentration. Our results suggest that BPA, especially at higher doses, is associated with many adverse effects on metabolism, oxidative stress, immunity, sperm quality and markers of androgenic action. These results may reflect the estrogenic effects of BPA, which we hypothesize could be related, in part, to an inhibitory effect on testicular steroidogenesis. The induction of oxidative stress by BPA may play an additional role in testicular toxicity. These results suggest that BPA poses a threat to endocrine and reproductive functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20A" title="bisphenol A">bisphenol A</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbits" title=" rabbits"> rabbits</a>, <a href="https://publications.waset.org/abstracts/search?q=semen%20quality" title=" semen quality"> semen quality</a>, <a href="https://publications.waset.org/abstracts/search?q=steroidogenesis" title=" steroidogenesis"> steroidogenesis</a> </p> <a href="https://publications.waset.org/abstracts/14594/oxidative-and-hormonal-disruptions-underlie-bisphenol-a-induced-testicular-toxicity-in-male-rabbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Sensing Endocrine Disrupting Chemicals by Virus-Based Structural Colour Nanostructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Yujin">Lee Yujin</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Jiye"> Han Jiye</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Jin-Woo"> Oh Jin-Woo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adverse effects of endocrine disrupting chemicals (EDCs) has attracted considerable public interests. The benzene-like EDCs structure mimics the mechanisms of hormones naturally occurring in vivo, and alters physiological function of the endocrine system. Although, some of the most representative EDCs such as polychlorinated biphenyls (PCBs) and phthalates compounds already have been prohibited to produce and use in many countries, however, PCBs and phthalates in plastic products as flame retardant and plasticizer are still circulated nowadays. EDCs can be released from products while using and discarding, and it causes serious environmental and health issues. Here, we developed virus-based structurally coloured nanostructure that can detect minute EDCs concentration sensitively and selectively. These structurally coloured nanostructure exhibits characteristic angel-independent colors due to the regular virus bundle structure formation through simple pulling technique. The designed number of different colour bands can be formed through controlling concentration of virus solution and pulling speed. The virus, M-13 bacteriophage, was genetically engineered to react with specific ECDs, typically PCBs and phthalates. M-13 bacteriophage surface (pVIII major coat protein) was decorated with benzene derivative binding peptides (WHW) through phage library method. In the initial assessment, virus-based color sensor was exposed to several organic chemicals including benzene, toluene, phenol, chlorobenzene, and phthalic anhydride. Along with the selectivity evaluation of virus-based colour sensor, it also been tested for sensitivity. 10 to 300 ppm of phthalic anhydride and chlorobenzene were detected by colour sensor, and showed the significant sensitivity with about 90 of dissociation constant. Noteworthy, all measurements were analyzed through principal component analysis (PCA) and linear discrimination analysis (LDA), and exhibited clear discrimination ability upon exposure to 2 categories of EDCs (PCBs and phthalates). Because of its easy fabrication, high sensitivity, and the superior selectivity, M-13 bacteriophage-based color sensor could be a simple and reliable portable sensing system for environmental monitoring, healthcare, social security, and so on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=M-13%20bacteriophage" title="M-13 bacteriophage">M-13 bacteriophage</a>, <a href="https://publications.waset.org/abstracts/search?q=colour%20sensor" title=" colour sensor"> colour sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20engineering" title=" genetic engineering"> genetic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=EDCs" title=" EDCs"> EDCs</a> </p> <a href="https://publications.waset.org/abstracts/68383/sensing-endocrine-disrupting-chemicals-by-virus-based-structural-colour-nanostructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Mayil%20Vealan">S. B. Mayil Vealan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sekar"> C. Sekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptors" title="endocrine disruptors">endocrine disruptors</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title=" electrochemical sensor"> electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Food%20contacting%20materials" title=" Food contacting materials"> Food contacting materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanum%20cuprates" title=" lanthanum cuprates"> lanthanum cuprates</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/162959/sensitive-electrochemical-sensor-for-simultaneous-detection-of-endocrine-disruptors-bisphenol-a-and-4-nitrophenol-using-la2cu2o5-modified-glassy-carbon-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Heterogeneous Catalytic Ozonation of Diethyl Phthalate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chedly%20Tizaoui">Chedly Tizaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Mohammed"> Hussain Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Lobna%20Mansouri"> Lobna Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Hilal"> Nidal Hilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Latifa%20Bousselmi"> Latifa Bousselmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degradation of diethyl phthalate (DEP) was studied using heterogeneous catalytic ozonation. Activated carbon was used as a catalyst. The degradation of DEP with ozone alone was slow while catalytic ozonation increased degradation rates. Second-order reaction kinetics was used to describe the experimental data, and the corresponding rate constant values were 1.19 and 3.94 M-1.s-1 for ozone and ozone/activated carbon respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ozone" title="ozone">ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalytic%20ozonation" title=" heterogeneous catalytic ozonation"> heterogeneous catalytic ozonation</a>, <a href="https://publications.waset.org/abstracts/search?q=diethyl%20phthalate" title=" diethyl phthalate"> diethyl phthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting%20chemicals" title=" endocrine disrupting chemicals"> endocrine disrupting chemicals</a> </p> <a href="https://publications.waset.org/abstracts/67074/heterogeneous-catalytic-ozonation-of-diethyl-phthalate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Nano-Sized Iron Oxides/ZnMe Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts for Degrading Specific Pharmaceutical Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marius%20Sebastian%20Secula">Marius Sebastian Secula</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Darie"> Mihaela Darie</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Carja"> Gabriela Carja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Persistent organic pollutant discharged by various industries or urban regions into the aquatic ecosystems represent a serious threat to fauna and human health. The endocrine disrupting compounds are known to have toxic effects even at very low values of concentration. The anti-inflammatory agent Ibuprofen is an endocrine disrupting compound and is considered as model pollutant in the present study. The use of light energy to accomplish the latest requirements concerning wastewater discharge demands highly-performant and robust photo-catalysts. Many efforts have been paid to obtain efficient photo-responsive materials. Among the promising photo-catalysts, layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents Fe(II) self-supported on ZnMeLDHs (Me =Al3+, Fe3+) as novel efficient photo-catalysts for Fenton-like catalysis. The co-precipitation method was used to prepare ZnAlLDH, ZnFeAlLDH and ZnCrLDH (Zn2+/Me3+ = 2 molar ratio). Fe(II) was self-supported on the LDHs matrices by using the reconstruction method, at two different values of weight concentration. X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) were used to investigate the structural, textural, and micromorphology of the catalysts. The Fe(II)/ZnMeLDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively. The results point out that the embedment Fe(II) into ZnFeAlLDH and ZnCrLDH lead to a slight enhancement of ibuprofen degradation by light irradiation, whereas in case of ZnAlLDH, the degradation process is relatively low. A remarkable enhancement of ibuprofen degradation was found in the case of Fe(II)/ZnMeLDHs by photo-Fenton process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxide" title="layered double hydroxide">layered double hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20Fenton" title=" heterogeneous Fenton"> heterogeneous Fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=micropollutant" title=" micropollutant"> micropollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/71114/nano-sized-iron-oxidesznme-layered-double-hydroxides-as-highly-efficient-fenton-like-catalysts-for-degrading-specific-pharmaceutical-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Phthalates Exposure in Children with Central Precocious Puberty (CPP) or Constitutional Delays in Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-An%20Tsai">Yen-An Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Ling%20Lin"> Ching-Ling Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Woei%20Hou"> Jia-Woei Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Lien%20Chen"> Mei-Lien Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endocrine-disrupting chemicals (EDCs) adversely affect the endocrine system. Phthalates, also called phthalic acid esters (PAEs), are manmade chemicals that are used as stabilizing agents in personal care products such as perfumes, lotions, and cosmetics. The aim was to explore whether PAEs exposure was associated with central precocious puberty (CPP) or constitutional delays in growth (CDGP). This case-control study included 48 female with CPP, 37 male with constitutional delays in growth, and 127 normal children and was conducted from December 2011 to August 2014. All participants completed a structured questionnaire regarding socio-demographic characteristics, lifestyle, and secondary sexual characteristics. The analytical method was based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with isotope dilution for the quantitative detection of several phthalate metabolites in human urine. The risk of CPP with mep, mnbp, LMW >50th percentile were higher than those with 50th percentile were higher than those with <50 percentile in model 2. In model 1, we only found higher CDGP risk in mep, mnbp, and ΣPAEs. It shows that high phthalate exposure may associate with CDGP. In this case-control study, we found PAEs exposure was associated with central precocious puberty (CPP) or constitutional delays in growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalates" title="phthalates">phthalates</a>, <a href="https://publications.waset.org/abstracts/search?q=puberty" title=" puberty"> puberty</a>, <a href="https://publications.waset.org/abstracts/search?q=delays" title=" delays"> delays</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/42354/phthalates-exposure-in-children-with-central-precocious-puberty-cpp-or-constitutional-delays-in-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Sertraline Chronic Exposure: Impact on Reproduction and Behavior on the Key Benthic Invertebrate Capitella teleta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martina%20Santobuono">Martina Santobuono</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing%20Sze%20Chan"> Wing Sze Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elettra%20D%27Amico"> Elettra D&#039;Amico</a>, <a href="https://publications.waset.org/abstracts/search?q=Henriette%20Selck"> Henriette Selck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemicals in modern society are fundamental in many different aspects of daily human life. We use a wide range of substances, including polychlorinated compounds, pesticides, plasticizers, and pharmaceuticals, to name a few. These compounds are excessively produced, and this has led to their introduction to the environment and food resources. Municipal and industrial effluents, landfills, and agricultural runoffs are a few examples of sources of chemical pollution. Many of these compounds, such as pharmaceuticals, have been proven to mimic or alter the performance of the hormone system, thus disrupting its normal function and altering the behavior and reproductive capability of non-target organisms. Antidepressants are pharmaceuticals commonly detected in the environment, usually in the range of ng L⁻¹ and µg L⁻¹. Since they are designed to have a biological effect at low concentrations, they might pose a risk to the native species, especially if exposure lasts for long periods. Hydrophobic antidepressants, like the selective serotonin reuptake inhibitor (SSRI) Sertraline, can sorb to the particles in the water column and eventually accumulate in the sediment compartment. Thus, deposit-feeding organisms may be at particular risk of exposure. The polychaete Capitella teleta is widespread in estuarine organically enriched sediments, being a key deposit-feeder involved in geochemistry processes happening in sediments. Since antidepressants are neurotoxic chemicals and endocrine disruptors, the aim of this work was to test if sediment-associated Sertraline impacts burrowing- and feeding behavior as well as reproduction capability in Capitella teleta in a chronic exposure set-up, which could better mimic what happens in the environment. 7 days old juveniles were selected and exposed to different concentrations of Sertraline for an entire generation until the mature stage was reached. This work was able to show that some concentrations of Sertraline altered growth and the time of first reproduction in Capitella teleta juveniles, potentially disrupting the population’s capability of survival. Acknowledgments: This Ph.D. position is part of the CHRONIC project “Chronic exposure scenarios driving environmental risks of Chemicals”, which is an Innovative Training Network (ITN) funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions (MSCA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidepressants" title="antidepressants">antidepressants</a>, <a href="https://publications.waset.org/abstracts/search?q=Capitella%20teleta" title=" Capitella teleta"> Capitella teleta</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20exposure" title=" chronic exposure"> chronic exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruption" title=" endocrine disruption"> endocrine disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=sublethal%20endpoints" title=" sublethal endpoints"> sublethal endpoints</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/155922/sertraline-chronic-exposure-impact-on-reproduction-and-behavior-on-the-key-benthic-invertebrate-capitella-teleta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Preservation of Endocrine Function after Central Pancreatectomy without Anastomoses for a Mid Gland Pancreatic Insulinoma: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthikeyan%20M.">Karthikeyan M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20M.%20J."> Paul M. J.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This abstract describes a case of central pancreatectomy (CP) for a 50-year-old woman with a neuroendocrine tumor in the mid-body of the pancreas. CP, a parenchyma-sparing surgical option, preserves the distal pancreas and spleen, reducing the risk of pancreatic endocrine and exocrine insufficiency compared to traditional resections. The patient, initially misdiagnosed with transient ischemic attack, presented with hypoglycemic symptoms and was found to have a pancreatic lesion. Post-operative results were positive, with a reduction in pancreatic drain volume and normalization of blood sugar levels. This case highlights CP's efficacy in treating centrally located pancreatic lesions while maintaining pancreatic function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20pancreatectomy%20without%20anastomosis" title="central pancreatectomy without anastomosis">central pancreatectomy without anastomosis</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20endocrine%20deficiency%20on%20follow-op" title=" no endocrine deficiency on follow-op"> no endocrine deficiency on follow-op</a>, <a href="https://publications.waset.org/abstracts/search?q=less%20post-op%20hospital%20stay" title=" less post-op hospital stay"> less post-op hospital stay</a>, <a href="https://publications.waset.org/abstracts/search?q=less%20post-op%20complications" title=" less post-op complications"> less post-op complications</a> </p> <a href="https://publications.waset.org/abstracts/179221/preservation-of-endocrine-function-after-central-pancreatectomy-without-anastomoses-for-a-mid-gland-pancreatic-insulinoma-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Maternal Exposure to Bisphenol A and Its Association with Birth Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Ting%20Chen">Yi-Ting Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Fang%20Huang"> Yu-Fang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Wei%20Wang"> Pei-Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai-Wei%20Liang"> Hai-Wei Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Hao%20Lai"> Chun-Hao Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Lien%20Chen"> Mei-Lien Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Bisphenol A (BPA) is commonly used in consumer products, such as inner coatings of cans and polycarbonated bottles. BPA is considered to be an endocrine disrupting substance (EDs) that affects normal human hormones and may cause adverse effects on human health. Pregnant women and fetuses are susceptible groups of endocrine disrupting substances. Prenatal exposure to BPA has been shown to affect the fetus through the placenta. Therefore, it is important to evaluate the potential health risk of fetal exposure to BPA during pregnancy. The aims of this study were (1) to determine the urinary concentration of BPA in pregnant women, and (2) to investigate the association between BPA exposure during pregnancy and birth outcomes. Methods: This study recruited 117 pregnant women and their fetuses from 2012 to 2014 from the Taiwan Maternal- Infant Cohort Study (TMICS). Maternal urine samples were collected in the third trimester and questionnaires were used to collect socio-demographic characteristics, eating habits and medical conditions of the participants. Information about birth outcomes of the fetus was obtained from medical records. As for chemicals analysis, BPA concentrations in urine were determined by off-line solid-phase extraction-ultra-performance liquid chromatography coupled with a Q-Tof mass spectrometer. The urinary concentrations were adjusted with creatinine. The association between maternal concentrations of BPA and birth outcomes was estimated using the logistic regression model. Results: The detection rate of BPA is 99%; the concentration ranges (μg/g) from 0.16 to 46.90. The mean (SD) BPA levels are 5.37(6.42) μg/g creatinine. The mean ±SD of the body weight, body length, head circumference, chest circumference and gestational age at birth are 3105.18 ± 339.53 g, 49.33 ± 1.90 cm, 34.16 ± 1.06 cm, 32.34 ± 1.37 cm and 38.58 ± 1.37 weeks, respectively. After stratifying the exposure levels into two groups by median, pregnant women in higher exposure group would have an increased risk of lower body weight (OR=0.57, 95%CI=0.271-1.193), smaller chest circumference (OR=0.70, 95%CI=0.335-1.47) and shorter gestational age at birth newborn (OR=0.46, 95%CI=0.191-1.114). However, there are no associations between BPA concentration and birth outcomes reach a significant level (p < 0.05) in statistics. Conclusions: This study presents prenatal BPA profiles and infants in northern Taiwan. Women who have higher BPA concentrations tend to give birth to lower body weight, smaller chest circumference or shorter gestational age at birth newborn. More data will be included to verify the results. This report will also present the predictors of BPA concentrations for pregnant women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20A" title="bisphenol A">bisphenol A</a>, <a href="https://publications.waset.org/abstracts/search?q=birth%20outcomes" title=" birth outcomes"> birth outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=biomonitoring" title=" biomonitoring"> biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=prenatal%20exposure" title=" prenatal exposure"> prenatal exposure</a> </p> <a href="https://publications.waset.org/abstracts/104828/maternal-exposure-to-bisphenol-a-and-its-association-with-birth-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Prenatal Paraben Exposure Impacts Infant Overweight Development and in vitro Adipogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beate%20Englich">Beate Englich</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Schlittenbauer"> Linda Schlittenbauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christiane%20Pfeifer"> Christiane Pfeifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Kratochvil"> Isabel Kratochvil</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Borte"> Michael Borte</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20I.%20Stangl"> Gabriele I. Stangl</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20von%20Bergen"> Martin von Bergen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thorsten%20Reemtsma"> Thorsten Reemtsma</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Lehmann"> Irina Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristin%20M.%20Junge"> Kristin M. Junge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worldwide production of endocrine disrupting compounds (EDC) has risen dramatically over the last decades, as so has the prevalence for obesity. Many EDCs are believed to contribute to this obesity epidemic, by enhancing adipogenesis or disrupting relevant metabolism. This effect is most tremendous in the early prenatal period when priming effects find a highly vulnerable time window. Therefore, we investigate the impact of parabens on childhood overweight development and adipogenesis in general. Parabens are ester of 4-hydroxy-benzoic acid and part of many cosmetic products or food packing. Therefore, ubiquitous exposure can be found in the westernized world, with exposure already starting during the sensitive prenatal period. We assessed maternal cosmetic product consumption, prenatal paraben exposure and infant BMI z-scores in the prospective German LINA cohort. In detail, maternal urinary concentrations (34 weeks of gestation) of methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP) and n-butyl paraben (BuP) were quantified using UPLC-MS/MS. Body weight and height of their children was assessed during annual clinical visits. Further, we investigated the direct influence of those parabens on adipogenesis in-vitro using a human mesenchymal stem cell (MSC) differentiation assay to mimic a prenatal exposure scenario. MSC were exposed to 0.1 – 50 µM paraben during the entire differentiation period. Differentiation outcome was monitored by impedance spectrometry, real-time PCR and triglyceride staining. We found that maternal cosmetic product consumption was highly correlated with urinary paraben concentrations at pregnancy. Further, prenatal paraben exposure was linked to higher BMI Z-scores in children. Our in-vitro analysis revealed that especially the long chained paraben BuP stimulates adipogenesis by increasing the expression of adipocyte specific genes (PPARγ, ADIPOQ, LPL, etc.) and triglyceride storage. Moreover, we found that adiponectin secretion is increased whereas leptin secretion is reduced under BuP exposure in-vitro. Further mechanistic analysis for receptor binding and activation of PPARγ and other key players in adipogenesis are currently in process. We conclude that maternal cosmetic product consumption is linked to prenatal paraben exposure of children and contributes to the development of infant overweight development by triggering key pathways of adipogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adipogenesis" title="adipogenesis">adipogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptors" title=" endocrine disruptors"> endocrine disruptors</a>, <a href="https://publications.waset.org/abstracts/search?q=paraben" title=" paraben"> paraben</a>, <a href="https://publications.waset.org/abstracts/search?q=prenatal%20exposure" title=" prenatal exposure"> prenatal exposure</a> </p> <a href="https://publications.waset.org/abstracts/59000/prenatal-paraben-exposure-impacts-infant-overweight-development-and-in-vitro-adipogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Endocrine Disruptors Effects on the 20-Hydroxyecdysone Concentration and the Vitellogenin Gene Expression in Gammarus sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Gismondi">Eric Gismondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelie%20Bigot-Clivot"> Aurelie Bigot-Clivot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endocrine disruptors (EDCs) are well known to disrupt the development and the reproduction of exposed organisms. Although this point has been studied in vertebrate models, the limited knowledge of the endocrine system of invertebrates makes the evaluation of EDCs effects difficult. However, invertebrates represent the major part of aquatic ecosystems, such as amphipods Gammaridea, which are crucial for their functioning (e.g., litter degradation, food resource). Moreover, gammarids are hosts of parasites such as vertically-transmitted microsporidia (microsporidia VT), which could be confounding factors in assessment of EDC effects. Indeed, some microsporidia VT could have endocrine effects by their own present in the host since it was observed for example, a feminization of juvenile males, which become phenotypic females. This work evaluated the impact of ethinylestradiol (EE₂, estrogenic), cyproterone acetate (CPA, anti-androgenic), 4-hydroxytamoxifen (4HT, anti-estrogenic) and 17α-methyltestosterone (17MT - androgenic), on the 20-hydroxyecdysone concentration (i.e. 20HE - molt process) and the vitellogenin gene expression (i.e. reproduction) in the freshwater amphipod Gammarus pulex, after a 96h laboratory exposure. In addition, the presence of microsporidia VT was verified in order to analyze the effect of this confounding factor. Results of this study shown that, although endocrine systems of invertebrates and vertebrates are different, EDCs proved in vertebrates could also affect biological functions hormonally controlled in invertebrates. Indeed, the molt process of crustaceans was disrupted in the first stage (i.e. 20-HE concentration) and therefore, could affect, at the long term, the population dynamic. In addition, it was observed that G. pulex was differently impacted according to the gender and parasitism, which underline the importance to take into account these confounding factors to better evaluate the EDCs impact on invertebrate populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruption" title="endocrine disruption">endocrine disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=gammarus%20sp." title=" gammarus sp."> gammarus sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=molt" title=" molt"> molt</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitism" title=" parasitism"> parasitism</a> </p> <a href="https://publications.waset.org/abstracts/79158/endocrine-disruptors-effects-on-the-20-hydroxyecdysone-concentration-and-the-vitellogenin-gene-expression-in-gammarus-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Endocrine Therapy-Induced Alopecia in Patients with Breast Cancer in Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Zribi">Aref Zribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Ben%20Nasr"> Sonia Ben Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Fendri"> Sana Fendri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Balti"> Mahdi Balti</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderazzek%20Haddaoui"> Abderazzek Haddaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Despite their benefit, Endocrine therapies (ET) are known to have substantial adverse events (AEs) such as hot flashes, mood disorders and osteoarticular pain. ET induced alopecia(EIA) is less frequently noted by patients and is less reported in the literature. The aim of our study was to report ET alopecia characteristics and their influence on patient and treatment observance. Method: We conducted a retrospective study including luminal BC patients treated in the oncology department of the military hospital of Tunis between January 2015 and December 2020. Patients treated with previous chemotherapy-inducing alopecia were excluded. Results: 145 female patients were included. The median age was 59 years. EIA was reported in 44% of cases. Alopecia was attributed to aromatase inhibitors in 53% and tamoxifen in 21%. Severity was grade 1 in 80% and grade 2 in the remaining cases. ET discontinuation because of alopecia was noted in 6.5 % of patients. Moderate improvement of alopecia was observed with topical minoxidil and Thallium metallicum 9CH homeopathy during ET in 60% of patients. Conclusions: EIA is frequent in BC patients and should be considered to improve treatment observance and patients’ quality of life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine%20therapy" title="endocrine therapy">endocrine therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=alopecia" title=" alopecia"> alopecia</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/137492/endocrine-therapy-induced-alopecia-in-patients-with-breast-cancer-in-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Phthalate Exposure among Roma Population in Slovakia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslava%20%C5%A0idlovsk%C3%A1">Miroslava Šidlovská</a>, <a href="https://publications.waset.org/abstracts/search?q=Ida%20Petrovi%C4%8Dov%C3%A1"> Ida Petrovičová</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Pilka"> Tomáš Pilka</a>, <a href="https://publications.waset.org/abstracts/search?q=Branislav%20Kolena"> Branislav Kolena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phthalates are ubiquitous environmental pollutants well-known because of their endocrine disrupting activity in human organism. The aim of our study was, by biological monitoring, investigate exposure to phthalates of Roma ethnicity group i.e. children and adults from 5 families (n=29, average age 11.8 ± 7.6 years) living in western Slovakia. Additionally, we analysed some associations between anthropometric measures, questionnaire data i.e. socio-economic status, eating and drinking habits, practise of personal care products and household conditions in comparison with concentrations of phthalate metabolites. We used for analysis of urine samples high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) to determine concentrations of phthalate metabolites monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) and mono(2-etylhexyl) phthalate (MEHP). Our results indicate that ethnicity, lower socioeconomic status and different housing conditions in Roma population can affect urinary concentration of phthalate metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomonitoring" title="biomonitoring">biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnicity" title=" ethnicity"> ethnicity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20exposure" title=" human exposure"> human exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=phthalate%20metabolites" title=" phthalate metabolites"> phthalate metabolites</a> </p> <a href="https://publications.waset.org/abstracts/27331/phthalate-exposure-among-roma-population-in-slovakia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Steps of the Pancreatic Differentiation in the Grass Snake (Natrix natrix) Embryos </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Kowalska">Magdalena Kowalska</a>, <a href="https://publications.waset.org/abstracts/search?q=Weronika%20Rupik"> Weronika Rupik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pancreas is an important organ present in all vertebrate species. It contains two different tissues, exocrine and endocrine, that act as two glands in one. The development and differentiation of the pancreas in reptiles is poorly known in comparison to other vertebrates. Therefore, the aim of this study was to investigate the particular steps concerning the differentiation of the pancreas in the grass snake (Natrix natrix) embryos. For this, histological methods (including hematoxylin and eosin, and Heidenhain's AZAN staining), transmission electron microscopy and three-dimensional (3D) reconstructions from serial paraffin sections were used. The results of this study indicated that the first step of pancreas development in Natrix was the connection of the two pancreatic buds: dorsal and ventral one. Then, duct walls in both buds started to be remodeled from the multilayered to single-layered epithelium. This remodeling started in the dorsal bud and was simultaneously with the differentiation of the duct lumens which occurred by the cavition. During this process, the cells that had no contact with the mesenchyme underwent cell death named anoikis. These findings indicated that the walls of ducts in the embryonic pancreas of the grass snake were initially formed by the abundant principal and single endocrine cells. Later the basal and goblet cells differentiated. Among the endocrine cells, as the first the B and A cells differentiated, then the D and PP cells. The next step of the pancreatic development was the withdrawing of the endocrine cells from the duct walls to form the pancreatic islets. The endocrine cells and islets were found only in the dorsal part of the pancreas in Natrix embryos what is different than in other vertebrate species. The islets were formed mainly by the A cells. Simultaneously, with the differentiation of the endocrine pancreas, the acinar tissue started to differentiate. The source of the acinar cells were pancreatic ducts similar as in other vertebrates. The acini formation began at the proximal part of the pancreas and went towards the caudal direction. Differentiating pancreatic ducts developed into the branched system that can be divided into extralobular, intralobular, and intercalated ducts, similarly as in other vertebrate species. However, the pattern of branching was different. In conclusions, particular steps of the pancreas differentiation in the grass snake were different than in other vertebrates. It can be supposed that these differences are related to the specific topography of the snake’s internal organs and their taxonomy position. All specimens used in the study were captured according to the Polish regulations concerning the protection of wild species. Permission was granted by the Local Ethics Commission in Katowice (41/2010; 87/2015) and the Regional Directorate for Environmental Protection in Katowice (WPN.6401.257.2015.DC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embryogenesis" title="embryogenesis">embryogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=organogenesis" title=" organogenesis"> organogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreas" title=" pancreas"> pancreas</a>, <a href="https://publications.waset.org/abstracts/search?q=Squamata" title=" Squamata"> Squamata</a> </p> <a href="https://publications.waset.org/abstracts/87270/steps-of-the-pancreatic-differentiation-in-the-grass-snake-natrix-natrix-embryos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beata%20Jackowska-Zduniak">Beata Jackowska-Zduniak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equations" title=" ordinary differential equations"> ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20system" title=" endocrine system"> endocrine system</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20differential%20equation" title=" delay differential equation"> delay differential equation</a> </p> <a href="https://publications.waset.org/abstracts/52938/stability-analysis-for-an-extended-model-of-the-hypothalamus-pituitary-thyroid-axis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Association of Selected Biochemical Markers and Body Mass Index in Women with Endocrine Disorders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mydl%C3%A1rov%C3%A1%20Bla%C5%A1%C4%8D%C3%A1kov%C3%A1">M. Mydlárová Blaščáková</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bernasovsk%C3%A1"> J. Bernasovská</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Por%C3%A1%C4%8Dov%C3%A1"> J. Poráčová</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Boro%C5%88ov%C3%A1"> I. Boroňová </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is frequent attendant phenomenon of patients with endocrinological disease. Between BMI and endocrinological diseases is close correlation. In thesis we focused on the allocation of hormone concentration – PTH and TSH, CHOL a mineral element Ca in a blood serum. The examined group was formed by 100 respondents (women) aged 36 – 83 years, who were divided into two groups – control group (CG), group with diagnosed endocrine disease (DED). The concentration of PTH and TSH, Ca and CHOL was measured through the medium of analyzers Cobas e411 (Japan); Cobas Integra 400 (Switzerland). At individuals was measured body weight as well as stature and thereupon from those data we enumerated BMI. On the basis of Student T-test in biochemical parameter of PTH and Ca we found out significantly meaningful difference (p<0,05) between CG and DED. In CG we made a founding the association between BMI and PTH by means of correlation analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20markers" title="biochemical markers">biochemical markers</a>, <a href="https://publications.waset.org/abstracts/search?q=hormones" title=" hormones"> hormones</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=women" title=" women"> women</a> </p> <a href="https://publications.waset.org/abstracts/13195/association-of-selected-biochemical-markers-and-body-mass-index-in-women-with-endocrine-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Parabens, Paraben Metabolites and Triclocarban in Sediment Samples from the Trondheim Fjord, Norway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristine%20Vike-Jonas">Kristine Vike-Jonas</a>, <a href="https://publications.waset.org/abstracts/search?q=Susana%20V.%20Gonzalez"> Susana V. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olav%20L.%20Bakkerud"> Olav L. Bakkerud</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoline%20S.%20Gjelstad"> Karoline S. Gjelstad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20N.%20Aslam"> Shazia N. Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98yvind%20Mikkelsen"> Øyvind Mikkelsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Asimakopoulos"> Alexandros Asimakopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> P-hydrobenzoic acid esters (parabens), paraben metabolites, and triclocarban (TCC) are a group of synthetic antimicrobials classified as endocrine disrupting chemicals (EDCs) and emerging pollutants. The aim of this study was to investigate the levels of these compounds in sediment near the effluent of a wastewater treatment plant (WWTP) in the Trondheim Fjord, Norway. Paraben, paraben metabolites, and TCC are high volume production chemicals that are found in a range of consumer products, especially pharmaceuticals and personal care products (PCPs). In this study, six parabens (methyl paraben; MeP, ethyl paraben; EtP, propyl paraben; PrP, butyl paraben; BuP, benzyl paraben; BezP, heptyl paraben; HeP), four paraben metabolites (4-hydroxybenzoic acid; 4-HB, 3,4-dihydroxybenzoic acid; 3,4-DHB, methyl protocatechuic acid; OH-MeP, ethyl protocatechuic acid; OH-EtP) and TCC were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in 64 sediment samples from 10 different locations outside Trondheim, Norway. Of these 11 target analytes, four were detected in 40 % or more of the samples. The sum of six parabens (∑Parabens), four paraben metabolites (∑Metabolites) and TCC in sediment ranged from 4.88 to 11.56 (mean 6.81) ng/g, 52.16 to 368.28 (mean 93.89) ng/g and 0.53 to 3.65 (mean 1.50) ng/g dry sediment, respectively. Pearson correlation coefficients indicated that TCC was positively correlated with OH-MeP, but negatively correlated with 4-HB. To the best of the author’s knowledge, this is the first time parabens, paraben metabolites and TCC have been reported in the Trondheim Fjord. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabens" title="parabens">parabens</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20mass%20spectrometry" title=" tandem mass spectrometry"> tandem mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/113904/parabens-paraben-metabolites-and-triclocarban-in-sediment-samples-from-the-trondheim-fjord-norway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> The Exposure to Endocrine Disruptors during Pregnancy and Relation to Steroid Hormones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Kolatorova">L. Kolatorova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vitku"> J. Vitku</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Adamcova"> K. Adamcova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Simkova"> M. Simkova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hill"> M. Hill</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Parizek"> A. Parizek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Duskova"> M. Duskova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endocrine disruptors (EDs) are substances leaching from various industrial products, which are able to interfere with the endocrine system. Their harmful effects on human health are generally well-known, and exposure during fetal development may have lasting effects. Fetal exposure and transplacental transport of bisphenol A (BPA) have been recently studied; however, less is known about alternatives such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF), which have started to appear in consumer products. The human organism is usually exposed to the mixture of EDs, out of which parabens are otherwise known to transfer placenta. The usage of many cosmetic, pharmaceutical and consumer products during the pregnancy that may contain parabens and bisphenols has led to the need for investigation. The aim of the study was to investigate the transplacental transport of BPA, its alternatives, and parabens, and to study their relation to fetal steroidogenesis. BPA, BPS, BPF, BPAF, methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben and 15 steroids including estrogens, corticoids, androgens and immunomodulatory ones were determined in 27 maternal (37th week of gestation) and cord plasma samples using liquid chromatography - tandem mass spectrometry methods. The statistical evaluation of the results showed significantly higher levels of BPA (p=0.0455) in cord plasma compared to maternal plasma. The results from multiple regression models investigated that in cord plasma, methylparaben, propylparaben and the sum of all measured parabens were inversely associated with testosterone levels. To our best knowledge, this study is the first attempt to determine the levels of alternative bisphenols in the maternal and cord blood, and also the first study reporting the simultaneous detection of bisphenols, parabens, and steroids in these biological fluids. Our study confirmed the transplacental transport of BPA, with likely accumulation in the fetal compartment. The negative association of cord blood parabens and testosterone levels highlights their possible risks, especially for the development of male fetuses. Acknowledgements: This work was supported by the project MH CR 17-30528 A from the Czech Health Research Council, MH CZ - DRO (Institute of Endocrinology - EÚ, 00023761) and by the MEYS CR (OP RDE, Excellent research - ENDO.CZ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol" title="bisphenol">bisphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptor" title=" endocrine disruptor"> endocrine disruptor</a>, <a href="https://publications.waset.org/abstracts/search?q=paraben" title=" paraben"> paraben</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=steroid" title=" steroid"> steroid</a> </p> <a href="https://publications.waset.org/abstracts/83878/the-exposure-to-endocrine-disruptors-during-pregnancy-and-relation-to-steroid-hormones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition Inhibits by INT3 &amp; Quercetin in MCF7 Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradhan">D. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tripathy"> G. Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pradhan"> S. Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Imperviousness gainst estrogen treatments is a noteworthy reason for infection backslide and mortality in estrogen receptor alpha (ERα)- positive breast diseases. Tamoxifen or estrogen withdrawal builds the reliance of breast malignancy cells on INT3 flagging. Here, we researched the commitment of Quercetin and INT3 motioning in endocrine-safe breast tumor cells. Methods: We utilized two models of endocrine treatments safe (ETR) breast tumor: Tamoxifen-safe (TamR) and long haul estrogen-denied (LTED) MCF7 cells. We assessed the transitory and intrusive limit of these cells by Transwell cells. Articulation of epithelial to mesenchymal move (EMT) controllers and in addition INT3 receptors and targets were assessed by constant PCR and western smudge investigation. Besides, we tried in-vitro hostile to Quercetin monoclonal Antibodies (mAbs) and Gamma Secretase Inhibitors (GSIs) as potential EMT inversion remedial specialists. At last, we created stable Quercetin overexpressing MCF7 cells and assessed their EMT components and reaction to Tamoxifen. Results: We found that ETR cells procured an Epithelial to Mesenchymal move (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we distinguished more elevated amount of INT3 however lower levels of INT1 and INT3 proposing a change to motioning through distinctive INT3 receptors after obtaining of resistance. Against Quercetin monoclonal antibodies and the GSI PF03084014 were powerful in obstructing the Quercetin/INT3 pivot and in part repressing the EMT process. As a consequence of this, cell relocation and attack were weakened and the immature microorganism like populace was essentially decreased. Hereditary hushing of Quercetin and INT3 prompted proportionate impacts. At long last, stable overexpression of Quercetin was adequate to make MCF7 lethargic to Tamoxifen by INT3 initiation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives intrusive conduct. Hostile to Quercetin mAbs and GSI PF03084014 lessen articulation of EMT particles decreasing cell obtrusiveness. Quercetin overexpression instigates Tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and INT3 warrants further clinical Correlation as substantial restorative methodologies in endocrine-safe breast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endocrine" title="endocrine">endocrine</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelial" title=" epithelial"> epithelial</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal" title=" mesenchymal"> mesenchymal</a>, <a href="https://publications.waset.org/abstracts/search?q=INT3" title=" INT3"> INT3</a>, <a href="https://publications.waset.org/abstracts/search?q=quercetin" title=" quercetin"> quercetin</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a> </p> <a href="https://publications.waset.org/abstracts/43473/endocrine-therapy-resistance-and-epithelial-to-mesenchymal-transition-inhibits-by-int3-quercetin-in-mcf7-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Estimation of Level of Pesticide in Recurrent Pregnancy Loss and Its Correlation with Paraoxanase1 Gene in North Indian Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurva%20Singh">Apurva Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Jaiswar"> S. P. Jaiswar</a>, <a href="https://publications.waset.org/abstracts/search?q=Apala%20Priyadarshini"> Apala Priyadarshini</a>, <a href="https://publications.waset.org/abstracts/search?q=Akancha%20Pandey"> Akancha Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study is to find the association of PON1 gene polymorphism with pesticides In RPL subjects. Background: Recurrent pregnancy loss (RPL) is defined as three or more sequential abortions before the 20th week of gestation. Pesticides and its derivatives (organochlorine and organophosphate) are proposed to accommodate a ruler chemical for RPL in the sub-humid region of India. The paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity Methodology: This is a case-control study done in Department of Obstetrics & Gynaecology & Department of Biochemistry, K.G.M.U, Lucknow, India. The subjects were enrolled after fulfilling the inclusion & exclusion criteria. Inclusion criteria: Cases- Subject having two or more spontaneous abortions & Control- Healthy female having one or more alive child was selected. Exclusion criteria: Cases & Control- Subject having the following disease will be excluded from the study Diabetes mellitus, Hypertension, Tuberculosis, Immunocompromised patients, any endocrine disorder and genital, colon or breast cancer any other malignancies. Blood samples were collected in EDTA tubes from cases & healthy control women & genomic DNA was extracted by phenol-chloroform method. The estimation of pesticides residue from blood was done by HPLC. Biochemical estimation was also performed. Genotyping of PON1 gene polymorphism was performed by RFLP. Statistical analysis of the data was performed using the SPSS16.3 software. Results: A sum of total 14 pesticides (12 organochlorine and 2 organophosphate) selected on the basis of their persistent nature and consumption rate. The significant level of pesticide (ppb) estimated by the Mann whiney test and it was found to be significant at higher level of β-HCH (p:0.04), γ-HCH (p:0.001), δ-HCH (p: 0.002), chloropyrifos (p:0.001), pp-DDD (p:0.001) and fenvalrate (p: 0.001) in case group compare to its control. The level of antioxidant enzymes were found to be significantly decreased among the cases. Wild homozygous TT was more frequent and prevalent among control groups. However, heterozygous group (Tt) was more in cases than control groups (CI-0.3-1.3) (p=0.06). Conclusion: Higher levels of pesticides with endocrine disrupting potential in cases indicate the possible role of these compounds as one of the causes of recurrent pregnancy loss. Possibly, increased pesticide level appears to indicate increased levels of oxidative damage that has been associated with the possible cause of Recurrent Miscarriage, it may reflect indirect evidence of toxicity rather than the direct cause. Since both factors are reported to increase risk, individuals with higher levels of these 'Toxic compounds' especially in 'high-risk genotypes' might be more susceptible to recurrent pregnancy loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraoxonase" title="paraoxonase">paraoxonase</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=PON1" title=" PON1"> PON1</a>, <a href="https://publications.waset.org/abstracts/search?q=RPL" title=" RPL"> RPL</a> </p> <a href="https://publications.waset.org/abstracts/92157/estimation-of-level-of-pesticide-in-recurrent-pregnancy-loss-and-its-correlation-with-paraoxanase1-gene-in-north-indian-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> An Electron Microscopic Study of Developing Human Fetal Pancreas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gupta%20Renu">Gupta Renu</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Roy"> T. S. Roy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: For the prospect of successful replacement therapies in treatment of Diabetes mallitus it is necessary to know events occurring during normal human pancreas development. Literature of human pancreas development are few in number as well as mainly related to first trimester because of ethical and technical difficulties. So the study was conducted on 12 fetuses from 12 gestational weeks (GW) to 5 months of infant to know normal development of exocrine and endocrine part of human pancreas. Material and Methods: Human fetalpancreases were screened by haematoxyline and eosin staining and done electron microscopy for suitable specimens to know ultrastructural detail of fetal pancreas. Results:It was observed arborized tubules, the cells budding out from these tubules differentiated into primitive acini and islets in 12thGW. At 14 weeks scanty granules were observed in the endocrine cells which coincided with the capillary invasion of the islets. The ducts and acini were surrounded by well-organized connective tissue. The acinihad elongated cells, small amount of cytoplasm and large open face euchromatic nuclei with single nucleolus. The mature form of islets of Langerhans was observed close to the acini and duct in 20 GW fetus. Connective tissue around the duct was well organized.No significant developmental change was observed early postnatal, infant. Conclusion: The development of both component exocrine as well as endocrine part of human fetal pancreas was studied by light and electron microscopy. Observations suggested that the fetal pancreas contained mainly ducts, few acini, many centroacinar cells, and large undifferentiated tissue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gestational%20weeks%20%28GW%29" title="gestational weeks (GW)">gestational weeks (GW)</a>, <a href="https://publications.waset.org/abstracts/search?q=acini" title=" acini"> acini</a>, <a href="https://publications.waset.org/abstracts/search?q=islets%20of%20Langerhans" title=" islets of Langerhans"> islets of Langerhans</a>, <a href="https://publications.waset.org/abstracts/search?q=ducts" title=" ducts"> ducts</a> </p> <a href="https://publications.waset.org/abstracts/24748/an-electron-microscopic-study-of-developing-human-fetal-pancreas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20J.%20Calleja">Sergio J. Calleja</a>, <a href="https://publications.waset.org/abstracts/search?q=Adria%20Roca"> Adria Roca</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20D.%20Santotoribio"> José D. Santotoribio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20medicine" title=" laboratory medicine"> laboratory medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title=" non-invasive"> non-invasive</a> </p> <a href="https://publications.waset.org/abstracts/191902/an-evidence-based-laboratory-medicine-eblm-test-to-help-doctors-in-the-assessment-of-the-pancreatic-endocrine-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Bisphenol-A Concentrations in Urine and Drinking Water Samples of Adults Living in Ankara</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Atakan%20Sengul">Hasan Atakan Sengul</a>, <a href="https://publications.waset.org/abstracts/search?q=Nergis%20Canturk"> Nergis Canturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Erbas"> Bahar Erbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drinking water is indispensable for life. With increasing awareness of communities, the content of drinking water and tap water has been a matter of curiosity. The presence of Bisphenol-A is the top one when content curiosity is concerned. The most used chemical worldwide for production of polycarbonate plastics and epoxy resins is Bisphenol-A. People are exposed to Bisphenol-A chemical, which disrupts the endocrine system, almost every day. Each year it is manufactured an average of 5.4 billion kilograms of Bisphenol-A. Linear formula of Bisphenol-A is (CH₃)₂C(C₆H₄OH)₂, its molecular weight is 228.29 and CAS number is 80-05-7. Bisphenol-A is known to be used in the manufacturing of plastics, along with various chemicals. Bisphenol-A, an industrial chemical, is used in the raw materials of packaging mate-rials in the monomers of polycarbonate and epoxy resins. The pass through the nutrients of Bisphenol-A substance happens by packaging. This substance contaminates with nutrition and penetrates into body by consuming. International researches show that BPA is transported through body fluids, leading to hormonal disorders in animals. Experimental studies on animals report that BPA exposure also affects the gender of the newborn and its time to reach adolescence. The extent to what similar endocrine disrupting effects are on humans is a debate topic in many researches. In our country, detailed studies on BPA have not been done. However, it is observed that 'BPA-free' phrases are beginning to appear on plastic packaging such as baby products and water carboys. Accordingly, this situation increases the interest of the society about the subject; yet it causes information pollution. In our country, all national and international studies on exposure to BPA have been examined and Ankara province has been designated as testing region. To assess the effects of plastic use in daily habits of people and the plastic amounts removed out of the body, the results of the survey conducted with volunteers who live in Ankara has been analyzed with Sciex appliance by means of LC-MS/MS in the laboratory and the amount of exposure and BPA removal have been detected by comparing the results elicited before. The results have been compared with similar studies done in international arena and the relation between them has been exhibited. Consequently, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine. This has also revealed that environmental exposure and the habits of daily plastic use have also direct effects a human body. When the amount of BPA in drinking water is considered; minimum 0.028 µg/L, maximum 1.136 µg/L, mean 0.29194 µg/L and SD(standard deviation)= 0.199 have been detected. When the amount of BPA in urine is considered; minimum 0.028 µg/L, maximum 0.48 µg/L, mean 0.19181 µg/L and SD= 0.099 have been detected. In conclusion, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine (r= -0.151). The p value of the comparison between drinking water’s and urine’s BPA amounts is 0.004 which shows that there is a significant change and the amounts of BPA in urine is dependent on the amounts in drinking waters (p < 0.05). This has revealed that environmental exposure and daily plastic habits have also direct effects on the human body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analyze%20of%20bisphenol-A" title="analyze of bisphenol-A">analyze of bisphenol-A</a>, <a href="https://publications.waset.org/abstracts/search?q=BPA" title=" BPA"> BPA</a>, <a href="https://publications.waset.org/abstracts/search?q=BPA%20in%20drinking%20water" title=" BPA in drinking water"> BPA in drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=BPA%20in%20urine" title=" BPA in urine"> BPA in urine</a> </p> <a href="https://publications.waset.org/abstracts/104074/bisphenol-a-concentrations-in-urine-and-drinking-water-samples-of-adults-living-in-ankara" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Evaluation of Gene Expression after in Vitro Differentiation of Human Bone Marrow-Derived Stem Cells to Insulin-Producing Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Zakaria">Mahmoud M. Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20F.%20Elmoursi"> Omnia F. Elmoursi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Gabr"> Mahmoud M. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Camelia%20A.%20AbdelMalak"> Camelia A. AbdelMalak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Ghoneim"> Mohamed A. Ghoneim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many protocols were publicized for differentiation of human mesenchymal stem cells (MSCS) into insulin-producing cells (IPCs) in order to excrete insulin hormone ingoing to treat diabetes disease. Our aim is to evaluate relative gene expression for each independent protocol. Human bone marrow cells were derived from three volunteers that suffer diabetes disease. After expansion of mesenchymal stem cells, differentiation of these cells was done by three different protocols (the one-step protocol was used conophylline protein, the two steps protocol was depending on trichostatin-A, and the three-step protocol was started by beta-mercaptoethanol). Evaluation of gene expression was carried out by real-time PCR: Pancreatic endocrine genes, transcription factors, glucose transporter, precursor markers, pancreatic enzymes, proteolytic cleavage, extracellular matrix and cell surface protein. Quantitation of insulin secretion was detected by immunofluorescence technique in 24-well plate. Most of the genes studied were up-regulated in the in vitro differentiated cells, and also insulin production was observed in the three independent protocols. There were some slight increases in expression of endocrine mRNA of two-step protocol and its insulin production. So, the two-step protocol was showed a more efficient in expressing of pancreatic endocrine genes and its insulin production than the other two protocols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title="mesenchymal stem cells">mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20producing%20cells" title=" insulin producing cells"> insulin producing cells</a>, <a href="https://publications.waset.org/abstracts/search?q=conophylline%20protein" title=" conophylline protein"> conophylline protein</a>, <a href="https://publications.waset.org/abstracts/search?q=trichostatin-A" title=" trichostatin-A"> trichostatin-A</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-mercaptoethanol" title=" beta-mercaptoethanol"> beta-mercaptoethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=immunofluorescence%20technique" title=" immunofluorescence technique"> immunofluorescence technique</a> </p> <a href="https://publications.waset.org/abstracts/85954/evaluation-of-gene-expression-after-in-vitro-differentiation-of-human-bone-marrow-derived-stem-cells-to-insulin-producing-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> A Small-Molecular Inhibitor of Influenza Virus via Disrupting the PA and PB1 Interaction of the Viral Polymerase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuofeng%20Yuan">Shuofeng Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojian%20Zheng"> Bojian Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assembly of the heterotrimeric polymerase complex of influenza virus from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication, in which the interaction between the N-terminal of PB1 (PB1N) and the C terminal of PA (PAC) may be a desired target for antiviral development. In this study, we first compared the feasibility of high throughput screening by enzyme-linked immunosorbent assay (ELISA) and fluorescence polarization (FP) assay. Among the two, ELISA was demonstrated to own broader dynamic range so that it was used for screening inhibitors, which blocked PA and PB1 interaction. Several binding inhibitors of PAC-PB1N were identified and subsequently tested for the antiviral efficacy. Apparently, 3-(2-chlorophenyl)-6-ethyl-7-methyl[1,2,4]triazolo[4,3-a]pyrimidin-5-ol, designated ANA-1, was found to be a strong inhibitor of PAC-PB1N interaction and act as a potent antiviral agent against the infections of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2 subtypes, in cell cultures. Intranasal administration of ANA-1 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted that ANA-1 bound to an allosteric site of PAC, which would cause conformational changes thereby disrupting the PAC-PB1N interaction. Overall, our study has identified a novel compound with potential to be developed as an anti-influenza drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influenza" title="influenza">influenza</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20polymerase" title=" viral polymerase"> viral polymerase</a>, <a href="https://publications.waset.org/abstracts/search?q=compounds" title=" compounds"> compounds</a> </p> <a href="https://publications.waset.org/abstracts/38070/a-small-molecular-inhibitor-of-influenza-virus-via-disrupting-the-pa-and-pb1-interaction-of-the-viral-polymerase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=endocrine%20disrupting&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10