CINXE.COM
Search results for: auscultation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: auscultation</title> <meta name="description" content="Search results for: auscultation"> <meta name="keywords" content="auscultation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="auscultation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="auscultation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: auscultation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Strengthening of Bridges by Additional Prestressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouhaloufa">A. Bouhaloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kadri"> T. Kadri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zouaoui"> S. Zouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belhacene"> A. Belhacene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To put more durable bridges, it is important to maintain existing structures, rather than investing in new structures. Instead of demolishing the old bridge and replace them with new, we must preserve and upgrade using better methods of diagnosis, auscultation and repair, the interest of this work is to increase the bearing capacity bridges damaged by additional prestressing, this type of reinforcement is growing continuously. In addition to excellent static strength, prestressing also has a very high resistance to fatigue, so it is suitable to solve the problem of failure of the bearing capacity of the bridges. This failure often comes to the development of overloads in quantity and quality, that is our daily traffic has increased and become very complicated, on the other hand its constituents are advanced in weight and speed and therefore almost all old bridges became unable to support the movement of the latter and remain disabled to all these problems. The main purpose of this work includes the following three aspects: - Determination of the main diseases and factors affecting the deterioration of bridges in Algeria, - Evaluation of the bearing capacity of bridges, - Proposal technical reinforcement to improve the bearing capacity of a degraded structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridges" title="bridges">bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=auscultation" title=" auscultation"> auscultation</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=pathology" title=" pathology"> pathology</a>, <a href="https://publications.waset.org/abstracts/search?q=additional%20prestressing" title=" additional prestressing"> additional prestressing</a> </p> <a href="https://publications.waset.org/abstracts/21068/strengthening-of-bridges-by-additional-prestressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Android – Based Wireless Electronic Stethoscope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aw%20Adi%20Arryansyah">Aw Adi Arryansyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using electronic stethoscope for detecting heartbeat sound, and breath sounds, are the effective way to investigate cardiovascular diseases. On the other side, technology is growing towards mobile. Almost everyone has a smartphone. Smartphone has many platforms. Creating mobile applications also became easier. We also can use HTML5 technology to creating mobile apps. Android is the most widely used type. This is the reason for us to make a wireless electronic stethoscope based on Android mobile. Android based Wireless Electronic Stethoscope designed by a simple system, uses sound sensors mounted membrane, then connected with Bluetooth module which will send the heart auscultation voice input data by Bluetooth signal to an android platform. On the software side, android will read the voice input then it will translate to beautiful visualization and release the voice output which can be regulated about how much of it is going to be released. We can change the heart beat sound into BPM data, and heart beat analysis, like normal beat, bradycardia or tachycardia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless" title="wireless">wireless</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML%205" title=" HTML 5"> HTML 5</a>, <a href="https://publications.waset.org/abstracts/search?q=auscultation" title=" auscultation"> auscultation</a>, <a href="https://publications.waset.org/abstracts/search?q=bradycardia" title=" bradycardia"> bradycardia</a>, <a href="https://publications.waset.org/abstracts/search?q=tachycardia" title=" tachycardia"> tachycardia</a> </p> <a href="https://publications.waset.org/abstracts/36762/android-based-wireless-electronic-stethoscope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Masood%20Khan">Nadia Masood Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Salman%20Khan"> Muhammad Salman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gul%20Muhammad%20Khan"> Gul Muhammad Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title="pattern recognition">pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20diagnosis" title="computer aided diagnosis">computer aided diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20sound%20classification" title=" heart sound classification"> heart sound classification</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20feature%20extraction" title=" and feature extraction"> and feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/95434/automated-heart-sound-classification-from-unsegmented-phonocardiogram-signals-using-time-frequency-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daly%20M.%20J">Daly M. J</a>, <a href="https://publications.waset.org/abstracts/search?q=Condron%20C"> Condron C</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulhall%20C"> Mulhall C</a>, <a href="https://publications.waset.org/abstracts/search?q=Eppich%20W"> Eppich W</a>, <a href="https://publications.waset.org/abstracts/search?q=O%27Neill%20J."> O'Neill J.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiology" title="cardiology">cardiology</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20skills" title=" clinical skills"> clinical skills</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20case%20examination" title=" long case examination"> long case examination</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20simulation" title=" hybrid simulation"> hybrid simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=checklist" title=" checklist"> checklist</a> </p> <a href="https://publications.waset.org/abstracts/156873/diagnostic-clinical-skills-in-cardiology-improving-learning-and-performance-with-hybrid-simulation-scripted-histories-wearable-technology-and-quantitative-grading-the-assimilate-excellence-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Automated Recognition of Still’s Murmur in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukryool%20Kang">Sukryool Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20McConnaughey"> James McConnaughey</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Doroshow"> Robin Doroshow</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Shekhar"> Raj Shekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Still’s murmur, a vibratory heart murmur, is the most common normal innocent murmur of childhood. Many children with this murmur are unnecessarily referred for cardiology consultation and testing, which exacts a high cost financially and emotionally on the patients and their parents. Pediatricians to date are not successful at distinguishing Still’s murmur from murmurs of true heart disease. In this paper, we present a new algorithmic approach to distinguish Still’s murmur from pathological murmurs in children. We propose two distinct features, spectral width and signal power, which describe the sharpness of the spectrum and the signal intensity of the murmur, respectively. Seventy pediatric heart sound recordings of 41 Still’s and 29 pathological murmurs were used to develop and evaluate our algorithm that achieved a true positive rate of 97% and false positive rate of 0%. This approach would meet clinical standards in recognizing Still’s murmur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AR%20modeling" title="AR modeling">AR modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=auscultation" title=" auscultation"> auscultation</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20murmurs" title=" heart murmurs"> heart murmurs</a>, <a href="https://publications.waset.org/abstracts/search?q=Still%27s%20murmur" title=" Still's murmur"> Still's murmur</a> </p> <a href="https://publications.waset.org/abstracts/26956/automated-recognition-of-stills-murmur-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Robust Heart Sounds Segmentation Based on the Variation of the Phonocardiogram Curve Length</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mecheri%20Zeid%20Belmecheri">Mecheri Zeid Belmecheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Maamar%20Ahfir"> Maamar Ahfir</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzet%20Kale"> Izzet Kale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic cardiac auscultation is still a subject of research in order to establish an objective diagnosis. Recorded heart sounds as Phonocardiogram signals (PCG) can be used for automatic segmentation into components that have clinical meanings. These are the first sound, S1, the second sound, S2, and the systolic and diastolic components, respectively. In this paper, an automatic method is proposed for the robust segmentation of heart sounds. This method is based on calculating an intermediate sawtooth-shaped signal from the length variation of the recorded Phonocardiogram (PCG) signal in the time domain and, using its positive derivative function that is a binary signal in training a Recurrent Neural Network (RNN). Results obtained in the context of a large database of recorded PCGs with their simultaneously recorded ElectroCardioGrams (ECGs) from different patients in clinical settings, including normal and abnormal subjects, show a segmentation testing performance average of 76 % sensitivity and 94 % specificity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20sounds" title="heart sounds">heart sounds</a>, <a href="https://publications.waset.org/abstracts/search?q=PCG%20segmentation" title=" PCG segmentation"> PCG segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20detection" title=" event detection"> event detection</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=PCG%20curve%20length" title=" PCG curve length"> PCG curve length</a> </p> <a href="https://publications.waset.org/abstracts/157289/robust-heart-sounds-segmentation-based-on-the-variation-of-the-phonocardiogram-curve-length" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Obstructive Bronchitis and Pneumonia by a Mixed Infection of HPIV- 3, S. pneumoniae in an Immunocompromised 10M Infant: Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20Smilevska%20Spasova">Olga Smilevska Spasova</a>, <a href="https://publications.waset.org/abstracts/search?q=Katerina%20Boshkovska"> Katerina Boshkovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Gorica%20Popova"> Gorica Popova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Popovska"> Mirjana Popovska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pneumonia is an infection of the pulmonary parenchyma. HPIV 3 is one of four viruses that is a member of the Paramyxoviridae family designated types 1-4 that have a nonsegmented, single-stranded RNA genome with a lipid-containing envelope. They are spread from the respiratory tract by aerosolized secretions or by direct contact with secretions. Type 3 is endemic and can cause serious illness in immunocompromised patients. Illness caused by parainfluenza occurs shortly after inoculation with the virus. The level of immunoglobulin A antibody in serum is the best predictor of susceptibility to infection. Streptococcus pneumonia or pneumococcus is a Gram-positive, spherical bacteria, usually found in pairs and it is a member of the genus Streptococcus. Streptococcus pneumonia resides asymptomatically in healthy carriers typically colonizing the respiratory tract, sinuses, and nasal cavity. In individuals with weaker immune systems like young infants, pneumococcal bacterium is the most common cause of community-acquired pneumonia in the world. Case Report: The aim is to present a case of lower respiratory tract infection in an infant caused by parainfluenza virus 3, S. pneumonia and undifferentiated gram-negative bacteria that was successfully treated. The infant is with a history of recurrent episodes of wheezing in the past 3mounts.Infant of 10months presents 2weeks before admittance with high fever, runny nose, and cough. The primary pediatrician prescribed oral cefpodoxime for 10days and inhaled salbutamol. Two days before admittance in hospital the infant with high fever, cough, and difficulty breathing. At admittance, infant is pale, anxious with rapid respirations, cough, wheezing and tachycardia. On auscultation: vesicular breathing sounds with high pitched wheezing and on the right coarse crackles. Investigations: Blood analysis: RBC: 4, 7 x1012L, WBC: 8,3x109L: Neut: 42.73% Lym: 41.57%, Hgb: 9.38 g/dl MCV: 62.7fl, MCH: 20.0pg MCHC: 31.8 g/dl RDW: 18.7% Plt-307.9 x109LCRP: 2,5mg/l, serum iron-7.92umol/l, O2sat-97% on blood gas analysis, puls-125/min.X-ray of chest with hyperinflationand right pericardial consolidation. Microbiological analysis of sputum sample is positive for undifferentiated gram-negative bacteria (colonizer)–resistant to cefotaxime, ampicillin, cefoxitin, sulfamet.+trimetoprim and sensitive to amikacin, gentamicin, and ciprofloxacin. Molecular multiplex RT-PCR for 19 viruses and multiplex PCR for 7 bacteria test for respiratory pathogens positive for Parainfluenza virus 3(Ct=22.73), Streptococcus pneumonia (Ct=26.75).IED: IgG-9.31g/l, IgA-0.351g/l, IgM-0.86g/l. Therapy: Treatment was started with inhaled salbutamol, intravenous antibiotic cefotaxime as well as systemic corticosteroids. On day 7 because of slow clinical resolution of chest auscultation findings and an etiologic clue with a positive sputum sample for resistant undifferentiated gram negative bacteria, a second intravenous antibiotic was administered amikacin. The infant is discharged on day 14 with resolution of clinical findings. Conclusion: Mixed co-infections with respiratory viruses and bacteria in immunocompromised infants are likely to lead to a more severe form of community acquired pneumonia that will need hospitalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HPIV-%203" title="HPIV- 3">HPIV- 3</a>, <a href="https://publications.waset.org/abstracts/search?q=infant" title=" infant"> infant</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumonia" title=" pneumonia"> pneumonia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20pneumonia" title=" S. pneumonia"> S. pneumonia</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20chest" title=" x-ray chest"> x-ray chest</a> </p> <a href="https://publications.waset.org/abstracts/149986/obstructive-bronchitis-and-pneumonia-by-a-mixed-infection-of-hpiv-3-s-pneumoniae-in-an-immunocompromised-10m-infant-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yu">T. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Audibert"> L. Audibert</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Chaix"> J. F. Chaix</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Komatitsch"> D. Komatitsch</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Garnier"> V. Garnier</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Henault"> J. M. Henault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-scattering%20medium" title=" multiple-scattering medium"> multiple-scattering medium</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20velocity" title=" phase velocity"> phase velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20measurements" title=" ultrasonic measurements"> ultrasonic measurements</a> </p> <a href="https://publications.waset.org/abstracts/61285/2d-numerical-modeling-of-ultrasonic-measurements-in-concrete-wave-propagation-in-a-multiple-scattering-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oumaima%20Khlifati">Oumaima Khlifati</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadija%20Baba"> Khadija Baba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distress%20pavement" title="distress pavement">distress pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperparameters" title=" hyperparameters"> hyperparameters</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20classification" title=" automatic classification"> automatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/156783/hyper-parameter-optimization-of-deep-convolutional-neural-networks-for-pavement-distress-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Procedure for Monitoring the Process of Behavior of Thermal Cracking in Concrete Gravity Dams: A Case Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriana%20de%20Paula%20Lacerda%20Santos">Adriana de Paula Lacerda Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20Godke"> Bruna Godke</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Lacerda%20Santos%20Filho"> Mauro Lacerda Santos Filho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several dams in the world have already collapsed, causing environmental, social and economic damage. The concern to avoid future disasters has stimulated the creation of a great number of laws and rules in many countries. In Brazil, Law 12.334/2010 was created, which establishes the National Policy on Dam Safety. Overall, this policy requires the dam owners to invest in the maintenance of their structures and to improve its monitoring systems in order to provide faster and straightforward responses in the case of an increase of risks. As monitoring tools, visual inspections has provides comprehensive assessment of the structures performance, while auscultation’s instrumentation has added specific information on operational or behavioral changes, providing an alarm when a performance indicator exceeds the acceptable limits. These limits can be set using statistical methods based on the relationship between instruments measures and other variables, such as reservoir level, time of the year or others instruments measuring. Besides the design parameters (uplift of the foundation, displacements, etc.) the dam instrumentation can also be used to monitor the behavior of defects and damage manifestations. Specifically in concrete gravity dams, one of the main causes for the appearance of cracks, are the concrete volumetric changes generated by the thermal origin phenomena, which are associated with the construction process of these structures. Based on this, the goal of this research is to propose a monitoring process of the thermal cracking behavior in concrete gravity dams, through the instrumentation data analysis and the establishment of control values. Therefore, as a case study was selected the Block B-11 of José Richa Governor Dam Power Plant, that presents a cracking process, which was identified even before filling the reservoir in August’ 1998, and where crack meters and surface thermometers were installed for its monitoring. Although these instruments were installed in May 2004, the research was restricted to study the last 4.5 years (June 2010 to November 2014), when all the instruments were calibrated and producing reliable data. The adopted method is based on simple linear correlations procedures to understand the interactions among the instruments time series, verifying the response times between them. The scatter plots were drafted from the best correlations, which supported the definition of the limit control values. Among the conclusions, it is shown that there is a strong or very strong correlation between ambient temperature and the crack meters and flowmeters measurements. Based on the results of the statistical analysis, it was possible to develop a tool for monitoring the behavior of the case study cracks. Thus it was fulfilled the goal of the research to develop a proposal for a monitoring process of the behavior of thermal cracking in concrete gravity dams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20gravity%20dam" title="concrete gravity dam">concrete gravity dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dams%20safety" title=" dams safety"> dams safety</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumentation" title=" instrumentation"> instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20linear%20correlation" title=" simple linear correlation"> simple linear correlation</a> </p> <a href="https://publications.waset.org/abstracts/39742/procedure-for-monitoring-the-process-of-behavior-of-thermal-cracking-in-concrete-gravity-dams-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>