CINXE.COM

Search results for: acid functionalization

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: acid functionalization</title> <meta name="description" content="Search results for: acid functionalization"> <meta name="keywords" content="acid functionalization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="acid functionalization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="acid functionalization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3459</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: acid functionalization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3459</span> Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Changizi">E. Changizi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghasemi"> E. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ramezanzadeh"> B. Ramezanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavian"> M. Mahdavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphen%20oxide" title="graphen oxide">graphen oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyisocyanate" title=" polyisocyanate"> polyisocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR "> FTIR </a> </p> <a href="https://publications.waset.org/abstracts/11430/covalent-functionalization-of-graphene-oxide-with-aliphatic-polyisocyanate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3458</span> Rh(III)-Catalyzed Cross-Coupling Reaction of 8-Methylquinolines with Maleimides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangil%20Han">Sangil Han</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Su%20Kim"> In Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition-metal-catalyzed C–H bond activation and its subsequent functionalization has been one of the most attractive topics in organic synthesis because of its remarkable potential for atom economy and environmental sustainability. In this addition, a variety of C(sp2)–H functionalization has been developed under metal catalysis in the past decade. Recently, much attention has been moved towards the C(sp3)–H functionalization events, which continue to be a challenging issue. In this area, directing group assisted sp3 C–H functionalization has been explored by use of amides, carboxylic acids, oximes, N-heterocycles, and etc. In particular, 8-methylquinolines have been found as good substrates for sp3 C–H functionalization due to its ability to form cyclometalated complexes. Succinimides have been recognized as privileged structural cores found in a number of bioactive natural products, pharmaceuticals, and functional materials. Furthermore, the reduced derivatives such as pyrrolidines and γ-lactams have been also found in a large number of pharmaceutical relevant molecules, thus making them one of the most important and promising compounds. We herein describe the first C(sp3)–H activation of 8-methylquinolines and subsequent functionalization with maleimides to afford various succinimide derivatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%28sp3%29%E2%80%93H%20activation" title="C(sp3)–H activation">C(sp3)–H activation</a>, <a href="https://publications.waset.org/abstracts/search?q=8-methylquinolines" title=" 8-methylquinolines"> 8-methylquinolines</a>, <a href="https://publications.waset.org/abstracts/search?q=maleimides" title=" maleimides"> maleimides</a>, <a href="https://publications.waset.org/abstracts/search?q=succinimides" title=" succinimides"> succinimides</a> </p> <a href="https://publications.waset.org/abstracts/58548/rhiii-catalyzed-cross-coupling-reaction-of-8-methylquinolines-with-maleimides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3457</span> Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Szymanski">L. Szymanski</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kolacinski"> Z. Kolacinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kami%C5%84ski"> Z. Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Raniszewski"> G. Raniszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Fraczyk"> J. Fraczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Pietrzak"> L. Pietrzak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis%20of%20carbon%20nanotubes" title="synthesis of carbon nanotubes">synthesis of carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=ligands" title=" ligands"> ligands</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/39148/synthesis-and-preparation-of-carbon-ferromagnetic-nanocontainers-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3456</span> Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20M.%20AL-Mashaikhi">Said M. AL-Mashaikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20I.%20El-Shafey"> El-Said I. El-Shafey</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakhreldin%20O.%20Suliman"> Fakhreldin O. Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Busafi"> Saleh Al-Busafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20interaction" title=" hydrophobic interaction"> hydrophobic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/136863/preparation-and-characterization-of-alkylamines-surface-functionalized-activated-carbons-for-dye-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3455</span> Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Xu">Xiaodong Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Zhao"> Dan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiujuan%20Chang"> Xiujuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunming%20Li"> Chunming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiyun%20Zhou"> Huiyun Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li"> Xin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Shi"> Qiang Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shifang%20Luan"> Shifang Luan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinghua%20Yin"> Jinghua Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (<em>S</em>)-1-acryloylpyrrolidine-2-carboxylic acid ((<em>S</em>)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (<em>S</em>)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionalization" title="functionalization">functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20monomer" title=" chiral monomer"> chiral monomer</a>, <a href="https://publications.waset.org/abstracts/search?q=hemocompatibility" title=" hemocompatibility"> hemocompatibility</a> </p> <a href="https://publications.waset.org/abstracts/67964/functionalization-of-polypropylene-with-chiral-monomer-for-improving-hemocompatibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3454</span> Surface Functionalization of Chemical Vapor Deposition Grown Graphene Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashanta%20Dhoj%20Adhikari">Prashanta Dhoj Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the introduction of the active surface functionalization group on chemical vapor deposition (CVD) grown graphene film by wet deposition method. The activity of surface functionalized group was tested with surface modified carbon nanotubes (CNTs) and found that both materials were amalgamated by chemical bonding. The introduction of functional group on the graphene film surface and its vigorous role to bind CNTs with the present technique could provide an efficient, novel route to device fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title="chemical vapor deposition">chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20film" title=" graphene film"> graphene film</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20functionalization" title=" surface functionalization"> surface functionalization</a> </p> <a href="https://publications.waset.org/abstracts/23138/surface-functionalization-of-chemical-vapor-deposition-grown-graphene-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3453</span> Porosity and Surface Chemistry of Functionalized Carbonaceous Materials from Date Palm Leaflets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Said%20I.%20El-Shafey">El-Said I. El-Shafey</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Naheed%20F.%20Ali"> Syeda Naheed F. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20S.%20Al-Busafi"> Saleh S. Al-Busafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Haider%20A.%20J.%20Al-Lawati"> Haider A. J. Al-Lawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Date palm leaflets were utilized as a precursor for activated carbon (AC) preparation using KOH activation. AC produced was oxidized using nitric acid producing oxidized activated carbon (OAC). OAC that possesses acidic surface was surface functionalized to produce basic activated carbons using linear diamine compounds (ethylene diamine and propylene diamine). OAC was also functionalized to produce hydrophobic activated carbons using ethylamine (EA) and aniline (AN). Dehydrated carbon was also prepared from date palm leaflets using sulfuric acid dehydration/ oxidation and was surface functionalized in the same way as AC. Nitric acid oxidation was not necessary for DC as it is acidic carbon. The surface area of AC is high (823 m2/g) with microporosity domination, however, after oxidation and surface functionalization, both the surface area and surface microporosity decrease tremendously. DC surface area was low (15 m2/g) with mesoporosity domination. Surface functionalization has decreased the surface area of activated carbons. FTIR spectra show that -COOH group on DC and OAC almost disappeared after surface functionalization. The surface chemistry of all carbons produced was tested for pHzpc, basic sites, boehm titration, thermogravimetric analysis and zeta potential measurement. Scanning electron microscopy and energy dispersive spectroscopy in addition to CHN elemental analysis were also carried out. DC and OAC possess low pHzpc and high surface functionality, however, basic and hydrophobic carbons possess high pHzpc and low surface functionality. The different behavior of carbons is related to their different surface chemistry. Methylene blue adsorption was found to be faster on hydrophobic carbons based on AC and DC. The Larger adsorption capacity of methylene blue was found for hydrophobic carbons. Dominating adsorption forces of methylene blue varies from carbon to another depending on its surface nature. Sorption forces include hydrophobic forces, H-bonding, electrostatic interactions and van der Waals forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic" title=" acidic"> acidic</a>, <a href="https://publications.waset.org/abstracts/search?q=basic" title=" basic"> basic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/66827/porosity-and-surface-chemistry-of-functionalized-carbonaceous-materials-from-date-palm-leaflets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3452</span> Destruction of Colon Cells by Nanocontainers of Ferromagnetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Szymanski">Lukasz Szymanski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Kolacinski"> Zbigniew Kolacinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Raniszewski"> Grzegorz Raniszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Slawomir%20Wiak"> Slawomir Wiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Pietrzak"> Lukasz Pietrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Koza"> Dariusz Koza</a>, <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Przybylowska-Sygut"> Karolina Przybylowska-Sygut</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Majsterek"> Ireneusz Majsterek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Kaminski"> Zbigniew Kaminski</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Fraczyk"> Justyna Fraczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Walczak"> Malgorzata Walczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Beata%20Kolasinska"> Beata Kolasinska</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Bednarek"> Adam Bednarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Konka"> Joanna Konka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to investigate the influence of electromagnetic field from the range of radio frequencies on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon - ferromagnetic nanocontainers (FNCs) includes: The synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Pristine ferromagnetic carbon nanotubes are not suitable for application in medicine and biotechnology. Appropriate functionalization of ferromagnetic carbon nanotubes allows to receiving materials useful in medicine. Finally, a product contains folic acids on the surface of FNCs. The folic acid is a ligand of folate receptors – α which is overexpressed on the surface of epithelial tumours cells. It is expected that folic acids will be recognized and selectively bound by receptors presented on the surface of tumour cells. In our research, FNCs were covalently functionalized in a multi-step procedure. Ferromagnetic carbon nanotubes were oxidated using different oxidative agents. For this purpose, strong acids such as HNO3, or mixture HNO3 and H2SO4 were used. Reactive carbonyl and carboxyl groups were formed on the open sides and at the defects on the sidewalls of FNCs. These groups allow further modification of FNCs as a reaction of amidation, reaction of introduction appropriate linkers which separate solid surface of FNCs and ligand (folic acid). In our studies, amino acid and peptide have been applied as ligands. The last step of chemical modification was reaction-condensation with folic acid. In all reaction as coupling reagents were used derivatives of 1,3,5-triazine. The first trials in the device for hyperthermal RF generator have been done. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. Obtained functionalized nanoparticles enabled to reach the temperature of denaturation tumor cells in given frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20colon%20cells" title="cancer colon cells">cancer colon cells</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=ligands" title=" ligands"> ligands</a> </p> <a href="https://publications.waset.org/abstracts/52984/destruction-of-colon-cells-by-nanocontainers-of-ferromagnetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3451</span> Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haythem%20Barrak">Haythem Barrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetan%20Laroche"> Gaetan Laroche</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20M%E2%80%99nif"> Adel M’nif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hichem%20Hamzaoui"> Ahmed Hichem Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionalization" title="functionalization">functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=APTES" title=" APTES"> APTES</a>, <a href="https://publications.waset.org/abstracts/search?q=caract%C3%A9risation" title=" caractérisation"> caractérisation</a> </p> <a href="https://publications.waset.org/abstracts/19409/easy-method-of-synthesis-and-functionalzation-of-zno-nanoparticules-with-3-aminopropylthrimethoxysilane-aptes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3450</span> Functionalization of Sanitary Pads with Probiotic Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Sauperl">O. Sauperl</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Fras%20Zemljic"> L. Fras Zemljic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The textile industry is gaining increasing importance in the field of medical materials. Therefore, presented research is focused on textile materials for external (out-of-body) use. Such materials could be various hygienic textile products (diapers, tampons, sanitary napkins, incontinence products, etc.), protective textiles and various hospital linens (surgical covers, masks, gowns, cloths, bed linens, etc.) wound pillows, bandages, orthopedic socks, etc. Function of tampons and sanitary napkins is not only to provide protection during the menstrual cycle, but their function can be also to take care of physiological or pathological vaginal discharge. In general, women's intimate areas are against infection protected by a low pH value of the vaginal flora. High pH inhibits the development of harmful microorganisms, as it is difficult to be reproduced in an acidic environment. The normal vaginal flora in healthy women is highly colonized by lactobacilli. The lactic acid produced by these organisms maintains the constant acidity of the vagina. If the balance of natural protection breaks, infections can occur. In the market, there exist probiotic tampons as a medical product supplying the vagina with beneficial probiotic lactobacilli. But, many users have concerns about the use of tampons due to the possible dry-out of the vagina as well as the possible toxic shock syndrome, which is the reason that they use mainly sanitary napkins during the menstrual cycle. Functionalization of sanitary napkins with probiotics is, therefore, interesting in regard to maintain a healthy vaginal flora and to offer to users added value of the sanitary napkins in the sense of health- and environmentally-friendly products. For this reason, the presented research is oriented in functionalization of the sanitary napkins with the probiotic paste in order to activate the lactic acid bacteria presented in the core of the functionalized sanitary napkin at the time of the contact with the menstrual fluid. In this way, lactobacilli could penetrate into vagina and by maintaining healthy vaginal flora to reduce the risk of vaginal disorders. In regard to the targeted research problem, the influence of probiotic paste applied onto cotton hygienic napkins on selected properties was studied. The aim of the research was to determine whether the sanitary napkins with the applied probiotic paste may assure suitable vaginal pH to maintain a healthy vaginal flora during the use of this product. Together with this, sorption properties of probiotic functionalized sanitary napkins were evaluated and compared to the untreated one. The research itself was carried out on the basis of tracking and controlling the input parameters, currently defined by Slovenian producer (Tosama d.o.o.) as the most important. Successful functionalization of sanitary pads with the probiotic paste was confirmed by ATR-FTIR spectroscopy. Results of the methods used within the presented research show that the absorption of the pads treated with probiotic paste deteriorates compared to non-treated ones. The coating shows a 6-month stability. Functionalization of sanitary pads with probiotic paste is believed to have a commercial potential for lowering the probability of infection during the menstrual cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionalization" title="functionalization">functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20paste" title=" probiotic paste"> probiotic paste</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitary%20pads" title=" sanitary pads"> sanitary pads</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20materials" title=" textile materials"> textile materials</a> </p> <a href="https://publications.waset.org/abstracts/99493/functionalization-of-sanitary-pads-with-probiotic-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3449</span> Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew%20Tefery">Temesgen Geremew Tefery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/190956/functionalization-of-nanomaterials-for-bio-sensing-applications-current-progress-and-future-prospective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3448</span> Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucija%20Pustahija">Lucija Pustahija</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Bandl"> Christine Bandl</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Kern"> Wolfgang Kern</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Mitterer"> Christian Mitterer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20oxidation" title=" dry oxidation"> dry oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilanes" title=" organosilanes"> organosilanes</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolytic%20carbon" title=" pyrolytic carbon"> pyrolytic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=resins" title=" resins"> resins</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20functionalization" title=" surface functionalization"> surface functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20oxidation" title=" wet oxidation"> wet oxidation</a> </p> <a href="https://publications.waset.org/abstracts/152210/investigation-of-different-surface-oxidation-methods-on-pyrolytic-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3447</span> Synthesis and Functionalization of Gold Nanostars for ROS Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Duong">H. D. Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20Rhee"> J. I. Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, gold nanoparticles in star shape (called gold nanostars, GNS) were synthesized and coated by N-(3-aminopropyl) methacrylamide hydrochloride (PA) and mercaptopropionic acid (MPA) for functionalizing their surface by amine and carboxyl groups and then investigated for ROS production. The GNS with big size and multi-tips seem to be superior in singlet oxygen production as compared with that of small GNS and less tips. However, the functioned GNS in small size could also enhance efficiency of singlet oxygen production about double as compared with that of the intact GNS. In combination with methylene blue (MB+), the functioned GNS could enhance the singlet oxygen production of MB+ after 1h of LED750 irradiation and no difference between small size and big size in this reaction was observed. In combination with 5-aminolevulinic acid (ALA), only GNS coated PA could enhance the singlet oxygen production of ALA and the small size of GNS coated PA was a little higher effect than that of the bigger size. However, GNS coated MPA with small size had strong effect on hydroxyl radical production of ALA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5-aminolevulinic%20acid" title="5-aminolevulinic acid">5-aminolevulinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanostars" title=" gold nanostars"> gold nanostars</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS%20production" title=" ROS production"> ROS production</a> </p> <a href="https://publications.waset.org/abstracts/36355/synthesis-and-functionalization-of-gold-nanostars-for-ros-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3446</span> Functionalized Nanoparticles as Sorbents for Removal of Toxic Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerina%20Majeed">Jerina Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayshree%20Ramkumar"> Jayshree Ramkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandramouleeswaran"> S. Chandramouleeswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Tyagi"> A. K. Tyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury" title="mercury">mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol%20functionalization" title=" thiol functionalization"> thiol functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20NPs" title=" ZnO NPs "> ZnO NPs </a> </p> <a href="https://publications.waset.org/abstracts/10832/functionalized-nanoparticles-as-sorbents-for-removal-of-toxic-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3445</span> Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukul%20R.%20Gupta">Mukul R. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20%20Gandhi"> Rajkumar Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajitha%20%20Sachan"> Rajitha Sachan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20K.%20Khare"> Naveen K. Khare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KDN" title="KDN">KDN</a>, <a href="https://publications.waset.org/abstracts/search?q=stereoselective%20glycosylation" title=" stereoselective glycosylation"> stereoselective glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-catalytic%20functionalization" title=" dual-catalytic functionalization"> dual-catalytic functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=Wittig%20reaction" title=" Wittig reaction"> Wittig reaction</a> </p> <a href="https://publications.waset.org/abstracts/136145/stereoselective-glycosylation-and-functionalization-of-unbiased-site-of-sweet-system-via-dual-catalytic-transition-metal-systemswittig-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3444</span> Boron Nitride Nanoparticle Enhanced Prepreg Composite Laminates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Tian">Qiong Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Lifeng%20Zhang"> Lifeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Demei%20Yu"> Demei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20D.%20Kelkar"> Ajit D. Kelkar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low specific weight and high strength is the basic requirement for aerospace materials. Fiber-reinforced epoxy resin composites are attractive materials for this purpose. Boron nitride nanoparticles (BNNPs) have good radiation shielding capacity, which is very important to aerospace materials. Herein a processing route for an advanced hybrid composite material is demonstrated by introducing dispersed BNNPs in standard prepreg manufacturing. The hybrid materials contain three parts: E-fiberglass, an aerospace-grade epoxy resin system, and BNNPs. A vacuum assisted resin transfer molding (VARTM) was utilized in this processing. Two BNNP functionalization approaches are presented in this study: (a) covalent functionalization with 3-aminopropyltriethoxysilane (KH-550); (b) non-covalent functionalization with cetyltrimethylammonium bromide (CTAB). The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and scanning electron microscope (SEM). The results showed that BN powder was successfully functionalized via the covalent and non-covalent approaches without any crystal structure change and big agglomerate particles were broken into platelet-like nanoparticles (BNNPs) after functionalization. Compared to pristine BN powder, surface modified BNNPs could result in significant improvement in mechanical properties such as tensile, flexural and compressive strength and modulus. CTAB functionalized BNNPs (CTAB-BNNPs) showed higher tensile and flexural strength but lower compressive strength than KH-550 functionalized BNNPs (KH550-BNNPs). These reinforcements are mainly attributed to good BNNPs dispersion and interfacial adhesion between epoxy matrix and BNNPs. This study reveals the potential in improving mechanical properties of BNNPs-containing composites laminates through surface functionalization of BNNPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20nitride" title="boron nitride">boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=prepreg" title=" prepreg"> prepreg</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite "> composite </a> </p> <a href="https://publications.waset.org/abstracts/24228/boron-nitride-nanoparticle-enhanced-prepreg-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3443</span> Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khrizelle%20Angelique%20Sablan">Khrizelle Angelique Sablan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizalinda%20De%20Leon"> Rizalinda De Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaeyoung%20Lee"> Jaeyoung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Joey%20Ocon"> Joey Ocon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitive%20deionization" title="capacitive deionization">capacitive deionization</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20functionalization" title=" acid functionalization"> acid functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a> </p> <a href="https://publications.waset.org/abstracts/54667/investigation-on-the-capacitive-deionization-of-functionalized-carbon-nanotubes-f-cnts-and-silver-decorated-f-cnts-for-water-softening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3442</span> Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Pal">Monalisa Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20Mandal"> Kalyan Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-based%20oxide%20nanostructures" title="co-based oxide nanostructures">co-based oxide nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-color%20fluorescence" title=" multi-color fluorescence"> multi-color fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a> </p> <a href="https://publications.waset.org/abstracts/25906/surface-modification-of-co-based-nanostructures-to-develop-intrinsic-fluorescence-and-catalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3441</span> Functionalized Spherical Aluminosilicates in Biomedically Grade Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damian%20Stanislaw%20Nakonieczny">Damian Stanislaw Nakonieczny</a>, <a href="https://publications.waset.org/abstracts/search?q=Grazyna%20Simha%20Martynkova"> Grazyna Simha Martynkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Hundakova"> Marianna Hundakova</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kratosov%C3%A1"> G. Kratosová</a>, <a href="https://publications.waset.org/abstracts/search?q=Karla%20Cech%20Barabaszova"> Karla Cech Barabaszova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioceramics" title="bioceramics">bioceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20development" title=" surface development"> surface development</a> </p> <a href="https://publications.waset.org/abstracts/115812/functionalized-spherical-aluminosilicates-in-biomedically-grade-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3440</span> Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semuel%20Unwakoly">Semuel Unwakoly</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinner%20Puppela"> Reinner Puppela</a>, <a href="https://publications.waset.org/abstracts/search?q=Maresthy%20Rumalean"> Maresthy Rumalean</a>, <a href="https://publications.waset.org/abstracts/search?q=Healthy%20Kainama"> Healthy Kainama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (<em>M. maculata</em>) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (<em>M. maculata</em>) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moonfish%20%28M.%20maculata%29" title="Moonfish (M. maculata)">Moonfish (M. maculata)</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/75018/fatty-acid-and-amino-acid-composition-in-mene-maculata-in-the-sea-of-maluku" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3439</span> Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Alzate-Carvajal">Natalia Alzate-Carvajal</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20A.%20Acevedo-Guzman"> Diego A. Acevedo-Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Meza-Laguna"> Victor Meza-Laguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20H.%20Farias"> Mario H. Farias</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20A.%20Perez-Rey"> Luis A. Perez-Rey</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Abarca-Morales"> Edgar Abarca-Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20Garcia-Ramirez"> Victor A. Garcia-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Basiuk"> Vladimir A. Basiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20V.%20Basiuk"> Elena V. Basiuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amines" title="amines">amines</a>, <a href="https://publications.waset.org/abstracts/search?q=covalent%20functionalization" title=" covalent functionalization"> covalent functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-phase" title=" gas-phase"> gas-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide%20paper" title=" graphene oxide paper"> graphene oxide paper</a> </p> <a href="https://publications.waset.org/abstracts/91820/gas-phase-nondestructive-and-environmentally-friendly-covalent-functionalization-of-graphene-oxide-paper-with-amines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3438</span> Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biswaranjan%20D.%20Mohapatra">Biswaranjan D. Mohapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ipsha%20Hota"> Ipsha Hota</a>, <a href="https://publications.waset.org/abstracts/search?q=Swarna%20P.%20Mantry"> Swarna P. Mantry</a>, <a href="https://publications.waset.org/abstracts/search?q=Nibedita%20Behera"> Nibedita Behera</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20S.%20K.%20Varadwaj"> Kumar S. K. Varadwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CF%80-%CF%80%20functionalization" title="π-π functionalization">π-π functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20double%20hydroxide" title=" layered double hydroxide"> layered double hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20evolution%20reaction" title=" oxygen evolution reaction"> oxygen evolution reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/80658/co2fe-ldh-on-aromatic-acid-functionalized-n-doped-graphene-hybrid-electrocatalyst-for-oxygen-evolution-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3437</span> Characterization of Sunflower Oil for Illustration of Its Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehwish%20Shahzadi">Mehwish Shahzadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sunflower is cultivated all over the world not only as an ornament plant but also for the purpose of getting oil. It is the third most cultivated plant in the history because its oil considered best for health. The present study deals with the preparation of sunflower oil from commercial seed sample which was obtained from local market. The physicochemical properties of the oil were determined which included saponification value, acid value and ester value. Results showed that saponification value of the oil was 191.675, acid value was 0.64 and ester value to be 191.035 for the sample under observation. GC-MS analysis of sunflower oil was carried out to check its composition. Oleic acid was determined with linoleic acid and isopropyl palmitate. It represents the presence of three major components of sunflower oil. Other compounds detected were, p-toluylic acid, butylated hydroxytoluene, 1,2-benzenedicarboxylic acid, benzoic acid, 2,4,6-trimethyl-, 2,4,6-trimethylphenyl ester and 2,4-decadienal, (E,E). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title="GC-MS">GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=saponification%20value" title=" saponification value"> saponification value</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a> </p> <a href="https://publications.waset.org/abstracts/42725/characterization-of-sunflower-oil-for-illustration-of-its-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3436</span> Comparison of Punicic Acid Amounts in Abdominal Fat Farm Feeding Hy-Line Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozcan%20Baris%20Citil">Ozcan Baris Citil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akoz"> Mehmet Akoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of fatty acid composition and punicic acid contents of abdominal fat of Hy-line hens were investigated by the gas chromatographic method. Total 30 different fatty acids were determined in fatty acid compositions of eggs. These fatty acids were varied between C 8 to C 22. The punicic acid content of abdominal fats analysed was found to be higher percentages in the 90th day than those of 30th and 60th day. At the end of the experiment, total punicic acid contents of abdominal fats were significantly increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title="fatty acids">fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=punicic%20acid" title=" punicic acid"> punicic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20fats" title=" abdominal fats "> abdominal fats </a> </p> <a href="https://publications.waset.org/abstracts/47496/comparison-of-punicic-acid-amounts-in-abdominal-fat-farm-feeding-hy-line-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3435</span> Proximate Analysis of Muscle of Helix aspersa Living in Konya, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozcan%20Baris%20Citil">Ozcan Baris Citil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study is the determination of the effects of variations in the proximate analysis, cholesterol content and fatty acid compositions of Helix aspersa. Garden snails (Helix aspersa) were picked up by hand from the Central Anatolia Region of Turkey, in autumn (November) in 2015. Fatty acid methyl esters (FAMEs) and cholesterol analysis were analyzed by gas chromatography (GC). The protein contents of snail muscle were determined with Kjeldahl distillation units. Statistical comparisons were made by using SPSS Software (version 16.0). Thirty different fatty acids of different saturation levels were detected. As the predominant fatty acids, stearic acid (C18:0), oleic acid (C18:1ω9), linoleic acid (C18:2ω6), palmitic acid (C16:0), arachidonic acid (C20:4ω6), eicosadienoic acid (C20:2) and linolenic acid (C18:3ω3) were found in Helix aspersa. Palmitic acid (C16:0) was identified as the major SFA in autumn. Linoleic acid (C18:2ω6), eicosadienoic acid (C20:2) and arachidonic acid (C20:4ω6) have the highest levels among the PUFAs. In the present study, ω3 were found 5.48% in autumn. Linolenic acid and omega-3 fatty acid amounts in the autumn decreased significantly but cholesterol content was not affected in Helix aspersa in autumn (November) in 2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helix%20aspersa" title="Helix aspersa">Helix aspersa</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=SFA" title=" SFA"> SFA</a>, <a href="https://publications.waset.org/abstracts/search?q=PUFA" title=" PUFA"> PUFA</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a> </p> <a href="https://publications.waset.org/abstracts/47347/proximate-analysis-of-muscle-of-helix-aspersa-living-in-konya-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3434</span> Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20ChobfroushKhoei">D. ChobfroushKhoei</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Heidari"> S. K. Heidari </a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Dariadel"> Sh. Dariadel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MWNT-COOH" title="MWNT-COOH">MWNT-COOH</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=phenylisocyanate" title=" phenylisocyanate"> phenylisocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=phenylisothiocyanate" title=" phenylisothiocyanate"> phenylisothiocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=4-phenylendiamine" title=" 4-phenylendiamine"> 4-phenylendiamine</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20investigation" title=" toxicity investigation "> toxicity investigation </a> </p> <a href="https://publications.waset.org/abstracts/10914/functionalization-of-carboxylated-single-walled-carbon-nanotubes-with-2-en-4-hydroxy-cyclo-1-octanon-and-toxicity-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3433</span> Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Bu%C5%BEArovska">Aleksandra BužArovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20Bogoeva%20Gaceva"> Gordana Bogoeva Gaceva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralization" title=" mineralization"> mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20scaffolds" title=" PLA scaffolds"> PLA scaffolds</a> </p> <a href="https://publications.waset.org/abstracts/67418/polyl-lactic-acid-scaffolds-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3432</span> Cardioprotective Effect of Oleanolic Acid and Urosolic Acid against Doxorubicin-Induced Cardiotoxicity in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameer%20N.%20Goyal">Sameer N. Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandragauda%20R.%20Patil"> Chandragauda R. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleanolic acid (3/3-hydroxy-olea-12-en-28-oic acid) and its isomer, Ursolic acid (38-hydroxy-urs-12-en-28-oic acid) are triterpenoids compounds which exist widely in plant kingdom in the free acid form or as glycosidic triterpenoids saponins. The aim of the study is to evaluate intravenously administered oleanolic acid and ursolic acid in doxorubicin induced cardiotoxicity. Cardiotoxicity was induced in albino wistar rat with single intravenous injection of doxorubicin at dose of 67.75mg/kg i.v for 48 hrs at 12 hrs interval following doxorubicin administration in the same model cardioprotective effect of amifostine (90 mg/kg i.v, single dose prior 30 min before doxorubicin administration) was evaluated as standard treatment. Induction of cardiotoxicity was confirmed by rise in cardiac markers in serum such as CK–MB, LDH and also by electrocardiographically. The doxorubicin treated group significantly increased in QT interval, serum CK-MB, serum LDH, SGOT, SGPT and antioxidant parameter. Both the treatment group showed significant protective effect on Hemodynamic, electrocardiographic, biochemical, and antioxidant parameters. The oleanolic acid showed slight protective effect in histological lesions in doxorubicin induced cardiotoxicity. Hence, the results indicate that Oleanolic acid has more cardioprotective potential than ursolic acid against doxorubicin induced cardiotoxicity in rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title="cardioprotection">cardioprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanolic%20acid" title=" oleanolic acid"> oleanolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid" title=" ursolic acid"> ursolic acid</a> </p> <a href="https://publications.waset.org/abstracts/23229/cardioprotective-effect-of-oleanolic-acid-and-urosolic-acid-against-doxorubicin-induced-cardiotoxicity-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3431</span> The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou">Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N<sub>2</sub> adsorption/desorption, H<sub>2</sub>-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al<sub>2</sub>O<sub>3</sub> can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al<sub>2</sub>O<sub>3</sub> were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid" title="acetic acid">acetic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20condition" title=" operating condition"> operating condition</a>, <a href="https://publications.waset.org/abstracts/search?q=PtSn" title=" PtSn"> PtSn</a> </p> <a href="https://publications.waset.org/abstracts/46773/the-catalytic-properties-of-ptsnal2o3-for-acetic-acid-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3430</span> Fatty Acid Composition and Therapeutic Effects of Beebread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Silici">Sibel Silici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palynological spectrum, proximate and fatty acids composition of eight beebread samples obtained from different geographical origins were determined. Beebread moisture contents varied between 11.4-15.9 %, ash 1.9-2.54 %, fat 5.9-11.5 %, and protein between 14.8-24.3 %. To our knowledge, this is the first study investigating fatty acids (FAs) composition of the selected monofloral beebreads. A total of thirty-seven FAs were identified. Of these (9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoic acid, (9Z, 12Z)-octadeca-9, 12-dienoic acid, hexadecanoic acid, (Z)-octadec-9-enoic acid, (Z)-icos-11-enoic acid and octadecanoic acid were the most abundant in all the samples. Cotton beebread contained the highest level of ω-3 FAs, 41.3 %. Unsaturated/saturated FAs ratios ranged between 1.38 and 2.39 indicating that beebread is a good source of unsaturated FAs. The pollen, proximate and FAs composition of beebread samples of different botanical and geographical origins varied significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bee%20bread" title="bee bread">bee bread</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20composition" title=" fatty acid composition"> fatty acid composition</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=pollen%20analysis" title=" pollen analysis"> pollen analysis</a> </p> <a href="https://publications.waset.org/abstracts/52901/fatty-acid-composition-and-therapeutic-effects-of-beebread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=115">115</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=acid%20functionalization&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10