CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;13 of 13 results for author: <span class="mathjax">Trimananda, R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Trimananda, R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Trimananda%2C+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Trimananda, R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15098">arXiv:2502.15098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.15098">pdf</a>, <a href="https://arxiv.org/format/2502.15098">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> MADEA: A Malware Detection Architecture for IoT blending Network Monitoring and Device Attestation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Prapty%2C+R+T">Renascence Tarafder Prapty</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Jakkamsetti%2C+S">Sashidhar Jakkamsetti</a>, <a href="/search/?searchtype=author&amp;query=Tsudik%2C+G">Gene Tsudik</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15098v1-abstract-short" style="display: inline;"> Internet-of-Things (IoT) devices are vulnerable to malware and require new mitigation techniques due to their limited resources. To that end, previous research has used periodic Remote Attestation (RA) or Traffic Analysis (TA) to detect malware in IoT devices. However, RA is expensive, and TA only raises suspicion without confirming malware presence. To solve this, we design MADEA, the first syste&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15098v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15098v1-abstract-full" style="display: none;"> Internet-of-Things (IoT) devices are vulnerable to malware and require new mitigation techniques due to their limited resources. To that end, previous research has used periodic Remote Attestation (RA) or Traffic Analysis (TA) to detect malware in IoT devices. However, RA is expensive, and TA only raises suspicion without confirming malware presence. To solve this, we design MADEA, the first system that blends RA and TA to offer a comprehensive approach to malware detection for the IoT ecosystem. TA builds profiles of expected packet traces during benign operations of each device and then uses them to detect malware from network traffic in real-time. RA confirms the presence or absence of malware on the device. MADEA achieves 100% true positive rate. It also outperforms other approaches with 160x faster detection time. Finally, without MADEA, effective periodic RA can consume at least ~14x the amount of energy that a device needs in one hour. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15098v1-abstract-full').style.display = 'none'; document.getElementById('2502.15098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06233">arXiv:2409.06233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06233">pdf</a>, <a href="https://arxiv.org/format/2409.06233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> VBIT: Towards Enhancing Privacy Control Over IoT Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Aaraj%2C+J+A">Jad Al Aaraj</a>, <a href="/search/?searchtype=author&amp;query=Figueira%2C+O">Olivia Figueira</a>, <a href="/search/?searchtype=author&amp;query=Le%2C+T">Tu Le</a>, <a href="/search/?searchtype=author&amp;query=Figueira%2C+I">Isabela Figueira</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06233v1-abstract-short" style="display: inline;"> Internet-of-Things (IoT) devices are increasingly deployed at home, at work, and in other shared and public spaces. IoT devices collect and share data with service providers and third parties, which poses privacy concerns. Although privacy enhancing tools are quite advanced in other applications domains (\eg~ advertising and tracker blockers for browsers), users have currently no convenient way to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06233v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06233v1-abstract-full" style="display: none;"> Internet-of-Things (IoT) devices are increasingly deployed at home, at work, and in other shared and public spaces. IoT devices collect and share data with service providers and third parties, which poses privacy concerns. Although privacy enhancing tools are quite advanced in other applications domains (\eg~ advertising and tracker blockers for browsers), users have currently no convenient way to know or manage what and how data is collected and shared by IoT devices. In this paper, we present VBIT, an interactive system combining Mixed Reality (MR) and web-based applications that allows users to: (1) uncover and visualize tracking services by IoT devices in an instrumented space and (2) take action to stop or limit that tracking. We design and implement VBIT to operate at the network traffic level, and we show that it has negligible performance overhead, and offers flexibility and good usability. We perform a mixed-method user study consisting of an online survey and an in-person interview study. We show that VBIT users appreciate VBIT&#39;s transparency, control, and customization features, and they become significantly more willing to install an IoT advertising and tracking blocker, after using VBIT. In the process, we obtain design insights that can be used to further iterate and improve the design of VBIT and other systems for IoT transparency and control. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06233v1-abstract-full').style.display = 'none'; document.getElementById('2409.06233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16304">arXiv:2408.16304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16304">pdf</a>, <a href="https://arxiv.org/format/2408.16304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Understanding Privacy Norms through Web Forms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cui%2C+H">Hao Cui</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16304v1-abstract-short" style="display: inline;"> Web forms are one of the primary ways to collect personal information online, yet they are relatively under-studied. Unlike web tracking, data collection through web forms is explicit and contextualized. Users (i) are asked to input specific personal information types, and (ii) know the specific context (i.e., on which website and for what purpose). For web forms to be trusted by users, they must&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16304v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16304v1-abstract-full" style="display: none;"> Web forms are one of the primary ways to collect personal information online, yet they are relatively under-studied. Unlike web tracking, data collection through web forms is explicit and contextualized. Users (i) are asked to input specific personal information types, and (ii) know the specific context (i.e., on which website and for what purpose). For web forms to be trusted by users, they must meet the common sense standards of appropriate data collection practices within a particular context (i.e., privacy norms). In this paper, we extract the privacy norms embedded within web forms through a measurement study. First, we build a specialized crawler to discover web forms on websites. We run it on 11,500 popular websites, and we create a dataset of 293K web forms. Second, to process data of this scale, we develop a cost-efficient way to annotate web forms with form types and personal information types, using text classifiers trained with assistance of large language models (LLMs). Third, by analyzing the annotated dataset, we reveal common patterns of data collection practices. We find that (i) these patterns are explained by functional necessities and legal obligations, thus reflecting privacy norms, and that (ii) deviations from the observed norms often signal unnecessary data collection. In addition, we analyze the privacy policies that accompany web forms. We show that, despite their wide adoption and use, there is a disconnect between privacy policy disclosures and the observed privacy norms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16304v1-abstract-full').style.display = 'none'; document.getElementById('2408.16304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures, to be published in the Proceedings on Privacy Enhancing Technologies (PoPETs) 2025.1</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06473">arXiv:2406.06473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.06473">pdf</a>, <a href="https://arxiv.org/format/2406.06473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3646547.3688416">10.1145/3646547.3688416 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> DiffAudit: Auditing Privacy Practices of Online Services for Children and Adolescents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Figueira%2C+O">Olivia Figueira</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a>, <a href="/search/?searchtype=author&amp;query=Jordan%2C+S">Scott Jordan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06473v1-abstract-short" style="display: inline;"> Children&#39;s and adolescents&#39; online data privacy are regulated by laws such as the Children&#39;s Online Privacy Protection Act (COPPA) and the California Consumer Privacy Act (CCPA). Online services that are directed towards general audiences (i.e., including children, adolescents, and adults) must comply with these laws. In this paper, first, we present DiffAudit, a platform-agnostic privacy auditing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06473v1-abstract-full').style.display = 'inline'; document.getElementById('2406.06473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06473v1-abstract-full" style="display: none;"> Children&#39;s and adolescents&#39; online data privacy are regulated by laws such as the Children&#39;s Online Privacy Protection Act (COPPA) and the California Consumer Privacy Act (CCPA). Online services that are directed towards general audiences (i.e., including children, adolescents, and adults) must comply with these laws. In this paper, first, we present DiffAudit, a platform-agnostic privacy auditing methodology for general audience services. DiffAudit performs differential analysis of network traffic data flows to compare data processing practices (i) between child, adolescent, and adult users and (ii) before and after consent is given and user age is disclosed. We also present a data type classification method that utilizes GPT-4 and our data type ontology based on COPPA and CCPA, allowing us to identify considerably more data types than prior work. Second, we apply DiffAudit to a set of popular general audience mobile and web services and observe a rich set of behaviors extracted from over 440K outgoing requests, containing 3,968 unique data types we extracted and classified. We reveal problematic data processing practices prior to consent and age disclosure, lack of differentiation between age-specific data flows, inconsistent privacy policy disclosures, and sharing of linkable data with third parties, including advertising and tracking services. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06473v1-abstract-full').style.display = 'none'; document.getElementById('2406.06473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17370">arXiv:2312.17370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17370">pdf</a>, <a href="https://arxiv.org/format/2312.17370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Seqnature: Extracting Network Fingerprints from Packet Sequences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Varmarken%2C+J">Janus Varmarken</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17370v1-abstract-short" style="display: inline;"> This paper proposes a general network fingerprinting framework, Seqnature, that uses packet sequences as its basic data unit and that makes it simple to implement any fingerprinting technique that can be formulated as a problem of identifying packet exchanges that consistently occur when the fingerprinted event is triggered. We demonstrate the versatility of Seqnature by using it to implement five&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17370v1-abstract-full').style.display = 'inline'; document.getElementById('2312.17370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17370v1-abstract-full" style="display: none;"> This paper proposes a general network fingerprinting framework, Seqnature, that uses packet sequences as its basic data unit and that makes it simple to implement any fingerprinting technique that can be formulated as a problem of identifying packet exchanges that consistently occur when the fingerprinted event is triggered. We demonstrate the versatility of Seqnature by using it to implement five different fingerprinting techniques, as special cases of the framework, which broadly fall into two categories: (i) fingerprinting techniques that consider features of each individual packet in a packet sequence, e.g., size and direction; and (ii) fingerprinting techniques that only consider stream-wide features, specifically what Internet endpoints are contacted. We illustrate how Seqnature facilitates comparisons of the relative performance of different fingerprinting techniques by applying the five fingerprinting techniques to datasets from the literature. The results confirm findings in prior work, for example that endpoint information alone is insufficient to differentiate between individual events on Internet of Things devices, but also show that smart TV app fingerprints based exclusively on endpoint information are not as distinct as previously reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17370v1-abstract-full').style.display = 'none'; document.getElementById('2312.17370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07304">arXiv:2308.07304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07304">pdf</a>, <a href="https://arxiv.org/format/2308.07304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> BehaVR: User Identification Based on VR Sensor Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jarin%2C+I">Ismat Jarin</a>, <a href="/search/?searchtype=author&amp;query=Duan%2C+Y">Yu Duan</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+H">Hao Cui</a>, <a href="/search/?searchtype=author&amp;query=Elmalaki%2C+S">Salma Elmalaki</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07304v2-abstract-short" style="display: inline;"> Virtual reality (VR) platforms enable a wide range of applications, however, pose unique privacy risks. In particular, VR devices are equipped with a rich set of sensors that collect personal and sensitive information (e.g., body motion, eye gaze, hand joints, and facial expression). The data from these newly available sensors can be used to uniquely identify a user, even in the absence of explici&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07304v2-abstract-full').style.display = 'inline'; document.getElementById('2308.07304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07304v2-abstract-full" style="display: none;"> Virtual reality (VR) platforms enable a wide range of applications, however, pose unique privacy risks. In particular, VR devices are equipped with a rich set of sensors that collect personal and sensitive information (e.g., body motion, eye gaze, hand joints, and facial expression). The data from these newly available sensors can be used to uniquely identify a user, even in the absence of explicit identifiers. In this paper, we seek to understand the extent to which a user can be identified based solely on VR sensor data, within and across real-world apps from diverse genres. We consider adversaries with capabilities that range from observing APIs available within a single app (app adversary) to observing all or selected sensor measurements across multiple apps on the VR device (device adversary). To that end, we introduce BehaVR, a framework for collecting and analyzing data from all sensor groups collected by multiple apps running on a VR device. We use BehaVR to collect data from real users that interact with 20 popular real-world apps. We use that data to build machine learning models for user identification within and across apps, with features extracted from available sensor data. We show that these models can identify users with an accuracy of up to 100%, and we reveal the most important features and sensor groups, depending on the functionality of the app and the adversary. To the best of our knowledge, BehaVR is the first to analyze user identification in VR comprehensively, i.e., considering all sensor measurements available on consumer VR devices, collected by multiple real-world, as opposed to custom-made, apps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07304v2-abstract-full').style.display = 'none'; document.getElementById('2308.07304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17740">arXiv:2303.17740</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17740">pdf</a>, <a href="https://arxiv.org/format/2303.17740">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> A CI-based Auditing Framework for Data Collection Practices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+H">Hao Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17740v1-abstract-short" style="display: inline;"> Apps and devices (mobile devices, web browsers, IoT, VR, voice assistants, etc.) routinely collect user data, and send them to first- and third-party servers through the network. Recently, there is a lot of interest in (1) auditing the actual data collection practices of those systems; and also in (2) checking the consistency of those practices against the statements made in the corresponding priv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17740v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17740v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17740v1-abstract-full" style="display: none;"> Apps and devices (mobile devices, web browsers, IoT, VR, voice assistants, etc.) routinely collect user data, and send them to first- and third-party servers through the network. Recently, there is a lot of interest in (1) auditing the actual data collection practices of those systems; and also in (2) checking the consistency of those practices against the statements made in the corresponding privacy policies. In this paper, we argue that the contextual integrity (CI) tuple can be the basic building block for defining and implementing such an auditing framework. We elaborate on the special case where the tuple is partially extracted from the network traffic generated by the end-device of interest, and partially from the corresponding privacy policies using natural language processing (NLP) techniques. Along the way, we discuss related bodies of work and representative examples that fit into that framework. More generally, we believe that CI can be the building block not only for auditing at the edge, but also for specifying privacy policies and system APIs. We also discuss limitations and directions for future work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17740v1-abstract-full').style.display = 'none'; document.getElementById('2303.17740v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures. The paper was first presented at the 4th Annual Symposium on Applications of Contextual Integrity, NYC, Sept. 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06746">arXiv:2210.06746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06746">pdf</a>, <a href="https://arxiv.org/format/2210.06746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> PoliGraph: Automated Privacy Policy Analysis using Knowledge Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cui%2C+H">Hao Cui</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a>, <a href="/search/?searchtype=author&amp;query=Jordan%2C+S">Scott Jordan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06746v2-abstract-short" style="display: inline;"> Privacy policies disclose how an organization collects and handles personal information. Recent work has made progress in leveraging natural language processing (NLP) to automate privacy policy analysis and extract data collection statements from different sentences, considered in isolation from each other. In this paper, we view and analyze, for the first time, the entire text of a privacy policy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06746v2-abstract-full').style.display = 'inline'; document.getElementById('2210.06746v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06746v2-abstract-full" style="display: none;"> Privacy policies disclose how an organization collects and handles personal information. Recent work has made progress in leveraging natural language processing (NLP) to automate privacy policy analysis and extract data collection statements from different sentences, considered in isolation from each other. In this paper, we view and analyze, for the first time, the entire text of a privacy policy in an integrated way. In terms of methodology: (1) we define PoliGraph, a type of knowledge graph that captures statements in a privacy policy as relations between different parts of the text; and (2) we develop an NLP-based tool, PoliGraph-er, to automatically extract PoliGraph from the text. In addition, (3) we revisit the notion of ontologies, previously defined in heuristic ways, to capture subsumption relations between terms. We make a clear distinction between local and global ontologies to capture the context of individual privacy policies, application domains, and privacy laws. Using a public dataset for evaluation, we show that PoliGraph-er identifies 40% more collection statements than prior state-of-the-art, with 97% precision. In terms of applications, PoliGraph enables automated analysis of a corpus of privacy policies and allows us to: (1) reveal common patterns in the texts across different privacy policies, and (2) assess the correctness of the terms as defined within a privacy policy. We also apply PoliGraph to: (3) detect contradictions in a privacy policy, where we show false alarms by prior work, and (4) analyze the consistency of privacy policies and network traffic, where we identify significantly more clear disclosures than prior work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06746v2-abstract-full').style.display = 'none'; document.getElementById('2210.06746v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures (including subfigures), 9 tables. This is the extended version of the paper with the same title published at USENIX Security &#39;23</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.10920">arXiv:2204.10920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.10920">pdf</a>, <a href="https://arxiv.org/format/2204.10920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3618257.3624803">10.1145/3618257.3624803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tracking, Profiling, and Ad Targeting in the Alexa Echo Smart Speaker Ecosystem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Iqbal%2C+U">Umar Iqbal</a>, <a href="/search/?searchtype=author&amp;query=Bahrami%2C+P+N">Pouneh Nikkhah Bahrami</a>, <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+H">Hao Cui</a>, <a href="/search/?searchtype=author&amp;query=Gamero-Garrido%2C+A">Alexander Gamero-Garrido</a>, <a href="/search/?searchtype=author&amp;query=Dubois%2C+D">Daniel Dubois</a>, <a href="/search/?searchtype=author&amp;query=Choffnes%2C+D">David Choffnes</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a>, <a href="/search/?searchtype=author&amp;query=Roesner%2C+F">Franziska Roesner</a>, <a href="/search/?searchtype=author&amp;query=Shafiq%2C+Z">Zubair Shafiq</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.10920v5-abstract-short" style="display: inline;"> Smart speakers collect voice commands, which can be used to infer sensitive information about users. Given the potential for privacy harms, there is a need for greater transparency and control over the data collected, used, and shared by smart speaker platforms as well as third party skills supported on them. To bridge this gap, we build a framework to measure data collection, usage, and sharing b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10920v5-abstract-full').style.display = 'inline'; document.getElementById('2204.10920v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.10920v5-abstract-full" style="display: none;"> Smart speakers collect voice commands, which can be used to infer sensitive information about users. Given the potential for privacy harms, there is a need for greater transparency and control over the data collected, used, and shared by smart speaker platforms as well as third party skills supported on them. To bridge this gap, we build a framework to measure data collection, usage, and sharing by the smart speaker platforms. We apply our framework to the Amazon smart speaker ecosystem. Our results show that Amazon and third parties, including advertising and tracking services that are unique to the smart speaker ecosystem, collect smart speaker interaction data. We also find that Amazon processes smart speaker interaction data to infer user interests and uses those inferences to serve targeted ads to users. Smart speaker interaction also leads to ad targeting and as much as 30X higher bids in ad auctions, from third party advertisers. Finally, we find that Amazon&#39;s and third party skills&#39; data practices are often not clearly disclosed in their policy documents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.10920v5-abstract-full').style.display = 'none'; document.getElementById('2204.10920v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at the ACM Internet Measurement Conference 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05290">arXiv:2111.05290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05290">pdf</a>, <a href="https://arxiv.org/format/2111.05290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Programming Languages">cs.PL</span> </div> </div> <p class="title is-5 mathjax"> Stateful Dynamic Partial Order Reduction for Model Checking Event-Driven Applications that Do Not Terminate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+W">Weiyu Luo</a>, <a href="/search/?searchtype=author&amp;query=Demsky%2C+B">Brian Demsky</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+G+H">Guoqing Harry Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05290v1-abstract-short" style="display: inline;"> Event-driven architectures are broadly used for systems that must respond to events in the real world. Event-driven applications are prone to concurrency bugs that involve subtle errors in reasoning about the ordering of events. Unfortunately, there are several challenges in using existing model-checking techniques on these systems. Event-driven applications often loop indefinitely and thus pose a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05290v1-abstract-full').style.display = 'inline'; document.getElementById('2111.05290v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05290v1-abstract-full" style="display: none;"> Event-driven architectures are broadly used for systems that must respond to events in the real world. Event-driven applications are prone to concurrency bugs that involve subtle errors in reasoning about the ordering of events. Unfortunately, there are several challenges in using existing model-checking techniques on these systems. Event-driven applications often loop indefinitely and thus pose a challenge for stateless model checking techniques. On the other hand, deploying purely stateful model checking can explore large sets of equivalent executions. In this work, we explore a new technique that combines dynamic partial order reduction with stateful model checking to support non-terminating applications. Our work is (1) the first dynamic partial order reduction algorithm for stateful model checking that is sound for non-terminating applications and (2) the first dynamic partial reduction algorithm for stateful model checking of event-driven applications. We experimented with the IoTCheck dataset: a study of interactions in smart home app pairs. This dataset consists of app pairs originated from 198 real-world smart home apps. Overall, our DPOR algorithm successfully reduced the search space for the app pairs, enabling 69 pairs of apps that did not finish without DPOR to finish and providing a 7X average speedup. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05290v1-abstract-full').style.display = 'none'; document.getElementById('2111.05290v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the extended version of the paper with the same title published at VMCAI 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05407">arXiv:2106.05407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.05407">pdf</a>, <a href="https://arxiv.org/format/2106.05407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> OVRseen: Auditing Network Traffic and Privacy Policies in Oculus VR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Le%2C+H">Hieu Le</a>, <a href="/search/?searchtype=author&amp;query=Cui%2C+H">Hao Cui</a>, <a href="/search/?searchtype=author&amp;query=Ho%2C+J+T">Janice Tran Ho</a>, <a href="/search/?searchtype=author&amp;query=Shuba%2C+A">Anastasia Shuba</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05407v4-abstract-short" style="display: inline;"> Virtual reality (VR) is an emerging technology that enables new applications but also introduces privacy risks. In this paper, we focus on Oculus VR (OVR), the leading platform in the VR space and we provide the first comprehensive analysis of personal data exposed by OVR apps and the platform itself, from a combined networking and privacy policy perspective. We experimented with the Quest 2 heads&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05407v4-abstract-full').style.display = 'inline'; document.getElementById('2106.05407v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05407v4-abstract-full" style="display: none;"> Virtual reality (VR) is an emerging technology that enables new applications but also introduces privacy risks. In this paper, we focus on Oculus VR (OVR), the leading platform in the VR space and we provide the first comprehensive analysis of personal data exposed by OVR apps and the platform itself, from a combined networking and privacy policy perspective. We experimented with the Quest 2 headset and tested the most popular VR apps available on the official Oculus and the SideQuest app stores. We developed OVRseen, a methodology and system for collecting, analyzing, and comparing network traffic and privacy policies on OVR. On the networking side, we captured and decrypted network traffic of VR apps, which was previously not possible on OVR, and we extracted data flows, defined as &lt;app, data type, destination&gt;. Compared to the mobile and other app ecosystems, we found OVR to be more centralized and driven by tracking and analytics, rather than by third-party advertising. We show that the data types exposed by VR apps include personally identifiable information (PII), device information that can be used for fingerprinting, and VR-specific data types. By comparing the data flows found in the network traffic with statements made in the apps&#39; privacy policies, we found that approximately 70% of OVR data flows were not properly disclosed. Furthermore, we extracted additional context from the privacy policies, and we observed that 69% of the data flows were used for purposes unrelated to the core functionality of apps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05407v4-abstract-full').style.display = 'none'; document.getElementById('2106.05407v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the extended version of the paper with the same title published at USENIX Security Symposium 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11657">arXiv:2006.11657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.11657">pdf</a>, <a href="https://arxiv.org/format/2006.11657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Securing Smart Home Edge Devices against Compromised Cloud Servers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Younis%2C+A">Ali Younis</a>, <a href="/search/?searchtype=author&amp;query=Kwa%2C+T">Thomas Kwa</a>, <a href="/search/?searchtype=author&amp;query=Demsky%2C+B">Brian Demsky</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+H">Harry Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11657v2-abstract-short" style="display: inline;"> Smart home IoT systems often rely on cloud-based servers for communication between components. Although there exists a body of work on IoT security, most of it focuses on securing clients (i.e., IoT devices). However, cloud servers can also be compromised. Existing approaches do not typically protect smart home systems against compromised cloud servers. This paper presents FIDELIUS: a runtime sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11657v2-abstract-full').style.display = 'inline'; document.getElementById('2006.11657v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11657v2-abstract-full" style="display: none;"> Smart home IoT systems often rely on cloud-based servers for communication between components. Although there exists a body of work on IoT security, most of it focuses on securing clients (i.e., IoT devices). However, cloud servers can also be compromised. Existing approaches do not typically protect smart home systems against compromised cloud servers. This paper presents FIDELIUS: a runtime system for secure cloud-based storage and communication even in the presence of compromised servers. FIDELIUS&#39;s design is tailored for smart home systems that have intermittent Internet access. In particular, it supports local control of smart home devices in the event that communication with the cloud is lost, and provides a consistency model using transactions to mitigate inconsistencies that can arise due to network partitions. We have implemented FIDELIUS, developed a smart home benchmark that uses FIDELIUS, and measured FIDELIUS&#39;s performance and power consumption. Our experiments show that compared to the commercial Particle.io framework, FIDELIUS reduces more than 50% of the data communication time and increases battery life by 2X. Compared to PyORAM, an alternative (ORAM-based) oblivious storage implementation, FIDELIUS has 4-7X faster access times with 25-43X less data transferred. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11657v2-abstract-full').style.display = 'none'; document.getElementById('2006.11657v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the technical report for the poster abstract titled Poster: Securing Smart Home Devices against Compromised Cloud Servers published at the 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge) 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11797">arXiv:1907.11797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11797">pdf</a>, <a href="https://arxiv.org/format/1907.11797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> PingPong: Packet-Level Signatures for Smart Home Device Events </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Trimananda%2C+R">Rahmadi Trimananda</a>, <a href="/search/?searchtype=author&amp;query=Varmarken%2C+J">Janus Varmarken</a>, <a href="/search/?searchtype=author&amp;query=Markopoulou%2C+A">Athina Markopoulou</a>, <a href="/search/?searchtype=author&amp;query=Demsky%2C+B">Brian Demsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11797v3-abstract-short" style="display: inline;"> Smart home devices are vulnerable to passive inference attacks based on network traffic, even in the presence of encryption. In this paper, we present PINGPONG, a tool that can automatically extract packet-level signatures for device events (e.g., light bulb turning ON/OFF) from network traffic. We evaluated PINGPONG on popular smart home devices ranging from smart plugs and thermostats to cameras&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11797v3-abstract-full').style.display = 'inline'; document.getElementById('1907.11797v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11797v3-abstract-full" style="display: none;"> Smart home devices are vulnerable to passive inference attacks based on network traffic, even in the presence of encryption. In this paper, we present PINGPONG, a tool that can automatically extract packet-level signatures for device events (e.g., light bulb turning ON/OFF) from network traffic. We evaluated PINGPONG on popular smart home devices ranging from smart plugs and thermostats to cameras, voice-activated devices, and smart TVs. We were able to: (1) automatically extract previously unknown signatures that consist of simple sequences of packet lengths and directions; (2) use those signatures to detect the devices or specific events with an average recall of more than 97%; (3) show that the signatures are unique among hundreds of millions of packets of real world network traffic; (4) show that our methodology is also applicable to publicly available datasets; and (5) demonstrate its robustness in different settings: events triggered by local and remote smartphones, as well as by homeautomation systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11797v3-abstract-full').style.display = 'none'; document.getElementById('1907.11797v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the technical report for the paper titled Packet-Level Signatures for Smart Home Devices published at the Network and Distributed System Security (NDSS) Symposium 2020</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10