CINXE.COM

Search results for: bitter melon

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bitter melon</title> <meta name="description" content="Search results for: bitter melon"> <meta name="keywords" content="bitter melon"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bitter melon" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bitter melon"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 95</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bitter melon</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> In vitro α-Amylase and α-Glucosidase Inhibitory Activities of Bitter Melon (Momordica charantia) with Different Stage of Maturity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Percin">P. S. Percin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Inanli"> O. Inanli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Karakaya"> S. Karakaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitter melon (Momordica charantia) is a medicinal vegetable, which is used traditionally to remedy diabetes. Bitter melon contains several classes of primary and secondary metabolites. In traditional Turkish medicine bitter melon is used for wound healing and treatment of peptic ulcers. Nowadays, bitter melon is used for the treatment of diabetes and ulcerative colitis in many countries. The main constituents of bitter melon, which are responsible for the anti-diabetic effects, are triterpene, protein, steroid, alkaloid and phenolic compounds. In this study total phenolics, total carotenoids and β-carotene contents of mature and immature bitter melons were determined. In addition, in vitro α-amylase and α-glucosidase activities of mature and immature bitter melons were studied. Total phenolic contents of immature and mature bitter melon were 74 and 123 mg CE/g bitter melon respectively. Although total phenolics of mature bitter melon was higher than that of immature bitter melon, this difference was not found statistically significant (p > 0.05). Carotenoids, a diverse group of more than 600 naturally occurring red, orange and yellow pigments, play important roles in many physiological processes both in plants and humans. The total carotenoid content of mature bitter melon was 4.36 fold higher than the total carotenoid content of immature bitter melon. The compounds that have hypoglycaemic effect of bitter melon are steroidal saponins known as charantin, insulin-like peptides and alkaloids. α-Amylase is one of the main enzymes in human that is responsible for the breakdown of starch to more simple sugars. Therefore, the inhibitors of this enzyme can delay the carbohydrate digestion and reduce the rate of glucose absorption. The immature bitter melon extract showed α-amylase and α-glucosidase inhibitory activities in vitro. α-Amylase inhibitory activity was higher than that of α-glucosidase inhibitory activity when IC50 values were compared. In conclusion, the present results provide evidence that aqueous extract of bitter melon may have an inhibitory effect on carbohydrate breakdown enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title="bitter melon">bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20antidiabetic%20activity" title=" in vitro antidiabetic activity"> in vitro antidiabetic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carotenoids" title=" total carotenoids"> total carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenols" title=" total phenols"> total phenols</a> </p> <a href="https://publications.waset.org/abstracts/81770/in-vitro-a-amylase-and-a-glucosidase-inhibitory-activities-of-bitter-melon-momordica-charantia-with-different-stage-of-maturity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> The Antioxidant Gel Mask Supplies Of Bitter Melon&#039;s Extract ( Momordica charantia Linn.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Risqina">N. S. Risqina</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Edijanti"> G. Edijanti</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Nurita"> P. S. Nurita</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Endang"> L. Endang</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Siti"> R. A. Siti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tri"> R. Tri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin is an important and vital organs and also as a mirror of health and life. Facial skin care is one of the main emphasis to get the beautiful, healthy, and fresh skin. Potentially antioxidant phenolic compounds shows, antimutagen, antitumor, anti-inflammatory, and anti-cancer. Flavonoids are a group of polyphenolic compounds that have the nature of free radicals, inhibiting the oxidative and hydrolytic enzymes as well as anti-inflammatory. Bitter melon (Momordica charantia Linn) is a plant that contains flavonoids, and phenolic antioxidant activity. Bitter melon has strong antioxidant activity that can counteract the free radicals.These compounds can prevent free radicals that cause premature aging. Gel masks including depth cleansing is the cosmetics which work in depth and could raise the dead skin cells. Measurement of antioxidant activity of the extract and gel mask is done by using the immersion method of DPPH. IC50 value of ethanol extract of bitter melon fruit of 287.932 ppm. The preparation of gel mask bitter melon fruit extract, necessary to test the effectiveness of antioxidants using DPPH method is done by measuring the inhibition of DPPH and using UV spectrophotometer at the wavelength of maximum DPPH solution. Tests conducted at the beginning and end of the evaluation (day 0 and day 28). The purpose of this study is to determine the antioxidant activity of the bitter melon's extract and to determine the antioxidant activity of ethanol extract gel mask pare in varying concentrations, ie 1xIC100 (0.295%), 2xIC100 (0.590%) and 4xIC100 (1.180%). Evaluation of physical properties of the preparation on (Day-0,7,14,21, and 28) and evaluation of antioxidant activity (day 0 and 28). Data were analyzed using One Way ANOVA to determine differences in the physical properties of each formula. The statistical results showed that differences in the formula and storage time affects the adhesion, dispersive power, dry time and pH it is shown on a significant value of p <0.05, but longer storage does not affect the pH because the significance value p> 0,05. The antioxidant test showed that there are differences in antioxidant activity in all formulas. Measurement of antioxidant activity of bitter melon fruit extract gel mask on day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas day 28 consecutive 130 411, 495 ppm, and 53239.806 95561.645 ppm ppm. The Conclusions drawn that there are antioxidant activity in preparation gel mask of bitter melon fruit extract. The antioxidant activity of bitter melon fruit extract gel mask on the day 0 with a concentration of 0.295%, 0.590%, and 1.180%, respectively, are 124,209.277 ppm, ppm 83819.223 and 47323.592 ppm, whereas on day 28 of antioxidant activity gel mask bitter melon fruit extract with a concentration of 0.295%, 0.590%, and 1.180% in succession, namely: 130,411.495 ppm, ppm 95561.645 and 53239.806 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxdant" title="antioxdant">antioxdant</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title=" bitter melon"> bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20mask" title=" gel mask"> gel mask</a>, <a href="https://publications.waset.org/abstracts/search?q=IC50" title=" IC50"> IC50</a> </p> <a href="https://publications.waset.org/abstracts/32963/the-antioxidant-gel-mask-supplies-of-bitter-melons-extract-momordica-charantia-linn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Antidiabetic Effects of Bitter Melon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinhyun%20Ryu">Jinhyun Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengliang%20Xie"> Chengliang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Nal%20Ae%20Yoon"> Nal Ae Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lee"> Dong Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Seob%20Roh"> Gu Seob Roh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Joon%20Kim"> Hyun Joon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyeong%20Jae%20Cho"> Gyeong Jae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Sung%20Choi"> Wan Sung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soo%20Kang"> Sang Soo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 diabetes is a heterogeneous group of metabolic disorders featured by a deficit in or loss of insulin activity to maintain normal glucose homeostasis. Mainly, it results from the compromised insulin secretion and/or reduced insulin activity. The frequency of type 2 diabetes (T2D) has been increased rapidly in recent decades with the increase in the trend of obesity due to life style and food habit. Obesity is considered to be the primary risk factor for the development of insulin resistance and thereby developing T2D. Traditionally naturally occurring fruits, vegetables etc. are being used to treat many pathogenic conditions. In this study, we tried to find out the effect of a popularly used vegetable in Bangladesh and several other Asian countries, ‘bitter melon’ on high fat diet induced T2D. To investigate the effect, we used 70% ethanol extract of bitter melon (BME) as dietary supplement with chow. BME was found to attenuate the high fat diet (HFD) induced body weight and total fat mass significantly. We also observed that BME reduced the insulin resistance induced by HFD effectively. Furthermore, dietary supplementation of BME was highly effective in increasing insulin sensitivity, and reducing the hepatic fat and obesity. These results indicate that BME could be effective to attenuate T2D and could be a preventive measure against T2D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20melon" title="bitter melon">bitter melon</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a> </p> <a href="https://publications.waset.org/abstracts/41779/antidiabetic-effects-of-bitter-melon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Application of 1-MCP on ‘Centro’ Melon at Different Days after Harvest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20P.%20L.%20Nguyen">L. P. L. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Hitka"> G. Hitka</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zsom"> T. Zsom</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20K%C3%B3kai"> Z. Kókai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to investigate the influence of postharvest delays of 1-Methylcyclopropene (1-MCP) treatment on prolonging the storage potential of melon. Melons were treated with 625-650 ppb 1-MCP at 10 &deg;C for 24 hours on the 1st, 3rd and 5th day after harvest. Decreased ethylene production and retarded softening of melon fruits after 7 days of storage at 10 &deg;C plus 3 days of shelflife were obtained by 1-MCP applications. 1-MCP strongly affected the chlorophyll fluorescence characteristics and hue angle values of melon. After shelf-life, the peel color of treated melon was slow in turning to yellow compared to the control. Additionally, firmness of melons treated on the first day after harvest was 38% higher than that of the control fruit. Results showed that fruits treated on the 1st and the 3rd day after harvest could maintain the quality of melon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1-MCP" title="1-MCP">1-MCP</a>, <a href="https://publications.waset.org/abstracts/search?q=muskmelon" title=" muskmelon"> muskmelon</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment." title=" treatment."> treatment.</a> </p> <a href="https://publications.waset.org/abstracts/48747/application-of-1-mcp-on-centro-melon-at-different-days-after-harvest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Production of Biodiesel from Melon Seed Oil Using Sodium Hydroxide as a Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ene%20Rosemary%20Ndidiamaka">Ene Rosemary Ndidiamaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nwangwu%20Florence%20Chinyere"> Nwangwu Florence Chinyere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The physiochemical properties of the melon seed oil was studied to determine its potentials as viable feed stock for biodisel production. The melon seed was extracted by solvent extraction using n-hexane as the extracting solvent. In this research, methanol was the alcohol used in the production of biodiesel, although alcohols like ethanol, propanol may also be used. Sodium hydroxide was employed for the catalysis. The melon seed oil was characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid value, flash point, viscosity, and refractive index using standard methods. The melon seed oil had very high oil content. Specific gravity and flash point of the oil is satisfactory. However, moisture content of the oil exceeded the stipulated ASRTM standard for biodiesel production. The overall results indicates that the melon seed oil is suitable for single-stage transesterification process to biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=melon%20seed" title=" melon seed"> melon seed</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/31589/production-of-biodiesel-from-melon-seed-oil-using-sodium-hydroxide-as-a-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Development and Characterization of Kefir Drinks from Pumpkin (Cucurbita moschata) and Winter Melon (Benincasa hispida)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uthumporn%20Utra">Uthumporn Utra</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20N.%20Shariffa"> Y. N. Shariffa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maizura"> M. Maizura</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Ruri"> A. S. Ruri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is to study the utilization of pumpkin and winter melon as the main substrate for kefir fermentation in the production of pumpkin and winter melon-based fermented drinks. Optimized temperature and time were chosen for fermentation of pumpkin and winter melon. Physicochemical and microbiological evaluations were conducted to the end products: P (fermented pumpkin juice) and K (fermented winter melon juice). Ethanol content was detected at low concentration of 0.9% (v/wt) in P, and 1.0% (v/wt) in K. Level of glucose and fructose increased significantly (p < 0.05) in both fermented drinks when compared to unfermented pumpkin (CP) and winter melon (CK) juices. Total phenolic content in P & K was higher than CP and CK, while %DPPH inhibition of both decreased significantly. Total Lactobacilli counts in P & K were 8.9 and 7.88 log cfu/ml respectively, while acetic acid bacteria counts were 8.62 and 7.57 log cfu/ml respectively, yeast counts were 4.71 and 5 log cfu/ml, and no E.coli was detected in all samples. Sensory evaluation yield comparable properties in P & K. This concluded that pumpkin and winter melon fermented drinks inoculated by water kefir grains could be promising source of nutrients with probiotic potency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20drinks" title="fermented drinks">fermented drinks</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20beverage" title=" functional beverage"> functional beverage</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=pumpkin" title=" pumpkin"> pumpkin</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20melon" title=" winter melon"> winter melon</a> </p> <a href="https://publications.waset.org/abstracts/92766/development-and-characterization-of-kefir-drinks-from-pumpkin-cucurbita-moschata-and-winter-melon-benincasa-hispida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Comparative Study of the Effects of Process Parameters on the Yield of Oil from Melon Seed (Cococynthis citrullus) and Coconut Fruit (Cocos nucifera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ndidi%20F.%20Amulu">Ndidi F. Amulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20E.%20Amulu"> Patrick E. Amulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordian%20O.%20Mbah"> Gordian O. Mbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Callistus%20N.%20Ude"> Callistus N. Ude</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative analysis of the properties of melon seed, coconut fruit and their oil yield were evaluated in this work using standard analytical technique AOAC. The results of the analysis carried out revealed that the moisture contents of the samples studied are 11.15% (melon) and 7.59% (coconut). The crude lipid content are 46.10% (melon) and 55.15% (coconut).The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant difference (p < 0.05) in yield between the samples, with melon oil seed flour having a higher percentage range of oil yield (41.30 – 52.90%) and coconut (36.25 – 49.83%). The physical characterization of the extracted oil was also carried out. The values gotten for refractive index are 1.487 (melon seed oil) and 1.361 (coconut oil) and viscosities are 0.008 (melon seed oil) and 0.002 (coconut oil). The chemical analysis of the extracted oils shows acid value of 1.00mg NaOH/g oil (melon oil), 10.050mg NaOH/g oil (coconut oil) and saponification value of 187.00mg/KOH (melon oil) and 183.26mg/KOH (coconut oil). The iodine value of the melon oil gave 75.00mg I2/g and 81.00mg I2/g for coconut oil. A standard statistical package Minitab version 16.0 was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to optimize the leaching process. Both samples gave high oil yield at the same optimal conditions. The optimal conditions to obtain highest oil yield ≥ 52% (melon seed) and ≥ 48% (coconut seed) are solute - solvent ratio of 40g/ml, leaching time of 2hours and leaching temperature of 50oC. The two samples studied have potential of yielding oil with melon seed giving the higher yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coconut" title="Coconut">Coconut</a>, <a href="https://publications.waset.org/abstracts/search?q=Melon" title=" Melon"> Melon</a>, <a href="https://publications.waset.org/abstracts/search?q=Optimization" title=" Optimization"> Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Processing" title=" Processing"> Processing</a> </p> <a href="https://publications.waset.org/abstracts/18345/comparative-study-of-the-effects-of-process-parameters-on-the-yield-of-oil-from-melon-seed-cococynthis-citrullus-and-coconut-fruit-cocos-nucifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Value Chain Analysis of Melon “Egusi” (Citrullus lanatus Thunb. Mansf) among Rural Farm Enterprises in South East, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chigozirim%20Onwusiribe">Chigozirim Onwusiribe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jude%20Mbanasor"> Jude Mbanasor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Egusi Melon (Citrullus Lanatus Thunb. Mansf ) is a very important oil seed that serves a major ingredient in the diet of most of the households in Nigeria. Egusi Melon is very nutritious and very important in meeting the food security needs of Nigerians. Egusi Melon is cultivated in most farm enterprise in South East Nigeria but the profitability of its value chain needs to be investigated. This study analyzed the profitability of the Egusi Melon value chain. Specifically this study developed a value chain map for Egusi Melon, analysed the profitability of each stage of the Egusi Melon Value chain and analysed the determinants of the profitability of the Egusi Melon at each stage of the value chain. Multi stage sampling technique was used to select 125 farm enterprises with similar capacity and characteristics. Questionnaire and interview were used to elicit the required data while descriptive statistics, Food and Agriculture Organization Value Chain Analysis Tool, profitability ratios and multiple regression analysis were used for the data analysis. One of the findings showed that the stages of the Egusi Melon value chain are very profitable. Based on the findings, we recommend the provision of grants by government and donor agencies to the farm enterprises through their cooperative societies, this will provide the necessary funds for the local fabrication of value addition and processing equipment to suit their unique value addition needs not met by the imported equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=value" title="value">value</a>, <a href="https://publications.waset.org/abstracts/search?q=chain" title=" chain"> chain</a>, <a href="https://publications.waset.org/abstracts/search?q=melon" title=" melon"> melon</a>, <a href="https://publications.waset.org/abstracts/search?q=farm" title=" farm"> farm</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprises" title=" enterprises"> enterprises</a> </p> <a href="https://publications.waset.org/abstracts/115674/value-chain-analysis-of-melon-egusi-citrullus-lanatus-thunb-mansf-among-rural-farm-enterprises-in-south-east-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Decline in Melon Yield and Its Contribution to Young Farmers&#039; Diversification into Watermelon Farming in Oyo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyediran%20Wasiu%20Oyeleke">Oyediran Wasiu Oyeleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melon is a popular economic cucurbit in Southwest, Nigeria. In recent time, many young farmers are shifting from melon to watermelon farming due to poor yield and low monetary returns. Hence, this study was carried out to assess the decline in melon yield and its contribution to young farmers’ diversification into watermelon farming in Oyo state, Nigeria. Purposive sampling technique was used in selecting 75 respondents from five villages in Ibarapa block of the Oyo State Agricultural Development Project (ADP). Data collected were analyzed using descriptive statistics and Pearson Product Moment Correlation (PPMC). Results show that majority of the respondents (77.3%) were between 31-40 years of age and 46.70% had secondary school education. Most of the respondents (80%) cultivated more than 3 ha of land for watermelon. Majority of the respondents (74.7%) intercropped melon with other crops while watermelon was cultivated as a sole crop. None of the respondents either grew improved melon seeds (certified seeds) or applied fertilizers but all respondents cultivated treated watermelon seeds, applied fertilizers, and agro-chemicals. The average yields of melon fell from 376.53kg/ha in 2009 to 280.70kg/ha in 2011. However, the respondents were shifting into watermelon production because of available quality seeds and its early maturity, easy harvest, and high sales. There was a significant relationship between melon output and young farmers’ diversification to watermelon in the study area at p < 0.05. The study concluded that decline in the melon yield discouraged youth to continue melon farming in the study area. It is hereby recommended that certified melon seeds should be made available while extension service providers should provide training support for the young farmers in order to reposition and boost melon production in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decline" title="decline">decline</a>, <a href="https://publications.waset.org/abstracts/search?q=melon%20yield" title=" melon yield"> melon yield</a>, <a href="https://publications.waset.org/abstracts/search?q=contribution" title=" contribution"> contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=watermelon" title=" watermelon"> watermelon</a>, <a href="https://publications.waset.org/abstracts/search?q=diversification" title=" diversification"> diversification</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20farmers" title=" young farmers"> young farmers</a> </p> <a href="https://publications.waset.org/abstracts/83932/decline-in-melon-yield-and-its-contribution-to-young-farmers-diversification-into-watermelon-farming-in-oyo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Dynamics of Agricultural Information and Effect on Income of Melon Farmers in Enugu Ezike Agricultural Zone of Enugu State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iwuchukwu%20J.%20C.">Iwuchukwu J. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekeh%20G.%20Madukwe"> Ekeh G. Madukwe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C."> M. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Asadu%20A.%20N."> Asadu A. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melon has significant importance of easy to plant, early maturing, low nutrient requirement and high yielding. Yet many melon farmers in the study area are either diversifying or abandoning this enterprise probably because of lack of agricultural knowledge/information and consequent reduction in output and income. The study was therefore carried out to asses effects of agricultural information on income of melon farmers in Enugu-Ezike Agricultural zone of Enugu state, Nigeria. Three blocks, nine circles and ninety melon farmers who were purposively selected constituted the sample for the study..Data were collected with interview schedule. Percentage and chart were used to present some of the data while some were analysed with mean score and correlation. The findings reveal that. average annual income of these respondents from melon was about seven thousand and five hundred Naira (approximately forty five Dollars). while their total average monthly income (income from melon and other sources) was about one thousand and two hundred Naira (approximately seven Dollars). About 42.% and 62% of the respondents in their respective order did not receive information on agricultural matters and melon production. Among the minority that received information on melon production, most of them sourced it from neighbours/friends/relatives. Majority of the respondents needed information on how to plant melon through interpersonal contact (face to face) using Igbo language as medium of communication and extension agent as teacher or resource person. The study also reveal a significant and positive relationship between number of times respondents received information on agriculture and their total monthly income. There was also a strong, positive and significant relationship between number of times respondents received information on melon and their annual income on melon production. The study therefore recommends that governmental and non-governmental organizations/ institutions should strengthen these farmers access to information on agriculture and melon specifically so as to boost their output and income. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farmers" title="farmers">farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=income" title=" income"> income</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a>, <a href="https://publications.waset.org/abstracts/search?q=melon" title=" melon "> melon </a> </p> <a href="https://publications.waset.org/abstracts/26827/dynamics-of-agricultural-information-and-effect-on-income-of-melon-farmers-in-enugu-ezike-agricultural-zone-of-enugu-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Performance of Different Biodegradable Waxes Based Specialized Pheromone and Lure Application Technology-Male Anhelation Technique-Cue Lure Formulations in Bittergourd Field against Bactrocera cucurbitae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amna%20Jalal">Amna Jalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi"> Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jalal%20Arif"> Muhammad Jalal Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Anum%20Tariq"> Anum Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed"> Waleed Afzal Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Talha%20Farooq"> Talha Farooq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melon fruit flies (Diptera: Tephritidae: Dacinae) are economically important pests of the cucurbits and are geographically distributed throughout the tropics and subtropics of the world. It causes heavy quantitative and qualitative losses in bitter gourd. The present experiment was carried out to evaluate the performance of different biodegradable waxes based SPLAT-MAT-CL (Specialized Pheromone and Lure Application Technology-Male Anhelation Technique- Cue Lure) formulations in bitter gourd field. Fourteen SPLAT-MAT emulsions/formulations were prepared by admixing different SPLAT matrices with toxicant (spinosad) and sex pheromone cuelure (attractant) in different proportionate percentage by weight. The results revealed that attraction and trapping of fruit flies of B. cucurbitae varied significantly for different SPLAT-MAT-CL formulations (p < 0.05). The maximum B. cucurbitae males were trapped in SPLAT-MAT-CL-7 (60 flies/trap/day) followed by SPLAT-MAT-CL-9 (40 flies/trap/day). The performance of all other formulations of SPLAT-MAT-CL was found in the order of SPLAT-MAT-CL-8 (30 flies/trap/day) > SPLAT-MAT-CL-3 (28 flies/trap/day) > SPLAT-MAT-CL-5 (25 flies/trap/day) > SPLAT-MAT-CL-4 (22 flies/trap/day) > SPLAT-MAT-CL-12 (20 flies/trap/day) SPLAT-MAT-CL-2 (19 flies/trap/day) > SPLAT-MAT-CL-14 (17 flies/trap/day) > SPLAT-MAT-CL-13 (15 flies/trap/day) > SPLAT-MAT-CL-11 (10 flies/trap/day) > SPLAT-MAT-CL-1 (8 flies/trap/day) > SPLAT-MAT-CL-10 (02 flies/trap/day). Overall, all the SPLAT-MAT-CL formulations, except SPLAT-MAT-CL-10, demonstrated higher density of captures of B. cucurbitae males as compared to standard (06 flies/trap/day). The results also demonstrate that SPLAT-MAT-CL-7, SPLAT-MAT-CL-9, SPLAT-MAT-CL-8, SPLAT-MAT-CL-3, SPLAT-MAT-CL-5, SPLAT-MAT-CL-4, SPLAT-MAT-CL-12, SPLAT-MAT-CL-2, SPLAT-MAT-CL-14, SPLAT-MAT-CL-13, SPLAT-MAT-CL-11 and SPLAT-MAT-CL-1 explained approximately 5, 4.6, 4.1, 3.6, 3.3, 3.1,2.8,2.5 and 1.6 times higher captures of B. cucurbitae males over standards. However, SPLAT-MAT-CL-10 demonstrated 3 times fewer captures of B. cucurbitae males over standards. In conclusion, SPLAT-MAT-CL-7, SPLAT-MAT-CL-9 can be exploited for the monitoring and trapping of B. cucurbitae in its IPM of program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attractancy" title="attractancy">attractancy</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20conditions" title=" field conditions"> field conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=melon%20fruit%20fly" title=" melon fruit fly"> melon fruit fly</a>, <a href="https://publications.waset.org/abstracts/search?q=SPLAT-MAT-CL" title=" SPLAT-MAT-CL"> SPLAT-MAT-CL</a> </p> <a href="https://publications.waset.org/abstracts/97310/performance-of-different-biodegradable-waxes-based-specialized-pheromone-and-lure-application-technology-male-anhelation-technique-cue-lure-formulations-in-bittergourd-field-against-bactrocera-cucurbitae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Preliminary Investigation into the Potentials of Mixed Blend of Acha (Digitaria exiles), Aya (Cyperus esculenta) and Defatted Water Melon Seed (Citrullis lanatus) Flour as a Weaning Formula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20G.%20Onuoha">O. G. Onuoha</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20G.%20Akagu"> O. G. Akagu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potentials of acha (Digitaria exiles), aya (Cyperus esculentus) and defatted water melon seed (Citrullis lanatus) as a weaning formula was investigated using the following blends for acha, aya and defatted water melon seed respectively in percentage proportion to obtain the weaning formulae; WS1(20:50:30); WS2(30:40:30); WS3(40:30:30); WS4(50:20:30). The result of the chemical analysis showed that; the sample WS1 had the highest value (15.6%) for protein while sample WS4 had the least value (14.1%). The fat content sample WS4 having the highest value (30.8%) while sample WS1 had the least value (27.3%). The ash content sample WS4 had the highest value (3.22%) while sample WS1 had the least value (2.63%). The carbohydrate content showed that sample WS1 having the highest value (50.5%) while sample WS4 had the least value (46.58%). While sample WS4 had the highest energy value (528.32 Kcal) and sample WS2 had the least value (515.06 Kcal). However, all the sample results fell within the dietary daily reference intake for infants between 0-3 years and required only local technology in its production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weaning%20formula" title="weaning formula">weaning formula</a>, <a href="https://publications.waset.org/abstracts/search?q=acha" title=" acha"> acha</a>, <a href="https://publications.waset.org/abstracts/search?q=aya" title=" aya"> aya</a>, <a href="https://publications.waset.org/abstracts/search?q=deffted%20water%20melon%20seed" title=" deffted water melon seed "> deffted water melon seed </a> </p> <a href="https://publications.waset.org/abstracts/17616/preliminary-investigation-into-the-potentials-of-mixed-blend-of-acha-digitaria-exiles-aya-cyperus-esculenta-and-defatted-water-melon-seed-citrullis-lanatus-flour-as-a-weaning-formula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Naroui%20Rad">M. R. Naroui Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Fanaei"> H. Fanaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghalandarzehi"> A. Ghalandarzehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melon" title="melon">melon</a>, <a href="https://publications.waset.org/abstracts/search?q=discriminant%20analysis" title=" discriminant analysis"> discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20components" title=" genetic components"> genetic components</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a> </p> <a href="https://publications.waset.org/abstracts/48563/improvement-of-the-melon-cucumis-melo-l-through-genetic-gain-and-discriminant-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Study of Dormancy-Breaking of Bitter Apple Seed (Citrullus Colocynthis L. Schard)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Rahimi">Asghar Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Puryousef"> Majid Puryousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to examine dormancy-breaking of bitter apple (Citrullus colocynthis) seed. Seeds of wild bitter apple collected from the Balochestan zone in east of Iran were subjected to different treatments including temperatures (20 and 30°C) and some dormancy breaking methods on breaking seed dormancy of bitter apple. Only 6 treatments from 12 dormancy breaking treatments were effective in dormancy breaking, therefore only effective treatments were analyzed. In general, germination percentage of cleaved seeds, soaked seeds in hot water (98°c) and soaking in H2SO4 in both temperatures was higher than other treatments and germination percentage of scarified seeds with sandy paper in both temperature was lower than other treatments. Also germination percentage of soaked seeds in hot water (98°c) and naturally cracked seeds in temperature 20°c was higher than 30°c. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foliar%20application" title="foliar application">foliar application</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20chelate" title=" nano chelate"> nano chelate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Safflower" title=" Safflower"> Safflower</a> </p> <a href="https://publications.waset.org/abstracts/69540/study-of-dormancy-breaking-of-bitter-apple-seed-citrullus-colocynthis-l-schard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virender%20Singh%20Gurau">Virender Singh Gurau</a>, <a href="https://publications.waset.org/abstracts/search?q=Akash%20Deep"> Akash Deep</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarbjot%20S.%20Sandhu"> Sarbjot S. Sandhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20apricot%20kernel%20oil" title=" bitter apricot kernel oil"> bitter apricot kernel oil</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20emission%20testing" title=" performance and emission testing"> performance and emission testing</a> </p> <a href="https://publications.waset.org/abstracts/52661/comparative-performance-and-emission-analysis-of-diesel-engine-fueled-with-diesel-and-bitter-apricot-kernal-oil-biodiesel-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Flaczyk">Ewa Flaczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Przeor"> Monika Przeor</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Kobus-Cisowska"> Joanna Kobus-Cisowska</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zef%20Korczak"> Józef Korczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiglycemic%20activity" title="antiglycemic activity">antiglycemic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20plant%20materials" title=" raw plant materials"> raw plant materials</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20sciences" title=" nutritional sciences"> nutritional sciences</a> </p> <a href="https://publications.waset.org/abstracts/4153/antiglycemic-activity-of-raw-plant-materials-as-potential-components-of-functional-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Malek%20Yarand">Morteza Malek Yarand</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Saebi%20Monfared"> Hadi Saebi Monfared</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20force%20gauge" title="mechanical force gauge">mechanical force gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=mold" title=" mold"> mold</a>, <a href="https://publications.waset.org/abstracts/search?q=reshaped%20fruit" title=" reshaped fruit"> reshaped fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20watermelon" title=" square watermelon"> square watermelon</a> </p> <a href="https://publications.waset.org/abstracts/13342/design-and-development-of-a-mechanical-force-gauge-for-the-square-watermelon-mold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Effect of Local Processing Techniques on the Nutrients and Anti-Nutrients Content of Bitter Cassava (Manihot Esculenta Crantz)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Alakali">J. S. Alakali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Ismaila"> A. R. Ismaila</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20G.%20Atume"> T. G. Atume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of local processing techniques on the nutrients and anti-nutrients content of bitter cassava were investigated. Raw bitter cassava tubers were boiled, sundried, roasted, fried to produce Kuese, partially fermented and sun dried to produce Alubo, fermented by submersion to produce Akpu and fermented by solid state to produce yellow and white gari. These locally processed cassava products were subjected to proximate, mineral analysis and anti-nutrient analysis using standard methods. The result of the proximate analysis showed that, raw bitter cassava is composed of 1.85% ash, 20.38% moisture, 4.11% crude fibre, 1.03% crude protein, 0.66% lipids and 71.88% total carbohydrate. For the mineral analysis, the raw bitter cassava tuber contained 32.00% Calcium, 12.55% Magnesium, 1.38% Iron and 80.17% Phosphorous. Even though all processing techniques significantly increased the mineral content, fermentation had higher mineral increment effect. The anti-nutrients analysis showed that the raw tuber contained 98.16mg/100g cyanide, 44.00mg/100g oxalate 304.20mg/100g phytate and 73.00mg/100g saponin. In general all the processing techniques showed a significant reduction of the phytate, oxalate and saponin content of the cassava. However, only fermentation, sun drying and gasification were able to reduce the cyanide content of bitter cassava below the safe level (10mg/100g) recommended by Standard Organization of Nigeria. Yellow gari(with the addition of palm oil) showed low cyanide content (1.10 mg/100g) than white gari (3.51 mg/100g). Processing methods involving fermentation reduce cyanide and other anti-nutrients in the cassava to levels that are safe for consumption and should be widely practiced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20cassava" title="bitter cassava">bitter cassava</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20processing" title=" local processing"> local processing</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-nutrient." title=" anti-nutrient."> anti-nutrient.</a> </p> <a href="https://publications.waset.org/abstracts/46049/effect-of-local-processing-techniques-on-the-nutrients-and-anti-nutrients-content-of-bitter-cassava-manihot-esculenta-crantz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Preparation of Zinc Oxide Nanoparticles and Its Anti-diabetic Effect with Momordica Charantia Plant Extract in Diabetic Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Hussain">Zahid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Nayyab%20Sultan"> Nayyab Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the preparation of zinc oxide nanoparticles and their anti-diabetic effect individually and with the combination of Momordica charantia plant extract. This plant is termed bitter melon, balsam pear, bitter gourd, or karela. Blood glucose levels in mice were monitored in their random state before and after the administration of zinc oxide nanoparticles and plant extract. The powdered form of nanoparticles and the selected plant were used as an oral treatment. Diabetes was induced in mice by using a chemical named as streptozotocin. It is an artificial diabetes-inducing chemical. In the case of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg); the maximum anti-diabetic effect observed was 70% ± 1.6 and 75% ± 1.3, respectively. In the case of the combination of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg), the maximum anti-diabetic effect observed was 86% ± 2.0. The results obtained were more effective as compared to standard drugs Amaryl (3mg/kg), having an effectiveness of 52% ± 2.4, and Glucophage (500mg/kg), having an effectiveness of 29% ± 2.1. Results indicate that zinc oxide nanoparticles and plant extract in combination are more helpful in treating diabetes as compared to their individual treatments. It is considered a natural treatment without any side effects rather than using standard drugs, which shows adverse side effects on health, and most probably detoxifies in liver and kidneys. More experimental work and extensive research procedures are still required in order to make them applicable to pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=albino%20mice" title="albino mice">albino mice</a>, <a href="https://publications.waset.org/abstracts/search?q=amaryl" title=" amaryl"> amaryl</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-diabetic%20effect" title=" anti-diabetic effect"> anti-diabetic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose%20level" title=" blood glucose level"> blood glucose level</a>, <a href="https://publications.waset.org/abstracts/search?q=Camellia%20sinensis" title=" Camellia sinensis"> Camellia sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=Momordica%20charantia%20plant%20extract" title=" Momordica charantia plant extract"> Momordica charantia plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=streptozotocin" title=" streptozotocin"> streptozotocin</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20nanoparticles" title=" zinc oxide nanoparticles"> zinc oxide nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/166799/preparation-of-zinc-oxide-nanoparticles-and-its-anti-diabetic-effect-with-momordica-charantia-plant-extract-in-diabetic-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Analysis of Weather Variability Impact on Yields of Some Crops in Southwest, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olumuyiwa%20Idowu%20Ojo">Olumuyiwa Idowu Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatobi%20Peter%20Olowo"> Oluwatobi Peter Olowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study developed a Geographical Information Systems (GIS) database and mapped inter-annual changes in crop yields of cassava, cowpea, maize, rice, melon and yam as a response to inter-annual rainfall and temperature variability in Southwest, Nigeria. The aim of this project is to study the comparative analysis of the weather variability impact of six crops yield (Rice, melon, yam, cassava, Maize and cowpea) in South Western States of Nigeria (Oyo, Osun, Ekiti, Ondo, Ogun and Lagos) from 1991 – 2007. The data was imported and analysed in the Arch GIS 9 – 3 software environment. The various parameters (temperature, rainfall, crop yields) were interpolated using the kriging method. The results generated through interpolation were clipped to the study area. Geographically weighted regression was chosen from the spatial statistics toolbox in Arch GIS 9.3 software to analyse and predict the relationship between temperature, rainfall and the different crops (Cowpea, maize, rice, melon, yam, and cassava). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20yields" title=" crop yields"> crop yields</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20variability" title=" weather variability"> weather variability</a> </p> <a href="https://publications.waset.org/abstracts/35458/analysis-of-weather-variability-impact-on-yields-of-some-crops-in-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Impact of Wastewater from Outfalls of River Ganga on Germination Percentage and Growth Parameters of Bitter Gourd (Momordica charantia L.) with Antioxidant Activity Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayanti%20Kar">Sayanti Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitava%20Ghosh"> Amitava Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Aitch"> Pritam Aitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Gupinath%20Bhandari"> Gupinath Bhandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An extensive seasonal analysis of wastewater had been done from outfalls of river Ganga in Howrah, Hooghly, 24 PGS (N) District, West Bengal, India during 2017. The morphological parameters of Bitter gourd (Momordica charantia L.) were estimated under wastewater treatment. An approach to study the activity within the range of low molecular weight peptide 3-0.5 kDa were taken through its extraction and purification by ion exchange resin column, cation, and anion exchanger. HPLC analysis had been done for both in wastewater treated and untreated plants. The antioxidant activity by using DPPH and germination percentage in control and treated plants were also determined in relation to wastewater effect. The inhibition of growth and its parameters were maximum in pre-monsoon in comparing to post-monsoon and monsoon season. The study also helped to explore the effect of wastewater on the peptidome of Bitter gourd (Momordica charantia L.). Some of these low molecular weight peptide(s) (3-0.5 kDa) also inhibited during wastewater treatment. Expression of particular peptide(s) or absence of some peptide(s) in chromatogram indicated the adverse effects on plants which may be the indication of stressful condition. Pre monsoon waste water was found to create more impact than other two. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20gourd%20%28Momordica%20charantia%20l.%29" title="bitter gourd (Momordica charantia l.)">bitter gourd (Momordica charantia l.)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20weight%20peptide" title=" low molecular weight peptide"> low molecular weight peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20ganga" title=" river ganga"> river ganga</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/101111/impact-of-wastewater-from-outfalls-of-river-ganga-on-germination-percentage-and-growth-parameters-of-bitter-gourd-momordica-charantia-l-with-antioxidant-activity-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Studies on Population and Management of Melon Fruit Fly Bactrocera cucurbitae (Coquillett) in Vegetables Agro-Ecosystem in District Hyderabada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abro%20Zain-Ul-Aabdin">Abro Zain-Ul-Aabdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Naheed%20Baloch"> Naheed Baloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Khuhro%20Niaz%20Hussain"> Khuhro Niaz Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Akbar"> Waseem Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Abid%20Saeed"> Noor Abid Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Melon Fruit Fly Bactrocera cucurbitae (Coq.) belongs to family: Tephritidae order: Diptera and is distributed throughout the vegetable growing areas of Pakistan. The B. cucurbitae is injurious pest of more than 125 species of the vegetables throughout the world. In the present studies we investigated the population of this important pest in cucurbit crops and influence of abiotic parameters such as: temperature, relative humidity and rainfall. The study was carried out at two different locations of District, Hyderabad. The locations were Jeay Shah and Dehli farm where three cucurbit vegetable crops, such as bottle gourd (Lagenaria siceraria), bitter gourd (Momordica charantia) and ridge gourd (Luffa acutangula) were grown. The traps were baited with Cue-lure and deployed at three meter height in the all locations from 01.01.2015 and up to 30.06.2015. Results revealed that overall significantly higher (P < 0.05) population was recorded on L.acutangula, M.charantia and L.siceraria (130.64, 127.21, and 122.91), respectively. However, significantly higher (P < 0.05) population was observed on L. acutangula (339.4±22.59) during the 4th week of May 2015 followed by M. charantia (334.6±22.76) L. siceraria (333.2±20.13). Whereas; lowest population was recorded on L. siceraria (5.8±1.39) followed by L. acutangula and M. charantia (6.8±0.80g, 8.0±1.30) respectively during the 4th week of January. The population of B. cucurbitae was significantly correlated with the temperature while negatively correlated with relative humidity. Meanwhile in the parasitism preference experiment pupal parasitoid Dirhinus giffardii showed significantly higher (P<0.05) parasitization when the pupae of B.cucurbitae were reared on Cucumber (Cucumis sativus) (24.8±0.48) and also female were yielded from pupae reared on C.sativus under no choice experiment. Similarly higher parasitization and female were recovered when pupae were supplied C. sativus under free choice experiment. Results of the present investigation would be useful in developing a sustainable pest management strategy in the vegetable agro-ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirhinus%20giffardii" title="Dirhinus giffardii">Dirhinus giffardii</a>, <a href="https://publications.waset.org/abstracts/search?q=Bactrocera%20cucurbitae%20Cucumis%20sativus" title=" Bactrocera cucurbitae Cucumis sativus"> Bactrocera cucurbitae Cucumis sativus</a>, <a href="https://publications.waset.org/abstracts/search?q=diptera" title=" diptera"> diptera</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20choice" title=" free choice"> free choice</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitization" title=" parasitization"> parasitization</a> </p> <a href="https://publications.waset.org/abstracts/45554/studies-on-population-and-management-of-melon-fruit-fly-bactrocera-cucurbitae-coquillett-in-vegetables-agro-ecosystem-in-district-hyderabada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Growth, Yield and Pest Infestation Response of Maize (Zea mays Linn.) to Biopesticide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udomporn%20Pangnakorn">Udomporn Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Settawut%20Prasatporn"> Settawut Prasatporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Sombat%20Chuenchooklin"> Sombat Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of biopesticide on growth, yield and pest infestation of maize (Zea mays Linn.) (variety DK 6818) was evaluated during the drought season. The experimental plots were located at research station of Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The extracted substance from plants was evaluated in the plots in 4 treatments: 1) water as control; 2) bitter bush (Chromolaena odorata L.); 3) neem (Azadirachta indica A. Juss), 4) golden shower (Cassia fistula Linn.). The experiment was followed a Randomized Complete Block Design (RCBD) with 4 treatments and 4 replications per treatment. The results showed that golden shower gave the highest growth of maize in term of height (203.29 cm), followed by neem and bitter bush with average height of 202.66 cm and 191.66 cm respectively with significance different. But neem treatment given significantly higher average of yield component in term of length, width, and weight of pod corn with 18.89 cm 13.91 cm and 166.46 g respectively. Also, treatment of neem showed the highest harvested yield at 284.06 kg/ha followed by the golden shower and bitter bush with harvested yield at 245.86 kg/ha and 235.52 kg/ha respectively. Additionally, treatment of neem and golden shower were the highest effectiveness for reducing insects pest infestation of maize: corn leaf aphid Rhopalosiphum maidis Fitch, corn borer Ostrinia fumacalis Guenee and corn armyworm Mythimna separata Walker. The treatment of neem, golden shower, and bitter bush given reduction insect infestation on maize with leaves area were infested at 5,412 mm², 6,827 mm² and 8,910 mm² respectively with significance different when compared to control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize" title="maize">maize</a>, <a href="https://publications.waset.org/abstracts/search?q=Zea%20mays%20Linn." title=" Zea mays Linn."> Zea mays Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title=" biopesticide"> biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=bitter%20bush" title=" bitter bush"> bitter bush</a>, <a href="https://publications.waset.org/abstracts/search?q=Chromolaena%20odorata%20L.%29" title=" Chromolaena odorata L.)"> Chromolaena odorata L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=neem" title=" neem"> neem</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadirachta%20indica%20A.%20Juss" title=" Azadirachta indica A. Juss"> Azadirachta indica A. Juss</a>, <a href="https://publications.waset.org/abstracts/search?q=golden%20shower" title=" golden shower"> golden shower</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20fistula%20Linn." title=" Cassia fistula Linn. "> Cassia fistula Linn. </a> </p> <a href="https://publications.waset.org/abstracts/65223/growth-yield-and-pest-infestation-response-of-maize-zea-mays-linn-to-biopesticide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukrouh%20Soumaya">Boukrouh Soumaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Cabaraux%20Jean-Fran%C3%A7ois"> Cabaraux Jean-François</a>, <a href="https://publications.waset.org/abstracts/search?q=Avril%20Claire"> Avril Claire</a>, <a href="https://publications.waset.org/abstracts/search?q=Noutfia%20Ali"> Noutfia Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Chentouf%20Mouad"> Chentouf Mouad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20vetch" title="bitter vetch">bitter vetch</a>, <a href="https://publications.waset.org/abstracts/search?q=grains" title=" grains"> grains</a>, <a href="https://publications.waset.org/abstracts/search?q=straw" title=" straw"> straw</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotype" title=" ecotype"> ecotype</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20digestibility" title=" in vitro digestibility"> in vitro digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=gaz%20production" title=" gaz production"> gaz production</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20digestibility" title=" enzymatic digestibility"> enzymatic digestibility</a> </p> <a href="https://publications.waset.org/abstracts/144002/in-vitro-digestibility-of-grains-and-straw-of-seventeen-ecotypes-of-bitter-vetch-vicia-ervilia-in-the-north-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asiya%20Rezzouq">Asiya Rezzouq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20El%20Bouchti"> Mehdi El Bouchti</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Cherkaoui"> Omar Cherkaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanaa%20Majid"> Sanaa Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Souad%20Zyade"> Souad Zyade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=melon%20plant%20residues" title=" melon plant residues"> melon plant residues</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title=" cellulose nanocrystals"> cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/181611/cellulose-nanocrystals-from-melon-plant-residues-a-sustainable-and-renewable-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Anti-Nutritional Factors, In-Vitro Trypsin, Chymotrypsin and Peptidase Multi Enzyme Protein Digestibility of Some Melon (Egusi) Seeds and Their Protein Isolates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joan%20O.%20Ogundele">Joan O. Ogundele</a>, <a href="https://publications.waset.org/abstracts/search?q=Aladesanmi%20A.%20Oshodi"> Aladesanmi A. Oshodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adekunle%20I.%20Amoo"> Adekunle I. Amoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract In-vitro multi-enzyme protein digestibility (IVMPD) and some anti-nutritional factors (ANF) of five melon (egusi) seed flours (MSF) and their protein isolates (PI) were carried out. Their PI have potentials comparable to that of soya beans. It is important to know the IVMPD and ANF of these protein sources as to ensure their safety when adapted for use as alternate protein sources to substitute for cow milk, which is relatively expensive in Nigeria. Standard methods were used to produce PI of Citrullus colocynthis, Citrullus vulgaris, African Wine Kettle gourd (Lageneria siceraria I), Basket Ball gourd (Lagenaria siceraria II) and Bushel Giant Gourd (Lageneria siceraria III) seeds and to determine the ANF and IVMPD of the MSF and PI unheated and at 37oC. Multi-enzymes used were trypsin, chymotrypsin and peptidase. IVMPD of MSF ranged from (70.67±0.70) % (C. vulgaris) to (72.07± 1.79) % (L.siceraria I) while for their PI ranged from 74.33% (C.vulgaris) to 77.55% (L.siceraria III). IVMPD of the PI were higher than those of MSF. Heating increased IVMPD of MSF with average value of 79.40% and those of PI with average of 84.14%. ANF average in MSF are tannin (0.11mg/g), phytate (0.23%). Differences in IVMPD of MSF and their PI at different temperatures may arise from processing conditions that alter the release of amino acids from proteins by enzymatic processes. ANF in MSF were relatively low, but were found to be lower in the PI, therefor making the PI safer for human consumption as an alternate source of protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anti-nutrients" title="Anti-nutrients">Anti-nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=Enzymatic%20protein%20digestibility" title=" Enzymatic protein digestibility"> Enzymatic protein digestibility</a>, <a href="https://publications.waset.org/abstracts/search?q=Melon%20%28egusi%29." title=" Melon (egusi)."> Melon (egusi).</a>, <a href="https://publications.waset.org/abstracts/search?q=Protein%20Isolates." title=" Protein Isolates."> Protein Isolates.</a> </p> <a href="https://publications.waset.org/abstracts/118419/anti-nutritional-factors-in-vitro-trypsin-chymotrypsin-and-peptidase-multi-enzyme-protein-digestibility-of-some-melon-egusi-seeds-and-their-protein-isolates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Sweet to Bitter Perception Parageusia: Case of Posterior Inferior Cerebellar Artery Territory Diaschisis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Gandhi">I. S. Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Patel"> D. N. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Johnson"> M. Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Hirsch"> A. R. Hirsch </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although distortion of taste perception following a cerebrovascular event may seem to be a frivolous consequence of a classic stroke presentation, altered taste perception places patients at an increased risk for malnutrition, weight loss, and depression, all of which negatively impact the quality of life. Impaired taste perception can result from a wide variety of cerebrovascular lesions to various locations, including pons, insular cortices, and ventral posteromedial nucleus of the thalamus. Wallenberg syndrome, also known as a lateral medullary syndrome, has been described to impact taste; however, specific sweet to bitter taste dysgeusia from a territory infarction is an infrequent event; as such, a case is presented. One year prior to presentation, this 64-year-old right-handed woman, suffered a right posterior inferior cerebellar artery aneurysm rupture with resultant infarction, culminating in a ventriculoperitoneal shunt placement. One and half months after this event, she noticed the gradual onset of lack of ability to taste sweet, to eventually all sweet food tasting bitter. Since the onset of her chemosensory problems, the patient has lost 60-pounds. Upon gustatory testing, the patient's taste threshold showed ageusia to sucrose and hydrochloric acid, while normogeusia to sodium chloride, urea, and phenylthiocarbamide. The gustatory cortex is made in part by the right insular cortex as well as the right anterior operculum, which are primarily involved in the sensory taste modalities. In this model, sweet is localized in the posterior-most along with the rostral aspect of the right insular cortex, notably adjacent to the region responsible for bitter taste. The sweet to bitter dysgeusia in our patient suggests the presence of a lesion in this localization. Although the primary lesion in this patient was located in the right medulla of the brainstem, neurodegeneration in the rostal and posterior-most aspect, of the right insular cortex may have occurred due to diaschisis. Diaschisis has been described as neurophysiological changes that occur in remote regions to a focal brain lesion. Although hydrocephalus and vasospasm due to aneurysmal rupture may explain the distal foci of impairment, the gradual onset of dysgeusia is more indicative of diaschisis. The perception of sweet, now tasting bitter, suggests that in the absence of sweet taste reception, the intrinsic bitter taste of food is now being stimulated rather than sweet. In the evaluation and treatment of taste parageusia secondary to cerebrovascular injury, prophylactic neuroprotective measures may be worthwhile. Further investigation is warranted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diaschisis" title="diaschisis">diaschisis</a>, <a href="https://publications.waset.org/abstracts/search?q=dysgeusia" title=" dysgeusia"> dysgeusia</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=taste" title=" taste"> taste</a> </p> <a href="https://publications.waset.org/abstracts/113097/sweet-to-bitter-perception-parageusia-case-of-posterior-inferior-cerebellar-artery-territory-diaschisis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Boiling Effect of Momordica charantia with Salt to the Antihiperglicemia Effectiveness of Diabetes Mellitus Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfa%20D.%20Putri">Zulfa D. Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Jumayanti%20Jumayanti"> Jumayanti Jumayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatiefah%20T.%20I.%20Melati"> Hatiefah T. I. Melati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiki%20Indriati"> Kiki Indriati</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20U.%20Mauhibah"> Farah U. Mauhibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Momordica charantia is a food that is often used for nutrition therapy for patients with Diabetes Mellitus (DM) because of its effect as antihiperglicemia. However, the bitter taste of Momordica charantia may be an obstacle to consume. Some people remove the bitter taste of this by boiling it with salt water. The purpose of this study was to determine the effect of Momordica charantia boiling with salt water in lowering blood glucose levels. This study is a quasi-experimental study with pre-post test with control group design. The research sample consisted of 25 rats Sprague-Dawley were divided into 5 groups: Control group of healthy, control group of DM, control group of DM with the addition of Momordica charantia are boiled by salt for 3 minutes, 6 minutes, and 9 minutes. Blood glucose levels were measured after 4 weeks using a spectrophotometer. These results indicate that there is the effect of bitter taste from Momordica charantia in lowering blood glucose levels in rats significantly. The conclusion of this study is giving a Momordica charantia juice in Sprague-Dawley rats that induced by alloxan has meaningful statistically proven by One Way ANOVA test (p = 0.00) in lowering blood glucose levels of rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antihiperglicemia" title="antihiperglicemia">antihiperglicemia</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=momordica%20charantia" title=" momordica charantia"> momordica charantia</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a> </p> <a href="https://publications.waset.org/abstracts/54488/boiling-effect-of-momordica-charantia-with-salt-to-the-antihiperglicemia-effectiveness-of-diabetes-mellitus-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Effect of Saline Ground Water on Economics of Bitter-Gourd (Momordica charantia L.) Cultivation and Soil Characteristics in Semi Arid Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Baksh%20Soomro">Kamran Baksh Soomro</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Talei"> Amin Talei</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Alaghmand"> Sina Alaghmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the declining freshwater availability to agriculture in many areas, the utilization of saline irrigation requires more consideration. For this purpose, the effects of saline irrigation on the economics of crop yield and soil salinity should be understood. A two-year field experiment was carried out during 2017-18 with three replications to investigate the effect of saline groundwater on the economics of bitter gourd production and soil salinity status after harvesting the crop. Two irrigation treatments, i.e., fresh quality irrigation water (IT₁ EC 0.56 dS.m⁻¹ (control) and other is saline groundwater ( IT₂ EC 2.56 dS.m⁻¹) were used under drip system of irrigation. Cost-benefit analysis is often used to assess adaptation approaches. In this study, it has been observed that the salts under IT₁ (fresh quality water) and IT₂ (saline groundwater) did not accumulate in the wetted zone. However, the salts were observed deposited at wetted periphery under both the treatments after the crop end at all the three sampling depths under drip system of irrigation. Moreover, the costs and benefits associated with different irrigation treatments for two consecutive seasons for bitter-gourd cultivation were also investigated, and it was found that the average gross returns per hectare in season 1 were USD 5008.22 and 4454.78 under irrigation treatment IT₁ and IT₂ respectively. Whereas in season 2 the average gross returns per hectare were 3713.47 and 3140.51 under IT₁ and IT₂ respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground-water" title="ground-water">ground-water</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20salinity" title=" soil salinity"> soil salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title=" drip irrigation"> drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=wetted%20zone" title=" wetted zone"> wetted zone</a>, <a href="https://publications.waset.org/abstracts/search?q=wetted%20periphery" title=" wetted periphery"> wetted periphery</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20benefit%20analysis" title=" cost benefit analysis"> cost benefit analysis</a> </p> <a href="https://publications.waset.org/abstracts/101836/effect-of-saline-ground-water-on-economics-of-bitter-gourd-momordica-charantia-l-cultivation-and-soil-characteristics-in-semi-arid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Seedling Emergence and Initial Growth of Different Plants after Trichoderma sp. Inoculation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simonida%20S.%20Djuric">Simonida S. Djuric</a>, <a href="https://publications.waset.org/abstracts/search?q=Timea%20I.%20Hajnal%20Jafari"> Timea I. Hajnal Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragana%20R.%20Stamenov"> Dragana R. Stamenov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of plant growth promoting fungi (PGPF) has significantly increased in the last decade mostly due to their multi-level properties, and their expected success as biofertilizers in agriculture. Beneficial fungi with broad-host range undergo long-term interactions with a large variety of plants thereby playing a significant role in managed ecosystems and in the adaptation of crops to global climate changes. Trichoderma spp. are promising fungi toward the development of sustainable agriculture. The aim of our experiment was to investigate the effect of seed inoculation of sunflower, maize, soybean, paprika, melon, and watermelon seeds with Trichoderma sp. on early seed germination energy and initial growth of the plant. The seed inoculation with Trichoderma sp. increased the seedling emergence from 7, 85% in melon to 156,70% in watermelon. The inoculation had the best effect on initial growth of maize shoot (+23,80%) and soybean root (+106,30%). The different response of seed and young plants on Trichoderma sp. inoculation implicate the need for future investigations of successful inoculation systems and modes of their integration in sustainable agriculture production systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=initial%20growth" title="initial growth">initial growth</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculation" title=" inoculation"> inoculation</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling" title=" seedling"> seedling</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichoderma%20sp." title=" Trichoderma sp."> Trichoderma sp.</a> </p> <a href="https://publications.waset.org/abstracts/80517/seedling-emergence-and-initial-growth-of-different-plants-after-trichoderma-sp-inoculation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bitter%20melon&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bitter%20melon&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bitter%20melon&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bitter%20melon&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10