CINXE.COM

Search results for: indexing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: indexing</title> <meta name="description" content="Search results for: indexing"> <meta name="keywords" content="indexing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="indexing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="indexing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 57</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: indexing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> How to Perform Proper Indexing?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watheq%20Mansour">Watheq Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Bin%20Owais"> Waleed Bin Owais</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Basheer%20Kotit"> Mohammad Basheer Kotit</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Khan"> Khaled Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient query processing is one of the utmost requisites in any business environment to satisfy consumer needs. This paper investigates the various types of indexing models, viz. primary, secondary, and multi-level. The investigation is done under the ambit of various types of queries to which each indexing model performs with efficacy. This study also discusses the inherent advantages and disadvantages of each indexing model and how indexing models can be chosen based on a particular environment. This paper also draws parallels between various indexing models and provides recommendations that would help a Database administrator to zero-in on a particular indexing model attributed to the needs and requirements of the production environment. In addition, to satisfy industry and consumer needs attributed to the colossal data generation nowadays, this study has proposed two novel indexing techniques that can be used to index highly unstructured and structured Big Data with efficacy. The study also briefly discusses some best practices that the industry should follow in order to choose an indexing model that is apposite to their prerequisites and requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indexing" title="indexing">indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=hashing" title=" hashing"> hashing</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20semantic%20indexing" title=" latent semantic indexing"> latent semantic indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=B-tree" title=" B-tree"> B-tree</a> </p> <a href="https://publications.waset.org/abstracts/134844/how-to-perform-proper-indexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Enhancement of Indexing Model for Heterogeneous Multimedia Documents: User Profile Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Aggoune">Aicha Aggoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20Bouramoul"> Abdelkrim Bouramoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khiereddine%20Kholladi"> Mohamed Khiereddine Kholladi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent research shows that user profile as important element can improve heterogeneous information retrieval with its content. In this context, we present our indexing model for heterogeneous multimedia documents. This model is based on the combination of user profile to the indexing process. The general idea of our proposal is to operate the common concepts between the representation of a document and the definition of a user through his profile. These two elements will be added as additional indexing entities to enrich the heterogeneous corpus documents indexes. We have developed IRONTO domain ontology allowing annotation of documents. We will present also the developed tool validating the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indexing%20model" title="indexing model">indexing model</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20profile" title=" user profile"> user profile</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia%20document" title=" multimedia document"> multimedia document</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20of%20sources" title=" heterogeneous of sources"> heterogeneous of sources</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/41159/enhancement-of-indexing-model-for-heterogeneous-multimedia-documents-user-profile-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Lecture Video Indexing and Retrieval Using Topic Keywords</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Sandesh">B. J. Sandesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabha%20Jirgi"> Saurabha Jirgi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vidya"> S. Vidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Eljer"> Prakash Eljer</a>, <a href="https://publications.waset.org/abstracts/search?q=Gowri%20Srinivasa"> Gowri Srinivasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20indexing%20and%20retrieval" title="video indexing and retrieval">video indexing and retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=lecture%20videos" title=" lecture videos"> lecture videos</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20video%20search" title=" content based video search"> content based video search</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20indexing" title=" multimodal indexing"> multimodal indexing</a> </p> <a href="https://publications.waset.org/abstracts/77066/lecture-video-indexing-and-retrieval-using-topic-keywords" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Maraoui">Mohsen Maraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concept%20extraction" title="concept extraction">concept extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20network%20formalism" title=" conceptual network formalism"> conceptual network formalism</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20association%20rules" title=" fuzzy association rules"> fuzzy association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=multilingual%20thesaurus" title=" multilingual thesaurus"> multilingual thesaurus</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20indexing" title=" semantic indexing"> semantic indexing</a> </p> <a href="https://publications.waset.org/abstracts/98854/semantic-indexing-improvement-for-textual-documents-contribution-of-classification-by-fuzzy-association-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Compressed Suffix Arrays to Self-Indexes Based on Partitioned Elias-Fano</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo%20Wenyu">Guo Wenyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qu%20Youli"> Qu Youli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A practical and simple self-indexing data structure, Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is built in linear time for the CSA based on PEF indexes. Moreover, the PEF-CSA is compared with two classical compressed indexing methods, Ferragina and Manzini implementation (FMI) and Sad-CSA on different type and size files in Pizza &amp; Chili. The PEF-CSA performs better on the existing data in terms of the compression ratio, count, and locates time except for the evenly distributed data such as proteins data. The observations of the experiments are that the distribution of the &phi; is more important than the alphabet size on the compression ratio. Unevenly distributed data &phi; makes better compression effect, and the larger the size of the hit counts, the longer the count and locate time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20suffix%20array" title="compressed suffix array">compressed suffix array</a>, <a href="https://publications.waset.org/abstracts/search?q=self-indexing" title=" self-indexing"> self-indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=partitioned%20Elias-Fano" title=" partitioned Elias-Fano"> partitioned Elias-Fano</a>, <a href="https://publications.waset.org/abstracts/search?q=PEF-CSA" title=" PEF-CSA"> PEF-CSA</a> </p> <a href="https://publications.waset.org/abstracts/65986/compressed-suffix-arrays-to-self-indexes-based-on-partitioned-elias-fano" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Graph Codes - 2D Projections of Multimedia Feature Graphs for Fast and Effective Retrieval</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wagenpfeil">Stefan Wagenpfeil</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Engel"> Felix Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20McKevitt"> Paul McKevitt</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Hemmje"> Matthias Hemmje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multimedia Indexing and Retrieval is generally designed and implemented by employing feature graphs. These graphs typically contain a significant number of nodes and edges to reflect the level of detail in feature detection. A higher level of detail increases the effectiveness of the results but also leads to more complex graph structures. However, graph-traversal-based algorithms for similarity are quite inefficient and computation intensive, especially for large data structures. To deliver fast and effective retrieval, an efficient similarity algorithm, particularly for large graphs, is mandatory. Hence, in this paper, we define a graph-projection into a 2D space (Graph Code) as well as the corresponding algorithms for indexing and retrieval. We show that calculations in this space can be performed more efficiently than graph-traversals due to a simpler processing model and a high level of parallelization. In consequence, we prove that the effectiveness of retrieval also increases substantially, as Graph Codes facilitate more levels of detail in feature fusion. Thus, Graph Codes provide a significant increase in efficiency and effectiveness (especially for Multimedia indexing and retrieval) and can be applied to images, videos, audio, and text information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indexing" title="indexing">indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=retrieval" title=" retrieval"> retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia" title=" multimedia"> multimedia</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20algorithm" title=" graph algorithm"> graph algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20code" title=" graph code"> graph code</a> </p> <a href="https://publications.waset.org/abstracts/135289/graph-codes-2d-projections-of-multimedia-feature-graphs-for-fast-and-effective-retrieval" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Design and Implementation of Partial Denoising Boundary Image Matching Using Indexing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bum-Soo%20Kim">Bum-Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Uk%20Kim"> Jin-Uk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we design and implement a partial denoising boundary image matching system using indexing techniques. Converting boundary images to time-series makes it feasible to perform fast search using indexes even on a very large image database. Thus, using this converting method we develop a client-server system based on the previous partial denoising research in the GUI (graphical user interface) environment. The client first converts a query image given by a user to a time-series and sends denoising parameters and the tolerance with this time-series to the server. The server identifies similar images from the index by evaluating a range query, which is constructed using inputs given from the client, and sends the resulting images to the client. Experimental results show that our system provides much intuitive and accurate matching result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20image%20matching" title="boundary image matching">boundary image matching</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20denoising" title=" partial denoising"> partial denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series%20matching" title=" time-series matching"> time-series matching</a> </p> <a href="https://publications.waset.org/abstracts/97170/design-and-implementation-of-partial-denoising-boundary-image-matching-using-indexing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karan%20Vishavjit">Karan Vishavjit</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Lakra"> Aakash Lakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafaq%20Khan"> Shafaq Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=NoSQL" title=" NoSQL"> NoSQL</a>, <a href="https://publications.waset.org/abstracts/search?q=sharding" title=" sharding"> sharding</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20being" title=" well being"> well being</a> </p> <a href="https://publications.waset.org/abstracts/172020/post-pandemic-mobility-analysis-through-indexing-and-sharding-in-mongodb-performance-optimization-and-insights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phumelele%20Kubheka">Phumelele Kubheka</a>, <a href="https://publications.waset.org/abstracts/search?q=Pius%20Owolawi"> Pius Owolawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbolahan%20Aiyetoro"> Gbolahan Aiyetoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20Dirichlet%20allocation" title=" latent Dirichlet allocation"> latent Dirichlet allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20semantic%20indexing" title=" latent semantic indexing"> latent semantic indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=telco" title=" telco"> telco</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20modeling" title=" topic modeling"> topic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=twitter" title=" twitter"> twitter</a> </p> <a href="https://publications.waset.org/abstracts/147818/topic-modelling-using-latent-dirichlet-allocation-and-latent-semantic-indexing-on-sa-telco-twitter-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hellam">S. Hellam</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Oulahrir"> Y. Oulahrir</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20El%20Mounchid"> F. El Mounchid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sadiq"> A. Sadiq</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mbarki"> S. Mbarki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20indexation" title="3D indexation">3D indexation</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20harmonic" title=" spherical harmonic"> spherical harmonic</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20of%203D%20objects" title=" similarity of 3D objects"> similarity of 3D objects</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20similarity" title=" measurement similarity"> measurement similarity</a> </p> <a href="https://publications.waset.org/abstracts/14277/3d-objects-indexing-using-spherical-harmonic-for-optimum-measurement-similarity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Extraction of Text Subtitles in Multimedia Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amarjit%20Singh">Amarjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a method for extraction of text subtitles in large video is proposed. The video data needs to be annotated for many multimedia applications. Text is incorporated in digital video for the motive of providing useful information about that video. So need arises to detect text present in video to understanding and video indexing. This is achieved in two steps. First step is text localization and the second step is text verification. The method of text detection can be extended to text recognition which finds applications in automatic video indexing; video annotation and content based video retrieval. The method has been tested on various types of videos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video" title="video">video</a>, <a href="https://publications.waset.org/abstracts/search?q=subtitles" title=" subtitles"> subtitles</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=annotation" title=" annotation"> annotation</a>, <a href="https://publications.waset.org/abstracts/search?q=frames" title=" frames"> frames</a> </p> <a href="https://publications.waset.org/abstracts/24441/extraction-of-text-subtitles-in-multimedia-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Fradi">Ahmed Fradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD" title="CAD">CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20object%20retrieval" title=" 3D object retrieval"> 3D object retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20based%20retrieval" title=" shape based retrieval"> shape based retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20calculation" title=" similarity calculation"> similarity calculation</a> </p> <a href="https://publications.waset.org/abstracts/78341/3d-object-retrieval-based-on-similarity-calculation-in-3d-computer-aided-design-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Comparison of the H-Index of Researchers of Google Scholar and Scopus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adian%20Fatchur%20Rochim">Adian Fatchur Rochim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Muis"> Abdul Muis</a>, <a href="https://publications.waset.org/abstracts/search?q=Riri%20Fitri%20Sari"> Riri Fitri Sari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference&rsquo;s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers&rsquo; data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper&rsquo;s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Google%20Scholar" title="Google Scholar">Google Scholar</a>, <a href="https://publications.waset.org/abstracts/search?q=H-index" title=" H-index"> H-index</a>, <a href="https://publications.waset.org/abstracts/search?q=Scopus" title=" Scopus"> Scopus</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20indicator" title=" performance indicator"> performance indicator</a> </p> <a href="https://publications.waset.org/abstracts/75572/comparison-of-the-h-index-of-researchers-of-google-scholar-and-scopus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Fantazi">Walid Fantazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WSN" title="WSN">WSN</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing%20data" title=" indexing data"> indexing data</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=RIA" title=" RIA"> RIA</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system "> geographic information system </a> </p> <a href="https://publications.waset.org/abstracts/88946/design-and-development-of-a-platform-for-analyzing-spatio-temporal-data-from-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaa%20Chafik">Sanaa Chafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Daoudi"> Imane Daoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounim%20A.%20El%20Yacoubi"> Mounim A. El Yacoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20El%20Ouardi"> Hamid El Ouardi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20nearest%20neighbor%20search" title="approximate nearest neighbor search">approximate nearest neighbor search</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20image%20retrieval%20%28CBIR%29" title=" content based image retrieval (CBIR)"> content based image retrieval (CBIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=curse%20of%20dimensionality" title=" curse of dimensionality"> curse of dimensionality</a>, <a href="https://publications.waset.org/abstracts/search?q=locality%20sensitive%20hashing" title=" locality sensitive hashing"> locality sensitive hashing</a>, <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20indexing" title=" multidimensional indexing"> multidimensional indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a> </p> <a href="https://publications.waset.org/abstracts/12901/sc-lsh-an-efficient-indexing-method-for-approximate-similarity-search-in-high-dimensional-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20N.%20Raju">U. S. N. Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Kothuri%20Sai%20Kiran"> Kothuri Sai Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20G.%20Kamal"> Meena G. Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Nikhil%20Pabba"> Vinay Nikhil Pabba</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kanaparthi"> Suresh Kanaparthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20lectures" title="video lectures">video lectures</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20video%20data" title=" big video data"> big video data</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20retrieval" title=" video retrieval"> video retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=hadoop" title=" hadoop"> hadoop</a> </p> <a href="https://publications.waset.org/abstracts/26648/distributed-processing-for-content-based-lecture-video-retrieval-on-hadoop-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Telesphore%20Tiendrebeogo">Telesphore Tiendrebeogo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumarou%20Si%C3%A9"> Oumarou Sié</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20coordinates" title="virtual coordinates">virtual coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20plane" title=" hyperbolic plane"> hyperbolic plane</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency" title=" consistency"> consistency</a> </p> <a href="https://publications.waset.org/abstracts/40855/a-cloud-computing-system-using-virtual-hyperbolic-coordinates-for-services-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based on Local Color Histograms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mawloud%20Mosbah">Mawloud Mosbah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Boucheham"> Bachir Boucheham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBIR" title="CBIR">CBIR</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20global%20histogram" title=" color global histogram"> color global histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20local%20histogram" title=" color local histogram"> color local histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20segmentation" title=" weak segmentation"> weak segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Euclidean%20distance" title=" Euclidean distance"> Euclidean distance</a> </p> <a href="https://publications.waset.org/abstracts/14435/selecting-the-best-sub-region-indexing-the-images-in-the-case-of-weak-segmentation-based-on-local-color-histograms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Common Orthodontic Indices and Classification in the United Kingdom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Mohan">Ashwini Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haris%20Batley"> Haris Batley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=indices" title=" indices"> indices</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontics" title=" orthodontics"> orthodontics</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a> </p> <a href="https://publications.waset.org/abstracts/152293/common-orthodontic-indices-and-classification-in-the-united-kingdom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Video Summarization: Techniques and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaynab%20El%20Khattabi">Zaynab El Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youness%20Tabii"> Youness Tabii</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Benkaddour"> Abdelhamid Benkaddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20summarization" title="video summarization">video summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20summarization" title=" static summarization"> static summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20skimming" title=" video skimming"> video skimming</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20features" title=" semantic features"> semantic features</a> </p> <a href="https://publications.waset.org/abstracts/27644/video-summarization-techniques-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alwosheel">Ahmad Alwosheel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alqaraawi"> Ahmed Alqaraawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=diarization" title=" diarization"> diarization</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20indexing" title=" speaker indexing"> speaker indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20segmentation" title=" speaker segmentation"> speaker segmentation</a> </p> <a href="https://publications.waset.org/abstracts/27191/a-two-step-framework-for-unsupervised-speaker-segmentation-using-bic-and-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Source Separation for Global Multispectral Satellite Images Indexing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Bouzid">Aymen Bouzid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihen%20Ben%20Smida"> Jihen Ben Smida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20source%20separation" title="blind source separation">blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20image%20retrieval" title=" content based image retrieval"> content based image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction%20multispectral" title=" feature extraction multispectral"> feature extraction multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title=" satellite images"> satellite images</a> </p> <a href="https://publications.waset.org/abstracts/28585/source-separation-for-global-multispectral-satellite-images-indexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> A Blind Three-Dimensional Meshes Watermarking Using the Interquartile Range</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20E.%20Abdallah">Emad E. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20E.%20Abdallah"> Alaa E. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Bajes%20Y.%20Alskarnah"> Bajes Y. Alskarnah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We introduce a robust three-dimensional watermarking algorithm for copyright protection and indexing. The basic idea behind our technique is to measure the interquartile range or the spread of the 3D model vertices. The algorithm starts by converting all the vertices to spherical coordinate followed by partitioning them into small groups. The proposed algorithm is slightly altering the interquartile range distribution of the small groups based on predefined watermark. The experimental results on several 3D meshes prove perceptual invisibility and the robustness of the proposed technique against the most common attacks including compression, noise, smoothing, scaling, rotation as well as combinations of these attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watermarking" title="watermarking">watermarking</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20models" title=" three-dimensional models"> three-dimensional models</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20invisibility" title=" perceptual invisibility"> perceptual invisibility</a>, <a href="https://publications.waset.org/abstracts/search?q=interquartile%20range" title=" interquartile range"> interquartile range</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20attacks" title=" 3D attacks"> 3D attacks</a> </p> <a href="https://publications.waset.org/abstracts/15946/a-blind-three-dimensional-meshes-watermarking-using-the-interquartile-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Parallel Querying of Distributed Ontologies with Shared Vocabulary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharjeel%20Aslam">Sharjeel Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vassil%20Vassilev"> Vassil Vassilev</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Ouazzane"> Karim Ouazzane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20ontologies" title="distributed ontologies">distributed ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20querying" title=" parallel querying"> parallel querying</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20indexing" title=" semantic indexing"> semantic indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20vocabulary" title=" shared vocabulary"> shared vocabulary</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARQL" title=" SPARQL"> SPARQL</a> </p> <a href="https://publications.waset.org/abstracts/105046/parallel-querying-of-distributed-ontologies-with-shared-vocabulary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Speeding-up Gray-Scale FIC by Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20A.%20Al-Hilo">Eman A. Al-Hilo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawraa%20H.%20Al-Waelly"> Hawraa H. Al-Waelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20gray%20level%20image" title="fractal gray level image">fractal gray level image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20compression%20technique" title=" fractal compression technique"> fractal compression technique</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20system" title=" iterated function system"> iterated function system</a>, <a href="https://publications.waset.org/abstracts/search?q=moments%20feature" title=" moments feature"> moments feature</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-mean%20range-domain%20block" title=" zero-mean range-domain block"> zero-mean range-domain block</a> </p> <a href="https://publications.waset.org/abstracts/19903/speeding-up-gray-scale-fic-by-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Evaluating Alternative Structures for Prefix Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feras%20Hanandeh">Feras Hanandeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzat%20Alsmadi"> Izzat Alsmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20M.%20Kwafha"> Muhammad M. Kwafha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20structures" title="data structures">data structures</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20structure" title=" tree structure"> tree structure</a>, <a href="https://publications.waset.org/abstracts/search?q=trie" title=" trie"> trie</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a> </p> <a href="https://publications.waset.org/abstracts/12226/evaluating-alternative-structures-for-prefix-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouanan%20Mohammed"> Ouanan Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20histogram" title="2-D histogram">2-D histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20moments" title=" statistical moments"> statistical moments</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20distance" title=" similarity distance"> similarity distance</a>, <a href="https://publications.waset.org/abstracts/search?q=histograms%20intersection" title=" histograms intersection"> histograms intersection</a> </p> <a href="https://publications.waset.org/abstracts/19796/content-based-color-image-retrieval-based-on-the-2-d-histogram-and-statistical-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Pallavi">Smita Pallavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Ratn%20Pranesh"> Raj Ratn Pranesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar"> Sumit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20extraction" title="table extraction">table extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20character%20recognition" title=" optical character recognition"> optical character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20extraction" title=" text extraction"> text extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20transformation" title=" morphological transformation"> morphological transformation</a> </p> <a href="https://publications.waset.org/abstracts/127575/a-conglomerate-of-multiple-optical-character-recognition-table-detection-and-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> A Comparative Study between Different Techniques of Off-Page and On-Page Search Engine Optimization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ishtiaq">Ahmed Ishtiaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Maeeda%20Khalid"> Maeeda Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Umair%20Sajjad"> Umair Sajjad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the fast-moving world, information is the key to success. If information is easily available, then it makes work easy. The Internet is the biggest collection and source of information nowadays, and with every single day, the data on internet increases, and it becomes difficult to find required data. Everyone wants to make his/her website at the top of search results. This can be possible when you have applied some techniques of SEO inside your application or outside your application, which are two types of SEO, onsite and offsite SEO. SEO is an abbreviation of Search Engine Optimization, and it is a set of techniques, methods to increase users of a website on World Wide Web or to rank up your website in search engine indexing. In this paper, we have compared different techniques of Onpage and Offpage SEO, and we have suggested many things that should be changed inside webpage, outside web page and mentioned some most powerful and search engine considerable elements and techniques in both types of SEO in order to gain high ranking on Search Engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-suggestion" title="auto-suggestion">auto-suggestion</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20engine%20optimization" title=" search engine optimization"> search engine optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=SEO" title=" SEO"> SEO</a>, <a href="https://publications.waset.org/abstracts/search?q=query" title=" query"> query</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20mining" title=" web mining"> web mining</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20crawler" title=" web crawler"> web crawler</a> </p> <a href="https://publications.waset.org/abstracts/128880/a-comparative-study-between-different-techniques-of-off-page-and-on-page-search-engine-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> A Survey of Response Generation of Dialogue Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Fan">Yifan Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin"> Pingping Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=generative" title=" generative"> generative</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20generation" title=" response generation"> response generation</a>, <a href="https://publications.waset.org/abstracts/search?q=retrieval" title=" retrieval"> retrieval</a> </p> <a href="https://publications.waset.org/abstracts/128195/a-survey-of-response-generation-of-dialogue-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indexing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10