CINXE.COM

Search results for: racing

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: racing</title> <meta name="description" content="Search results for: racing"> <meta name="keywords" content="racing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="racing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="racing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 35</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: racing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Mittal">Rohit Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bright%20Keswani"> Bright Keswani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Mithal"> Amit Mithal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolution%20algorithm" title="evolution algorithm">evolution algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic" title=" genetic"> genetic</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=imitation" title=" imitation"> imitation</a>, <a href="https://publications.waset.org/abstracts/search?q=racing" title=" racing"> racing</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=gaming" title=" gaming"> gaming</a> </p> <a href="https://publications.waset.org/abstracts/8773/development-of-evolutionary-algorithm-by-combining-optimization-and-imitation-approach-for-machine-learning-in-gaming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Integer Programming-Based Generation of Difficulty Level for a Racing Game</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangchul%20Kim">Sangchul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dosaeng%20Park"> Dosaeng Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is one of the important design issues to provide various levels of difficulty in order to suit the skillfulness of an individual. In this paper we propose an integer programming-based method for selecting a mixture of challenges for a racing game that meet a given degree of difficulty. The proposed method can also be used to dynamically adjust the difficulty of the game during the progression of playing. By experiments, it is shown that our method performs well enough to generate games with various degrees of difficulty that match the perception of players. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20generation" title="level generation">level generation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20adjustment" title=" level adjustment"> level adjustment</a>, <a href="https://publications.waset.org/abstracts/search?q=racing%20game" title=" racing game"> racing game</a>, <a href="https://publications.waset.org/abstracts/search?q=ip" title=" ip"> ip</a> </p> <a href="https://publications.waset.org/abstracts/31407/integer-programming-based-generation-of-difficulty-level-for-a-racing-game" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Performance Enhancement of Hybrid Racing Car by Design Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarang%20Varmora">Tarang Varmora</a>, <a href="https://publications.waset.org/abstracts/search?q=Krupa%20Shah"> Krupa Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Karan%20Patel"> Karan Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title="design optimization">design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20racing%20car" title=" hybrid racing car"> hybrid racing car</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20reduction" title=" weight reduction"> weight reduction</a> </p> <a href="https://publications.waset.org/abstracts/77554/performance-enhancement-of-hybrid-racing-car-by-design-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Horse Racing on Life Support: How to save the Sport of Kings in the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mick%20Jackowski">Mick Jackowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In terms of popularity in the United States, horse racing has been in a steady state of decline since the 1970s. This trend can be attributed to deterioration in the prestige of the sport, due to a shift in cultural values around the treatment of horses, as well as the growing interest of other sports and gambling options. Despite this drift, horse racing still commands a significant piece of the sport landscape through specific events like the Triple Crown and the Breeders Cup. The 2024 Kentucky Derby enjoyed it largest peak television audience (20.1 million) ever. It is because of this still significant attraction to thoroughbred racing that hope exists, not only for the survivability of one of the oldest organized sports in North America, but also for its future growth. But the spectacle that makes select races very popular must be expanded to tracks around the country on a regular basis. The first step is to create a centralized governing body that regulates operation of all races at all tracks in the country, instead of the state-by-state government fiefdoms that currently oversee operations in each jurisdiction. One league office, if you will, can also better coordinate marketing efforts to promote races. These promotions, though, must be targeted to specific audiences, focusing on the strengths that horse racing has in relation to other recreational activities. The industry should utilize a multi-segment strategy that targets the following four groups: Families, Young Adults, Fashion-Conscious, and Sports Bettors. Beyond the traditional marketing mix, the most vital means of establishing and maintaining relationships with each of these consumer segments is through community building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20building" title="community building">community building</a>, <a href="https://publications.waset.org/abstracts/search?q=horse%20racing" title=" horse racing"> horse racing</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20marketing" title=" sport marketing"> sport marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=thoroughbreds" title=" thoroughbreds"> thoroughbreds</a> </p> <a href="https://publications.waset.org/abstracts/192655/horse-racing-on-life-support-how-to-save-the-sport-of-kings-in-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> The Application of Animal Welfare for Madura Cow Racing Competition in Madura Island</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustopa">Mustopa</a>, <a href="https://publications.waset.org/abstracts/search?q=Setyawan%20Wahyu%20Pradana"> Setyawan Wahyu Pradana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine the application of animal welfare in Madura cow racing competition at Sumenep district, Madura Island. This study conducted by survey and discussion methods with 3 Madura cow owners in the competition. The animal welfare is going to be proved by observing the condition of the cage, the cleanliness of it, feeding and water, the health of the cow, also owner treatments for their Madura cow that will be served as a racer. Observations made using stable conditions ACRES form with assessment scores ranged from 1 = very poor, 2 = poor, 3 = regular, 4 = good and 5 = very good, animal welfare conditions seen by conducting observations and interviews with Madura cow owners. The result shows that the Madura cow competition has fulfilled the criteria of animal welfare application. Application of animal welfare principle by the owner of Madura cow terms of ACRES (Animal Concerns Research and Education Society) below standard, the average score obtained was 2.06, which is mean in a poor ratings. Besides considering the animal welfare application, Madura cow owners also do special treatments for their Madura cow with purpose to produce racers that are healthy and fast. Therefore, if the cow wins in Madura cow racing competition, it will purchase a high-value price. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20welfare" title="animal welfare">animal welfare</a>, <a href="https://publications.waset.org/abstracts/search?q=competition" title=" competition"> competition</a>, <a href="https://publications.waset.org/abstracts/search?q=Madura%20cow" title=" Madura cow"> Madura cow</a>, <a href="https://publications.waset.org/abstracts/search?q=racing" title=" racing"> racing</a> </p> <a href="https://publications.waset.org/abstracts/53022/the-application-of-animal-welfare-for-madura-cow-racing-competition-in-madura-island" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Four-Week Plyometric and Resistance Training on Muscle Strength and Sprint Performance in Wheelchair Racing Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Thawichai">K. Thawichai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Pornthep"> R. Pornthep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to compare the effects of a four week training period of combined plyometric and resistance training or resistance training alone on muscle strength and sprint performance in wheelchair racing athletes. The participants were sixteen healthy male wheelchair racing athletes of the Thai national team. All participants were randomly assignments into two groups in the plyometric and resistance training group (n = 8) performed plyometric exercises followed by resistance training, whereas the resistance training group (n = 8) performed static stretching and the same resistance training program. At baseline and after training all participants were tested on 1-RM bench press for muscle strength and 100-m cycling sprint performance. The results of this study show that the plyometric and resistance training group made significantly greater improvements in overall muscle strength and sprint performance than the resistance training group following training. In conclusion, these findings suggest that the addition of a four week plyometric and resistance training program more beneficial than resistance training alone on muscle strength and sprint performance in wheelchair racing athletes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plyometric" title="plyometric">plyometric</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title=" resistance training"> resistance training</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint" title=" sprint"> sprint</a>, <a href="https://publications.waset.org/abstracts/search?q=wheelchair%20athletes" title=" wheelchair athletes"> wheelchair athletes</a> </p> <a href="https://publications.waset.org/abstracts/36004/four-week-plyometric-and-resistance-training-on-muscle-strength-and-sprint-performance-in-wheelchair-racing-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Jumelle">Frederic Jumelle</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20So"> Kelvin So</a>, <a href="https://publications.waset.org/abstracts/search?q=Didan%20Deng"> Didan Deng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20computing" title="neural computing">neural computing</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20machine%20interation" title=" human machine interation"> human machine interation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20general%20intelligence" title=" artificial general intelligence"> artificial general intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20processing" title=" decision processing"> decision processing</a> </p> <a href="https://publications.waset.org/abstracts/130993/functional-neural-network-for-decision-processing-a-racing-network-of-programmable-neurons-where-the-operating-model-is-the-network-itself" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Reinforcement Learning for Self Driving Racing Car Games</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Beaunoyer">Adam Beaunoyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Cory%20Beaunoyer"> Cory Beaunoyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Elmorsy"> Mohammed Elmorsy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Saleh"> Hanan Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title="reinforcement learning">reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20actor-critic" title=" soft actor-critic"> soft actor-critic</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20q-network" title=" deep q-network"> deep q-network</a>, <a href="https://publications.waset.org/abstracts/search?q=self-driving%20cars" title=" self-driving cars"> self-driving cars</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=gaming" title=" gaming"> gaming</a> </p> <a href="https://publications.waset.org/abstracts/185804/reinforcement-learning-for-self-driving-racing-car-games" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Mechanic and Thermal Analysis on an 83 kW Electric Motorcycle: A First-Principles Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mart%C3%ADn%20Felipe%20Garc%C3%ADa%20Romero">Martín Felipe García Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mondrag%C3%B3n%20Escamilla"> Nancy Mondragón Escamilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismael%20Araujo%20Vargas"> Ismael Araujo Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Basurto%20Rios"> Viviana Basurto Rios</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Cano%20Pulido"> Kevin Cano Pulido</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Enrique%20Vel%C3%A1zquez%20Elisondo"> Pedro Enrique Velázquez Elisondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a preliminary prototype of an 83 kW all-electric motorbike since, nowadays, electric motorbikes have advanced drastically in their technology in such a way that lately, there has been a boom in the field of competition of medium power electric vehicles. The field of electric vehicle racing mainly pursues the aim of obtaining an optimal performance of all the motorbike components in order to obtain a safe racing vehicle fast enough while looking for the stability of all the systems onboard. A general description of the project is given up to date, detailing the parts of the system, integration, numerical estimations, and a rearrangement proposal of the actual prototype with the aim to mechanically and thermally improve the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20motorcycle" title="electric motorcycle">electric motorcycle</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic%20analysis" title=" mechanic analysis"> mechanic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a> </p> <a href="https://publications.waset.org/abstracts/157620/mechanic-and-thermal-analysis-on-an-83-kw-electric-motorcycle-a-first-principles-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Formula Student Car: Design, Analysis and Lap Time Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachit%20Ahuja">Rachit Ahuja</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayush%20Chugh"> Ayush Chugh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20performance" title="aerodynamic performance">aerodynamic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=front%20wing" title=" front wing"> front wing</a>, <a href="https://publications.waset.org/abstracts/search?q=laptime%20simulation" title=" laptime simulation"> laptime simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=t-wing" title=" t-wing"> t-wing</a> </p> <a href="https://publications.waset.org/abstracts/78638/formula-student-car-design-analysis-and-lap-time-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Manufacturing of Race Car Case Study AGH Racing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Faron">Hanna Faron</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Marcinkowski"> Wojciech Marcinkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Prusak"> Daniel Prusak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to familiarize with the activity of AGH Racing scientific circle, pertaining to the international project -Formula Student, giving the opportunity to young engineers from all around the world to validate their talent and knowledge in the real world conditions, under the pressure of time, and the design requirements. Every year, the team begins the process of building a race car from the formation of human resources. In case of the public sector, to which public universities can be included, the scientific circles represent the structure uniting students with the common interests and level of determination. Due to the scientific nature of the project which simulates the market conditions, they have a chance to verify previously acquired knowledge in practice. High level of the innovation and competitiveness of participating in the project Formula Student teams, requires an intelligent organizational system, which is characterized by a high dynamics. It is connected with the necessity of separation of duties, setting priorities, selecting optimal solutions which is often a compromise between the available technology and a limited budget. Proper selection of the adequate guidelines in the design phase allows an efficient transition to the implementation stage, which is process-oriented implementation of the project. Four dynamic and three static competitions are the main verification and evaluation of year-round work and effort put into the process of building a race car. Acquired feedback flowing during the race is a very important part while monitoring the effectiveness of AGH Racing scientific circle, as well as the main criterion while determining long-term goals and all the necessary improvements in the team. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAE" title="SAE">SAE</a>, <a href="https://publications.waset.org/abstracts/search?q=formula%20student" title=" formula student"> formula student</a>, <a href="https://publications.waset.org/abstracts/search?q=race%20car" title=" race car"> race car</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20sector" title=" public sector"> public sector</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a> </p> <a href="https://publications.waset.org/abstracts/32990/manufacturing-of-race-car-case-study-agh-racing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suleyman%20Ogul%20Ertugrul">Suleyman Ogul Ertugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Turgut"> Mustafa Turgut</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Inand%C4%B1"> Serkan Inandı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gorkem%20Coban"> Mustafa Gorkem Coban</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20K%C4%B1g%C4%B1l%C4%B1"> Mustafa Kıgılı</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mert"> Ali Mert</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguzhan%20Kesmez"> Oguzhan Kesmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ozanc%C4%B1"> Murat Ozancı</a>, <a href="https://publications.waset.org/abstracts/search?q=Caglar%20Uyulan"> Caglar Uyulan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FSAE" title="FSAE">FSAE</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension%20system" title=" suspension system"> suspension system</a>, <a href="https://publications.waset.org/abstracts/search?q=Adams%20Car" title=" Adams Car"> Adams Car</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic" title=" kinematic"> kinematic</a> </p> <a href="https://publications.waset.org/abstracts/185252/double-wishbone-pushrod-suspension-systems-co-simulation-for-racing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Studies on Race Car Aerodynamics at Wing in Ground Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharni%20Vasudhevan%20Venkatesan">Dharni Vasudhevan Venkatesan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Shanjay"> K. E. Shanjay</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sujith%20Kumar"> H. Sujith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Abhilash"> N. A. Abhilash</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aswin%20Ram"> D. Aswin Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20aerodynamics" title="external aerodynamics">external aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow%20choking" title=" external flow choking"> external flow choking</a>, <a href="https://publications.waset.org/abstracts/search?q=race%20car%20aerodynamics" title=" race car aerodynamics"> race car aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20in%20ground%20effect" title=" wing in ground effect"> wing in ground effect</a> </p> <a href="https://publications.waset.org/abstracts/12103/studies-on-race-car-aerodynamics-at-wing-in-ground-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> The Pigeon Circovirus Evolution and Epidemiology under Conditions of One Loft Race Rearing System: The Preliminary Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Stenzel">Tomasz Stenzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20Dziewulska"> Daria Dziewulska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20%C5%81ukaszuk"> Ewa Łukaszuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Joy%20Custer"> Joy Custer</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Kraberger"> Simona Kraberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Varsani"> Arvind Varsani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Viral diseases, especially those leading to impairment of the immune system, are among the most important problems in avian pathology. However, there is not much data available on this subject other than commercial poultry bird species. Recently, increasing attention has been paid to racing pigeons, which have been refined for many years in terms of their ability to return to their place of origin. Currently, these birds are used for races at distances from 100 to 1000 km, and winning pigeons are highly valuable. The rearing system of racing pigeons contradicts the principles of biosecurity, as birds originating from various breeding facilities are commonly transported and reared in “One Loft Race” (OLR) facilities. This favors the spread of multiple infections and provides conditions for the development of novel variants of various pathogens through recombination. One of the most significant viruses occurring in this avian species is the pigeon circovirus (PiCV), which is detected in ca. 70% of pigeons. Circoviruses are characterized by vast genetic diversity which is due to, among other things, the recombination phenomenon. It consists of an exchange of fragments of genetic material among various strains of the virus during the infection of one organism. The rate and intensity of the development of PiCV recombinants have not been determined so far. For this reason, an experiment was performed to investigate the frequency of development of novel PiCV recombinants in racing pigeons kept in OLR-type conditions. 15 racing pigeons originating from 5 different breeding facilities, subclinically infected with various PiCV strains, were housed in one room for eight weeks, which was supposed to mimic the conditions of OLR rearing. Blood and swab samples were collected from birds every seven days to recover complete PiCV genomes that were amplified through Rolling Circle Amplification (RCA), cloned, sequenced, and subjected to bioinformatic analyses aimed at determining the genetic diversity and the dynamics of recombination phenomenon among the viruses. In addition, virus shedding rate/level of viremia, expression of the IFN-γ and interferon-related genes, and anti-PiCV antibodies were determined to enable the complete analysis of the course of infection in the flock. Initial results have shown that 336 full PiCV genomes were obtained, exhibiting nucleotide similarity ranging from 86.6 to 100%, and 8 of those were recombinants originating from viruses of different lofts of origin. The first recombinant appeared after seven days of experiment, but most of the recombinants appeared after 14 and 21 days of joint housing. The level of viremia and virus shedding was the highest in the 2nd week of the experiment and gradually decreased to the end of the experiment, which partially corresponded with Mx 1 gene expression and antibody dynamics. The results have shown that the OLR pigeon-rearing system could play a significant role in spreading infectious agents such as circoviruses and contributing to PiCV evolution through recombination. Therefore, it is worth considering whether a popular gambling game such as pigeon racing is sensible from both animal welfare and epidemiological point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pigeon%20circovirus" title="pigeon circovirus">pigeon circovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination" title=" recombination"> recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20loft%20race" title=" one loft race"> one loft race</a> </p> <a href="https://publications.waset.org/abstracts/165093/the-pigeon-circovirus-evolution-and-epidemiology-under-conditions-of-one-loft-race-rearing-system-the-preliminary-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Two-Dimensional Dynamics Motion Simulations of F1 Rare Wing-Flap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20H.%20Acharya">Chaitanya H. Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavan%20Kumar%20P."> Pavan Kumar P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopalakrishna%20Narayana"> Gopalakrishna Narayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the realm of aerodynamics, numerous vehicles incorporate moving components to enhance their performance. For instance, airliners deploy hydraulically operated flaps and ailerons during take-off and landing, while Formula 1 racing cars utilize hydraulic tubes and actuators for various components, including the Drag Reduction System (DRS). The DRS, consisting of a rear wing and adjustable flaps, plays a crucial role in overtaking manoeuvres. The DRS has two positions: the default position with the flaps down, providing high downforce, and the lifted position, which reduces drag, allowing for increased speed and aiding in overtaking. Swift deployment of the DRS during races is essential for overtaking competitors. The fluid flow over the rear wing flap becomes intricate during deployment, involving flow reversal and operational changes, leading to unsteady flow physics that significantly influence aerodynamic characteristics. Understanding the drag and downforce during DRS deployment is crucial for determining race outcomes. While experiments can yield accurate aerodynamic data, they can be expensive and challenging to conduct across varying speeds. Computational Fluid Dynamics (CFD) emerges as a cost-effective solution to predict drag and downforce across a range of speeds, especially with the rapid deployment of the DRS. This study employs the finite volume-based solver Ansys Fluent, incorporating dynamic mesh motions and a turbulent model to capture the complex flow phenomena associated with the moving rear wing flap. A dedicated section for the rare wing-flap is considered in the present simulations, and the aerodynamics of these sections closely resemble S1223 aerofoils. Before delving into the simulations of the rare wing-flap aerofoil, numerical results undergo validation using experimental data from an NLR flap aerofoil case, encompassing different flap angles at two distinct angles of attack was carried out. The increase in flap angle as increase in lift and drag is observed for a given angle of attack. The simulation methodology for the rare-wing-flap aerofoil case involves specific time durations before lifting the flap. During this period, drag and downforce values are determined as 330 N and 1800N, respectively. Following the flap lift, a noteworthy reduction in drag to 55 % and a decrease in downforce to 17 % are observed. This understanding is critical for making instantaneous decisions regarding the deployment of the Drag Reduction System (DRS) at specific speeds, thereby influencing the overall performance of the Formula 1 racing car. Hence, this work emphasizes the utilization of dynamic mesh motion methodology to predict the aerodynamic characteristics during the deployment of the DRS in a Formula 1 racing car. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DRS" title="DRS">DRS</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=downforce" title=" downforce"> downforce</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics%20mesh%20motion" title=" dynamics mesh motion"> dynamics mesh motion</a> </p> <a href="https://publications.waset.org/abstracts/179293/two-dimensional-dynamics-motion-simulations-of-f1-rare-wing-flap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Faron">Hanna Faron</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Marcinkowski"> Wojciech Marcinkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Prusak"> Daniel Prusak</a>, <a href="https://publications.waset.org/abstracts/search?q=W%C5%82adys%C5%82aw%20Hamiga"> Władysław Hamiga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAE" title="SAE">SAE</a>, <a href="https://publications.waset.org/abstracts/search?q=formula%20student" title=" formula student"> formula student</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Aramid%20fiber" title=" Aramid fiber"> Aramid fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20wire%20cutter" title=" hot wire cutter"> hot wire cutter</a> </p> <a href="https://publications.waset.org/abstracts/32986/composite-components-manufacturing-in-sae-formula-student-a-case-study-of-agh-racing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Analysis of Feminist Translation in Subtitling from Arabic into English: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Ahmed">Ghada Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feminist translation is one of the strategies adopted in the field of translation studies when a gendered content is being rendered from one language to another, and this strategy has been examined in previous studies on written texts. This research, however, addresses the practice of feminist translation in audiovisual texts that are concerned with the screen, dialogue, image and visual aspects. In this thesis, the objectives are studying feminist translation and its adaptation in subtitling from Arabic into English. It addresses the connections between gender and translation as one domain and feminist translation practices with particular consideration of feminist translation strategies in English subtitles. It examines the visibility of the translator throughout the process, assuming that feminist translation is a product directed by the translator’s feminist position, culture, and ideology as a means of helping unshadow women. It also discusses how subtitling constraints impact feminist translation and how the image that has a narrative value can be integrated into the content of the English subtitles. The reasons for conducting this research project are to study language sexism in English and look into Arabic into English gendered content, taking into consideration the Arabic cultural concepts that may lose their connotations when they are translated into English. This research is also analysing the image in an audiovisual text and its contribution to the written dialogue in subtitling. Thus, this research attempts to answer the following questions: To what extent is there a form of affinity between a gendered content and translation? Is feminist translation an act of merely working on a feminist text or feminising the language of any text, by incorporating the translator’s ideology? How can feminist translation practices be applied in an audiovisual text? How likely is it to adapt feminist translation looking into visual components as well as subtitling constraints? Moreover, the paper searches into the fields of gender and translation; feminist translation, language sexism, media studies, and the gap in the literature related to feminist translation practice in visual texts. For my case study, the "Speed Sisters" film has been chosen so as to analyze its English subtitles for my research. The film is a documentary that was produced in 2015 and directed by Amber Fares. It is about five Palestinian women who try to break the stereotypes about women, and have taken their passion about car-racing forward to be the first all-women car-racing driving team in the Middle East. It tackles the issue of gender in both content and language and this is reflected in the translation. As the research topic is semiotic-channelled, the choice for the theoretical approaches varies and combines between translation studies, audiovisual translation, gender studies, and media studies. Each of which will contribute to understanding a specific field of the research and the results will eventually be integrated to achieve the intended objectives in a way that demonstrates rendering a gendered content in one of the audiovisual translation modes from a language into another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audiovisual%20translation" title="audiovisual translation">audiovisual translation</a>, <a href="https://publications.waset.org/abstracts/search?q=feminist%20translation" title=" feminist translation"> feminist translation</a>, <a href="https://publications.waset.org/abstracts/search?q=films%20gendered%20content" title=" films gendered content"> films gendered content</a>, <a href="https://publications.waset.org/abstracts/search?q=subtitling%20conventions%20and%20constraints" title=" subtitling conventions and constraints"> subtitling conventions and constraints</a> </p> <a href="https://publications.waset.org/abstracts/123981/analysis-of-feminist-translation-in-subtitling-from-arabic-into-english-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Determining a Suitable Maintenance Measure for Gentelligent Components Using Case-Based Reasoning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Winkens">Maximilian Winkens</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Components with sensory properties such as gentelligent components developed at the Collaborative Research Center 653 offer a new angle on the full utilization of the remaining service life in case of a preventive maintenance. The developed methodology of component status driven maintenance analyses the stress data obtained during the component's useful life and on the basis of this knowledge assesses the type of maintenance called for in this case. The procedure is derived from the case-based reasoning method and will be elucidated in detail. The method's functionality is demonstrated with real-life data obtained during test runs of a racing car prototype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gentelligent%20component" title="gentelligent component">gentelligent component</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title=" case-based reasoning"> case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a> </p> <a href="https://publications.waset.org/abstracts/13606/determining-a-suitable-maintenance-measure-for-gentelligent-components-using-case-based-reasoning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erik%20Vass%C3%B8y%20Olsen">Erik Vassøy Olsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirpa%20G.%20Lemu"> Hirpa G. Lemu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=Formula%20student" title=" Formula student"> Formula student</a>, <a href="https://publications.waset.org/abstracts/search?q=ION%20racing" title=" ION racing"> ION racing</a>, <a href="https://publications.waset.org/abstracts/search?q=monocoque%20design" title=" monocoque design"> monocoque design</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equivalence" title=" structural equivalence"> structural equivalence</a> </p> <a href="https://publications.waset.org/abstracts/34013/mechanical-testing-of-composite-materials-for-monocoque-design-in-formula-student-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Modular Power Bus for Space Vehicles (MPBus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Remirez">Eduardo Remirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Moreno"> Luis Moreno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of the private satellite launchers sector is leading the space race. Hence, with the privatization of the sector, all the companies are racing for a more efficient and reliant way to set satellites in orbit. Having detected the current needs for power management in the launcher vehicle industry, the Modular Power Bus is proposed as a technology to revolutionize power management in current and future Launcher Vehicles. The MPBus Project is committed to develop a new power bus architecture combining ejectable batteries with the main bus through intelligent nodes. These nodes are able to communicate between them and a battery controller using an improved, data over DC line technology, expected to reduce the total weight in two main areas: improving the use of the batteries and reducing the total weight due to harness. This would result in less weight for each launch stage increasing the operational satellite payload and reducing cost. These features make the system suitable for a number of launchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20power%20bus" title="modular power bus">modular power bus</a>, <a href="https://publications.waset.org/abstracts/search?q=Launcher%20vehicles" title=" Launcher vehicles"> Launcher vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=ejectable%20batteries" title=" ejectable batteries"> ejectable batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20nodes" title=" intelligent nodes"> intelligent nodes</a> </p> <a href="https://publications.waset.org/abstracts/21253/modular-power-bus-for-space-vehicles-mpbus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Spatial Abilities, Memory, and Intellect of Drivers with Different Professional Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khon%20Natalya">Khon Natalya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Alla"> Kim Alla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukhitdinova%20Tansulu"> Mukhitdinova Tansulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to reveal the link between mental variables, such as spatial abilities, memory, intellect and professional experience of drivers. Participants were allocated within 4 groups: no experience, inexperienced, skilled and professionals (total 85 participants). Level of ability for spatial navigation and indicator of nonverbal memory grow along the process of accumulation of driving experience. At high levels of driving experience this tendency is especially noticeable. The professionals having personal achievements in driving (racing) differ from skilled drivers in better feeling of direction which is specific for them not just in a short-term situation of an experimental task, but in life-size perspective. The level of ability of mental rotation does not grow with growth of driving experience which confirms the multiple intelligence theory according to which spatial abilities represent specific, other than logical intelligence type of intellect. The link between spatial abilities, memory, intellect, and professional experience of drivers seems to be different relating spatial navigation or mental rotation as different kinds of spatial abilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memory" title="memory">memory</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20ability" title=" spatial ability"> spatial ability</a>, <a href="https://publications.waset.org/abstracts/search?q=intellect" title=" intellect"> intellect</a>, <a href="https://publications.waset.org/abstracts/search?q=drivers" title=" drivers"> drivers</a> </p> <a href="https://publications.waset.org/abstracts/1407/spatial-abilities-memory-and-intellect-of-drivers-with-different-professional-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Design and Analysis of Formula One Car Halo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indira%20priyadarshini">Indira priyadarshini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Tulja%20Lal"> B. Tulja Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anusha"> K. Anusha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sai%20Varun"> P. Sai Varun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formula One cars are the fastest road course racing cars in the world, owing to very high cornering speeds achieved through the generation of large amounts of aerodynamic downforce. The main intentions and goals of this paper are to reduce the accidents and improving the safety without affecting the visibility of the driver by redesigning Halo that was developed by Mercedes in conjunction with the FIA to deflect flying debris, such as a loose wheel, away from a driver’s head while the hinged locking mechanism can quickly be removed for easy access. Halo design has been modified in order to reduce the weight without affecting the aerodynamics of the car. CFD simulation is carried out to observe the flow over the Halo. The velocity profile and pressure contours were analyzed. Halo is designed using SOLIDWORKS Furthermore, using the software ANSYS FLUENT 3D simulation of the airflow contour around the Halo in order to make changes in the geometry to improve the design by reducing air resistance and improving aerodynamics. According to our assumption, new 3D Halo model has better aerodynamic properties in order to analyse possible improvements compared to the initial design. Structural analysis is also done by using ANSYS by making an F1 tire colliding with Halo at 225 kmph in order to know the deflections in the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Halo" title=" Halo"> Halo</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a> </p> <a href="https://publications.waset.org/abstracts/56429/design-and-analysis-of-formula-one-car-halo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Methane Production from Biomedical Waste (Blood)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20M.%20Kabbashi">Fatima M. Kabbashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdalla%20M.%20Abdalla"> Abdalla M. Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussam%20K.%20Hamad"> Hussam K. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20S.%20Hassan"> Elias S. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells &#39;RBCs&#39;, Blood platelet and Fresh Frozen Plasma &lsquo;FFP&rsquo;) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title="renewable energy">renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20waste" title=" biomedical waste"> biomedical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=blood" title=" blood"> blood</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20disposal" title=" eco-friendly disposal"> eco-friendly disposal</a> </p> <a href="https://publications.waset.org/abstracts/84424/methane-production-from-biomedical-waste-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malo%20Pocheau-Lesteven">Malo Pocheau-Lesteven</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Le%20Ma%C3%AEtre"> Olivier Le Maître</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infilling%20strategy" title="infilling strategy">infilling strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20process" title=" gaussian process"> gaussian process</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20disciplinary%20analysis" title=" multi disciplinary analysis"> multi disciplinary analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20prediction%20program" title=" velocity prediction program"> velocity prediction program</a> </p> <a href="https://publications.waset.org/abstracts/144787/infilling-strategies-for-surrogate-model-based-multi-disciplinary-analysis-and-applications-to-velocity-prediction-programs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Characterization and Analysis of Airless Tire in Mountain Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Rafiq">Sadia Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Ashab%20Siddique%20Zaki"> Md. Ashab Siddique Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Roy"> Ananya Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airless%20tire" title="airless tire">airless tire</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20structure" title=" diamond structure"> diamond structure</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20structure" title=" honeycomb structure"> honeycomb structure</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a> </p> <a href="https://publications.waset.org/abstracts/164546/characterization-and-analysis-of-airless-tire-in-mountain-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Greg%20Turner">Greg Turner</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Lu"> Bin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheer-Sun%20Yang"> Cheer-Sun Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20methods" title="agile methods">agile methods</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20apps" title=" mobile apps"> mobile apps</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20process%20model" title=" software process model"> software process model</a>, <a href="https://publications.waset.org/abstracts/search?q=waterfall%20model" title=" waterfall model"> waterfall model</a> </p> <a href="https://publications.waset.org/abstracts/35787/keynote-talk-the-challenges-and-solutions-for-developing-mobile-apps-in-a-small-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Mindfulness, Reinvestment, and Rowing under Pressure: Evidence for Moderated Moderation of the Anxiety-Performance Relationship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katherine%20Sparks">Katherine Sparks</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Ring"> Christopher Ring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate whether dispositional sport-specific mindfulness moderated the moderation effect of conscious processing on the relationship between anxiety and rowing race performance. Using a sport-specific (Rowing-Specific) Reinvestment Scale (RSRS) to measure state conscious processing, we examined the effects of trait sport-related mindfulness on the conscious processes of rowers under competitive racing pressure at a number of UK regattas. 276 rowers completed a survey post competitive race. The survey included the RSRS, mindfulness, a perceived performance rating scale, demographic and race information to identify and record the rower’s actual race performance. Results from the research demonstrated that high levels of dispositional mindfulness are associated with a superior performance under pressure. In relation to the moderating moderation effect, conscious processing amplifies the detrimental effects of anxiety on performance. However, mindfulness, mindful awareness, and mindful non-judgement all proved to attenuate this amplification effect by moderating the conscious processing moderation on the anxiety-performance relationship. Therefore, this study provides initial support for the speculation that dispositional mindfulness can help prevent the deleterious effects of rowing-specific reinvestment under pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mindful" title="mindful">mindful</a>, <a href="https://publications.waset.org/abstracts/search?q=reinvestment" title=" reinvestment"> reinvestment</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20pressure" title=" under pressure"> under pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=rowing" title=" rowing"> rowing</a> </p> <a href="https://publications.waset.org/abstracts/127388/mindfulness-reinvestment-and-rowing-under-pressure-evidence-for-moderated-moderation-of-the-anxiety-performance-relationship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Crashworthiness Optimization of an Automotive Front Bumper in Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boria">S. Boria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=crashworthiness" title=" crashworthiness"> crashworthiness</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/72849/crashworthiness-optimization-of-an-automotive-front-bumper-in-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Performance and Breeding Potency of Local Buffalo in Kangean Island, Sumenep, East Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Nurgiartiningsih">A. Nurgiartiningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ciptadi"> G. Ciptadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Siswijono"> S. B. Siswijono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was done to identify the performance and breeding potency of Local Buffalo in Kangean Island, Sumenep, East Java, Indonesia. Materials used were buffalo and farmer in Kangean Island. Method used was survey with purposive sampling method. Qualitative trait and existing breeding system including the type of production system were directly observed. Quantitative trait consisted of chest girth, body weight and wither height were measured and recorded. Data were analyzed using analysis of variance applying software GENSTAT 14. Results showed the purposes of buffalo breeding in Kangean Island were for production of calves, saving, religion tradition, and buffalo racing. The combination between grazing and cut and carry system were applied in Kangean Island. Forage, grass and agricultural waste product were available abundantly especially, during the wet season. Buffalo in Kangean Island was categorized as swamp buffalo with 48 chromosomes. Observation on qualitative trait indicated that there were three skin color types: gray (81.25%), red (10.42%) and white/albino (8.33%). Analysis on quantitative trait showed that there was no significant difference between male and female buffalo. The performance of male buffalo was 132.56 cm, 119.33 cm and 174.11 cm, for the mean of body length, whither height and chest girth, respectively. The performance of female buffalo were 129.8 cm, 114.0 cm and 166.2 cm, for mean of body length, wither height and chest girth (CG), respectively. The performance of local buffalo in Kangean Island was categorized well. Kangean Island could be promoted as center of buffalo breeding and conservation. For optimal improvement of population number and its genetics value, government policy in buffalo breeding program should be implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome" title="chromosome">chromosome</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20trait" title=" qualitative trait"> qualitative trait</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20trait" title=" quantitative trait"> quantitative trait</a>, <a href="https://publications.waset.org/abstracts/search?q=swamp%20buffalo" title=" swamp buffalo"> swamp buffalo</a> </p> <a href="https://publications.waset.org/abstracts/39570/performance-and-breeding-potency-of-local-buffalo-in-kangean-island-sumenep-east-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Case Study of the Impact of Sport Tourism Event on Local Residents in Cameroon: The African Cup of Nations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zita%20Fomukong%20Andam">Zita Fomukong Andam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decision on where to host sport events does not depend on the national politicians or specific international sport event bodies but also involves the residents of the hosting country. Sport tourism is one of the fast growing industries in the world. Cameroonians consider sport as a point of unity and growth within the country. It has a huge variety of sporting activities like swimming, canoe racing, tug of war and most especially soccer well known as football. The football national team made an impact in 1990 at the FIFA world cup. They also won the African Nations Cup five times. Being the winner of the 2017 African Cup of Nations, they are to host the 2019 African cup of Nations. The purpose of this research is to analyse the impacts of sport tourism event in Cameroon and specifically examine how this event influences the residents. A deep research discourse conducted with randomly selected 300 inbound residents and 200 Cameroonian residents living abroad. Survey questionnaires, interviews and direct observations were carried out as a method of collecting data. The results showed that sport events brings a lot of prestige and honor to the country; generate revenues to the country’s economy and particularly to the local businesses. On the other hand, the results showed that the local residents lose their intimacy, privacy, and their daily life routine is affected. In addition to this, they face negative social inequalities and environmental impacts. Understanding these results the national government and international bodies might be able to contribute to future studies and propose efficient measures to maximize the positive benefits and minimize the negative benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sport%20Tourism" title="sport Tourism">sport Tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20impact" title=" economic impact"> economic impact</a>, <a href="https://publications.waset.org/abstracts/search?q=resident%20altitude" title=" resident altitude"> resident altitude</a>, <a href="https://publications.waset.org/abstracts/search?q=african%20Cup%20of%20nations" title=" african Cup of nations"> african Cup of nations</a> </p> <a href="https://publications.waset.org/abstracts/105143/case-study-of-the-impact-of-sport-tourism-event-on-local-residents-in-cameroon-the-african-cup-of-nations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=racing&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=racing&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10