CINXE.COM
Egyptian fraction - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Egyptian fraction - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"4997fdea-d362-42b9-aca1-6f0a23c9ee70","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Egyptian_fraction","wgTitle":"Egyptian fraction","wgCurRevisionId":1253900926,"wgRevisionId":1253900926,"wgArticleId": 336349,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Egyptian_fraction","wgRelevantArticleId":336349,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym": "अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy" ,"autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk", "dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"de","autonym":"Deutsch","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fa","autonym":"فارسی","dir":"rtl"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt" ,"dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{ "lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym": "Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv", "autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym": "Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{ "lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir": "ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym": "ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn", "autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sv","autonym":"svenska","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn", "autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang": "wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu" ,"cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk", "skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q1764362","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true, "categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","ext.wikihiero":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","skins.minerva.scripts", "ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikihiero%2CwikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/d/d9/Rhind_Mathematical_Papyrus.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="718"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/d/d9/Rhind_Mathematical_Papyrus.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="479"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/640px-Rhind_Mathematical_Papyrus.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="383"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Egyptian fraction - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Egyptian_fraction&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Egyptian_fraction"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Egyptian_fraction rootpage-Egyptian_fraction stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=Egyptian+fraction" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=Egyptian+fraction" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en&utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Egyptian fraction</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Egyptian_fraction" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Egyptian_fraction" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=Egyptian+fraction" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Egyptian_fraction&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <p>An <b>Egyptian fraction</b> is a finite sum of distinct <a href="/wiki/Unit_fraction" title="Unit fraction">unit fractions</a>, such as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{16}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{16}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b06c170f3a45f7e8d6733961e7a493ea7f52ccfa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.486ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{16}}.}"></span> That is, each <a href="/wiki/Fraction" title="Fraction">fraction</a> in the expression has a <a href="/wiki/Numerator" class="mw-redirect" title="Numerator">numerator</a> equal to 1 and a <a href="/wiki/Denominator" class="mw-redirect" title="Denominator">denominator</a> that is a positive <a href="/wiki/Integer" title="Integer">integer</a>, and all the denominators differ from each other. The value of an expression of this type is a <a href="/wiki/Positive_number" class="mw-redirect" title="Positive number">positive</a> <a href="/wiki/Rational_number" title="Rational number">rational number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {a}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {a}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67e9c32a14514b5b975a4666af015884bc93b0b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.706ex; height:3.343ex;" alt="{\displaystyle {\tfrac {a}{b}}}"></span>; for instance the Egyptian fraction above sums to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {43}{48}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>43</mn> <mn>48</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {43}{48}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c380f0e524d1f7063ddf0767d1a88a23d8a6f45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.843ex;" alt="{\displaystyle {\tfrac {43}{48}}}"></span>. Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also including <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571a6ce6d697175e9e5e723b8c40eaa7efcfeaca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.658ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{3}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec6051ef87eb0dafdaeaacd61f340052fcbf2bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {3}{4}}}"></span> as <a href="/wiki/Summand" class="mw-redirect" title="Summand">summands</a>, were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations into medieval times. In modern mathematical notation, Egyptian fractions have been superseded by <a href="/wiki/Vulgar_fraction" class="mw-redirect" title="Vulgar fraction">vulgar fractions</a> and <a href="/wiki/Decimal" title="Decimal">decimal</a> notation. However, Egyptian fractions continue to be an object of study in modern <a href="/wiki/Number_theory" title="Number theory">number theory</a> and <a href="/wiki/Recreational_mathematics" title="Recreational mathematics">recreational mathematics</a>, as well as in modern historical studies of <a href="/wiki/History_of_mathematics" title="History of mathematics">ancient mathematics</a>. </p><figure typeof="mw:File/Thumb"><a href="/wiki/File:Rhind_Mathematical_Papyrus.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/300px-Rhind_Mathematical_Papyrus.jpg" decoding="async" width="300" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/450px-Rhind_Mathematical_Papyrus.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/600px-Rhind_Mathematical_Papyrus.jpg 2x" data-file-width="750" data-file-height="449"></a><figcaption>The <a href="/wiki/Rhind_Mathematical_Papyrus" title="Rhind Mathematical Papyrus">Rhind Mathematical Papyrus</a></figcaption></figure> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Applications"><span class="tocnumber">1</span> <span class="toctext">Applications</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Early_history"><span class="tocnumber">2</span> <span class="toctext">Early history</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Notation"><span class="tocnumber">2.1</span> <span class="toctext">Notation</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Calculation_methods"><span class="tocnumber">2.2</span> <span class="toctext">Calculation methods</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-5"><a href="#Later_usage"><span class="tocnumber">3</span> <span class="toctext">Later usage</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Modern_number_theory"><span class="tocnumber">4</span> <span class="toctext">Modern number theory</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Open_problems"><span class="tocnumber">5</span> <span class="toctext">Open problems</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#See_also"><span class="tocnumber">6</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-9"><a href="#Notes"><span class="tocnumber">7</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#References"><span class="tocnumber">8</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#External_links"><span class="tocnumber">9</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Applications">Applications</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=1" title="Edit section: Applications" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Beyond their historical use, Egyptian fractions have some practical advantages over other representations of fractional numbers. For instance, Egyptian fractions can help in dividing food or other objects into equal shares.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> For example, if one wants to divide 5 pizzas equally among 8 diners, the Egyptian fraction <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {5}{8}}={\frac {1}{2}}+{\frac {1}{8}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>8</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {5}{8}}={\frac {1}{2}}+{\frac {1}{8}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db77695119e9c0d81bfb86b20bf0b9989994170c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.935ex; height:5.176ex;" alt="{\displaystyle {\frac {5}{8}}={\frac {1}{2}}+{\frac {1}{8}}}"></noscript><span class="lazy-image-placeholder" style="width: 11.935ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db77695119e9c0d81bfb86b20bf0b9989994170c" data-alt="{\displaystyle {\frac {5}{8}}={\frac {1}{2}}+{\frac {1}{8}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> means that each diner gets half a pizza plus another eighth of a pizza, for example by splitting 4 pizzas into 8 halves, and the remaining pizza into 8 eighths. Exercises in performing this sort of <a href="/wiki/Fair_division" title="Fair division">fair division</a> of food are a standard classroom example in teaching students to work with unit fractions.<sup id="cite_ref-FOOTNOTEWilsonEdgingtonNguyenPescosolido2011_2-0" class="reference"><a href="#cite_note-FOOTNOTEWilsonEdgingtonNguyenPescosolido2011-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Egyptian fractions can provide a solution to <a href="/wiki/Rope-burning_puzzle" title="Rope-burning puzzle">rope-burning puzzles</a>, in which a given duration is to be measured by igniting non-uniform ropes which burn out after a unit time. Any rational fraction of a unit of time can be measured by expanding the fraction into a sum of unit fractions and then, for each unit fraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/x}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a55fefc6f37f48a9b4414b09ad3b17dfa739d9e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.655ex; height:2.843ex;" alt="{\displaystyle 1/x}"></noscript><span class="lazy-image-placeholder" style="width: 3.655ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a55fefc6f37f48a9b4414b09ad3b17dfa739d9e3" data-alt="{\displaystyle 1/x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, burning a rope so that it always has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> simultaneously lit points where it is burning. For this application, it is not necessary for the unit fractions to be distinct from each other. However, this solution may need an infinite number of re-lighting steps.<sup id="cite_ref-FOOTNOTEWinkler2004_3-0" class="reference"><a href="#cite_note-FOOTNOTEWinkler2004-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Early_history">Early history</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=2" title="Edit section: Early history" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Egyptian_numerals" title="Egyptian numerals">Egyptian numerals</a> and <a href="/wiki/Egyptian_mathematics" class="mw-redirect" title="Egyptian mathematics">Egyptian mathematics</a></div> <p>Egyptian fraction notation was developed in the <a href="/wiki/Middle_Kingdom_of_Egypt" title="Middle Kingdom of Egypt">Middle Kingdom of Egypt</a>. Five early texts in which Egyptian fractions appear were the <a href="/wiki/Egyptian_Mathematical_Leather_Roll" title="Egyptian Mathematical Leather Roll">Egyptian Mathematical Leather Roll</a>, the <a href="/wiki/Moscow_Mathematical_Papyrus" title="Moscow Mathematical Papyrus">Moscow Mathematical Papyrus</a>, the <a href="/wiki/Reisner_Papyrus" title="Reisner Papyrus">Reisner Papyrus</a>, the <a href="/wiki/Kahun_Papyrus" class="mw-redirect" title="Kahun Papyrus">Kahun Papyrus</a> and the <a href="/wiki/Akhmim_Wooden_Tablet" class="mw-redirect" title="Akhmim Wooden Tablet">Akhmim Wooden Tablet</a>. A later text, the <a href="/wiki/Rhind_Mathematical_Papyrus" title="Rhind Mathematical Papyrus">Rhind Mathematical Papyrus</a>, introduced improved ways of writing Egyptian fractions. The Rhind papyrus was written by <a href="/wiki/Ahmes" title="Ahmes">Ahmes</a> and dates from the <a href="/wiki/Second_Intermediate_Period" class="mw-redirect" title="Second Intermediate Period">Second Intermediate Period</a>; it includes a <a href="/wiki/RMP_2/n_table" class="mw-redirect" title="RMP 2/n table">table of Egyptian fraction expansions for rational numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>n</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{n}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada21e7887bd500f615e37467aa9a0780c48a983" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.822ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{n}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.822ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada21e7887bd500f615e37467aa9a0780c48a983" data-alt="{\displaystyle {\tfrac {2}{n}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></a>, as well as 84 <a href="/wiki/Word_problem_(mathematics_education)" title="Word problem (mathematics education)">word problems</a>. Solutions to each problem were written out in scribal shorthand, with the final answers of all 84 problems being expressed in Egyptian fraction notation. Tables of expansions for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>n</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{n}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada21e7887bd500f615e37467aa9a0780c48a983" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.822ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{n}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.822ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada21e7887bd500f615e37467aa9a0780c48a983" data-alt="{\displaystyle {\tfrac {2}{n}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> similar to the one on the Rhind papyrus also appear on some of the other texts. However, as the <a href="/wiki/Kahun_Papyrus" class="mw-redirect" title="Kahun Papyrus">Kahun Papyrus</a> shows, <a href="/wiki/Vulgar_fraction" class="mw-redirect" title="Vulgar fraction">vulgar fractions</a> were also used by scribes within their calculations. </p> <div class="mw-heading mw-heading3"><h3 id="Notation">Notation</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=3" title="Edit section: Notation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>To write the unit fractions used in their Egyptian fraction notation, in hieroglyph script, the Egyptians placed the <a href="/wiki/Egyptian_hieroglyphs" title="Egyptian hieroglyphs">hieroglyph</a>: </p> <table border="0" style="margin-left: 1.6em;"> <tbody><tr> <td><table class="mw-hiero-table mw-hiero-outer" dir="ltr"><tbody><tr><td> <table class="mw-hiero-table"><tbody><tr> <td><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_D21.png?9bfb9" height="11" title="D21" alt="D21"></td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> <p>(<i>er</i>, "[one] among" or possibly <i>re</i>, mouth) above a number to represent the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">reciprocal</a> of that number. Similarly in hieratic script they drew a line over the letter representing the number. For example: </p> <table border="0" cellpadding="0.5em" style="margin-left: 1.6em;"> <tbody><tr> <td><table class="mw-hiero-table mw-hiero-outer" dir="ltr"><tbody><tr><td> <table class="mw-hiero-table"><tbody><tr> <td><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_D21.png?9bfb9" height="11" title="D21" alt="D21"><br><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_Z1.png?4dc06" height="16" title="Z1" alt="Z1"> <img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_Z1.png?4dc06" height="16" title="Z1" alt="Z1"> <img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_Z1.png?4dc06" height="16" title="Z1" alt="Z1"></td> </tr></tbody></table> </td></tr></tbody></table> </td> <td style="padding-right:1em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {1}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {1}{3}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c2d9944b78df9812dd9aaee35f9c12e3fecfef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.452ex; height:5.176ex;" alt="{\displaystyle ={\frac {1}{3}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.452ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c2d9944b78df9812dd9aaee35f9c12e3fecfef" data-alt="{\displaystyle ={\frac {1}{3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td style="border-left:1px solid black; padding-left:1em;"><table class="mw-hiero-table mw-hiero-outer" dir="ltr"><tbody><tr><td> <table class="mw-hiero-table"><tbody><tr> <td><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_D21.png?9bfb9" height="11" title="D21" alt="D21"><br><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_V20.png?e78cb" height="13" title="V20" alt="V20"></td> </tr></tbody></table> </td></tr></tbody></table> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {1}{10}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>10</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {1}{10}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e38f3b3e71c3e22cf40e089d4dcea8ba2c23755b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.614ex; height:5.176ex;" alt="{\displaystyle ={\frac {1}{10}}}"></noscript><span class="lazy-image-placeholder" style="width: 5.614ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e38f3b3e71c3e22cf40e089d4dcea8ba2c23755b" data-alt="{\displaystyle ={\frac {1}{10}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr></tbody></table> <p>The Egyptians had special symbols for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.658ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" data-alt="{\displaystyle {\tfrac {1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{3}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571a6ce6d697175e9e5e723b8c40eaa7efcfeaca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.658ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{3}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.658ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571a6ce6d697175e9e5e723b8c40eaa7efcfeaca" data-alt="{\displaystyle {\tfrac {2}{3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3}{4}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec6051ef87eb0dafdaeaacd61f340052fcbf2bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {3}{4}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.658ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ec6051ef87eb0dafdaeaacd61f340052fcbf2bf" data-alt="{\displaystyle {\tfrac {3}{4}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> that were used to reduce the size of numbers greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.658ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" data-alt="{\displaystyle {\tfrac {1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> when such numbers were converted to an Egyptian fraction series. The remaining number after subtracting one of these special fractions was written as a sum of distinct unit fractions according to the usual Egyptian fraction notation. </p> <table cellpadding="1em" style="margin-left: 1.6em;"> <tbody><tr> <td><table class="mw-hiero-table mw-hiero-outer" dir="ltr"><tbody><tr><td> <table class="mw-hiero-table"><tbody><tr> <td><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_Aa13.png?4d8fd" height="8" title="Aa13" alt="Aa13"></td></tr></tbody></table> </td></tr></tbody></table> </td> <td style="padding-right:1em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {1}{2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a07892f777aa1effcc97d19841cb073d2f2e998" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.452ex; height:5.176ex;" alt="{\displaystyle ={\frac {1}{2}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.452ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a07892f777aa1effcc97d19841cb073d2f2e998" data-alt="{\displaystyle ={\frac {1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td style="border-left:1px solid black; padding-left:1em;"><table class="mw-hiero-table mw-hiero-outer" dir="ltr"><tbody><tr><td> <table class="mw-hiero-table"><tbody><tr> <td><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_D22.png?0b8f1" height="18" title="D22" alt="D22"></td></tr></tbody></table> </td></tr></tbody></table> </td> <td style="padding-right:1em;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {2}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {2}{3}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29acd89ff50e9de30d8cbaf2a4a09b70b5dfba21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.452ex; height:5.176ex;" alt="{\displaystyle ={\frac {2}{3}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.452ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29acd89ff50e9de30d8cbaf2a4a09b70b5dfba21" data-alt="{\displaystyle ={\frac {2}{3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td style="border-left:1px solid black; padding-left:1em;"><table class="mw-hiero-table mw-hiero-outer" dir="ltr"><tbody><tr><td> <table class="mw-hiero-table"><tbody><tr> <td><img class="skin-invert" style="margin: 1px;" src="/w/extensions/wikihiero/img/hiero_D23.png?f63be" height="30" title="D23" alt="D23"></td></tr></tbody></table> </td></tr></tbody></table> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {3}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {3}{4}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c05b2925600d290789cdbb5a8b61f39583c0d41a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:4.452ex; height:5.176ex;" alt="{\displaystyle ={\frac {3}{4}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.452ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c05b2925600d290789cdbb5a8b61f39583c0d41a" data-alt="{\displaystyle ={\frac {3}{4}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr></tbody></table> <p>The Egyptians also used an alternative notation modified from the Old Kingdom to denote a special set of fractions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/2^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/2^{k}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0534932a3a6b23dd2fc59ffa9a05b5f27181dd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.576ex; height:3.176ex;" alt="{\displaystyle 1/2^{k}}"></noscript><span class="lazy-image-placeholder" style="width: 4.576ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0534932a3a6b23dd2fc59ffa9a05b5f27181dd3" data-alt="{\displaystyle 1/2^{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1,2,\dots ,6}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mn>6</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1,2,\dots ,6}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79c95d4838e2a8e3ecd60e00fb516944609fcdc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.009ex; height:2.509ex;" alt="{\displaystyle k=1,2,\dots ,6}"></noscript><span class="lazy-image-placeholder" style="width: 14.009ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79c95d4838e2a8e3ecd60e00fb516944609fcdc1" data-alt="{\displaystyle k=1,2,\dots ,6}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>) and sums of these numbers, which are necessarily <a href="/wiki/Dyadic_rational" title="Dyadic rational">dyadic rational</a> numbers. These have been called "Horus-Eye fractions" after a theory (now discredited)<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> that they were based on the parts of the <a href="/wiki/Eye_of_Horus" title="Eye of Horus">Eye of Horus</a> symbol. They were used in the Middle Kingdom in conjunction with the later notation for Egyptian fractions to subdivide a <a href="/wiki/Hekat_(volume_unit)" class="mw-redirect" title="Hekat (volume unit)">hekat</a>, the primary ancient Egyptian volume measure for grain, bread, and other small quantities of volume, as described in the <a href="/wiki/Akhmim_Wooden_Tablet" class="mw-redirect" title="Akhmim Wooden Tablet">Akhmim Wooden Tablet</a>. If any remainder was left after expressing a quantity in Eye of Horus fractions of a hekat, the remainder was written using the usual Egyptian fraction notation as multiples of a <i>ro</i>, a unit equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{320}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>320</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{320}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac2e7d800509f43af8b97e5bc0766c7792d2d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.302ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{320}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.302ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac2e7d800509f43af8b97e5bc0766c7792d2d77" data-alt="{\displaystyle {\tfrac {1}{320}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> of a hekat. </p> <div class="mw-heading mw-heading3"><h3 id="Calculation_methods">Calculation methods</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=4" title="Edit section: Calculation methods" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Modern historians of mathematics have studied the Rhind papyrus and other ancient sources in an attempt to discover the methods the Egyptians used in calculating with Egyptian fractions. In particular, study in this area has concentrated on understanding the tables of expansions for numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>n</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{n}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada21e7887bd500f615e37467aa9a0780c48a983" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.822ex; height:3.343ex;" alt="{\displaystyle {\tfrac {2}{n}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.822ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada21e7887bd500f615e37467aa9a0780c48a983" data-alt="{\displaystyle {\tfrac {2}{n}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in the Rhind papyrus. Although these expansions can generally be described as algebraic identities, the methods used by the Egyptians may not correspond directly to these identities. Additionally, the expansions in the table do not match any single identity; rather, different identities match the expansions for <a href="/wiki/Prime_number" title="Prime number">prime</a> and for <a href="/wiki/Composite_number" title="Composite number">composite</a> denominators, and more than one identity fits the numbers of each type: </p> <ul><li>For small odd prime denominators <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the expansion <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2}{p}}={\frac {1}{(p+1)/2}}+{\frac {1}{p(p+1)/2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>p</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2}{p}}={\frac {1}{(p+1)/2}}+{\frac {1}{p(p+1)/2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfb009d36bae4c2fadd45ca74570c41ecd341dd5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.399ex; height:6.009ex;" alt="{\displaystyle {\frac {2}{p}}={\frac {1}{(p+1)/2}}+{\frac {1}{p(p+1)/2}}}"></noscript><span class="lazy-image-placeholder" style="width: 29.399ex;height: 6.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfb009d36bae4c2fadd45ca74570c41ecd341dd5" data-alt="{\displaystyle {\frac {2}{p}}={\frac {1}{(p+1)/2}}+{\frac {1}{p(p+1)/2}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> was used.</li> <li>For larger prime denominators, an expansion of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2}{p}}={\frac {1}{A}}+{\frac {2A-p}{Ap}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>p</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>A</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>A</mi> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> <mrow> <mi>A</mi> <mi>p</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2}{p}}={\frac {1}{A}}+{\frac {2A-p}{Ap}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec31b11ca85385c4ac680afdcd06127144b9c723" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.275ex; height:5.843ex;" alt="{\displaystyle {\frac {2}{p}}={\frac {1}{A}}+{\frac {2A-p}{Ap}}}"></noscript><span class="lazy-image-placeholder" style="width: 18.275ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec31b11ca85385c4ac680afdcd06127144b9c723" data-alt="{\displaystyle {\frac {2}{p}}={\frac {1}{A}}+{\frac {2A-p}{Ap}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> was used, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is a number with many divisors (such as a <a href="/wiki/Practical_number" title="Practical number">practical number</a>) between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {p}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>p</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {p}{2}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48267343357b6bc51dd03744fcf8fa48679ce0d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.663ex; height:3.509ex;" alt="{\displaystyle {\tfrac {p}{2}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.663ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48267343357b6bc51dd03744fcf8fa48679ce0d4" data-alt="{\displaystyle {\tfrac {p}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. The remaining term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2A-p)/Ap}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>A</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>A</mi> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2A-p)/Ap}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d32c4a35c0e3fae23f2b3bd11369b1deae5019a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.8ex; height:2.843ex;" alt="{\displaystyle (2A-p)/Ap}"></noscript><span class="lazy-image-placeholder" style="width: 12.8ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d32c4a35c0e3fae23f2b3bd11369b1deae5019a0" data-alt="{\displaystyle (2A-p)/Ap}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> was expanded by representing the number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2A-p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>A</mi> <mo>−<!-- − --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2A-p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42d08e4bc35eae269c60b00e019cf3a68872cbd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.915ex; height:2.509ex;" alt="{\displaystyle 2A-p}"></noscript><span class="lazy-image-placeholder" style="width: 6.915ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42d08e4bc35eae269c60b00e019cf3a68872cbd0" data-alt="{\displaystyle 2A-p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> as a sum of divisors of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and forming a fraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {d}{Ap}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>d</mi> <mrow> <mi>A</mi> <mi>p</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {d}{Ap}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec4bcb5eebcaac3dbcc08095766ea793dd21c868" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:2.896ex; height:4.176ex;" alt="{\displaystyle {\tfrac {d}{Ap}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.896ex;height: 4.176ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec4bcb5eebcaac3dbcc08095766ea793dd21c868" data-alt="{\displaystyle {\tfrac {d}{Ap}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> for each such divisor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></noscript><span class="lazy-image-placeholder" style="width: 1.216ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" data-alt="{\displaystyle d}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in this sum.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> As an example, Ahmes' expansion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{37}}={\tfrac {1}{24}}+{\tfrac {1}{111}}+{\tfrac {1}{296}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>37</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>24</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>111</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>296</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{37}}={\tfrac {1}{24}}+{\tfrac {1}{111}}+{\tfrac {1}{296}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2e2315aa57b507ea5bc68e3cdd1a3620349b56f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:20.344ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{37}}={\tfrac {1}{24}}+{\tfrac {1}{111}}+{\tfrac {1}{296}}}"></noscript><span class="lazy-image-placeholder" style="width: 20.344ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2e2315aa57b507ea5bc68e3cdd1a3620349b56f" data-alt="{\displaystyle {\tfrac {2}{37}}={\tfrac {1}{24}}+{\tfrac {1}{111}}+{\tfrac {1}{296}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> fits this pattern with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=24}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mn>24</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=24}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/209067cdabc7888fca6790cfa9209e409cc0f40f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.166ex; height:2.176ex;" alt="{\displaystyle A=24}"></noscript><span class="lazy-image-placeholder" style="width: 7.166ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/209067cdabc7888fca6790cfa9209e409cc0f40f" data-alt="{\displaystyle A=24}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2A-p=11=8+3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>A</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mo>=</mo> <mn>11</mn> <mo>=</mo> <mn>8</mn> <mo>+</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2A-p=11=8+3}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57de9e31b73d4e9ef00bca8b6225f994c7fd855d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.603ex; height:2.509ex;" alt="{\displaystyle 2A-p=11=8+3}"></noscript><span class="lazy-image-placeholder" style="width: 20.603ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57de9e31b73d4e9ef00bca8b6225f994c7fd855d" data-alt="{\displaystyle 2A-p=11=8+3}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{111}}={\tfrac {8}{24\cdot 37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>111</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>8</mn> <mrow> <mn>24</mn> <mo>⋅<!-- ⋅ --></mo> <mn>37</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{111}}={\tfrac {8}{24\cdot 37}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02c25fd7644673724f65e2088ecd011d33c7a450" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.982ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{111}}={\tfrac {8}{24\cdot 37}}}"></noscript><span class="lazy-image-placeholder" style="width: 10.982ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02c25fd7644673724f65e2088ecd011d33c7a450" data-alt="{\displaystyle {\tfrac {1}{111}}={\tfrac {8}{24\cdot 37}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{296}}={\tfrac {3}{24\cdot 37}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>296</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mrow> <mn>24</mn> <mo>⋅<!-- ⋅ --></mo> <mn>37</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{296}}={\tfrac {3}{24\cdot 37}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1efd574aef70c9e12af9f61711da97d5c33b2a12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.982ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{296}}={\tfrac {3}{24\cdot 37}}}"></noscript><span class="lazy-image-placeholder" style="width: 10.982ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1efd574aef70c9e12af9f61711da97d5c33b2a12" data-alt="{\displaystyle {\tfrac {1}{296}}={\tfrac {3}{24\cdot 37}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. There may be many different expansions of this type for a given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>; however, as K. S. Brown observed, the expansion chosen by the Egyptians was often the one that caused the largest denominator to be as small as possible, among all expansions fitting this pattern.</li> <li>For some composite denominators, factored as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\cdot q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>⋅<!-- ⋅ --></mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\cdot q}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ccd43c59111042c75f1c0e10f31293fce7eb5b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:4.007ex; height:2.009ex;" alt="{\displaystyle p\cdot q}"></noscript><span class="lazy-image-placeholder" style="width: 4.007ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ccd43c59111042c75f1c0e10f31293fce7eb5b8" data-alt="{\displaystyle p\cdot q}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the expansion for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{pq}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{pq}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f25089553761e835770674bb1826f668cd989e57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.419ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{pq}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.419ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f25089553761e835770674bb1826f668cd989e57" data-alt="{\displaystyle {\tfrac {2}{pq}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> has the form of an expansion for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mi>p</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{p}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d5db639d0a9a55b6e59c6d61ff833f935a085fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:1.663ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{p}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.663ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d5db639d0a9a55b6e59c6d61ff833f935a085fe" data-alt="{\displaystyle {\tfrac {2}{p}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> with each denominator multiplied by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></noscript><span class="lazy-image-placeholder" style="width: 1.07ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" data-alt="{\displaystyle q}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. This method appears to have been used for many of the composite numbers in the Rhind papyrus,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> but there are exceptions, notably <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{35}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>35</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{35}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a7772fe1cfcca8111f62832a2b2977f998a9d98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{35}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a7772fe1cfcca8111f62832a2b2977f998a9d98" data-alt="{\displaystyle {\tfrac {2}{35}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{91}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>91</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{91}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7405ab9158bd9c14c99ef38636c4cf524bd09018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{91}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7405ab9158bd9c14c99ef38636c4cf524bd09018" data-alt="{\displaystyle {\tfrac {2}{91}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{95}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>95</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{95}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54323196655936cb195cb2f0f1d98d89ec9fece" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.48ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{95}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.48ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54323196655936cb195cb2f0f1d98d89ec9fece" data-alt="{\displaystyle {\tfrac {2}{95}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.<sup id="cite_ref-FOOTNOTEKnorr1982_7-0" class="reference"><a href="#cite_note-FOOTNOTEKnorr1982-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></li> <li>One can also expand <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2}{pq}}={\frac {1}{p(p+q)/2}}+{\frac {1}{q(p+q)/2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2}{pq}}={\frac {1}{p(p+q)/2}}+{\frac {1}{q(p+q)/2}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ee9baa111dded5d5dd4ade4134efcb54f9f3211" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.999ex; height:6.009ex;" alt="{\displaystyle {\frac {2}{pq}}={\frac {1}{p(p+q)/2}}+{\frac {1}{q(p+q)/2}}.}"></noscript><span class="lazy-image-placeholder" style="width: 31.999ex;height: 6.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ee9baa111dded5d5dd4ade4134efcb54f9f3211" data-alt="{\displaystyle {\frac {2}{pq}}={\frac {1}{p(p+q)/2}}+{\frac {1}{q(p+q)/2}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> For instance, Ahmes expands <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{35}}={\tfrac {2}{5\cdot 7}}={\tfrac {1}{30}}+{\tfrac {1}{42}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>35</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mrow> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>42</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{35}}={\tfrac {2}{5\cdot 7}}={\tfrac {1}{30}}+{\tfrac {1}{42}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12ef39c068d34e58ee6fe9c6d36bf4867276d77f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.415ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{35}}={\tfrac {2}{5\cdot 7}}={\tfrac {1}{30}}+{\tfrac {1}{42}}}"></noscript><span class="lazy-image-placeholder" style="width: 19.415ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12ef39c068d34e58ee6fe9c6d36bf4867276d77f" data-alt="{\displaystyle {\tfrac {2}{35}}={\tfrac {2}{5\cdot 7}}={\tfrac {1}{30}}+{\tfrac {1}{42}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Later scribes used a more general form of this expansion, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n}{pq}}={\frac {1}{p(p+q)/n}}+{\frac {1}{q(p+q)/n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>p</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>q</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n}{pq}}={\frac {1}{p(p+q)/n}}+{\frac {1}{q(p+q)/n}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69c6b9cd38b0eec359763a0a3b6ce5545e9273d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:32.464ex; height:6.009ex;" alt="{\displaystyle {\frac {n}{pq}}={\frac {1}{p(p+q)/n}}+{\frac {1}{q(p+q)/n}},}"></noscript><span class="lazy-image-placeholder" style="width: 32.464ex;height: 6.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69c6b9cd38b0eec359763a0a3b6ce5545e9273d8" data-alt="{\displaystyle {\frac {n}{pq}}={\frac {1}{p(p+q)/n}}+{\frac {1}{q(p+q)/n}},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> which works when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p+q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>+</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p+q}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02fcb4cecca0b7e3116a7351e4345b48ef6de371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.169ex; height:2.343ex;" alt="{\displaystyle p+q}"></noscript><span class="lazy-image-placeholder" style="width: 5.169ex;height: 2.343ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02fcb4cecca0b7e3116a7351e4345b48ef6de371" data-alt="{\displaystyle p+q}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is a multiple of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.<sup id="cite_ref-FOOTNOTEEves1953_8-0" class="reference"><a href="#cite_note-FOOTNOTEEves1953-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li> <li>The final (prime) expansion in the Rhind papyrus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{101}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>101</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{101}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11d73ac74059389a67c0cc3f1483e367e849dd93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.302ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{101}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.302ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11d73ac74059389a67c0cc3f1483e367e849dd93" data-alt="{\displaystyle {\tfrac {2}{101}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, does not fit any of these forms, but instead uses an expansion <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2}{p}}={\frac {1}{p}}+{\frac {1}{2p}}+{\frac {1}{3p}}+{\frac {1}{6p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>p</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>6</mn> <mi>p</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2}{p}}={\frac {1}{p}}+{\frac {1}{2p}}+{\frac {1}{3p}}+{\frac {1}{6p}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f4cc0d1d88e867e93c03be3b4000e9b95a344df" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.135ex; height:5.676ex;" alt="{\displaystyle {\frac {2}{p}}={\frac {1}{p}}+{\frac {1}{2p}}+{\frac {1}{3p}}+{\frac {1}{6p}}}"></noscript><span class="lazy-image-placeholder" style="width: 25.135ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f4cc0d1d88e867e93c03be3b4000e9b95a344df" data-alt="{\displaystyle {\frac {2}{p}}={\frac {1}{p}}+{\frac {1}{2p}}+{\frac {1}{3p}}+{\frac {1}{6p}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> that may be applied regardless of the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></noscript><span class="lazy-image-placeholder" style="width: 1.259ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" data-alt="{\displaystyle p}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2}{101}}={\tfrac {1}{101}}+{\tfrac {1}{202}}+{\tfrac {1}{303}}+{\tfrac {1}{606}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>101</mn> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>101</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>202</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>303</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>606</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2}{101}}={\tfrac {1}{101}}+{\tfrac {1}{202}}+{\tfrac {1}{303}}+{\tfrac {1}{606}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4123b121da543b80d9d730dbb940e7e4a4982e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:28.13ex; height:3.676ex;" alt="{\displaystyle {\tfrac {2}{101}}={\tfrac {1}{101}}+{\tfrac {1}{202}}+{\tfrac {1}{303}}+{\tfrac {1}{606}}}"></noscript><span class="lazy-image-placeholder" style="width: 28.13ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4123b121da543b80d9d730dbb940e7e4a4982e1f" data-alt="{\displaystyle {\tfrac {2}{101}}={\tfrac {1}{101}}+{\tfrac {1}{202}}+{\tfrac {1}{303}}+{\tfrac {1}{606}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. A related expansion was also used in the Egyptian Mathematical Leather Roll for several cases.</li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Later_usage">Later usage</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=5" title="Edit section: Later usage" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Liber_Abaci" title="Liber Abaci">Liber Abaci</a> and <a href="/wiki/Greedy_algorithm_for_Egyptian_fractions" title="Greedy algorithm for Egyptian fractions">Greedy algorithm for Egyptian fractions</a></div> <p>Egyptian fraction notation continued to be used in Greek times and into the Middle Ages,<sup id="cite_ref-FOOTNOTEStruik1967_9-0" class="reference"><a href="#cite_note-FOOTNOTEStruik1967-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> despite complaints as early as <a href="/wiki/Ptolemy" title="Ptolemy">Ptolemy</a>'s <a href="/wiki/Almagest" title="Almagest">Almagest</a> about the clumsiness of the notation compared to alternatives such as the <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonian</a> <a href="/wiki/Sexagesimal" title="Sexagesimal">base-60 notation</a>. Related problems of decomposition into unit fractions were also studied in 9th-century India by Jain mathematician <a href="/wiki/Mah%C4%81v%C4%ABra_(mathematician)" title="Mahāvīra (mathematician)">Mahāvīra</a>.<sup id="cite_ref-FOOTNOTEKusuba2004_10-0" class="reference"><a href="#cite_note-FOOTNOTEKusuba2004-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> An important text of medieval European mathematics, the <i><a href="/wiki/Liber_Abaci" title="Liber Abaci">Liber Abaci</a></i> (1202) of <a href="/wiki/Leonardo_of_Pisa" class="mw-redirect" title="Leonardo of Pisa">Leonardo of Pisa</a> (more commonly known as Fibonacci), provides some insight into the uses of Egyptian fractions in the Middle Ages, and introduces topics that continue to be important in modern mathematical study of these series. </p><p>The primary subject of the <i>Liber Abaci</i> is calculations involving decimal and vulgar fraction notation, which eventually replaced Egyptian fractions. Fibonacci himself used a complex notation for fractions involving a combination of a <a href="/wiki/Mixed_radix" title="Mixed radix">mixed radix</a> notation with sums of fractions. Many of the calculations throughout Fibonacci's book involve numbers represented as Egyptian fractions, and one section of this book<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> provides a list of methods for conversion of vulgar fractions to Egyptian fractions. If the number is not already a unit fraction, the first method in this list is to attempt to split the numerator into a sum of divisors of the denominator; this is possible whenever the denominator is a <a href="/wiki/Practical_number" title="Practical number">practical number</a>, and <i>Liber Abaci</i> includes tables of expansions of this type for the practical numbers 6, 8, 12, 20, 24, 60, and 100. </p><p>The next several methods involve algebraic identities such as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a}{ab-1}}={\frac {1}{b}}+{\frac {1}{b(ab-1)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mrow> <mi>a</mi> <mi>b</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>b</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a}{ab-1}}={\frac {1}{b}}+{\frac {1}{b(ab-1)}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c2726aca6139e0a9ea3836ae25f737bba3c43e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.524ex; height:6.009ex;" alt="{\displaystyle {\frac {a}{ab-1}}={\frac {1}{b}}+{\frac {1}{b(ab-1)}}.}"></noscript><span class="lazy-image-placeholder" style="width: 25.524ex;height: 6.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29c2726aca6139e0a9ea3836ae25f737bba3c43e" data-alt="{\displaystyle {\frac {a}{ab-1}}={\frac {1}{b}}+{\frac {1}{b(ab-1)}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> For instance, Fibonacci represents the fraction <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac"><span class="tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">11</span></span></span> by splitting the numerator into a sum of two numbers, each of which divides one plus the denominator: <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">11</span></span></span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">6</span><span class="sr-only">/</span><span class="den">11</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">11</span></span></span></span>. Fibonacci applies the algebraic identity above to each these two parts, producing the expansion <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">11</span></span></span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">22</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">66</span></span></span></span>. Fibonacci describes similar methods for denominators that are two or three less than a number with many factors. </p><p>In the rare case that these other methods all fail, Fibonacci suggests a <a href="/wiki/Greedy_algorithm_for_Egyptian_fractions" title="Greedy algorithm for Egyptian fractions">"greedy" algorithm</a> for computing Egyptian fractions, in which one repeatedly chooses the unit fraction with the smallest denominator that is no larger than the remaining fraction to be expanded: that is, in more modern notation, we replace a fraction <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>x</i></span><span class="sr-only">/</span><span class="den"><i>y</i></span></span></span> by the expansion <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x}{y}}={\frac {1}{\,\left\lceil {\frac {y}{x}}\right\rceil \,}}+{\frac {(-y)\,{\bmod {\,}}x}{y\left\lceil {\frac {y}{x}}\right\rceil }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>y</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mspace width="thinmathspace"></mspace> <mrow> <mo>⌈</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> <mo>⌉</mo> </mrow> <mspace width="thinmathspace"></mspace> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mo lspace="thickmathspace" rspace="thickmathspace">mod</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace"></mspace> </mrow> </mrow> <mi>x</mi> </mrow> <mrow> <mi>y</mi> <mrow> <mo>⌈</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mi>x</mi> </mfrac> </mrow> <mo>⌉</mo> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x}{y}}={\frac {1}{\,\left\lceil {\frac {y}{x}}\right\rceil \,}}+{\frac {(-y)\,{\bmod {\,}}x}{y\left\lceil {\frac {y}{x}}\right\rceil }},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c87982e5702e256819b677467e5921d1009f9415" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.727ex; height:7.009ex;" alt="{\displaystyle {\frac {x}{y}}={\frac {1}{\,\left\lceil {\frac {y}{x}}\right\rceil \,}}+{\frac {(-y)\,{\bmod {\,}}x}{y\left\lceil {\frac {y}{x}}\right\rceil }},}"></noscript><span class="lazy-image-placeholder" style="width: 27.727ex;height: 7.009ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c87982e5702e256819b677467e5921d1009f9415" data-alt="{\displaystyle {\frac {x}{y}}={\frac {1}{\,\left\lceil {\frac {y}{x}}\right\rceil \,}}+{\frac {(-y)\,{\bmod {\,}}x}{y\left\lceil {\frac {y}{x}}\right\rceil }},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> where <span class="nowrap">⌈ ⌉</span> represents the <a href="/wiki/Floor_and_ceiling_functions" title="Floor and ceiling functions">ceiling function</a>; since <span class="nowrap">(−<i>y</i>) mod <i>x</i> < <i>x</i></span>, this method yields a finite expansion. </p><p>Fibonacci suggests switching to another method after the first such expansion, but he also gives examples in which this greedy expansion was iterated until a complete Egyptian fraction expansion was constructed: <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">4</span><span class="sr-only">/</span><span class="den">13</span></span></span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">18</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">468</span></span></span></span> and <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">17</span><span class="sr-only">/</span><span class="den">29</span></span></span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">12</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">348</span></span></span></span>. </p><p>Compared to ancient Egyptian expansions or to more modern methods, this method may produce expansions that are quite long, with large denominators, and Fibonacci himself noted the awkwardness of the expansions produced by this method. For instance, the greedy method expands <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {5}{121}}={\frac {1}{25}}+{\frac {1}{757}}+{\frac {1}{763\,309}}+{\frac {1}{873\,960\,180\,913}}+{\frac {1}{1\,527\,612\,795\,642\,093\,418\,846\,225}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>121</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>25</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>757</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>763</mn> <mspace width="thinmathspace"></mspace> <mn>309</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>873</mn> <mspace width="thinmathspace"></mspace> <mn>960</mn> <mspace width="thinmathspace"></mspace> <mn>180</mn> <mspace width="thinmathspace"></mspace> <mn>913</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>527</mn> <mspace width="thinmathspace"></mspace> <mn>612</mn> <mspace width="thinmathspace"></mspace> <mn>795</mn> <mspace width="thinmathspace"></mspace> <mn>642</mn> <mspace width="thinmathspace"></mspace> <mn>093</mn> <mspace width="thinmathspace"></mspace> <mn>418</mn> <mspace width="thinmathspace"></mspace> <mn>846</mn> <mspace width="thinmathspace"></mspace> <mn>225</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {5}{121}}={\frac {1}{25}}+{\frac {1}{757}}+{\frac {1}{763\,309}}+{\frac {1}{873\,960\,180\,913}}+{\frac {1}{1\,527\,612\,795\,642\,093\,418\,846\,225}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af6b710b559d471480c4ddce74c984a7d5f6561" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:84.054ex; height:5.343ex;" alt="{\displaystyle {\frac {5}{121}}={\frac {1}{25}}+{\frac {1}{757}}+{\frac {1}{763\,309}}+{\frac {1}{873\,960\,180\,913}}+{\frac {1}{1\,527\,612\,795\,642\,093\,418\,846\,225}},}"></noscript><span class="lazy-image-placeholder" style="width: 84.054ex;height: 5.343ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af6b710b559d471480c4ddce74c984a7d5f6561" data-alt="{\displaystyle {\frac {5}{121}}={\frac {1}{25}}+{\frac {1}{757}}+{\frac {1}{763\,309}}+{\frac {1}{873\,960\,180\,913}}+{\frac {1}{1\,527\,612\,795\,642\,093\,418\,846\,225}},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> while other methods lead to the shorter expansion <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {5}{121}}={\frac {1}{33}}+{\frac {1}{121}}+{\frac {1}{363}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>121</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>33</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>121</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>363</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {5}{121}}={\frac {1}{33}}+{\frac {1}{121}}+{\frac {1}{363}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d5d67bd2e7732b3f29aeb5e545d36c02cec03cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.558ex; height:5.176ex;" alt="{\displaystyle {\frac {5}{121}}={\frac {1}{33}}+{\frac {1}{121}}+{\frac {1}{363}}.}"></noscript><span class="lazy-image-placeholder" style="width: 25.558ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d5d67bd2e7732b3f29aeb5e545d36c02cec03cd" data-alt="{\displaystyle {\frac {5}{121}}={\frac {1}{33}}+{\frac {1}{121}}+{\frac {1}{363}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p><a href="/wiki/Sylvester%27s_sequence" title="Sylvester's sequence">Sylvester's sequence</a> 2, 3, 7, 43, 1807, ... can be viewed as generated by an infinite greedy expansion of this type for the number 1, where at each step we choose the denominator <span class="nowrap">⌊ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>y</i></span><span class="sr-only">/</span><span class="den"><i>x</i></span></span></span> ⌋ + 1</span> instead of <span class="nowrap">⌈ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>y</i></span><span class="sr-only">/</span><span class="den"><i>x</i></span></span></span> ⌉</span>, and sometimes Fibonacci's greedy algorithm is attributed to <a href="/wiki/James_Joseph_Sylvester" title="James Joseph Sylvester">James Joseph Sylvester</a>. </p><p>After his description of the greedy algorithm, Fibonacci suggests yet another method, expanding a fraction <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>a</i></span><span class="sr-only">/</span><span class="den"><i>b</i></span></span></span> by searching for a number <i>c</i> having many divisors, with <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>b</i></span><span class="sr-only">/</span><span class="den">2</span></span></span> < <i>c</i> < <i>b</i></span>, replacing <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>a</i></span><span class="sr-only">/</span><span class="den"><i>b</i></span></span></span> by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>ac</i></span><span class="sr-only">/</span><span class="den"><i>bc</i></span></span></span>, and expanding <i>ac</i> as a sum of divisors of <i>bc</i>, similar to the method proposed by Hultsch and Bruins to explain some of the expansions in the Rhind papyrus. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Modern_number_theory">Modern number theory</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=6" title="Edit section: Modern number theory" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Erd%C5%91s%E2%80%93Graham_problem" title="Erdős–Graham problem">Erdős–Graham problem</a>, <a href="/wiki/Zn%C3%A1m%27s_problem" title="Znám's problem">Znám's problem</a>, and <a href="/wiki/Engel_expansion" title="Engel expansion">Engel expansion</a></div> <p>Although Egyptian fractions are no longer used in most practical applications of mathematics, modern number theorists have continued to study many different problems related to them. These include problems of bounding the length or maximum denominator in Egyptian fraction representations, finding expansions of certain special forms or in which the denominators are all of some special type, the termination of various methods for Egyptian fraction expansion, and showing that expansions exist for any sufficiently dense set of sufficiently <a href="/wiki/Smooth_number" title="Smooth number">smooth numbers</a>. </p> <ul><li>One of the earliest publications of <a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Paul Erdős</a> proved that it is not possible for a <a href="/wiki/Harmonic_progression_(mathematics)" title="Harmonic progression (mathematics)">harmonic progression</a> to form an Egyptian fraction representation of an <a href="/wiki/Integer" title="Integer">integer</a>. The reason is that, necessarily, at least one denominator of the progression will be divisible by a <a href="/wiki/Prime_number" title="Prime number">prime number</a> that does not divide any other denominator.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> The latest publication of Erdős, nearly 20 years after his death, proves that every integer has a representation in which all denominators are products of three primes.<sup id="cite_ref-FOOTNOTEButlerErdősGraham2015_13-0" class="reference"><a href="#cite_note-FOOTNOTEButlerErd%C5%91sGraham2015-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Erd%C5%91s%E2%80%93Graham_conjecture" class="mw-redirect" title="Erdős–Graham conjecture">Erdős–Graham conjecture</a> in <a href="/wiki/Number_theory" title="Number theory">combinatorial number theory</a> states that, if the integers greater than 1 are partitioned into finitely many subsets, then one of the subsets has a finite subset of itself whose reciprocals sum to one. That is, for every <span class="nowrap"><i>r</i> > 0</span>, and every <i>r</i>-coloring of the integers greater than one, there is a finite monochromatic subset <i>S</i> of these integers such that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n\in S}{\frac {1}{n}}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n\in S}{\frac {1}{n}}=1.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d9f2a52b8f8c6f40f960509e48c3e9a6598b2fa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:10.881ex; height:6.509ex;" alt="{\displaystyle \sum _{n\in S}{\frac {1}{n}}=1.}"></noscript><span class="lazy-image-placeholder" style="width: 10.881ex;height: 6.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d9f2a52b8f8c6f40f960509e48c3e9a6598b2fa" data-alt="{\displaystyle \sum _{n\in S}{\frac {1}{n}}=1.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> The conjecture was proven in 2003 by <a href="/wiki/Ernest_S._Croot_III" title="Ernest S. Croot III">Ernest S. Croot III</a>.</li> <li><a href="/wiki/Zn%C3%A1m%27s_problem" title="Znám's problem">Znám's problem</a> and <a href="/wiki/Primary_pseudoperfect_number" title="Primary pseudoperfect number">primary pseudoperfect numbers</a> are closely related to the existence of Egyptian fractions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum {\frac {1}{x_{i}}}+\prod {\frac {1}{x_{i}}}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum {\frac {1}{x_{i}}}+\prod {\frac {1}{x_{i}}}=1.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53038678de69a451020554b89282983361975627" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.778ex; height:5.509ex;" alt="{\displaystyle \sum {\frac {1}{x_{i}}}+\prod {\frac {1}{x_{i}}}=1.}"></noscript><span class="lazy-image-placeholder" style="width: 20.778ex;height: 5.509ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53038678de69a451020554b89282983361975627" data-alt="{\displaystyle \sum {\frac {1}{x_{i}}}+\prod {\frac {1}{x_{i}}}=1.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> For instance, the primary pseudoperfect number 1806 is the product of the prime numbers 2, 3, 7, and 43, and gives rise to the Egyptian fraction <span class="nowrap">1 = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">7</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">43</span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">1806</span></span></span></span>.</li> <li>Egyptian fractions are normally defined as requiring all denominators to be distinct, but this requirement can be relaxed to allow repeated denominators. However, this relaxed form of Egyptian fractions does not allow for any number to be represented using fewer fractions, as any expansion with repeated fractions can be converted to an Egyptian fraction of equal or smaller length by repeated application of the replacement <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {2}{k+1}}+{\frac {2}{k(k+1)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {2}{k+1}}+{\frac {2}{k(k+1)}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d89051c04499c36d6c85f45064f5aa891757344" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.995ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {2}{k+1}}+{\frac {2}{k(k+1)}}}"></noscript><span class="lazy-image-placeholder" style="width: 27.995ex;height: 6.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d89051c04499c36d6c85f45064f5aa891757344" data-alt="{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {2}{k+1}}+{\frac {2}{k(k+1)}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> if <i>k</i> is odd, or simply by replacing <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>k</i></span></span></span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>k</i></span></span></span></span> by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den"><i>k</i></span></span></span> if <i>k</i> is even. This result was first proven by <a href="#CITEREFTakenouchi1921">Takenouchi (1921)</a>.</li> <li>Graham and Jewett<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> proved that it is similarly possible to convert expansions with repeated denominators to (longer) Egyptian fractions, via the replacement <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {1}{k}}+{\frac {1}{k+1}}+{\frac {1}{k(k+1)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {1}{k}}+{\frac {1}{k+1}}+{\frac {1}{k(k+1)}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d82627ffb047088f90131d1767ea4614c96dfed3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.53ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {1}{k}}+{\frac {1}{k+1}}+{\frac {1}{k(k+1)}}.}"></noscript><span class="lazy-image-placeholder" style="width: 33.53ex;height: 6.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d82627ffb047088f90131d1767ea4614c96dfed3" data-alt="{\displaystyle {\frac {1}{k}}+{\frac {1}{k}}={\frac {1}{k}}+{\frac {1}{k+1}}+{\frac {1}{k(k+1)}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> This method can lead to long expansions with large denominators, such as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {4}{5}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{30}}+{\frac {1}{31}}+{\frac {1}{32}}+{\frac {1}{42}}+{\frac {1}{43}}+{\frac {1}{56}}+{\frac {1}{930}}+{\frac {1}{931}}+{\frac {1}{992}}+{\frac {1}{1806}}+{\frac {1}{865\,830}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>7</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>31</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>32</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>42</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>43</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>56</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>930</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>931</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>992</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1806</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>865</mn> <mspace width="thinmathspace"></mspace> <mn>830</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {4}{5}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{30}}+{\frac {1}{31}}+{\frac {1}{32}}+{\frac {1}{42}}+{\frac {1}{43}}+{\frac {1}{56}}+{\frac {1}{930}}+{\frac {1}{931}}+{\frac {1}{992}}+{\frac {1}{1806}}+{\frac {1}{865\,830}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b538d88c5c26b5876d284c2c531fb611b03d0810" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:99.124ex; height:5.343ex;" alt="{\displaystyle {\frac {4}{5}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{30}}+{\frac {1}{31}}+{\frac {1}{32}}+{\frac {1}{42}}+{\frac {1}{43}}+{\frac {1}{56}}+{\frac {1}{930}}+{\frac {1}{931}}+{\frac {1}{992}}+{\frac {1}{1806}}+{\frac {1}{865\,830}}.}"></noscript><span class="lazy-image-placeholder" style="width: 99.124ex;height: 5.343ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b538d88c5c26b5876d284c2c531fb611b03d0810" data-alt="{\displaystyle {\frac {4}{5}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{30}}+{\frac {1}{31}}+{\frac {1}{32}}+{\frac {1}{42}}+{\frac {1}{43}}+{\frac {1}{56}}+{\frac {1}{930}}+{\frac {1}{931}}+{\frac {1}{992}}+{\frac {1}{1806}}+{\frac {1}{865\,830}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> <a href="#CITEREFBotts1967">Botts (1967)</a> had originally used this replacement technique to show that any rational number has Egyptian fraction representations with arbitrarily large minimum denominators.</li> <li>Any fraction <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>x</i></span><span class="sr-only">/</span><span class="den"><i>y</i></span></span></span> has an Egyptian fraction representation in which the maximum denominator is bounded by<sup id="cite_ref-FOOTNOTEYokota1988_15-0" class="reference"><a href="#cite_note-FOOTNOTEYokota1988-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O\left(y\log y\left(\log \log y\right)^{4}\left(\log \log \log y\right)^{2}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <mi>y</mi> <mi>log</mi> <mo><!-- --></mo> <mi>y</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>log</mi> <mo><!-- --></mo> <mi>log</mi> <mo><!-- --></mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>log</mi> <mo><!-- --></mo> <mi>log</mi> <mo><!-- --></mo> <mi>log</mi> <mo><!-- --></mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O\left(y\log y\left(\log \log y\right)^{4}\left(\log \log \log y\right)^{2}\right),}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9da50926eafb6c20429130322941c220457b2fb1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:36.859ex; height:4.843ex;" alt="{\displaystyle O\left(y\log y\left(\log \log y\right)^{4}\left(\log \log \log y\right)^{2}\right),}"></noscript><span class="lazy-image-placeholder" style="width: 36.859ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9da50926eafb6c20429130322941c220457b2fb1" data-alt="{\displaystyle O\left(y\log y\left(\log \log y\right)^{4}\left(\log \log \log y\right)^{2}\right),}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> and a representation with at most <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O\left({\sqrt {\log y}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>log</mi> <mo><!-- --></mo> <mi>y</mi> </msqrt> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O\left({\sqrt {\log y}}\right)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da9e637e327cef89bab1e05afb8a161e4d1b928b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.128ex; height:3.509ex;" alt="{\displaystyle O\left({\sqrt {\log y}}\right)}"></noscript><span class="lazy-image-placeholder" style="width: 11.128ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da9e637e327cef89bab1e05afb8a161e4d1b928b" data-alt="{\displaystyle O\left({\sqrt {\log y}}\right)}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> terms.<sup id="cite_ref-FOOTNOTEVose1985_16-0" class="reference"><a href="#cite_note-FOOTNOTEVose1985-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> The number of terms must sometimes be at least proportional to <span class="nowrap">log log <i>y</i></span>; for instance this is true for the fractions in the sequence <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">3</span></span></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">6</span><span class="sr-only">/</span><span class="den">7</span></span></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">42</span><span class="sr-only">/</span><span class="den">43</span></span></span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1806</span><span class="sr-only">/</span><span class="den">1807</span></span></span>, ... whose denominators form <a href="/wiki/Sylvester%27s_sequence" title="Sylvester's sequence">Sylvester's sequence</a>. It has been conjectured that <span class="nowrap"><i>O</i>(log log <i>y</i>)</span> terms are always enough.<sup id="cite_ref-FOOTNOTEErdős1950_17-0" class="reference"><a href="#cite_note-FOOTNOTEErd%C5%91s1950-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> It is also possible to find representations in which both the maximum denominator and the number of terms are small.<sup id="cite_ref-FOOTNOTETenenbaumYokota1990_18-0" class="reference"><a href="#cite_note-FOOTNOTETenenbaumYokota1990-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></li> <li><a href="#CITEREFGraham1964">Graham (1964)</a> characterized the numbers that can be represented by Egyptian fractions in which all denominators are <i>n</i>th powers. In particular, a rational number <i>q</i> can be represented as an Egyptian fraction with square denominators if and only if <i>q</i> lies in one of the two half-open intervals <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[0,{\frac {\pi ^{2}}{6}}-1\right)\cup \left[1,{\frac {\pi ^{2}}{6}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>∪<!-- ∪ --></mo> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>6</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[0,{\frac {\pi ^{2}}{6}}-1\right)\cup \left[1,{\frac {\pi ^{2}}{6}}\right).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce3246ea878a54c8288d3bd2b60ce87873d0e31c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.337ex; height:6.343ex;" alt="{\displaystyle \left[0,{\frac {\pi ^{2}}{6}}-1\right)\cup \left[1,{\frac {\pi ^{2}}{6}}\right).}"></noscript><span class="lazy-image-placeholder" style="width: 24.337ex;height: 6.343ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce3246ea878a54c8288d3bd2b60ce87873d0e31c" data-alt="{\displaystyle \left[0,{\frac {\pi ^{2}}{6}}-1\right)\cup \left[1,{\frac {\pi ^{2}}{6}}\right).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></li> <li><a href="#CITEREFMartin1999">Martin (1999)</a> showed that any rational number has very dense expansions, using a constant fraction of the denominators up to <i>N</i> for any sufficiently large <i>N</i>.</li> <li><a href="/wiki/Engel_expansion" title="Engel expansion">Engel expansion</a>, sometimes called an <i>Egyptian product</i>, is a form of Egyptian fraction expansion in which each denominator is a multiple of the previous one: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {1}{a_{1}}}+{\frac {1}{a_{1}a_{2}}}+{\frac {1}{a_{1}a_{2}a_{3}}}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {1}{a_{1}}}+{\frac {1}{a_{1}a_{2}}}+{\frac {1}{a_{1}a_{2}a_{3}}}+\cdots .}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/484bc63e1bf72f9cc5adcbfcedc20887364be6d0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:32.919ex; height:5.509ex;" alt="{\displaystyle x={\frac {1}{a_{1}}}+{\frac {1}{a_{1}a_{2}}}+{\frac {1}{a_{1}a_{2}a_{3}}}+\cdots .}"></noscript><span class="lazy-image-placeholder" style="width: 32.919ex;height: 5.509ex;vertical-align: -2.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/484bc63e1bf72f9cc5adcbfcedc20887364be6d0" data-alt="{\displaystyle x={\frac {1}{a_{1}}}+{\frac {1}{a_{1}a_{2}}}+{\frac {1}{a_{1}a_{2}a_{3}}}+\cdots .}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> In addition, the sequence of multipliers <i>a<sub>i</sub></i> is required to be nondecreasing. Every rational number has a finite Engel expansion, while <a href="/wiki/Irrational_number" title="Irrational number">irrational numbers</a> have an infinite Engel expansion.</li> <li><a href="#CITEREFAnshelGoldfeld1991">Anshel & Goldfeld (1991)</a> study numbers that have multiple distinct Egyptian fraction representations with the same number of terms and the same product of denominators; for instance, one of the examples they supply is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {5}{12}}={\frac {1}{4}}+{\frac {1}{10}}+{\frac {1}{15}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{20}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>12</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>10</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>15</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>20</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {5}{12}}={\frac {1}{4}}+{\frac {1}{10}}+{\frac {1}{15}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{20}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b4d43cf7386b40f280646067b04cc932355984" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:36.845ex; height:5.176ex;" alt="{\displaystyle {\frac {5}{12}}={\frac {1}{4}}+{\frac {1}{10}}+{\frac {1}{15}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{20}}.}"></noscript><span class="lazy-image-placeholder" style="width: 36.845ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b4d43cf7386b40f280646067b04cc932355984" data-alt="{\displaystyle {\frac {5}{12}}={\frac {1}{4}}+{\frac {1}{10}}+{\frac {1}{15}}={\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{20}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> Unlike the ancient Egyptians, they allow denominators to be repeated in these expansions. They apply their results for this problem to the characterization of <a href="/wiki/Free_product" title="Free product">free products</a> of <a href="/wiki/Abelian_group" title="Abelian group">Abelian groups</a> by a small number of numerical parameters: the rank of the <a href="/wiki/Commutator_subgroup" title="Commutator subgroup">commutator subgroup</a>, the number of terms in the free product, and the product of the orders of the factors.</li> <li>The number of different <i>n</i>-term Egyptian fraction representations of the number one is bounded above and below by <a href="/wiki/Double_exponential_function" title="Double exponential function">double exponential functions</a> of <i>n</i>.<sup id="cite_ref-FOOTNOTEKonyagin2014_19-0" class="reference"><a href="#cite_note-FOOTNOTEKonyagin2014-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Open_problems">Open problems</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=7" title="Edit section: Open problems" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Odd_greedy_expansion" title="Odd greedy expansion">Odd greedy expansion</a> and <a href="/wiki/Erd%C5%91s%E2%80%93Straus_conjecture" title="Erdős–Straus conjecture">Erdős–Straus conjecture</a></div> <p>Some notable problems remain unsolved with regard to Egyptian fractions, despite considerable effort by mathematicians. </p> <ul><li>The <a href="/wiki/Erd%C5%91s%E2%80%93Straus_conjecture" title="Erdős–Straus conjecture">Erdős–Straus conjecture</a><sup id="cite_ref-FOOTNOTEErdős1950_17-1" class="reference"><a href="#cite_note-FOOTNOTEErd%C5%91s1950-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> concerns the length of the shortest expansion for a fraction of the form <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">4</span><span class="sr-only">/</span><span class="den"><i>n</i></span></span></span>. Does an expansion <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {4}{n}}={\frac {1}{x}}+{\frac {1}{y}}+{\frac {1}{z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mi>n</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>y</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {4}{n}}={\frac {1}{x}}+{\frac {1}{y}}+{\frac {1}{z}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18712cca1c0fe53694bd863d0b1d5ea9aa8f07dc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.173ex; height:5.676ex;" alt="{\displaystyle {\frac {4}{n}}={\frac {1}{x}}+{\frac {1}{y}}+{\frac {1}{z}}}"></noscript><span class="lazy-image-placeholder" style="width: 17.173ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18712cca1c0fe53694bd863d0b1d5ea9aa8f07dc" data-alt="{\displaystyle {\frac {4}{n}}={\frac {1}{x}}+{\frac {1}{y}}+{\frac {1}{z}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> exist for every <i>n</i>? It is known to be true for all <span class="nowrap"><i>n</i> < 10<sup>17</sup></span>, and for all but a vanishingly small fraction of possible values of <i>n</i>, but the general truth of the conjecture remains unknown.</li> <li>It is unknown whether an <a href="/wiki/Odd_greedy_expansion" title="Odd greedy expansion">odd greedy expansion</a> exists for every fraction with an odd denominator. If Fibonacci's greedy method is modified so that it always chooses the smallest possible <i>odd</i> denominator, under what conditions does this modified algorithm produce a finite expansion? An obvious necessary condition is that the starting fraction <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>x</i></span><span class="sr-only">/</span><span class="den"><i>y</i></span></span></span> have an odd denominator <i>y</i>, and it is conjectured but not known that this is also a sufficient condition. It is known<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> that every <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>x</i></span><span class="sr-only">/</span><span class="den"><i>y</i></span></span></span> with odd <i>y</i> has an expansion into distinct odd unit fractions, constructed using a different method than the greedy algorithm.</li> <li>It is possible to use <a href="/wiki/Brute-force_search" title="Brute-force search">brute-force search</a> algorithms to find the Egyptian fraction representation of a given number with the fewest possible terms<sup id="cite_ref-FOOTNOTEStewart1992_21-0" class="reference"><a href="#cite_note-FOOTNOTEStewart1992-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> or minimizing the largest denominator; however, such algorithms can be quite inefficient. The existence of <a href="/wiki/Polynomial_time" class="mw-redirect" title="Polynomial time">polynomial time</a> algorithms for these problems, or more generally the <a href="/wiki/Analysis_of_algorithms" title="Analysis of algorithms">computational complexity</a> of such problems, remains unknown.</li></ul> <p><a href="#CITEREFGuy2004">Guy (2004)</a> describes these problems in more detail and lists numerous additional open problems. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=8" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <ul><li><a href="/wiki/List_of_sums_of_reciprocals" title="List of sums of reciprocals">List of sums of reciprocals</a></li> <li><a href="/wiki/17-animal_inheritance_puzzle" title="17-animal inheritance puzzle">17-animal inheritance puzzle</a></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=9" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFDickOgle2018">Dick & Ogle (2018)</a>; <a href="#CITEREFKoshalevaKreinovich2021">Koshaleva & Kreinovich (2021)</a></span> </li> <li id="cite_note-FOOTNOTEWilsonEdgingtonNguyenPescosolido2011-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWilsonEdgingtonNguyenPescosolido2011_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWilsonEdgingtonNguyenPescosolido2011">Wilson et al. (2011)</a>.</span> </li> <li id="cite_note-FOOTNOTEWinkler2004-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWinkler2004_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWinkler2004">Winkler (2004)</a>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFRitter2002">Ritter (2002)</a>. See also <a href="#CITEREFKatz2007">Katz (2007)</a> and <a href="#CITEREFRobsonStedall2009">Robson & Stedall (2009)</a>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFHultsch1895">Hultsch (1895)</a>; <a href="#CITEREFBruins1957">Bruins (1957)</a></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFGillings1982">Gillings (1982)</a>; <a href="#CITEREFGardner2002">Gardner (2002)</a></span> </li> <li id="cite_note-FOOTNOTEKnorr1982-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKnorr1982_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKnorr1982">Knorr (1982)</a>.</span> </li> <li id="cite_note-FOOTNOTEEves1953-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEEves1953_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFEves1953">Eves (1953)</a>.</span> </li> <li id="cite_note-FOOTNOTEStruik1967-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStruik1967_9-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStruik1967">Struik (1967)</a>.</span> </li> <li id="cite_note-FOOTNOTEKusuba2004-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKusuba2004_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKusuba2004">Kusuba (2004)</a>.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFSigler2002">Sigler (2002)</a>, chapter II.7</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><a href="#CITEREFErd%C5%91s1932">Erdős (1932)</a>; <a href="#CITEREFGraham2013">Graham (2013)</a></span> </li> <li id="cite_note-FOOTNOTEButlerErdősGraham2015-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEButlerErd%C5%91sGraham2015_13-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFButlerErd%C5%91sGraham2015">Butler, Erdős & Graham (2015)</a>.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">See <a href="#CITEREFWagon1999">Wagon (1999)</a> and <a href="#CITEREFBeeckmans1993">Beeckmans (1993)</a></span> </li> <li id="cite_note-FOOTNOTEYokota1988-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEYokota1988_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFYokota1988">Yokota (1988)</a>.</span> </li> <li id="cite_note-FOOTNOTEVose1985-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEVose1985_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFVose1985">Vose (1985)</a>.</span> </li> <li id="cite_note-FOOTNOTEErdős1950-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEErd%C5%91s1950_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEErd%C5%91s1950_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFErd%C5%91s1950">Erdős (1950)</a>.</span> </li> <li id="cite_note-FOOTNOTETenenbaumYokota1990-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETenenbaumYokota1990_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTenenbaumYokota1990">Tenenbaum & Yokota (1990)</a>.</span> </li> <li id="cite_note-FOOTNOTEKonyagin2014-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKonyagin2014_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKonyagin2014">Konyagin (2014)</a>.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><a href="#CITEREFBreusch1954">Breusch (1954)</a>; <a href="#CITEREFStewart1954">Stewart (1954)</a></span> </li> <li id="cite_note-FOOTNOTEStewart1992-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEStewart1992_21-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFStewart1992">Stewart (1992)</a>.</span> </li> </ol></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=10" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-8 collapsible-block" id="mf-section-8"> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAnshelGoldfeld1991" class="citation cs2">Anshel, Michael M.; <a href="/wiki/Dorian_M._Goldfeld" title="Dorian M. Goldfeld">Goldfeld, Dorian</a> (1991), "Partitions, Egyptian fractions, and free products of finite abelian groups", <i>Proceedings of the American Mathematical Society</i>, <b>111</b> (4): 889–899, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9939-1991-1065083-1">10.1090/S0002-9939-1991-1065083-1</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1065083">1065083</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Mathematical+Society&rft.atitle=Partitions%2C+Egyptian+fractions%2C+and+free+products+of+finite+abelian+groups&rft.volume=111&rft.issue=4&rft.pages=889-899&rft.date=1991&rft_id=info%3Adoi%2F10.1090%2FS0002-9939-1991-1065083-1&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1065083%23id-name%3DMR&rft.aulast=Anshel&rft.aufirst=Michael+M.&rft.au=Goldfeld%2C+Dorian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeeckmans1993" class="citation cs2">Beeckmans, L. (1993), "The splitting algorithm for Egyptian fractions", <i><a href="/wiki/Journal_of_Number_Theory" title="Journal of Number Theory">Journal of Number Theory</a></i>, <b>43</b> (2): 173–185, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjnth.1993.1015">10.1006/jnth.1993.1015</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1207497">1207497</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Number+Theory&rft.atitle=The+splitting+algorithm+for+Egyptian+fractions&rft.volume=43&rft.issue=2&rft.pages=173-185&rft.date=1993&rft_id=info%3Adoi%2F10.1006%2Fjnth.1993.1015&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1207497%23id-name%3DMR&rft.aulast=Beeckmans&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBotts1967" class="citation cs2">Botts, Truman (1967), "A chain reaction process in number theory", <i><a href="/wiki/Mathematics_Magazine" title="Mathematics Magazine">Mathematics Magazine</a></i>, <b>40</b> (2): 55–65, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2688508">10.2307/2688508</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2688508">2688508</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0209217">0209217</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Magazine&rft.atitle=A+chain+reaction+process+in+number+theory&rft.volume=40&rft.issue=2&rft.pages=55-65&rft.date=1967&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0209217%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2688508%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2688508&rft.aulast=Botts&rft.aufirst=Truman&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBreusch1954" class="citation cs2"><a href="/wiki/Robert_Breusch" title="Robert Breusch">Breusch, R.</a> (1954), "A special case of Egyptian fractions, solution to advanced problem 4512", <i><a href="/wiki/American_Mathematical_Monthly" class="mw-redirect" title="American Mathematical Monthly">American Mathematical Monthly</a></i>, <b>61</b>: 200–201, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2307234">10.2307/2307234</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2307234">2307234</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=A+special+case+of+Egyptian+fractions%2C+solution+to+advanced+problem+4512&rft.volume=61&rft.pages=200-201&rft.date=1954&rft_id=info%3Adoi%2F10.2307%2F2307234&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2307234%23id-name%3DJSTOR&rft.aulast=Breusch&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBruins1957" class="citation cs2 cs1-prop-foreign-lang-source">Bruins, Evert M. (1957), "Platon et la table égyptienne 2/<i>n</i>" [Plato and the Egyptian 2/<i>n</i> table], <i><a href="/wiki/Janus_(journal)" title="Janus (journal)">Janus</a></i> (in French), <b>46</b>: 253–263</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Janus&rft.atitle=Platon+et+la+table+%C3%A9gyptienne+2%2Fn&rft.volume=46&rft.pages=253-263&rft.date=1957&rft.aulast=Bruins&rft.aufirst=Evert+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFButlerErdősGraham2015" class="citation cs2"><a href="/wiki/Steve_Butler_(mathematician)" title="Steve Butler (mathematician)">Butler, Steve</a>; <a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Erdős, Paul</a>; <a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ron</a> (2015), <a rel="nofollow" class="external text" href="https://www.math.ucsd.edu/~ronspubs/pre_tres_egyptian.pdf">"Egyptian fractions with each denominator having three distinct prime divisors"</a> <span class="cs1-format">(PDF)</span>, <i>Integers</i>, <b>15</b>: Paper No. A51, 9, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3437526">3437526</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Integers&rft.atitle=Egyptian+fractions+with+each+denominator+having+three+distinct+prime+divisors&rft.volume=15&rft.pages=Paper+No.+A51%2C+9&rft.date=2015&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3437526%23id-name%3DMR&rft.aulast=Butler&rft.aufirst=Steve&rft.au=Erd%C5%91s%2C+Paul&rft.au=Graham%2C+Ron&rft_id=https%3A%2F%2Fwww.math.ucsd.edu%2F~ronspubs%2Fpre_tres_egyptian.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDickOgle2018" class="citation cs2">Dick, Lara K.; Ogle, Rebecca (September 2018), "Think like an Egyptian", <i>Ohio Journal of School Mathematics</i>, <b>80</b>: 1–7</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ohio+Journal+of+School+Mathematics&rft.atitle=Think+like+an+Egyptian&rft.volume=80&rft.pages=1-7&rft.date=2018-09&rft.aulast=Dick&rft.aufirst=Lara+K.&rft.au=Ogle%2C+Rebecca&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdős1932" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Erdős, P.</a> (1932), <a rel="nofollow" class="external text" href="https://www.renyi.hu/~p_erdos/1932-02.pdf">"Egy Kürschák-féle elemi számelméleti tétel általánosítása"</a> [Generalization of an elementary number-theoretic theorem of Kürschák] <span class="cs1-format">(PDF)</span>, <i>Mat. Fiz. Lapok</i> (in Hungarian), <b>39</b>: 17–24</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mat.+Fiz.+Lapok&rft.atitle=Egy+K%C3%BCrsch%C3%A1k-f%C3%A9le+elemi+sz%C3%A1melm%C3%A9leti+t%C3%A9tel+%C3%A1ltal%C3%A1nos%C3%ADt%C3%A1sa&rft.volume=39&rft.pages=17-24&rft.date=1932&rft.aulast=Erd%C5%91s&rft.aufirst=P.&rft_id=https%3A%2F%2Fwww.renyi.hu%2F~p_erdos%2F1932-02.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdős1950" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Paul_Erd%C5%91s" title="Paul Erdős">Erdős, Pál</a> (1950), <a rel="nofollow" class="external text" href="https://www.renyi.hu/~p_erdos/1950-02.pdf">"Az <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}={\frac {a}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}={\frac {a}{b}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a99e502109cf8ffe632119234daae5da79be54b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.006ex; height:3.676ex;" alt="{\displaystyle \textstyle {\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}={\frac {a}{b}}}"></noscript><span class="lazy-image-placeholder" style="width: 24.006ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a99e502109cf8ffe632119234daae5da79be54b6" data-alt="{\displaystyle \textstyle {\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}={\frac {a}{b}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> egyenlet egész számú megoldásairól"</a> [On a Diophantine equation] <span class="cs1-format">(PDF)</span>, <i>Matematikai Lapok</i> (in Hungarian), <b>1</b>: 192–210, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0043117">0043117</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Matematikai+Lapok&rft.atitle=Az+MATH+RENDER+ERROR+egyenlet+eg%C3%A9sz+sz%C3%A1m%C3%BA+megold%C3%A1sair%C3%B3l&rft.volume=1&rft.pages=192-210&rft.date=1950&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0043117%23id-name%3DMR&rft.aulast=Erd%C5%91s&rft.aufirst=P%C3%A1l&rft_id=https%3A%2F%2Fwww.renyi.hu%2F~p_erdos%2F1950-02.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEves1953" class="citation cs2"><a href="/wiki/Howard_Eves" title="Howard Eves">Eves, Howard</a> (1953), <i>An Introduction to the History of Mathematics</i>, Holt, Reinhard, and Winston, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-03-029558-0" title="Special:BookSources/0-03-029558-0"><bdi>0-03-029558-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+the+History+of+Mathematics&rft.pub=Holt%2C+Reinhard%2C+and+Winston&rft.date=1953&rft.isbn=0-03-029558-0&rft.aulast=Eves&rft.aufirst=Howard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGardner2002" class="citation cs2">Gardner, Milo (2002), "The Egyptian Mathematical Leather Roll, attested short term and long term", in <a href="/wiki/Ivor_Grattan-Guinness" title="Ivor Grattan-Guinness">Gratton-Guinness, Ivor</a> (ed.), <i>History of the Mathematical Sciences</i>, Hindustan Book Co, pp. 119–134, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/81-85931-45-3" title="Special:BookSources/81-85931-45-3"><bdi>81-85931-45-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Egyptian+Mathematical+Leather+Roll%2C+attested+short+term+and+long+term&rft.btitle=History+of+the+Mathematical+Sciences&rft.pages=119-134&rft.pub=Hindustan+Book+Co&rft.date=2002&rft.isbn=81-85931-45-3&rft.aulast=Gardner&rft.aufirst=Milo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGillings1982" class="citation cs2">Gillings, Richard J. (1982), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DoDMIVUIYFwC&pg=PA50"><i>Mathematics in the Time of the Pharaohs</i></a>, Dover, p. 50, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-24315-3" title="Special:BookSources/978-0-486-24315-3"><bdi>978-0-486-24315-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+in+the+Time+of+the+Pharaohs&rft.pages=50&rft.pub=Dover&rft.date=1982&rft.isbn=978-0-486-24315-3&rft.aulast=Gillings&rft.aufirst=Richard+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDoDMIVUIYFwC%26pg%3DPA50&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGraham1964" class="citation cs2"><a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, R. L.</a> (1964), <a rel="nofollow" class="external text" href="http://www.math.ucsd.edu/~ronspubs/64_07_reciprocals.pdf">"On finite sums of reciprocals of distinct <i>n</i>th powers"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Pacific_Journal_of_Mathematics" title="Pacific Journal of Mathematics">Pacific Journal of Mathematics</a></i>, <b>14</b> (1): 85–92, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2140%2Fpjm.1964.14.85">10.2140/pjm.1964.14.85</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0159788">0159788</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2629869">2629869</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Pacific+Journal+of+Mathematics&rft.atitle=On+finite+sums+of+reciprocals+of+distinct+nth+powers&rft.volume=14&rft.issue=1&rft.pages=85-92&rft.date=1964&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0159788%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2629869%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.2140%2Fpjm.1964.14.85&rft.aulast=Graham&rft.aufirst=R.+L.&rft_id=http%3A%2F%2Fwww.math.ucsd.edu%2F~ronspubs%2F64_07_reciprocals.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGraham2013" class="citation cs2"><a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ronald L.</a> (2013), <a rel="nofollow" class="external text" href="http://www.math.ucsd.edu/~ronspubs/13_03_Egyptian.pdf">"Paul Erdős and Egyptian fractions"</a> <span class="cs1-format">(PDF)</span>, <i>Erdős centennial</i>, Bolyai Soc. Math. Stud., vol. 25, János Bolyai Math. Soc., Budapest, pp. 289–309, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-39286-3_9">10.1007/978-3-642-39286-3_9</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3203600">3203600</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Paul+Erd%C5%91s+and+Egyptian+fractions&rft.btitle=Erd%C5%91s+centennial&rft.series=Bolyai+Soc.+Math.+Stud.&rft.pages=289-309&rft.pub=J%C3%A1nos+Bolyai+Math.+Soc.%2C+Budapest&rft.date=2013&rft_id=info%3Adoi%2F10.1007%2F978-3-642-39286-3_9&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3203600%23id-name%3DMR&rft.aulast=Graham&rft.aufirst=Ronald+L.&rft_id=http%3A%2F%2Fwww.math.ucsd.edu%2F~ronspubs%2F13_03_Egyptian.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuy2004" class="citation cs2"><a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard K.</a> (2004), "D11. Egyptian Fractions", <i>Unsolved problems in number theory</i> (3rd ed.), Springer-Verlag, pp. 252–262, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-20860-2" title="Special:BookSources/978-0-387-20860-2"><bdi>978-0-387-20860-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=D11.+Egyptian+Fractions&rft.btitle=Unsolved+problems+in+number+theory&rft.pages=252-262&rft.edition=3rd&rft.pub=Springer-Verlag&rft.date=2004&rft.isbn=978-0-387-20860-2&rft.aulast=Guy&rft.aufirst=Richard+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHultsch1895" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Friedrich_Hultsch" title="Friedrich Hultsch">Hultsch, Friedrich</a> (1895), "Die Elemente der ägyptischen Theilungsrechnung: Erste Anhandlung", <i>Abhandlungen der philologisch-historischen Classe der Königlich-Sächsischen Gesellschaft der Wissenschaften, Sächsische Akademie der Wissenschaften zu Leipzig Philologisch-Historische Klasse</i> (in German), <b>17</b> (1), Leipzig: S. Hirzel</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Abhandlungen+der+philologisch-historischen+Classe+der+K%C3%B6niglich-S%C3%A4chsischen+Gesellschaft+der+Wissenschaften%2C+S%C3%A4chsische+Akademie+der+Wissenschaften+zu+Leipzig+Philologisch-Historische+Klasse&rft.atitle=Die+Elemente+der+%C3%A4gyptischen+Theilungsrechnung%3A+Erste+Anhandlung&rft.volume=17&rft.issue=1&rft.date=1895&rft.aulast=Hultsch&rft.aufirst=Friedrich&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz2007" class="citation cs2"><a href="/wiki/Victor_J._Katz" title="Victor J. Katz">Katz, Victor J.</a>, ed. (2007), <i>The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook</i>, Princeton: Princeton University Press</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematics+of+Egypt%2C+Mesopotamia%2C+China%2C+India%2C+and+Islam%3A+A+Sourcebook&rft.place=Princeton&rft.pub=Princeton+University+Press&rft.date=2007&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnorr1982" class="citation cs2"><a href="/wiki/Wilbur_Knorr" title="Wilbur Knorr">Knorr, Wilbur R.</a> (1982), "Techniques of fractions in ancient Egypt and Greece", <i><a href="/wiki/Historia_Mathematica" title="Historia Mathematica">Historia Mathematica</a></i>, <b>9</b> (2): 133–171, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2882%2990001-5">10.1016/0315-0860(82)90001-5</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0662138">0662138</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Historia+Mathematica&rft.atitle=Techniques+of+fractions+in+ancient+Egypt+and+Greece&rft.volume=9&rft.issue=2&rft.pages=133-171&rft.date=1982&rft_id=info%3Adoi%2F10.1016%2F0315-0860%2882%2990001-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0662138%23id-name%3DMR&rft.aulast=Knorr&rft.aufirst=Wilbur+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKonyagin2014" class="citation cs2"><a href="/wiki/Sergei_Konyagin" title="Sergei Konyagin">Konyagin, S. V.</a> (2014), "Double exponential lower bound for the number of representations of unity by Egyptian fractions", <i><a href="/wiki/Mathematical_Notes" title="Mathematical Notes">Mathematical Notes</a></i>, <b>95</b> (1–2): 277–281, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1134%2FS0001434614010295">10.1134/S0001434614010295</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3267215">3267215</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121871250">121871250</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematical+Notes&rft.atitle=Double+exponential+lower+bound+for+the+number+of+representations+of+unity+by+Egyptian+fractions&rft.volume=95&rft.issue=1%E2%80%932&rft.pages=277-281&rft.date=2014&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3267215%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121871250%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1134%2FS0001434614010295&rft.aulast=Konyagin&rft.aufirst=S.+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKoshalevaKreinovich2021" class="citation cs2">Koshaleva, Olga; Kreinovich, Vladik (2021), <a rel="nofollow" class="external text" href="https://cyberleninka.ru/article/n/egyptian-fractions-as-approximators/viewer">"Egyptian fractions as approximators"</a>, <i>Mathematical Structures and Modeling</i>, <b>1</b> (57): 46–59</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematical+Structures+and+Modeling&rft.atitle=Egyptian+fractions+as+approximators&rft.volume=1&rft.issue=57&rft.pages=46-59&rft.date=2021&rft.aulast=Koshaleva&rft.aufirst=Olga&rft.au=Kreinovich%2C+Vladik&rft_id=https%3A%2F%2Fcyberleninka.ru%2Farticle%2Fn%2Fegyptian-fractions-as-approximators%2Fviewer&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKusuba2004" class="citation cs2">Kusuba, Takanori (2004), "Indian rules for the decomposition of fractions", in Burnett, Charles; <a href="/wiki/Jan_Hogendijk" title="Jan Hogendijk">Hogendijk, Jan P.</a>; <a href="/wiki/Kim_Plofker" title="Kim Plofker">Plofker, Kim</a>; Yano, Michio (eds.), <i>Studies in the History of the Exact Sciences in honour of David Pingree</i>, Islamic Philosophy Theology and Science: Text and Studies, vol. 54, Leiden: Brill, pp. 497–516, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2054213">2054213</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Indian+rules+for+the+decomposition+of+fractions&rft.btitle=Studies+in+the+History+of+the+Exact+Sciences+in+honour+of+David+Pingree&rft.place=Leiden&rft.series=Islamic+Philosophy+Theology+and+Science%3A+Text+and+Studies&rft.pages=497-516&rft.pub=Brill&rft.date=2004&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2054213%23id-name%3DMR&rft.aulast=Kusuba&rft.aufirst=Takanori&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartin1999" class="citation cs2">Martin, G. (1999), "Dense Egyptian fractions", <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i>, <b>351</b> (9): 3641–3657, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9804045">math/9804045</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9947-99-02327-2">10.1090/S0002-9947-99-02327-2</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1608486">1608486</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2591861">2591861</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Transactions+of+the+American+Mathematical+Society&rft.atitle=Dense+Egyptian+fractions&rft.volume=351&rft.issue=9&rft.pages=3641-3657&rft.date=1999&rft_id=info%3Aarxiv%2Fmath%2F9804045&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1608486%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2591861%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1090%2FS0002-9947-99-02327-2&rft.aulast=Martin&rft.aufirst=G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRitter2002" class="citation cs2">Ritter, Jim (2002), "Closing the Eye of Horus: the Rise and Fall of 'Horus-Eye Fractions'<span class="cs1-kern-right"></span>", in Steele, J.; <a href="/wiki/Annette_Imhausen" title="Annette Imhausen">Imhausen, A.</a> (eds.), <i>Under One Sky: Astronomy and Mathematics in the ancient Near East</i>, Münster: Ugarit-Verlag, pp. 297–323</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Closing+the+Eye+of+Horus%3A+the+Rise+and+Fall+of+%27Horus-Eye+Fractions%27&rft.btitle=Under+One+Sky%3A+Astronomy+and+Mathematics+in+the+ancient+Near+East&rft.place=M%C3%BCnster&rft.pages=297-323&rft.pub=Ugarit-Verlag&rft.date=2002&rft.aulast=Ritter&rft.aufirst=Jim&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobsonStedall2009" class="citation cs2"><a href="/wiki/Eleanor_Robson" title="Eleanor Robson">Robson, E.</a>; <a href="/wiki/Jackie_Stedall" title="Jackie Stedall">Stedall, J.</a>, eds. (2009), <i>The Oxford Handbook of the History of Mathematics</i>, Oxford: Oxford University Press</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Oxford+Handbook+of+the+History+of+Mathematics&rft.place=Oxford&rft.pub=Oxford+University+Press&rft.date=2009&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSigler2002" class="citation cs2">Sigler, Laurence E. (trans.) (2002), <i>Fibonacci's Liber Abaci</i>, Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-95419-8" title="Special:BookSources/0-387-95419-8"><bdi>0-387-95419-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fibonacci%27s+Liber+Abaci&rft.pub=Springer-Verlag&rft.date=2002&rft.isbn=0-387-95419-8&rft.aulast=Sigler&rft.aufirst=Laurence+E.+%28trans.%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart1954" class="citation cs2"><a href="/wiki/Bonnie_Stewart" title="Bonnie Stewart">Stewart, B. M.</a> (1954), "Sums of distinct divisors", <i><a href="/wiki/American_Journal_of_Mathematics" title="American Journal of Mathematics">American Journal of Mathematics</a></i>, <b>76</b> (4): 779–785, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2372651">10.2307/2372651</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2372651">2372651</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0064800">0064800</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Mathematics&rft.atitle=Sums+of+distinct+divisors&rft.volume=76&rft.issue=4&rft.pages=779-785&rft.date=1954&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0064800%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2372651%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2372651&rft.aulast=Stewart&rft.aufirst=B.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart1992" class="citation cs2"><a href="/wiki/Ian_Stewart_(mathematician)" title="Ian Stewart (mathematician)">Stewart, I.</a> (1992), "The riddle of the vanishing camel", <i><a href="/wiki/Scientific_American" title="Scientific American">Scientific American</a></i>, <b>266</b> (June): 122–124, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992SciAm.266f.122S">1992SciAm.266f.122S</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fscientificamerican0692-122">10.1038/scientificamerican0692-122</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+American&rft.atitle=The+riddle+of+the+vanishing+camel&rft.volume=266&rft.issue=June&rft.pages=122-124&rft.date=1992&rft_id=info%3Adoi%2F10.1038%2Fscientificamerican0692-122&rft_id=info%3Abibcode%2F1992SciAm.266f.122S&rft.aulast=Stewart&rft.aufirst=I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStruik1967" class="citation cs2"><a href="/wiki/Dirk_Jan_Struik" title="Dirk Jan Struik">Struik, Dirk J.</a> (1967), <i>A Concise History of Mathematics</i>, Dover, pp. 20–25, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-60255-9" title="Special:BookSources/0-486-60255-9"><bdi>0-486-60255-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Concise+History+of+Mathematics&rft.pages=20-25&rft.pub=Dover&rft.date=1967&rft.isbn=0-486-60255-9&rft.aulast=Struik&rft.aufirst=Dirk+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakenouchi1921" class="citation cs2">Takenouchi, T. (1921), "On an indeterminate equation", <i>Proceedings of the Physico-Mathematical Society of Japan</i>, 3rd ser., <b>3</b> (6): 78–92, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.11429%2Fppmsj1919.3.6_78">10.11429/ppmsj1919.3.6_78</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Physico-Mathematical+Society+of+Japan&rft.atitle=On+an+indeterminate+equation&rft.volume=3&rft.issue=6&rft.pages=78-92&rft.date=1921&rft_id=info%3Adoi%2F10.11429%2Fppmsj1919.3.6_78&rft.aulast=Takenouchi&rft.aufirst=T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTenenbaumYokota1990" class="citation cs2"><a href="/wiki/G%C3%A9rald_Tenenbaum" title="Gérald Tenenbaum">Tenenbaum, G.</a>; Yokota, H. (1990), "Length and denominators of Egyptian fractions", <i><a href="/wiki/Journal_of_Number_Theory" title="Journal of Number Theory">Journal of Number Theory</a></i>, <b>35</b> (2): 150–156, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-314X%2890%2990109-5">10.1016/0022-314X(90)90109-5</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1057319">1057319</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Number+Theory&rft.atitle=Length+and+denominators+of+Egyptian+fractions&rft.volume=35&rft.issue=2&rft.pages=150-156&rft.date=1990&rft_id=info%3Adoi%2F10.1016%2F0022-314X%2890%2990109-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1057319%23id-name%3DMR&rft.aulast=Tenenbaum&rft.aufirst=G.&rft.au=Yokota%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVose1985" class="citation cs2">Vose, M. (1985), "Egyptian fractions", <i><a href="/wiki/London_Mathematical_Society" title="London Mathematical Society">Bulletin of the London Mathematical Society</a></i>, <b>17</b>: 21, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1112%2Fblms%2F17.1.21">10.1112/blms/17.1.21</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0766441">0766441</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+of+the+London+Mathematical+Society&rft.atitle=Egyptian+fractions&rft.volume=17&rft.pages=21&rft.date=1985&rft_id=info%3Adoi%2F10.1112%2Fblms%2F17.1.21&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0766441%23id-name%3DMR&rft.aulast=Vose&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWagon1999" class="citation cs2"><a href="/wiki/Stan_Wagon" title="Stan Wagon">Wagon, Stan</a> (1999), <i>Mathematica in Action</i>, Springer, pp. 321–329, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-98684-7" title="Special:BookSources/0-387-98684-7"><bdi>0-387-98684-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematica+in+Action&rft.pages=321-329&rft.pub=Springer&rft.date=1999&rft.isbn=0-387-98684-7&rft.aulast=Wagon&rft.aufirst=Stan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilsonEdgingtonNguyenPescosolido2011" class="citation cs2">Wilson, P. Holt; Edgington, Cynthia P.; Nguyen, Kenny H.; Pescosolido, Ryan C.; Confrey, Jere (November 2011), "Fractions: how to fair share", <i>Mathematics Teaching in the Middle School</i>, <b>17</b> (4): 230–236, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5951%2Fmathteacmiddscho.17.4.0230">10.5951/mathteacmiddscho.17.4.0230</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/10.5951/mathteacmiddscho.17.4.0230">10.5951/mathteacmiddscho.17.4.0230</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Teaching+in+the+Middle+School&rft.atitle=Fractions%3A+how+to+fair+share&rft.volume=17&rft.issue=4&rft.pages=230-236&rft.date=2011-11&rft_id=info%3Adoi%2F10.5951%2Fmathteacmiddscho.17.4.0230&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F10.5951%2Fmathteacmiddscho.17.4.0230%23id-name%3DJSTOR&rft.aulast=Wilson&rft.aufirst=P.+Holt&rft.au=Edgington%2C+Cynthia+P.&rft.au=Nguyen%2C+Kenny+H.&rft.au=Pescosolido%2C+Ryan+C.&rft.au=Confrey%2C+Jere&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWinkler2004" class="citation cs2"><a href="/wiki/Peter_Winkler" title="Peter Winkler">Winkler, Peter</a> (2004), "Uses of fuses", <i>Mathematical Puzzles: A Connoisseur's Collection</i>, A K Peters, pp. 2, 6, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-56881-201-9" title="Special:BookSources/1-56881-201-9"><bdi>1-56881-201-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Uses+of+fuses&rft.btitle=Mathematical+Puzzles%3A+A+Connoisseur%27s+Collection&rft.pages=2%2C+6&rft.pub=A+K+Peters&rft.date=2004&rft.isbn=1-56881-201-9&rft.aulast=Winkler&rft.aufirst=Peter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYokota1988" class="citation cs2">Yokota, Hisashi (1988), "On a problem of Bleicher and Erdős", <i>Journal of Number Theory</i>, <b>30</b> (2): 198–207, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-314X%2888%2990017-0">10.1016/0022-314X(88)90017-0</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0961916">0961916</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Number+Theory&rft.atitle=On+a+problem+of+Bleicher+and+Erd%C5%91s&rft.volume=30&rft.issue=2&rft.pages=198-207&rft.date=1988&rft_id=info%3Adoi%2F10.1016%2F0022-314X%2888%2990017-0&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D961916%23id-name%3DMR&rft.aulast=Yokota&rft.aufirst=Hisashi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></li></ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Egyptian_fraction&action=edit&section=11" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-9 collapsible-block" id="mf-section-9"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrown" class="citation cs2">Brown, Kevin, <a rel="nofollow" class="external text" href="http://www.mathpages.com/home/kmath340/kmath340.htm"><i>Egyptian Unit Fractions</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Egyptian+Unit+Fractions&rft.aulast=Brown&rft.aufirst=Kevin&rft_id=http%3A%2F%2Fwww.mathpages.com%2Fhome%2Fkmath340%2Fkmath340.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEppstein" class="citation cs2"><a href="/wiki/David_Eppstein" title="David Eppstein">Eppstein, David</a>, <a rel="nofollow" class="external text" href="http://www.ics.uci.edu/~eppstein/numth/egypt/"><i>Egyptian Fractions</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Egyptian+Fractions&rft.aulast=Eppstein&rft.aufirst=David&rft_id=http%3A%2F%2Fwww.ics.uci.edu%2F~eppstein%2Fnumth%2Fegypt%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnott" class="citation cs2">Knott, Ron, <a rel="nofollow" class="external text" href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fractions/egyptian.html"><i>Egyptian fractions</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Egyptian+fractions&rft.aulast=Knott&rft.aufirst=Ron&rft_id=http%3A%2F%2Fwww.maths.surrey.ac.uk%2Fhosted-sites%2FR.Knott%2FFractions%2Fegyptian.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span>.</li> <li><span class="citation mathworld" id="Reference-Mathworld-Egyptian_Fraction"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs2"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a>, <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/EgyptianFraction.html">"Egyptian Fraction"</a>, <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Egyptian+Fraction&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FEgyptianFraction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiroux" class="citation cs2">Giroux, André, <a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/EgyptianFractions/"><i>Egyptian Fractions</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Egyptian+Fractions&rft.aulast=Giroux&rft.aufirst=Andr%C3%A9&rft_id=http%3A%2F%2Fdemonstrations.wolfram.com%2FEgyptianFractions%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span> and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeleny" class="citation cs2">Zeleny, Enrique, <a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/AlgorithmsForEgyptianFractions/"><i>Algorithms for Egyptian Fractions</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algorithms+for+Egyptian+Fractions&rft.aulast=Zeleny&rft.aufirst=Enrique&rft_id=http%3A%2F%2Fdemonstrations.wolfram.com%2FAlgorithmsForEgyptianFractions%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEgyptian+fraction" class="Z3988"></span>, <a href="/wiki/The_Wolfram_Demonstrations_Project" class="mw-redirect" title="The Wolfram Demonstrations Project">The Wolfram Demonstrations Project</a>, based on programs by <a href="/wiki/David_Eppstein" title="David Eppstein">David Eppstein</a>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐qmvs7 Cached time: 20241122141243 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.708 seconds Real time usage: 0.891 seconds Preprocessor visited node count: 5249/1000000 Post‐expand include size: 104486/2097152 bytes Template argument size: 7377/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 10/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 138510/5000000 bytes Lua time usage: 0.418/10.000 seconds Lua memory usage: 6944747/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 644.770 1 -total 40.71% 262.516 40 Template:Citation 13.40% 86.408 1 Template:Short_description 11.61% 74.853 1 Template:Authority_control 10.36% 66.774 14 Template:Sfnp 7.13% 45.970 2 Template:Pagetype 6.08% 39.185 41 Template:Sfrac 5.11% 32.946 17 Template:Main_other 5.00% 32.234 4 Template:Further 4.51% 29.062 1 Template:Reflist --> <!-- Saved in parser cache with key enwiki:pcache:idhash:336349-0!canonical and timestamp 20241122141243 and revision id 1253900926. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.028 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Egyptian_fraction&oldid=1253900926">https://en.wikipedia.org/w/index.php?title=Egyptian_fraction&oldid=1253900926</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Egyptian_fraction&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="David Eppstein" data-user-gender="unknown" data-timestamp="1730122831"> <span>Last edited on 28 October 2024, at 13:40</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%83%D8%B3%D8%B1_%D9%85%D8%B5%D8%B1%D9%8A" title="كسر مصري – Arabic" lang="ar" hreflang="ar" data-title="كسر مصري" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%95%D0%B3%D0%B8%D0%BF%D0%B5%D1%82%D1%81%D0%BA%D0%B0_%D0%B4%D1%80%D0%BE%D0%B1" title="Египетска дроб – Bulgarian" lang="bg" hreflang="bg" data-title="Египетска дроб" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Fracci%C3%B3_eg%C3%ADpcia" title="Fracció egípcia – Catalan" lang="ca" hreflang="ca" data-title="Fracció egípcia" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Fracci%C3%B3n_egipcia" title="Fracción egipcia – Spanish" lang="es" hreflang="es" data-title="Fracción egipcia" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Fraction_%C3%A9gyptienne" title="Fraction égyptienne – French" lang="fr" hreflang="fr" data-title="Fraction égyptienne" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Fracci%C3%B3n_exipcia" title="Fracción exipcia – Galician" lang="gl" hreflang="gl" data-title="Fracción exipcia" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%B4%EC%A7%91%ED%8A%B8_%EB%B6%84%EC%88%98" title="이집트 분수 – Korean" lang="ko" hreflang="ko" data-title="이집트 분수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B5%D5%A3%D5%AB%D5%BA%D5%BF%D5%A1%D5%AF%D5%A1%D5%B6_%D5%AF%D5%B8%D5%BF%D5%B8%D6%80%D5%A1%D5%AF" title="Եգիպտական կոտորակ – Armenian" lang="hy" hreflang="hy" data-title="Եգիպտական կոտորակ" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Frazione_egizia" title="Frazione egizia – Italian" lang="it" hreflang="it" data-title="Frazione egizia" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%91%D7%A8_%D7%9E%D7%A6%D7%A8%D7%99" title="שבר מצרי – Hebrew" lang="he" hreflang="he" data-title="שבר מצרי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Egyptische_breuk" title="Egyptische breuk – Dutch" lang="nl" hreflang="nl" data-title="Egyptische breuk" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%B8%E3%83%97%E3%83%88%E5%BC%8F%E5%88%86%E6%95%B0" title="エジプト式分数 – Japanese" lang="ja" hreflang="ja" data-title="エジプト式分数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Egyptisk_br%C3%B8k" title="Egyptisk brøk – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Egyptisk brøk" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/U%C5%82amek_egipski" title="Ułamek egipski – Polish" lang="pl" hreflang="pl" data-title="Ułamek egipski" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fra%C3%A7%C3%B5es_eg%C3%ADpcias" title="Frações egípcias – Portuguese" lang="pt" hreflang="pt" data-title="Frações egípcias" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%95%D0%B3%D0%B8%D0%BF%D0%B5%D1%82%D1%81%D0%BA%D0%B8%D0%B5_%D0%B4%D1%80%D0%BE%D0%B1%D0%B8" title="Египетские дроби – Russian" lang="ru" hreflang="ru" data-title="Египетские дроби" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%8A%E0%B6%A2%E0%B7%92%E0%B6%B4%E0%B7%8A%E0%B6%AD%E0%B7%92%E0%B6%BA%E0%B7%8F%E0%B6%B1%E0%B7%94_%E0%B6%B7%E0%B7%8F%E0%B6%9C%E0%B6%BA" title="ඊජිප්තියානු භාගය – Sinhala" lang="si" hreflang="si" data-title="ඊජිප්තියානු භාගය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Egyptian_fraction" title="Egyptian fraction – Simple English" lang="en-simple" hreflang="en-simple" data-title="Egyptian fraction" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Egip%C4%8Danski_ulomek" title="Egipčanski ulomek – Slovenian" lang="sl" hreflang="sl" data-title="Egipčanski ulomek" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Egyptil%C3%A4inen_murtoluku" title="Egyptiläinen murtoluku – Finnish" lang="fi" hreflang="fi" data-title="Egyptiläinen murtoluku" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%84%D0%B3%D0%B8%D0%BF%D0%B5%D1%82%D1%81%D1%8C%D0%BA%D0%B8%D0%B9_%D0%B4%D1%80%D1%96%D0%B1" title="Єгипетський дріб – Ukrainian" lang="uk" hreflang="uk" data-title="Єгипетський дріб" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C3%A2n_s%E1%BB%91_Ai_C%E1%BA%ADp" title="Phân số Ai Cập – Vietnamese" lang="vi" hreflang="vi" data-title="Phân số Ai Cập" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8F%A4%E5%9F%83%E5%8F%8A%E5%88%86%E6%95%B8" title="古埃及分數 – Chinese" lang="zh" hreflang="zh" data-title="古埃及分數" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 28 October 2024, at 13:40<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Egyptian_fraction&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-bnzx6","wgBackendResponseTime":157,"wgPageParseReport":{"limitreport":{"cputime":"0.708","walltime":"0.891","ppvisitednodes":{"value":5249,"limit":1000000},"postexpandincludesize":{"value":104486,"limit":2097152},"templateargumentsize":{"value":7377,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":138510,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 644.770 1 -total"," 40.71% 262.516 40 Template:Citation"," 13.40% 86.408 1 Template:Short_description"," 11.61% 74.853 1 Template:Authority_control"," 10.36% 66.774 14 Template:Sfnp"," 7.13% 45.970 2 Template:Pagetype"," 6.08% 39.185 41 Template:Sfrac"," 5.11% 32.946 17 Template:Main_other"," 5.00% 32.234 4 Template:Further"," 4.51% 29.062 1 Template:Reflist"]},"scribunto":{"limitreport-timeusage":{"value":"0.418","limit":"10.000"},"limitreport-memusage":{"value":6944747,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAnshelGoldfeld1991\"] = 1,\n [\"CITEREFBeeckmans1993\"] = 1,\n [\"CITEREFBotts1967\"] = 1,\n [\"CITEREFBreusch1954\"] = 1,\n [\"CITEREFBrown\"] = 1,\n [\"CITEREFBruins1957\"] = 1,\n [\"CITEREFButlerErdősGraham2015\"] = 1,\n [\"CITEREFDickOgle2018\"] = 1,\n [\"CITEREFEppstein\"] = 1,\n [\"CITEREFErdős1932\"] = 1,\n [\"CITEREFErdős1950\"] = 1,\n [\"CITEREFEves1953\"] = 1,\n [\"CITEREFGardner2002\"] = 1,\n [\"CITEREFGillings1982\"] = 1,\n [\"CITEREFGiroux\"] = 1,\n [\"CITEREFGraham1964\"] = 1,\n [\"CITEREFGraham2013\"] = 1,\n [\"CITEREFGuy2004\"] = 1,\n [\"CITEREFHultsch1895\"] = 1,\n [\"CITEREFKatz2007\"] = 1,\n [\"CITEREFKnorr1982\"] = 1,\n [\"CITEREFKnott\"] = 1,\n [\"CITEREFKonyagin2014\"] = 1,\n [\"CITEREFKoshalevaKreinovich2021\"] = 1,\n [\"CITEREFKusuba2004\"] = 1,\n [\"CITEREFMartin1999\"] = 1,\n [\"CITEREFRitter2002\"] = 1,\n [\"CITEREFRobsonStedall2009\"] = 1,\n [\"CITEREFSigler2002\"] = 1,\n [\"CITEREFStewart1954\"] = 1,\n [\"CITEREFStewart1992\"] = 1,\n [\"CITEREFStruik1967\"] = 1,\n [\"CITEREFTakenouchi1921\"] = 1,\n [\"CITEREFTenenbaumYokota1990\"] = 1,\n [\"CITEREFVose1985\"] = 1,\n [\"CITEREFWagon1999\"] = 1,\n [\"CITEREFWilsonEdgingtonNguyenPescosolido2011\"] = 1,\n [\"CITEREFWinkler2004\"] = 1,\n [\"CITEREFYokota1988\"] = 1,\n [\"CITEREFZeleny\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Authority control\"] = 1,\n [\"Citation\"] = 40,\n [\"Further\"] = 4,\n [\"Google books\"] = 1,\n [\"Harvtxt\"] = 22,\n [\"Mathworld\"] = 1,\n [\"Nowrap\"] = 15,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Sfnp\"] = 14,\n [\"Sfrac\"] = 41,\n [\"Short description\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-qmvs7","timestamp":"20241122141243","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Egyptian fraction","url":"https:\/\/en.wikipedia.org\/wiki\/Egyptian_fraction","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1764362","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1764362","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-10-07T19:45:06Z","dateModified":"2024-10-28T13:40:31Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d9\/Rhind_Mathematical_Papyrus.jpg","headline":"finite sum of distinct unit fractions"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>