CINXE.COM
Search results for: Chew Yin Teng
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chew Yin Teng</title> <meta name="description" content="Search results for: Chew Yin Teng"> <meta name="keywords" content="Chew Yin Teng"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chew Yin Teng" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chew Yin Teng"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 87</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chew Yin Teng</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriam%20Khelifa">Meriam Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibrations" title="vibrations">vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=CS%20TENG" title=" CS TENG"> CS TENG</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a> </p> <a href="https://publications.waset.org/abstracts/159493/flexible-design-of-triboelectric-nanogenerators-for-efficient-vibration-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Design, Fabrication, and Study of Droplet Tube Based Triboelectric Nanogenerators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yana%20Xiao">Yana Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The invention of Triboelectric Nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interfaces-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplets have rarely been investigated. In this study, we have proposed a new kind of droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs were designed, fabricated, and evaluated, including straight tubes TENG with 27 electrodes and curved tubes TENG of 25cm radius curvature- at the inclination of 30°, 45° and 60° respectively. Different materials and hydrophobicity treatments for the tubes have also been studied, together with a discussion on the mechanism and applications of DT-TENGs. As different types of liquid discrepant energy performance, this kind of DT-TENG can be potentially used in laboratories to identify liquid or solvent. In addition, a smart fishing float is contrived, which can recognize different levels of movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. The electric generation performance when using a PVC helix tube around a cylinder is similar in straight situations under the inclination of 45° in this experiment. This new structure changes the direction of a water drop or flows without losing kinetic energy, which makes utilizing Helix-Tube-TENG to harvest energy from different building morphologies possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triboelectric%20nanogenerator" title="triboelectric nanogenerator">triboelectric nanogenerator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvest" title=" energy harvest"> energy harvest</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20tribomaterial" title=" liquid tribomaterial"> liquid tribomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20innovation" title=" structure innovation"> structure innovation</a> </p> <a href="https://publications.waset.org/abstracts/162127/design-fabrication-and-study-of-droplet-tube-based-triboelectric-nanogenerators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Surface Modified Thermoplastic Polyurethane and Poly(Vinylidene Fluoride) Nanofiber Based Flexible Triboelectric Nanogenerator and Wearable Bio-Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sk%20Shamim%20Hasan%20Abir">Sk Shamim Hasan Abir</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Lozano"> Karen Lozano</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jasim%20Uddin"> Mohammed Jasim Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few years, nanofiber-based triboelectric nanogenerator (TENG) has caught great attention among researchers all over the world due to its inherent capability of converting mechanical energy to usable electrical energy. In this study, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) nanofiber prepared by Forcespinning® (FS) technique were used to fabricate TENG for self-charging energy storage device and biomechanical body motion sensor. The surface of the TPU nanofiber was modified by uniform deposition of thin gold film to enhance the frictional properties; yielded 254 V open-circuit voltage (Voc) and 86 µA short circuit current (Isc), which were 2.12 and 1.87 times greater in contrast to bare PVDF-TPU TENG. Moreover, the as-fabricated PVDF-TPU/Au TENG was tested against variable capacitors and resistive load, and the results showed that with a 3.2 x 2.5 cm2 active contact area, it can quick charge up to 7.64 V within 30 seconds using a 1.0 µF capacitor and generate significant 2.54 mW power, enough to light 75 commercial LEDs (1.5 V each) by the hand tapping motion at 4 Hz (240 beats per minutes (bpm)) load frequency. Furthermore, the TENG was attached to different body parts to capture distinctive electrical signals for various body movements, elucidated the prospective usability of our prepared nanofiber-based TENG in wearable body motion sensor application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomotion%20sensor" title="biomotion sensor">biomotion sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=forcespinning" title=" forcespinning"> forcespinning</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=triboelectric%20nanogenerator" title=" triboelectric nanogenerator"> triboelectric nanogenerator</a> </p> <a href="https://publications.waset.org/abstracts/154979/surface-modified-thermoplastic-polyurethane-and-polyvinylidene-fluoride-nanofiber-based-flexible-triboelectric-nanogenerator-and-wearable-bio-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Wind Energy Harvester Based on Triboelectricity: Large-Scale Energy Nanogenerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aravind%20Ravichandran">Aravind Ravichandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Ramuz"> Marc Ramuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Blayac"> Sylvain Blayac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of wearable electronics and sensor networks, batteries cannot meet the sustainable energy requirement due to their limited lifetime, size and degradation. Ambient energies such as wind have been considered as an attractive energy source due to its copious, ubiquity, and feasibility in nature. With miniaturization leading to high-power and robustness, triboelectric nanogenerator (TENG) have been conceived as a promising technology by harvesting mechanical energy for powering small electronics. TENG integration in large-scale applications is still unexplored considering its attractive properties. In this work, a state of the art design TENG based on wind venturi system is demonstrated for use in any complex environment. When wind introduces into the air gap of the homemade TENG venturi system, a thin flexible polymer repeatedly contacts with and separates from electrodes. This device structure makes the TENG suitable for large scale harvesting without massive volume. Multiple stacking not only amplifies the output power but also enables multi-directional wind utilization. The system converts ambient mechanical energy to electricity with 400V peak voltage by charging of a 1000mF super capacitor super rapidly. Its future implementation in an array of applications aids in environment friendly clean energy production in large scale medium and the proposed design performs with an exhaustive material testing. The relation between the interfacial micro-and nano structures and the electrical performance enhancement is comparatively studied. Nanostructures are more beneficial for the effective contact area, but they are not suitable for the anti-adhesion property due to the smaller restoring force. Considering these issues, the nano-patterning is proposed for further enhancement of the effective contact area. By considering these merits of simple fabrication, outstanding performance, robust characteristic and low-cost technology, we believe that TENG can open up great opportunities not only for powering small electronics, but can contribute to large-scale energy harvesting through engineering design being complementary to solar energy in remote areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triboelectric%20nanogenerator" title="triboelectric nanogenerator">triboelectric nanogenerator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20design" title=" vortex design"> vortex design</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20energy" title=" large scale energy"> large scale energy</a> </p> <a href="https://publications.waset.org/abstracts/80757/wind-energy-harvester-based-on-triboelectricity-large-scale-energy-nanogenerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Thermophysical Properties of Water-Based Carboxylated Multi-Wall Carbon Nanotubes Nanofluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Amiri">Ahmad Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khajeh%20Arzani"> Hamed Khajeh Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Salim%20Newaz%20Kazi"> Md. Salim Newaz Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bee%20Teng%20Chew"> Bee Teng Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obviously, the behavior of thermophysical properties of covalently functionalized MWNT-based water nanofluids cannot be predicted from the predicted models. We present a study of the specific heat capacity, effective thermal conductivity, density and viscosity of coolants containing functionalized multi-wall carbon nanotubes (MWNT-COOH) with carboxyl groups at different temperatures. After synthesizing of MWNT-COOH-based water, measurements on the prepared coolants were made at various concentrations by different experimental methods. While thermal conductivity of nanofluids illustrated a significant increase, the specific heat capacity of the samples showed a downward behavior with increasing temperature. The viscosity was investigated in different shear rates and temperatures. Interestingly, the specific heat capacity of all prepared nanofluids was decreased with increasing concentration. Also, the density of the MWNT-COOH-based water nanofluids increased and decreased smoothly with increasing MWNT-COOH concentration and temperature, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=coolant" title=" coolant"> coolant</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/54670/thermophysical-properties-of-water-based-carboxylated-multi-wall-carbon-nanotubes-nanofluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavesh%20Dadhich">Bhavesh Dadhich</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenil%20Bamnoliya"> Fenil Bamnoliya</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshita%20Swaminathan"> Akshita Swaminathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=savonius%20turbine" title="savonius turbine">savonius turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=overlap%20ratio" title=" overlap ratio"> overlap ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=tip%20speed%20ratio" title=" tip speed ratio"> tip speed ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=TENG" title=" TENG"> TENG</a> </p> <a href="https://publications.waset.org/abstracts/148462/enhancing-aerodynamic-performance-of-savonius-vertical-axis-turbine-used-with-triboelectric-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Teng">K. H. Teng</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shaw"> A. Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ateeq"> M. Ateeq</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Shamma%27a"> A. Al-Shamma'a</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Wylie"> S. Wylie</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20T.%20Chew"> B. T. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20wave%20technique" title="electromagnetic wave technique">electromagnetic wave technique</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain" title=" frequency domain"> frequency domain</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20spectrum" title=" signal spectrum"> signal spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hardness%20concentration" title=" water hardness concentration"> water hardness concentration</a> </p> <a href="https://publications.waset.org/abstracts/58197/numerical-investigation-on-feasibility-of-electromagnetic-wave-as-water-hardness-detection-in-water-cooling-system-industrial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> CSR Communication Strategies: Stakeholder and Institutional Theories Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Gracelyn%20Rahaman">Stephanie Gracelyn Rahaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Chew%20Yin%20Teng"> Chew Yin Teng</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singh%20Sandhu"> Manjit Singh Sandhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corporate scandals have made stakeholders apprehensive of large companies and expect greater transparency in CSR matters. However, companies find it challenging to strategically communicate CSR to intended stakeholders and in the process may fall short on maximizing on CSR efforts. Given that stakeholders have the ability to either reward good companies or take legal action or boycott against corporate brands who do not act socially responsible, companies must create shared understanding of their CSR activities. As a result, communication has become a strategy for many companies to demonstrate CSR engagement and to minimize stakeholder skepticism. The main objective of this research is to examine the types of CSR communication strategies and predictors that guide CSR communication strategies. Employing Morsing & Schultz’s guide on CSR communication strategies, the study integrates stakeholder and institutional theory to develop a conceptual framework. The conceptual framework hypothesized that stakeholder (instrumental and normative) and institutional (regulatory environment, nature of business, mimetic intention, CSR focus and corporate objectives) dimensions would drive CSR communication strategies. Preliminary findings from semi-structured interviews in Malaysia are consistent with the conceptual model in that stakeholder and institutional expectations guide CSR communication strategies. Findings show that most companies use two-way communication strategies. Companies that identified employees, the public or customers as key stakeholders have started to embrace social media to be in-sync with new trends of communication. This is especially with the Gen Y which is their priority. Some companies creatively use multiple communication channels because they recognize different stakeholders favor different communication channels. Therefore, it appears that companies use two-way communication strategies to complement the perceived limitation of one-way communication strategies as some companies prefer a more interactive platform to strategically engage stakeholders in CSR communication. In addition to stakeholders, institutional expectations also play a vital role in influencing CSR communication. Due to industry peer pressures, corporate objectives (attract international investors and customers), companies may be more driven to excel in social performance. For these reasons companies tend to go beyond the basic mandatory requirement, excel in CSR activities and be known as companies that champion CSR. In conclusion, companies use more two-way than one-way communication and companies use a combination of one and two-way communication to target different stakeholders resulting from stakeholder and institutional dimensions. Finally, in order to find out if the conceptual framework actually fits the Malaysian context, companies’ responses for expected organizational outcomes from communicating CSR were gathered from the interview transcripts. Thereafter, findings are presented to show some of the key organizational outcomes (visibility and brand recognition, portray responsible image, attract prospective employees, positive word-of-mouth, etc.) that companies in Malaysia expect from CSR communication. Based on these findings the conceptual framework has been refined to show the new identified organizational outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSR%20communication" title="CSR communication">CSR communication</a>, <a href="https://publications.waset.org/abstracts/search?q=CSR%20communication%20strategies" title=" CSR communication strategies"> CSR communication strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder%20theory" title=" stakeholder theory"> stakeholder theory</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20theory" title=" institutional theory"> institutional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=conceptual%20framework" title=" conceptual framework"> conceptual framework</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/46305/csr-communication-strategies-stakeholder-and-institutional-theories-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Eating Constitutes Human Dignity: A Metaphysical Anthropology Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sri%20Poedjiastoeti">Sri Poedjiastoeti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the traits of living beings is eating. As the living beings, people must provide their life by taking material. They must assimilate for themselves with substances. They grow and develop themselves by changing what they eat and digest into their own substance. This happened in the so-called eating. This article aims to analyze distinction between human beings and other infrahumans when facing and eating food. It uses the analytical description with metaphysical anthropology approach. As a result, to give the expression that eating is not simply to put food in mouth, chew and swallow it. Eating constitutes a sacred ceremonial if it is done in accordance with human dignity. They face food with distance and moderation as well as civilize or make their behaviour better for it. Accordingly, they are being to be human. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20beings" title="human beings">human beings</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour" title=" behaviour"> behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=eating" title=" eating"> eating</a>, <a href="https://publications.waset.org/abstracts/search?q=dignity" title=" dignity"> dignity</a> </p> <a href="https://publications.waset.org/abstracts/49895/eating-constitutes-human-dignity-a-metaphysical-anthropology-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Nonlinear Heat Transfer in a Spiral Fin with a Period Base Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuo-Teng%20Tsai">Kuo-Teng Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=You-Min%20Huang"> You-Min Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the problem of a spiral fin with a period base temperature is analyzed by using the Adomian decomposition method. The Adomian decomposition method is a useful and practice method to solve the nonlinear energy equation which are associated with the heat radiation. The period base temperature is around a mean value. The results including the temperature distribution and the heat flux from the spiral fin base can be calculated directly. The results also discussed the effects of the dimensionless variables for the temperature variations and the total energy transferred from the spiral fin base. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spiral%20fin" title="spiral fin">spiral fin</a>, <a href="https://publications.waset.org/abstracts/search?q=period" title=" period"> period</a>, <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition%20method" title=" adomian decomposition method"> adomian decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a> </p> <a href="https://publications.waset.org/abstracts/25994/nonlinear-heat-transfer-in-a-spiral-fin-with-a-period-base-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Adaptive Thermal Comfort Model for Air-Conditioned Lecture Halls in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20T.%20Chew">B. T. Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Amiri"> A. Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an adaptive thermal comfort model study in the tropical country of Malaysia. A number of researchers have been interested in applying the adaptive thermal comfort model to different climates throughout the world, but so far no study has been performed in Malaysia. For the use as a thermal comfort model, which better applies to hot and humid climates, the adaptive thermal comfort model was developed as part of this research by using the collected results from a large field study in six lecture halls with 178 students. The relationship between the operative temperature and behavioral adaptations was determined. In the developed adaptive model, the acceptable indoor neutral temperatures lay within the range of 23.9-26.0 oC, with outdoor temperatures ranging between 27.0–34.6oC. The most comfortable temperature for students in the lecture hall was 25.7 oC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid" title="hot and humid">hot and humid</a>, <a href="https://publications.waset.org/abstracts/search?q=lecture%20halls" title=" lecture halls"> lecture halls</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20temperature" title=" neutral temperature"> neutral temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20thermal%20comfort%20model" title=" adaptive thermal comfort model"> adaptive thermal comfort model</a> </p> <a href="https://publications.waset.org/abstracts/15160/adaptive-thermal-comfort-model-for-air-conditioned-lecture-halls-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Correlation between Electromyographic and Textural Parameters for Different Textured Indian Foods Using Principal Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Rustagi">S. Rustagi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Sodhi"> N. S. Sodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dhillon"> B. Dhillon</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kaur"> T. Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to check whether there is any relationship between electromyographic (EMG) and textural parameters during food texture evaluation. In this study, a total of eighteen mastication variables were measured for entire mastication, per chew mastication and three different stages of mastication (viz. early, middle and late) by EMG for five different foods using eight human subjects. Cluster analysis was used to reduce the number of mastication variables from 18 to 5, so that principal component analysis (PCA) could be applied on them. The PCA further resulted in two meaningful principal components. The principal component scores for each food were measured and correlated with five textural parameters (viz. hardness, cohesiveness, chewiness, gumminess and adhesiveness). Correlation coefficients were found to be statistically significant (p < 0.10) for cohesiveness and adhesiveness while if we reduce the significance level (p < 0.20) then chewiness also showed correlation with mastication parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromyography" title="electromyography">electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=mastication" title=" mastication"> mastication</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/85029/correlation-between-electromyographic-and-textural-parameters-for-different-textured-indian-foods-using-principal-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Design and Numerical Study on Aerodynamics Performance for F16 Leading Edge Extension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=San-Yih%20Lin">San-Yih Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsien-Hao%20Teng"> Hsien-Hao Teng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we use commercial software, ANSYS CFX, to carry on the simulation the F16 aerodynamics performance flow field. The flight with a modified Leading Edge Extension (LEX) is proposed to increase the lift/drag ratio. The Shear Stress Transport turbulent model is used. The unstructured grid system is generated by the ICEM CFD. The prism grid around the wall surface is generated to simulate boundary layer viscosity flow field and Tetrahedron Mesh is used for the other computation domain. The lift, drag, and pitch moment are computed. The strong vortex structures upper the wing and vortex bursts under different sweep angle of LEX are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEX" title="LEX">LEX</a>, <a href="https://publications.waset.org/abstracts/search?q=lift%2Fdrag%20ratio" title=" lift/drag ratio"> lift/drag ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20moment" title=" pitch moment"> pitch moment</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20burst" title=" vortex burst"> vortex burst</a> </p> <a href="https://publications.waset.org/abstracts/85534/design-and-numerical-study-on-aerodynamics-performance-for-f16-leading-edge-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhashidah%20Hj%20Mohd%20Ali">Norhashidah Hj Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wai%20Ping"> Teng Wai Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit%20group%20method" title="explicit group method">explicit group method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title=" finite difference"> finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=five-point%20formula" title=" five-point formula"> five-point formula</a>, <a href="https://publications.waset.org/abstracts/search?q=nine-point%20formula" title=" nine-point formula"> nine-point formula</a> </p> <a href="https://publications.waset.org/abstracts/17278/new-fourth-order-explicit-group-method-in-the-solution-of-the-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhashidah%20Hj.%20Mohd%20Ali">Norhashidah Hj. Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wai%20Ping"> Teng Wai Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation<em>.</em> The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit%20group%20method" title="explicit group method">explicit group method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title=" finite difference"> finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=helmholtz%20equation" title=" helmholtz equation"> helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotated%20grid" title=" rotated grid"> rotated grid</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20grid" title=" standard grid"> standard grid</a> </p> <a href="https://publications.waset.org/abstracts/51535/a-comparative-study-of-high-order-rotated-group-iterative-schemes-on-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Training Engineering Students in Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoong%20C.%20Chin">Hoong C. Chin</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon%20H.%20Chew"> Soon H. Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaoxia%20Wang"> Zhaoxia Wang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Work on sustainable developments and the call for action in education for sustainable development have been ongoing for a number of years. Training engineering students with the relevant competencies, particularly in sustainable development literacy, has been identified as an urgent task in universities. This requires not only a holistic, multi-disciplinary approach to education but also a suitable training environment to develop the needed skills and to inculcate the appropriate attitudes in students towards sustainable development. To demonstrate how this can be done, a module involving an overseas field trip was introduced in 2013 at the National University of Singapore. This paper provides details of the module and describes its training philosophy and methods. Measured against the student learning outcomes, stipulated by the Engineering Accreditation Board, the module scored well on all of them, particularly those related to complex problem solving, environmental and sustainability awareness, multi-disciplinary team work and varied-level communications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering%20education" title="civil engineering education">civil engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economically%20sustainable%20infrastructure" title=" socio-economically sustainable infrastructure"> socio-economically sustainable infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20learning%20outcome" title=" student learning outcome"> student learning outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/67676/training-engineering-students-in-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Hereditary Angioedema: Case Presentation and Review of Anaesthetic Implications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Chew">Joshua Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesa%20Cheng"> Vesa Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Thomson"> David Thomson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hereditary angioedema (HAE) or C1 esterase deficiency is a relatively rare entity that has a potential for significant anesthetic complications. Methods: A literature review was performed of published cases of surgery in patients with HAE. Results were limited to English language only and cases were examined for management strategies and successful prevention of acute attacks. Results: The literature revealed the successful use of C1 esterase inhibitors as the most common agent in surgical prophylaxis therapy. Other therapeutic targets described included kallikrein inhibitors and bradykinin B2 receptor antagonists. Conclusions: Therapeutic targets that exist for the management of acute attacks in HAE have been successfully employed in the setting of surgery. The data is currently limited and could not be used as a firm evidence base, but the limited outcomes seen are positive and reassuring for the prospective anesthetic management of this potentially fatal condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anesthesia" title="anesthesia">anesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=C1%20esterase%20deficiency" title=" C1 esterase deficiency"> C1 esterase deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=hereditary%20angioedema" title=" hereditary angioedema"> hereditary angioedema</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20prophylaxis" title=" surgical prophylaxis"> surgical prophylaxis</a> </p> <a href="https://publications.waset.org/abstracts/34031/hereditary-angioedema-case-presentation-and-review-of-anaesthetic-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20J.%20Thomson">David J. Thomson</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20C.%20J.%20Chew"> Joshua C. J. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20toxicity" title="lithium toxicity">lithium toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenesis" title=" pathogenesis"> pathogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=SILENT" title=" SILENT"> SILENT</a>, <a href="https://publications.waset.org/abstracts/search?q=syndrome%20of%20irreversible%20lithium-effectuated%20neurotoxicity" title=" syndrome of irreversible lithium-effectuated neurotoxicity"> syndrome of irreversible lithium-effectuated neurotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/34033/syndrome-of-irreversible-lithium-effectuated-neurotoxicity-case-report-and-review-of-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> An Abductive Approach to Policy Analysis: Policy Analysis as Informed Guessing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20W.%20Chew">Adrian W. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper argues that education policy analysis tends to be steered towards empiricist oriented approaches, which place emphasis on objective and measurable data. However, this paper argues that empiricist oriented approaches are generally based on inductive and/or deductive reasoning, which are unable to generate new ideas/knowledge. This paper will outline the logical structure of induction, deduction, and abduction, and argues that only abduction provides possibilities for the creation of new ideas/knowledge. This paper proposes the neologism of ‘informed guessing’ as a reformulation of abduction, and also as an approach to education policy analysis. On one side, the signifier ‘informed’ encapsulates the idea that abductive policy analysis needs to be informed by descriptive conceptualization theory to be able to make relations and connections between, and within, observed phenomenon and unobservable general structures. On the other side, the signifier ‘guessing’ captures the cyclical and unsystematic process of abduction. This paper will end with a brief example of utilising ‘informed guessing’ for a policy analysis of school choice lotteries in the United States. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abductive%20reasoning" title="abductive reasoning">abductive reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=empiricism" title=" empiricism"> empiricism</a>, <a href="https://publications.waset.org/abstracts/search?q=informed%20guessing" title=" informed guessing"> informed guessing</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20analysis" title=" policy analysis"> policy analysis</a> </p> <a href="https://publications.waset.org/abstracts/54817/an-abductive-approach-to-policy-analysis-policy-analysis-as-informed-guessing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Linking Information Systems Capabilities for Service Quality: The Role of Customer Connection and Environmental Dynamism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teng%20Teng">Teng Teng</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Tsinopoulos"> Christos Tsinopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to explore the link between IS capabilities, customer connection, and quality performance in the service context, with investigation of the impact of firm’s stable and dynamic environments. The application of Information Systems (IS) has become a significant effect on contemporary service operations. Firms invest in IS with the presumption that they will facilitate operations processes so that their performance will improve. Yet, IS resources by themselves are not sufficiently 'unique' and thus, it would be more useful and theoretically relevant to focus on the processes they affect. One such organisational process, which has attracted a lot of research attention by supply chain management scholars, is the integration of customer connection, where IS-enabled customer connection enhances communication and contact processes, and with such customer resources integration comes greater success for the firm in its abilities to develop a good understanding of customer needs and set accurate customer. Nevertheless, prior studies on IS capabilities have focused on either one specific type of technology or operationalised it as a highly aggregated concept. Moreover, although conceptual frameworks have been identified to show customer integration is valuable in service provision, there is much to learn about the practices of integrating customer resources. In this research, IS capabilities have been broken down into three dimensions based on the framework of Wade and Hulland: IT for supply chain activities (ITSCA), flexible IT infrastructure (ITINF), and IT operations shared knowledge (ITOSK); and focus on their impact on operational performance of firms in services. With this background, this paper addresses the following questions: -How do IS capabilities affect the integration of customer connection and service quality? -What is the relationship between environmental dynamism and the relationship of customer connection and service quality? A survey of 156 service establishments was conducted, and the data analysed to determine the role of customer connection in mediating the effects of IS capabilities on firms’ service quality. Confirmatory factor analysis was used to check convergent validity. There is a good model fit for the structural model. Moderating effect of environmental dynamism on the relationship of customer connection and service quality is analysed. Results show that ITSCA, ITINF, and ITOSK have a positive influence on the degree of the integration of customer connection. In addition, customer connection positively related to service quality; this relationship is further emphasised when firms work in a dynamic environment. This research takes a step towards quelling concerns about the business value of IS, contributing to the development and validation of the measurement of IS capabilities in the service operations context. Additionally, it adds to the emerging body of literature linking customer connection to the operational performance of service firms. Managers of service firms should consider the strength of the mediating role of customer connection when investing in IT-related technologies and policies. Particularly, service firms developing IS capabilities should simultaneously implement processes that encourage supply chain integration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20connection" title="customer connection">customer connection</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20dynamism" title=" environmental dynamism"> environmental dynamism</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20systems%20capabilities" title=" information systems capabilities"> information systems capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20quality" title=" service quality"> service quality</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20supply%20chain" title=" service supply chain"> service supply chain</a> </p> <a href="https://publications.waset.org/abstracts/121030/linking-information-systems-capabilities-for-service-quality-the-role-of-customer-connection-and-environmental-dynamism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pei-Chann%20Chang">Pei-Chann Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhen-Fu%20Liao"> Jhen-Fu Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Hung%20Teng"> Chin-Hung Teng</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Hui%20Chen"> Meng-Hui Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20immune%20system" title="artificial immune system">artificial immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20filtering" title=" collaborative filtering"> collaborative filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=recommendation%20system" title=" recommendation system"> recommendation system</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity" title=" similarity"> similarity</a> </p> <a href="https://publications.waset.org/abstracts/5057/application-of-artificial-immune-systems-combined-with-collaborative-filtering-in-movie-recommendation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Experimental and Theoretical Study of Melt Viscosity in Injection Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Chih%20Lin">Chung-Chih Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Teng%20Wang"> Wen-Teng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Chiuan%20Kuo"> Chin-Chiuan Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chieh-Liang%20Wu"> Chieh-Liang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20viscosity" title=" melt viscosity"> melt viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20sensor%20bushing%20%28PSB%29" title=" pressure sensor bushing (PSB)"> pressure sensor bushing (PSB)</a> </p> <a href="https://publications.waset.org/abstracts/7574/experimental-and-theoretical-study-of-melt-viscosity-in-injection-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Biological Aquaculture System (BAS) Design and Water Quality on Marble Goby (Oxyeleotris marmoratus): A Water Recirculating Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=AnnWon%20Chew">AnnWon Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Nik%20Norulaini%20Nik%20Ab%20Rahman"> Nik Norulaini Nik Ab Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Omar%20Ab%20Kadir"> Mohd Omar Ab Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Chen"> C. C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaafar%20Chua"> Jaafar Chua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an innovative process to solve the ammonia, nitrite and nitrate build-up problem in recirculating system using Biological Aquaculture System (BAS). The novel aspects of the process lie in a series of bioreactors that specially arrange and design to meet the required conditions for water purification. The BAS maximizes the utilization of bio-balls as the ideal surface for beneficial microbes to flourish. It also serves as a physical barrier that traps organic particles, which in turn becomes source for the microbes to perform their work. The operation in the proposed system gives a low concentration and average range of good maintain excellent water quality, i.e., with low levels of ammonia, nitrite, nitrate, a suitable pH range for aquaculture and low turbidity. The BAS thus provides a solution for sustainable small-scale, urban aquaculture operation with a high recovery water and minimal waste disposal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia" title="ammonia">ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=Biological%20Aquaculture%20System%20%28BAS%29" title=" Biological Aquaculture System (BAS)"> Biological Aquaculture System (BAS)</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-balls" title=" bio-balls"> bio-balls</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20recirculating%20technology" title=" water recirculating technology"> water recirculating technology</a> </p> <a href="https://publications.waset.org/abstracts/19005/biological-aquaculture-system-bas-design-and-water-quality-on-marble-goby-oxyeleotris-marmoratus-a-water-recirculating-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> A Hyperflexion Hallux Mallet Injury: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tan%20G.%20K.%20Y.">Tan G. K. Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Chew%20M.%20S.%20J."> Chew M. S. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajeev%20S."> Sajeev S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Vellasamy%20A."> Vellasamy A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injuries of the extensor hallucis longus (EHL) tendon are a rare phenomenon, with most occurring due to lacerations or penetrating injuries. Closed traumatic ruptures of the EHL are described as “Mallet injuries of the toe”. These can be classified as bony or soft mallet injuries depending on the presence or absence of a fracture at the insertion site of the EHL tendon in the distal phalanx. We present a case of a 33-year-old woman who presented with a hyperflexion injury to the left big toe with an inability to extend the big toe. Ultrasound showed a complete rupture of the EHL tendon with retraction proximal to the hallucal interphalangeal joint of the big toe. The patient was treated through transarticular pinning and repair using the Arthrex Mini Bio-Suture Tak with a 2-0 fibre wire. Six months postoperatively, the patient had symmetrical EHL power and full range of motion of the toe. The lessons to be drawn from this case report are that isolated hallux mallet injuries are rare and can be easily missed in the absence of penetrating wounds. Patients who have such injuries should be investigated early with the appropriate imaging techniques, such as ultrasound or MRI, and treated surgically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hallux%20mallet" title="hallux mallet">hallux mallet</a>, <a href="https://publications.waset.org/abstracts/search?q=extensor%20hallucis%20longus%20tendon" title=" extensor hallucis longus tendon"> extensor hallucis longus tendon</a>, <a href="https://publications.waset.org/abstracts/search?q=extensor%20hallucis%20longus" title=" extensor hallucis longus"> extensor hallucis longus</a> </p> <a href="https://publications.waset.org/abstracts/174228/a-hyperflexion-hallux-mallet-injury-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asnawi%20Mohd%20Busrah">Asnawi Mohd Busrah</a>, <a href="https://publications.waset.org/abstracts/search?q=Au%20Mau%20Teng"> Au Mau Teng</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Chin%20Hooi"> Tan Chin Hooi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lau%20Chee%20Chong"> Lau Chee Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=value%20based%20planning" title="value based planning">value based planning</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20network" title=" distribution network"> distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20of%20loss%20load%20%28VoLL%29" title=" value of loss load (VoLL)"> value of loss load (VoLL)</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20not%20served%20%28ENS%29" title=" energy not served (ENS)"> energy not served (ENS)</a> </p> <a href="https://publications.waset.org/abstracts/43234/development-of-value-based-planning-methodology-incorporating-risk-assessment-for-power-distribution-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsien%20Hao%20Teng">Hsien Hao Teng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lambda%20wing" title="lambda wing">lambda wing</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20function" title=" wall function"> wall function</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/142038/comparison-of-numerical-results-of-lambda-wing-under-different-turbulence-models-and-wall-y" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Bluetooth Piconet System for Child Care Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Sung%20Wang">Ching-Sung Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng-Wei%20Wang"> Teng-Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhen-Ting%20Zheng"> Zhen-Ting Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study mainly concerns a safety device designed for child care. When children are out of sight or the caregivers cannot always pay attention to the situation, through the functions of this device, caregivers can immediately be informed to make sure that the children do not get lost or hurt, and thus, ensure their safety. Starting from this concept, a device is produced based on the relatively low-cost Bluetooth piconet system and a three-axis gyroscope sensor. This device can transmit data to a mobile phone app through Bluetooth, in order that the user can learn the situation at any time. By simply clipping the device in a pocket or on the waist, after switching on/starting the device, it will send data to the phone to detect the child’s fall and distance. Once the child is beyond the angle or distance set by the app, it will issue a warning to inform the phone owner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children%20care" title="children care">children care</a>, <a href="https://publications.waset.org/abstracts/search?q=piconet%20system" title=" piconet system"> piconet system</a>, <a href="https://publications.waset.org/abstracts/search?q=three-axis%20gyroscope" title=" three-axis gyroscope"> three-axis gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20detection" title=" distance detection"> distance detection</a>, <a href="https://publications.waset.org/abstracts/search?q=falls%20detection" title=" falls detection"> falls detection</a> </p> <a href="https://publications.waset.org/abstracts/78252/bluetooth-piconet-system-for-child-care-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Quy%20Le">Kim Quy Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Fei"> Duan Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zeng"> Jun Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Fabiola%20Leyva"> Maria Fabiola Leyva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-jet%20fusion" title=" multi-jet fusion"> multi-jet fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=molded%20fiber%20screen" title=" molded fiber screen"> molded fiber screen</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/157099/simulation-of-fiber-deposition-on-molded-fiber-screen-using-multi-sphere-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Amiri">Ahmad Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20K.%20Arzani"> Hamed K. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20T.%20Chew"> B. T. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20flow" title=" forced convection flow"> forced convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=annular" title=" annular"> annular</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a> </p> <a href="https://publications.waset.org/abstracts/54948/numerical-heat-transfer-performance-of-water-based-graphene-nanoplatelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Microstructure Characterization on Silicon Carbide Formation from Natural Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Leha%20Abdul%20Rahman">Noor Leha Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Koay%20Mei%20Hyie"> Koay Mei Hyie</a>, <a href="https://publications.waset.org/abstracts/search?q=Anizah%20Kalam"> Anizah Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Husna%20Elias"> Husna Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wang%20Dung"> Teng Wang Dung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD "> XRD </a> </p> <a href="https://publications.waset.org/abstracts/30071/microstructure-characterization-on-silicon-carbide-formation-from-natural-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chew%20Yin%20Teng&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chew%20Yin%20Teng&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chew%20Yin%20Teng&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>