CINXE.COM

Search results for: 纬-glutamylcysteine ligase

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: 纬-glutamylcysteine ligase</title> <meta name="description" content="Search results for: 纬-glutamylcysteine ligase"> <meta name="keywords" content="纬-glutamylcysteine ligase"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="纬-glutamylcysteine ligase" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="纬-glutamylcysteine ligase"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: 纬-glutamylcysteine ligase</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Melanoma Antigen Proteins Are Involved in DNA Damage Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivier%20de%20Backer">Olivier de Backer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Khelfi"> Alexis Khelfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Svensek"> Olivier Svensek</a>, <a href="https://publications.waset.org/abstracts/search?q=Axelle%20Nolmans"> Axelle Nolmans</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Desnoeck"> Dominique Desnoeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SMC5-SMC6 complex helps replication and repair of DNA double-strand breaks. Nse1, Nse3 and Nse4 are non-SMC components of the complex in which Nse3 stimulates the E3 ubiquitin ligase activity of Nse1 and is required for recruiting the complex on DNA. In most eukaryotes, Nse3 is a single protein, but in eutherians (placental mammals), it belongs to a large family of proteins called MAGE (Melanoma antigen) that share a conserved domain of about 200 aa known as MHD (Mage homology domain). MAGE assembles specific RING and HECT ubiquitin ligases and determines new substrates for ubiquitination. The MHD is required for the interaction with the cognate E3 ligase. Some MAGEs (referred to as Type I) are exclusively expressed in germ cells of the testis but are often expressed ectopically in cancer cells as the result of epigenetic modifications. The 12 MAGE-A genes belong to this category. Serval MAGE-A proteins could promote tumorigenesis by targeting tumor suppressor proteins (including p53) for ubiquitination and degradation. We showed that depletion of MAGE-A proteins in melanoma cells results in impaired DNA damage response and increased double-strand breaks after exposure to camptothecin. Moreover, it was shown that other actors of the DNA Damage Response were impacted when cells were depleted of MAGEA proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage%20response" title="DNA damage response">DNA damage response</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=camptothecin" title=" camptothecin"> camptothecin</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20role" title=" new role"> new role</a>, <a href="https://publications.waset.org/abstracts/search?q=MAGEA" title=" MAGEA"> MAGEA</a> </p> <a href="https://publications.waset.org/abstracts/169692/melanoma-antigen-proteins-are-involved-in-dna-damage-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effects of Cymbopogon citratus, Stapf (CS) or Lemon Grass Ethanol Extract on Antioxidant and Vascular Disorders Parameters in Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suphaket%20Saenthaweesuk">Suphaket Saenthaweesuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nutiya%20Somparn"> Nutiya Somparn</a>, <a href="https://publications.waset.org/abstracts/search?q=Atcharaporn%20Thewmore"> Atcharaporn Thewmore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to investigate the effects of Cymbopogon citratus, Stapf (CS) or lemon grass ethanol extract on antioxidant and vascular disorders parameters in rat. The CS ethanol extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with CS at 1,000 mg/kg/day for 30 days. Phytochemical screening of CS extract indicated the presence of tannins, flavonoids and phenolic compounds. The extract contained phenolic compounds 1,400.10 卤 0.47 mg of gallic acid equivalents per gram CS extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 168.77 卤 3.32碌g/mL, which is relatively lower than that of BHT with IC50 of 12.34 卤 1.14 碌g/mL. In the animals, the protein expression of antioxidant enzymes, 纬-glutamylcysteine ligase (纬-GCL) in liver was significantly increased. This was consistent with elevation of serum catalase (CAT) and superoxide dismutase (SOD) activities. However, Protein expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial nitric oxide synthase (eNOS) in heart and aorta were not differenced from normal control. Taken together, the present study provides evidence that CCS water extract exhibits direct antioxidant properties and can induce cytoprotective enzymes in vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=Cymbopogon%20citratus%20Stapf" title=" Cymbopogon citratus Stapf"> Cymbopogon citratus Stapf</a>, <a href="https://publications.waset.org/abstracts/search?q=VCAM-1" title=" VCAM-1"> VCAM-1</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-glutamylcysteine%20ligase" title=" 纬-glutamylcysteine ligase"> 纬-glutamylcysteine ligase</a> </p> <a href="https://publications.waset.org/abstracts/69543/effects-of-cymbopogon-citratus-stapf-cs-or-lemon-grass-ethanol-extract-on-antioxidant-and-vascular-disorders-parameters-in-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Virtual Screening and in Silico Toxicity Property Prediction of Compounds against Mycobacterium tuberculosis Lipoate Protein Ligase B (LipB)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junie%20B.%20Billones">Junie B. Billones</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Constancia%20O.%20Carrillo"> Maria Constancia O. Carrillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Voltaire%20G.%20Organo"> Voltaire G. Organo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephani%20Joy%20Y.%20Macalino"> Stephani Joy Y. Macalino</a>, <a href="https://publications.waset.org/abstracts/search?q=Inno%20A.%20Emnacen"> Inno A. Emnacen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Bernadette%20A.%20Sy"> Jamie Bernadette A. Sy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drug discovery and development process is generally known to be a very lengthy and labor-intensive process. Therefore, in order to be able to deliver prompt and effective responses to cure certain diseases, there is an urgent need to reduce the time and resources needed to design, develop, and optimize potential drugs. Computer-aided drug design (CADD) is able to alleviate this issue by applying computational power in order to streamline the whole drug discovery process, starting from target identification to lead optimization. This drug design approach can be predominantly applied to diseases that cause major public health concerns, such as tuberculosis. Hitherto, there has been no concrete cure for this disease, especially with the continuing emergence of drug resistant strains. In this study, CADD is employed for tuberculosis by first identifying a key enzyme in the mycobacterium鈥檚 metabolic pathway that would make a good drug target. One such potential target is the lipoate protein ligase B enzyme (LipB), which is a key enzyme in the M. tuberculosis metabolic pathway involved in the biosynthesis of the lipoic acid cofactor. Its expression is considerably up-regulated in patients with multi-drug resistant tuberculosis (MDR-TB) and it has no known back-up mechanism that can take over its function when inhibited, making it an extremely attractive target. Using cutting-edge computational methods, compounds from AnalytiCon Discovery Natural Derivatives database were screened and docked against the LipB enzyme in order to rank them based on their binding affinities. Compounds which have better binding affinities than LipB鈥檚 known inhibitor, decanoic acid, were subjected to in silico toxicity evaluation using the ADMET and TOPKAT protocols. Out of the 31,692 compounds in the database, 112 of these showed better binding energies than decanoic acid. Furthermore, 12 out of the 112 compounds showed highly promising ADMET and TOPKAT properties. Future studies involving in vitro or in vivo bioassays may be done to further confirm the therapeutic efficacy of these 12 compounds, which eventually may then lead to a novel class of anti-tuberculosis drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmacophore" title="pharmacophore">pharmacophore</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=lipoate%20protein%20ligase%20B%20%28LipB%29" title=" lipoate protein ligase B (LipB)"> lipoate protein ligase B (LipB)</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMET" title=" ADMET"> ADMET</a>, <a href="https://publications.waset.org/abstracts/search?q=TOPKAT" title=" TOPKAT"> TOPKAT</a> </p> <a href="https://publications.waset.org/abstracts/9951/virtual-screening-and-in-silico-toxicity-property-prediction-of-compounds-against-mycobacterium-tuberculosis-lipoate-protein-ligase-b-lipb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Effect of Ocimum americanum Water Extract on Antioxidant System in Rat </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pornrut%20Rabintossaporn">Pornrut Rabintossaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Suphaket%20Saenthaweesuk"> Suphaket Saenthaweesuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Amornnat%20Thuppia"> Amornnat Thuppia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuntiya%20Somparn"> Nuntiya Somparn </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several dietary and herbal plants have been shown to possess cytoprotective and antioxidant effects with various mechanisms of action. The aim of this study was to determine the antioxidant effects and its mechanism of aqueous leaves extract of Ocimum americanum (OA), commonly known as American basil or 'hoary basil', in rat. The extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with the extract at the dose of 100, 200 and 400 mg/kg for 28 days. Phytochemical screening of plant extracts revealed the presence of alkaloid, cardiac glycosides, tannin and steroid compounds. The extract contained phenolic compounds 36.91 卤 0.66 mg of gallic acid equivalents per gram OA extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 41.27 卤 1.86 碌g/mL, which is relatively lower than that of BHT with IC50 of 12.34 卤 1.14碌g/mL. In the animals, the extract was well tolerated by the animals throughout the 28 days of study as shown by normal serum levels AST, ALP, ALT, BUN and Cr as well as normal histology of liver and pancreatic and kidney tissue. The protein expression of antioxidant enzymes, 纬-glutamylcysteine ligase (纬-GCL) in liver was significantly increased compared with normal control. Consistent with the induction of 纬-GCL protein expression significantly reduction of serum oxidative stress marker malondialdehyde (MDA) was found in rat treated with OA extract compared with control. Taken together, this study provides evidence that Ocimum americanum exhibits direct antioxidant properties and can induce cytoprotective enzyme in vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-glutamylcysteine%20ligase" title=" 纬-glutamylcysteine ligase"> 纬-glutamylcysteine ligase</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA" title=" MDA"> MDA</a>, <a href="https://publications.waset.org/abstracts/search?q=Ocimum%20americanum" title=" Ocimum americanum"> Ocimum americanum</a> </p> <a href="https://publications.waset.org/abstracts/69529/effect-of-ocimum-americanum-water-extract-on-antioxidant-system-in-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Effect of Cardio-Specific Overexpression of MUL1, a Mitochondrial Protein on Myocardial Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ximena%20Calle">Ximena Calle</a>, <a href="https://publications.waset.org/abstracts/search?q=Plinio%20Cantero-L%C3%B3pez"> Plinio Cantero-L贸pez</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Mu%C3%B1oz-C%C3%B3rdova"> Felipe Mu帽oz-C贸rdova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayarling-Francisca%20Troncoso"> Mayarling-Francisca Troncoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Lavandero"> Sergio Lavandero</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Parra"> Valentina Parra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MUL1, a mitochondrial E3 ubiquitin ligase anchored to the outer mitochondrial membrane, is highly expressed in the heart. MUL1 is involved in multiple biological pathways associated with mitochondrial dynamics. Increased MUL1 affects the balance between fission and fusion, affecting mitochondrial function, which plays a crucial role in myocardial function. Therefore, it is interesting to evaluate the effect of cardiac-specific overexpression of MUL1 on myocardial function. Aim: To determine heart functionality in a mouse model with cardio-specific overexpression MUL1 protein. Methods and Results: Male C57BL/Tg transgenic mice with cardiomyocyte-specific overexpression of MUL1 (n=10) and control (n=4) were evaluated at 12, 27, and 35 weeks of age. Glucose tolerance curve determination was performed after a 6-hours fast to assess metabolic capacity, treadmill test, and systolic, and diastolic pressure was evaluated by the mouse tail-cuff blood pressure system equipment. The result showed no glucose tolerance curve, and the treadmill test demonstrated no significant changes between groups. However, substantial changes in diastolic function were observed by ultrasound and determination of cardiac hypertrophy proteins by western blot. Conclusions: Cardio-specific overexpression of MUL1 in mice without any treatment affects diastolic cardiac function, thus showing the important role contributed by MUL1 in the heart. Future research should evaluate the effect of cardiomyocyte-specific overexpression of MUL1 in pathological conditions such as a high-fat diet is one of the main risk factors for cardiovascular disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diastolic%20dysfunction" title="diastolic dysfunction">diastolic dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertrophy%20cardiac" title=" hypertrophy cardiac"> hypertrophy cardiac</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20E3%20ubiquitin%20ligase%201" title=" mitochondrial E3 ubiquitin ligase 1"> mitochondrial E3 ubiquitin ligase 1</a>, <a href="https://publications.waset.org/abstracts/search?q=MUL1" title=" MUL1"> MUL1</a> </p> <a href="https://publications.waset.org/abstracts/156095/effect-of-cardio-specific-overexpression-of-mul1-a-mitochondrial-protein-on-myocardial-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patarasuda%20Chaisupa">Patarasuda Chaisupa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Clay%20Wright"> R. Clay Wright</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 碌M (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20biology" title="synthetic biology">synthetic biology</a>, <a href="https://publications.waset.org/abstracts/search?q=bioengineering" title=" bioengineering"> bioengineering</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/170472/improved-intracellular-protein-degradation-system-for-rapid-screening-and-quantitative-study-of-essential-fungal-proteins-in-biopharmaceutical-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> The Effect of SIAH1 on PINK1 Homeostasis in Parkinson Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Abd%20Elghani">Fatimah Abd Elghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymonde%20Szargel"> Raymonde Szargel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vered%20Shani"> Vered Shani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Safory"> Hazem Safory</a>, <a href="https://publications.waset.org/abstracts/search?q=Haya%20Hamza"> Haya Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mor%20Savyon"> Mor Savyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Rott"> Ruth Rott</a>, <a href="https://publications.waset.org/abstracts/search?q=Rina%20Bandopadhyay"> Rina Bandopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Engelender"> Simone Engelender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson鈥檚 disease. Down regulation of PINK1 results in abnormal mitochondrial morphology and altered membrane potential. Although PINK1 has a predicted mitochondrial import sequence, it鈥檚 cellular, and submitochondrial localization remains unclear, in part because it is rapidly degraded. In this work, we investigated the mechanisms involved in PINK1 degradation and how this may affect PINK1 stability and function, with implications for mitochondrial function in PD. In addition, pharmacological inhibition of proteasome activity was shown to lead to PINK1 accumulation, indicating that PINK1 degradation depends on the ubiquitin-proteasome system (UPS). Methods: Using co-immunoprecipitation assays, we identified E3 ubiquitin ligase SIAH1 as a PINK1-interacting protein in HEK293 cells as well as on rat brain tissues. In addition, we determined the effect of SIAH 1, SIAH2 and Parkin on PINK1 steady-state levels by Western blot analysis, and checked their possibility to ubiquitinate and mediate PINK1 degradation through the proteasome carried out in vivo ubiquitination experiments. Results: We have obtained results showing that SIAH-1 interacts with and ubiquitinates PINK1. The ubiquitination promoted by SIAH-1 leads to the proteasomal degradation of PINK1. We confirmed these findings by knocking down SIAH-1 and observing important accumulation of PINK1 in cells. Besides, we found that SIAH-1 decreases PINK1 steady-state levels but not the E3 ligase Parkin. We also investigated the interaction of SIAH-1 with PINK1 disease mutants and its ability to promote their ubiquitination and degradation. Although, no clear difference in the ability of SIAH-1 to promote the degradation of PINK1 disease mutants was observed. It is possible that dysfunction of proteasomal activity in the disease may lead to the accumulation and aggregation of ubiquitinated PINK1 in patients with PINK1 mutations, with possible implications to the pathogenesis of PD. Conclusions: Here, we demonstrated that SIAH-1 ubiquitinates and promotes the degradation of PINK1. In addition, SIAH-1 represents now a target that may help the improvement of mitophagy in PD. Further investigations needed to understand how mitophagy is regulated by PINK1-SIAH-1 axis to provide targets for future therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PD" title="PD">PD</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title=" Parkinson&#039;s disease"> Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=PINK1" title=" PINK1"> PINK1</a>, <a href="https://publications.waset.org/abstracts/search?q=PTEN-induced%20kinase1" title=" PTEN-induced kinase1"> PTEN-induced kinase1</a>, <a href="https://publications.waset.org/abstracts/search?q=SIAH" title=" SIAH"> SIAH</a>, <a href="https://publications.waset.org/abstracts/search?q=seven%20in%20absentia%20homolog" title=" seven in absentia homolog"> seven in absentia homolog</a>, <a href="https://publications.waset.org/abstracts/search?q=SN" title=" SN"> SN</a>, <a href="https://publications.waset.org/abstracts/search?q=substantia%20nigra" title=" substantia nigra"> substantia nigra</a> </p> <a href="https://publications.waset.org/abstracts/110954/the-effect-of-siah1-on-pink1-homeostasis-in-parkinson-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Dynamic Cardiac Mitochondrial Proteome Alterations after Ischemic Preconditioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelbary%20Prince">Abdelbary Prince</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Moussa"> Said Moussa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungkyu%20Kim"> Hyungkyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Gouda"> Eman Gouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Han"> Jin Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We compared the dynamic alterations of mitochondrial proteome of control, ischemia-reperfusion (IR) and ischemic preconditioned (IPC) rabbit hearts. Using 2-DE, we identified 29 mitochondrial proteins that were differentially expressed in the IR heart compared with the control and IPC hearts. For two of the spots, the expression patterns were confirmed by Western blotting analysis. These proteins included succinate dehydrogenase complex, Acyl-CoA dehydrogenase, carnitine acetyltransferase, dihydrolipoamide dehydrogenase, Atpase, ATP synthase, dihydrolipoamide succinyltransferase, ubiquinol-cytochrome c reductase, translation elongation factor, acyl-CoA dehydrogenase, actin alpha, succinyl-CoA Ligase, dihydrolipoamide S-succinyltransferase, citrate synthase, acetyl-Coenzyme A dehydrogenase, creatine kinase, isocitrate dehydrogenase, pyruvate dehydrogenase, prohibitin, NADH dehydrogenase (ubiquinone) Fe-S protein, enoyl Coenzyme A hydratase, superoxide dismutase [Mn], and 24-kDa subunit of complex I. Interestingly, most of these proteins are associated with the mitochondrial respiratory chain, antioxidant enzyme system, and energy metabolism. The results provide clues as to the cardioprotective mechanism of ischemic preconditioning at the protein level and may serve as potential biomarkers for detection of ischemia-induced cardiac injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ischemic%20preconditioning" title="ischemic preconditioning">ischemic preconditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=proteome" title=" proteome"> proteome</a>, <a href="https://publications.waset.org/abstracts/search?q=cardioprotection" title=" cardioprotection"> cardioprotection</a> </p> <a href="https://publications.waset.org/abstracts/19291/dynamic-cardiac-mitochondrial-proteome-alterations-after-ischemic-preconditioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Sequence Analysis and Molecular Cloning of PROTEOLYSIS 6 in Tomato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurulhikma%20Md%20Isa">Nurulhikma Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Intan%20Elya%20Suka"> Intan Elya Suka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Farhana%20Roslan"> Nur Farhana Roslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chew%20Bee%20Lynn"> Chew Bee Lynn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolutionarily conserved N-end rule pathway marks proteins for degradation by the Ubiquitin Proteosome System (UPS) based on the nature of their N-terminal residue. Proteins with a destabilizing N-terminal residue undergo a series of condition-dependent N-terminal modifications, resulting in their ubiquitination and degradation. Intensive research has been carried out in Arabidopsis previously. The group VII Ethylene Response Factor (ERFs) transcription factors are the first N-end rule pathway substrates found in Arabidopsis and their role in regulating oxygen sensing. ERFs also function as central hubs for the perception of gaseous signals in plants and control different plant developmental including germination, stomatal aperture, hypocotyl elongation and stress responses. However, nothing is known about the role of this pathway during fruit development and ripening aspect. The plant model system Arabidopsis cannot represent fleshy fruit model system therefore tomato is the best model plant to study. PROTEOLYSIS6 (PRT6) is an E3 ubiquitin ligase of the N-end rule pathway. Two homologs of PRT6 sequences have been identified in tomato genome database using the PRT6 protein sequence from model plant Arabidopsis thaliana. Homology search against Ensemble Plant database (tomato) showed Solyc09g010830.2 is the best hit with highest score of 1143, e-value of 0.0 and 61.3% identity compare to the second hit Solyc10g084760.1. Further homology search was done using NCBI Blast database to validate the data. The result showed best gene hit was XP_010325853.1 of uncharacterized protein LOC101255129 (Solanum lycopersicum) with highest score of 1601, e-value 0.0 and 48% identity. Both Solyc09g010830.2 and uncharacterized protein LOC101255129 were genes located at chromosome 9. Further validation was carried out using BLASTP program between these two sequences (Solyc09g010830.2 and uncharacterized protein LOC101255129) to investigate whether they were the same proteins represent PRT6 in tomato. Results showed that both proteins have 100 % identity, indicates that they were the same gene represents PRT6 in tomato. In addition, we used two different RNAi constructs that were driven under 35S and Polygalacturonase (PG) promoters to study the function of PRT6 during tomato developmental stages and ripening processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERFs" title="ERFs">ERFs</a>, <a href="https://publications.waset.org/abstracts/search?q=PRT6" title=" PRT6"> PRT6</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitin" title=" ubiquitin"> ubiquitin</a> </p> <a href="https://publications.waset.org/abstracts/72837/sequence-analysis-and-molecular-cloning-of-proteolysis-6-in-tomato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Unraveling the Evolution of Mycoplasma Hominis Through Its Genome Sequence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boutheina%20Ben%20Abdelmoumen%20Mardassi">Boutheina Ben Abdelmoumen Mardassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Chibani"> Salim Chibani</a>, <a href="https://publications.waset.org/abstracts/search?q=Safa%20Boujemaa"> Safa Boujemaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaury%20Vaysse"> Amaury Vaysse</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Guglielmini"> Julien Guglielmini</a>, <a href="https://publications.waset.org/abstracts/search?q=Elhem%20Yacoub"> Elhem Yacoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aim: Mycoplasma hominis (MH) is a pathogenic bacterium belonging to the Mollicutes class. It causes a wide range of gynecological infections and infertility among adults. Recently, we have explored for the first time the phylodistribution of Tunisian M. hominis clinical strains using an expanded MLST. We have demonstrated their distinction into two pure lineages, which each corresponding to a specific pathotype: genital infections and infertility. The aim of this project is to gain further insight into the evolutionary dynamics and the specific genetic factors that distinguish MH pathotypes Methods: Whole genome sequencing of Mycoplasma hominis clinical strains was performed using illumina Miseq. Denovo assembly was performed using a publicly available in-house pipeline. We used prokka to annotate the genomes, panaroo to generate the gene presence matrix and Jolytree to establish the phylogenetic tree. We used treeWAS to identify genetic loci associated with the pathothype of interest from the presence matrix and phylogenetic tree. Results: Our results revealed a clear categorization of the 62 MH clinical strains into two distinct genetic lineages, with each corresponding to a specific pathotype.; gynecological infections and infertility[AV1] . Genome annotation showed that GC content is ranging between 26 and 27%, which is a known characteristic of Mycoplasma genome. Housekeeping genes belonging to the core genome are highly conserved among our strains. TreeWas identified 4 virulence genes associated with the pathotype gynecological infection. encoding for asparagine--tRNA ligase, restriction endonuclease subunit S, Eco47II restriction endonuclease, and transcription regulator XRE (involved in tolerance to oxidative stress). Five genes have been identified that have a statistical association with infertility, tow lipoprotein, one hypothetical protein, a glycosyl transferase involved in capsule synthesis, and pyruvate kinase involved in biofilm formation. All strains harbored an efflux pomp that belongs to the family of multidrug resistance ABC transporter, which confers resistance to a wide range of antibiotics. Indeed many adhesion factors and lipoproteins (p120, p120', p60, p80, Vaa) have been checked and confirmed in our strains with a relatively 99 % to 96 % conserved domain and hypervariable domain that represent 1 to 4 % of the reference sequence extracted from gene bank. Conclusion: In summary, this study led to the identification of specific genetic loci associated with distinct pathotypes in M hominis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycoplasma%20hominis" title="mycoplasma hominis">mycoplasma hominis</a>, <a href="https://publications.waset.org/abstracts/search?q=infertility" title=" infertility"> infertility</a>, <a href="https://publications.waset.org/abstracts/search?q=gynecological%20infections" title=" gynecological infections"> gynecological infections</a>, <a href="https://publications.waset.org/abstracts/search?q=virulence%20genes" title=" virulence genes"> virulence genes</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title=" antibiotic resistance"> antibiotic resistance</a> </p> <a href="https://publications.waset.org/abstracts/167070/unraveling-the-evolution-of-mycoplasma-hominis-through-its-genome-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%20Liang">Chang Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weizhi%20Gong"> Weizhi Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Zhang"> Yan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher鈥檚 exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan鈥扢eier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan鈥揗eier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hepatocellular%20carcinoma" title="hepatocellular carcinoma">hepatocellular carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=murine%20double%20minute%202" title=" murine double minute 2"> murine double minute 2</a>, <a href="https://publications.waset.org/abstracts/search?q=speckle-type%20POX%20virus%20and%20zinc%20finger%20protein" title=" speckle-type POX virus and zinc finger protein"> speckle-type POX virus and zinc finger protein</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitination" title=" ubiquitination"> ubiquitination</a> </p> <a href="https://publications.waset.org/abstracts/148798/low-spop-expression-and-high-mdm2-expression-are-associated-with-tumor-progression-and-predict-poor-prognosis-in-hepatocellular-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10