CINXE.COM

Search results for: ground penetrating RADAR

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ground penetrating RADAR</title> <meta name="description" content="Search results for: ground penetrating RADAR"> <meta name="keywords" content="ground penetrating RADAR"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ground penetrating RADAR" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ground penetrating RADAR"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2320</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ground penetrating RADAR</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2320</span> A Case Study of the Ground Collapse Due to Excavation Using Non-Destructive Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Cheong%20Yoo">Ki-Cheong Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yushik%20Han"> Yushik Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Heejeung%20Sohn"> Heejeung Sohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoo%20Kim"> Jinwoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A ground collapse can be caused by natural and artificial factors. Ground collapses that have occurred frequently in Korea were observed and classified into different types by the main contributing factor. In this study, ground collapse induced by groundwater level disturbance in an excavation site was analyzed. Also, ground loosening region around the excavation site was detected and analyzed using non-destructive testing, such as GPR (Ground Penetrating Radar) survey and Electrical Resistivity. The result of the surveys showed that the ground was loosened widely over the surrounding area of the excavation due to groundwater discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20collapse" title=" ground collapse"> ground collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20level" title=" groundwater level"> groundwater level</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR%20%28ground%20penetrating%20radar%29" title=" GPR (ground penetrating radar)"> GPR (ground penetrating radar)</a> </p> <a href="https://publications.waset.org/abstracts/79051/a-case-study-of-the-ground-collapse-due-to-excavation-using-non-destructive-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2319</span> Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Izzati%20Abd%20Karim">Nurul Izzati Abd Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Albati%20Kamaruddin"> Samira Albati Kamaruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozaimi%20Che%20Hasan"> Rozaimi Che Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common-offset%20measurements" title="common-offset measurements">common-offset measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=petrophysical%20relationship" title=" petrophysical relationship"> petrophysical relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water%20content" title=" soil water content"> soil water content</a> </p> <a href="https://publications.waset.org/abstracts/85923/comparison-of-petrophysical-relationship-for-soil-water-content-estimation-at-peat-soil-area-using-gpr-common-offset-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2318</span> Numerical Simulation and Laboratory Tests for Rebar Detection in Reinforced Concrete Structures using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Al-Soudani">Maha Al-Soudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Klysz"> Gilles Klysz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Paul%20Balayssac"> Jean-Paul Balayssac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to use Ground Penetrating Radar (GPR) as a non-destructive testing (NDT) method to increase its accuracy in recognizing the geometric reinforced concrete structures and in particular, the position of steel bars. This definition will help the managers to assess the state of their structures on the one hand vis-a-vis security constraints and secondly to quantify the need for maintenance and repair. Several configurations of acquisition and processing of the simulated signal were tested to propose and develop an appropriate imaging algorithm in the propagation medium to locate accurately the rebar. A subsequent experimental validation was used by testing the imaging algorithm on real reinforced concrete structures. The results indicate that, this algorithm is capable of estimating the reinforcing steel bar position to within (0-1) mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPR" title="GPR">GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinforced%20concrete%20structures" title=" Reinforced concrete structures"> Reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebar%20location." title=" Rebar location."> Rebar location.</a> </p> <a href="https://publications.waset.org/abstracts/34365/numerical-simulation-and-laboratory-tests-for-rebar-detection-in-reinforced-concrete-structures-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2317</span> Determines the Continuity of Void in Underground Mine Tunnel Using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Adisaputra%20Gumilang">Farid Adisaputra Gumilang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kucing Liar Underground Mine is a future mine of PT Freeport Indonesia PTFI that is currently being developed. In the development process, problems were found when blasting the tunnels; there were overbreak, and void occur caused by geological contact or poor rock conditions. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate the depth of rock mass yield within pillars. To prevent the potential hazard caused by void zones, geotechnical engineers must ensure the planned drift is mined in the best location where people can work safely. GPR, or Ground penetrating radar, is a geophysical method that can image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. The GPR survey measurements are conducted 48 meters along the drift that has a poor ground condition with 150MHz antenna with several angles (roof, wall, and floor). Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. In this paper, processing data using instantaneous amplitude to identify the void zone. In order to have a good interpretation and result, it combines with the geological information and borehole camera data, so the calibrated GPR data allows the geotechnical engineer to determine the safe location to change the drift location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground%20mine" title="underground mine">underground mine</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=borehole%20camera" title=" borehole camera"> borehole camera</a> </p> <a href="https://publications.waset.org/abstracts/166036/determines-the-continuity-of-void-in-underground-mine-tunnel-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2316</span> Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Sitorus">Eric Sitorus</a>, <a href="https://publications.waset.org/abstracts/search?q=Septian%20Prahastudhi"> Septian Prahastudhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgod%20Nainggolan"> Turgod Nainggolan</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Riyanto"> Erwin Riyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20caving" title="block caving">block caving</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=RQD" title=" RQD"> RQD</a> </p> <a href="https://publications.waset.org/abstracts/106097/delineating-concern-ground-in-block-caving-underground-mine-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2315</span> Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangwan%20Xu">Jiangwan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyu%20Ding"> Chunyu Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground-based%20radar" title="ground-based radar">ground-based radar</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20exploration" title=" lunar exploration"> lunar exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20imaging" title=" radar imaging"> radar imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=lunar%20surface%2Fsubsurface%20detection" title=" lunar surface/subsurface detection"> lunar surface/subsurface detection</a> </p> <a href="https://publications.waset.org/abstracts/190029/lunar-exploration-based-on-ground-based-radar-current-research-progress-and-future-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2314</span> Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Omar%20Faruq%20Howlader">Md Omar Faruq Howlader</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Pervez%20Sattar"> Tariq Pervez Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Dudley"> Sandra Dudley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot&rsquo;s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot&rsquo;s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR&rsquo;s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climbing%20robot" title="climbing robot">climbing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole%20antenna" title=" dipole antenna"> dipole antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar%20%28GPR%29" title=" ground penetrating radar (GPR)"> ground penetrating radar (GPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title=" mobile robots"> mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20GPR" title=" robotic GPR"> robotic GPR</a> </p> <a href="https://publications.waset.org/abstracts/45940/development-of-a-wall-climbing-robotic-ground-penetrating-radar-system-for-inspection-of-vertical-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2313</span> Efficient Subsurface Mapping: Automatic Integration of Ground Penetrating Radar with Geographic Information Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rauf%20R.%20Hussein">Rauf R. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Devon%20M.%20Ramey"> Devon M. Ramey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrating Ground Penetrating Radar (GPR) with Geographic Information Systems (GIS) can provide valuable insights for various applications, such as archaeology, transportation, and utility locating. Although there has been progress toward automating the integration of GPR data with GIS, fully automatic integration has not been achieved yet. Additionally, manually integrating GPR data with GIS can be a time-consuming and error-prone process. In this study, actual, real-world GPR applications are presented, and a software named GPR-GIS 10 is created to interactively extract subsurface targets from GPR radargrams and automatically integrate them into GIS. With this software, it is possible to quickly and reliably integrate the two techniques to create informative subsurface maps. The results indicated that automatic integration of GPR with GIS can be an efficient tool to map and view any subsurface targets in their appropriate location in a 3D space with the needed precision. The findings of this study could help GPR-GIS integrators save time and reduce errors in many GPR-GIS applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPR" title="GPR">GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR-GIS%2010" title=" GPR-GIS 10"> GPR-GIS 10</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20technology" title=" drone technology"> drone technology</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a> </p> <a href="https://publications.waset.org/abstracts/165895/efficient-subsurface-mapping-automatic-integration-of-ground-penetrating-radar-with-geographic-information-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2312</span> Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azin%20Shakibabarough">Azin Shakibabarough</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Valinejadshoubi"> Mojtaba Valinejadshoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20condition%20assessment" title="bridge condition assessment">bridge condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=NDE%20techniques" title=" NDE techniques"> NDE techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/108964/condition-assessment-of-reinforced-concrete-bridge-deck-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2311</span> Investigation of Utilizing L-Band Horn Antenna in Landmine Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20H.%20Abdelgwad">Ahmad H. Abdelgwad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Nashat"> Ahmed A. Nashat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR. &nbsp;One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=full%20wave%20analysis" title="full wave analysis">full wave analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=horn%20antenna%20design" title=" horn antenna design"> horn antenna design</a>, <a href="https://publications.waset.org/abstracts/search?q=landmine%20detection" title=" landmine detection"> landmine detection</a> </p> <a href="https://publications.waset.org/abstracts/68435/investigation-of-utilizing-l-band-horn-antenna-in-landmine-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2310</span> Application of GPR for Prospection in Two Archaeological Sites at Aswan Area, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Mohamed%20Abbas">Abbas Mohamed Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raafat%20El-Shafie%20Fat-Helbary"> Raafat El-Shafie Fat-Helbary</a>, <a href="https://publications.waset.org/abstracts/search?q=Karrar%20Omar%20El%20Fergawy"> Karrar Omar El Fergawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hamed%20Sayed"> Ahmed Hamed Sayed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration in archaeological area requires non-invasive methods, and hence the Ground Penetrating Radar (GPR) technique is a proper candidate for this task. GPR investigation is widely applied for searching for hidden ancient targets. So, in this paper GPR technique has been used in archaeological investigation. The aim of this study was to obtain information about the subsurface and associated structures beneath two selected sites at the western bank of the River Nile at Aswan city. These sites have archaeological structures of different ages starting from 6thand 12th Dynasties to the Greco-Roman period. The first site is called Nag’ El Gulab, the study area was 30 x 16 m with separating distance 2m between each profile, while the second site is Nag’ El Qoba, the survey method was not in grid but in lines pattern with different lengths. All of these sites were surveyed by GPR model SIR-3000 with antenna 200 MHz. Beside the processing of each profile individually, the time-slice maps have been conducted Nag’ El Gulab site, to view the amplitude changes in a series of horizontal time slices within the ground. The obtained results show anomalies may interpret as presence of associated tombs structures. The probable tombs structures similar in their depth level to the opened tombs in the studied areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title="ground penetrating radar">ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=archeology" title=" archeology"> archeology</a>, <a href="https://publications.waset.org/abstracts/search?q=Nag%E2%80%99%20El%20Gulab" title=" Nag’ El Gulab"> Nag’ El Gulab</a>, <a href="https://publications.waset.org/abstracts/search?q=Nag%E2%80%99%20El%20Qoba" title=" Nag’ El Qoba "> Nag’ El Qoba </a> </p> <a href="https://publications.waset.org/abstracts/35886/application-of-gpr-for-prospection-in-two-archaeological-sites-at-aswan-area-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2309</span> 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Tasker">Lee Tasker</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Karrech"> Ali Karrech</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeffrey%20Shragge"> Jeffrey Shragge</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Josh"> Matthew Josh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4D%20GPR" title="4D GPR">4D GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20geophysics" title=" engineering geophysics"> engineering geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20monitoring" title=" infrastructure monitoring"> infrastructure monitoring</a> </p> <a href="https://publications.waset.org/abstracts/77533/4d-monitoring-of-subsurface-conditions-in-concrete-infrastructure-prior-to-failure-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2308</span> Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicole%20M.%20Martino">Nicole M. Martino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck &ndash; the location where damage originates from.&nbsp; In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck&rsquo;s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20deck%20deterioration" title="bridge deck deterioration">bridge deck deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT%20of%20bridge%20decks" title=" NDT of bridge decks"> NDT of bridge decks</a> </p> <a href="https://publications.waset.org/abstracts/64735/reinforced-concrete-bridge-deck-condition-assessment-methods-using-ground-penetrating-radar-and-infrared-thermography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2307</span> Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Geophysical Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ime%20R.%20Udotong">Ime R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Justina%20I.%20R.%20Udotong"> Justina I. R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofonime%20U.%20M.%20John"> Ofonime U. M. John</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other oil companies operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria. This study was designed to delineate oil polluted sites in Ibeno, Nigeria using geophysical methods of electrical resistivity (ER) and ground penetrating radar (GPR). Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from high resistivity values and GPR profiles which clearly show the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas and the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively confirmed significant recent pollution of the study area with crude oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20investigations" title=" geophysical investigations"> geophysical investigations</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-polluted%20sites" title=" oil-polluted sites"> oil-polluted sites</a> </p> <a href="https://publications.waset.org/abstracts/31443/delineation-of-oil-polluted-sites-in-ibeno-lga-nigeria-using-geophysical-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2306</span> Comparing Different Frequency Ground Penetrating Radar Antennas for Tunnel Health Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Mungan">Can Mungan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Kilic"> Gokhan Kilic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural engineers and tunnel owners have good reason to attach importance to the assessment and inspection of tunnels. Regular inspection is necessary to maintain and monitor the health of the structure not only at the present time but throughout its life cycle. Detection of flaws within the structure, such as corrosion and the formation of cracks within the internal elements of the structure, can go a long way to ensuring that the structure maintains its integrity over the course of its life. Other issues that may be detected earlier through regular assessment include tunnel surface delamination and the corrosion of the rebar. One advantage of new technology such as the ground penetrating radar (GPR) is the early detection of imperfections. This study will aim to discuss and present the effectiveness of GPR as a tool for assessing the structural integrity of the heavily used tunnel. GPR is used with various antennae in frequency and application method (2 GHz and 500 MHz GPR antennae). The paper will attempt to produce a greater understanding of structural defects and identify the correct tool for such purposes. Conquest View with 3D scanning capabilities was involved throughout the analysis, reporting, and interpretation of the results. This study will illustrate GPR mapping and its effectiveness in providing information of value when it comes to rebar position (lower and upper reinforcement). It will also show how such techniques can detect structural features that would otherwise remain unseen, as well as moisture ingress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel" title="tunnel">tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20ingress" title=" moisture ingress"> moisture ingress</a>, <a href="https://publications.waset.org/abstracts/search?q=rebar%20position" title=" rebar position"> rebar position</a> </p> <a href="https://publications.waset.org/abstracts/136455/comparing-different-frequency-ground-penetrating-radar-antennas-for-tunnel-health-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2305</span> Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Park">Y. K. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Kim"> B. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Lee"> J. W. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Lee"> S. J. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20railroad" title="urban railroad">urban railroad</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20structures" title=" underground structures"> underground structures</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20subsidence" title=" ground subsidence"> ground subsidence</a>, <a href="https://publications.waset.org/abstracts/search?q=station%20inflow" title=" station inflow"> station inflow</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/60713/development-of-risk-management-system-for-urban-railroad-underground-structures-and-surrounding-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2304</span> Technology of Gyro Orientation Measurement Unit (Gyro Omu) for Underground Utility Mapping Practice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ruzlin%20Mohd%20Mokhtar">Mohd Ruzlin Mohd Mokhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, most operators who are working on projects for utilities such as power, water, oil, gas, telecommunication and sewerage are using technologies e.g. Total station, Global Positioning System (GPS), Electromagnetic Locator (EML) and Ground Penetrating Radar (GPR) to perform underground utility mapping. With the increase in popularity of Horizontal Directional Drilling (HDD) method among the local authorities and asset owners, most of newly installed underground utilities need to use the HDD method. HDD method is seen as simple and create not much disturbance to the public and traffic. Thus, it was the preferred utilities installation method in most of areas especially in urban areas. HDDs were installed much deeper than exiting utilities (some reports saying that HDD is averaging 5 meter in depth). However, this impacts the accuracy or ability of existing underground utility mapping technologies. In most of Malaysia underground soil condition, those technologies were limited to maximum of 3 meter depth. Thus, those utilities which were installed much deeper than 3 meter depth could not be detected by using existing detection tools. The accuracy and reliability of existing underground utility mapping technologies or work procedure were in doubt. Thus, a mitigation action plan is required. While installing new utility using Horizontal Directional Drilling (HDD) method, a more accurate underground utility mapping can be achieved by using Gyro OMU compared to existing practice using e.g. EML and GPR. Gyro OMU is a method to accurately identify the location of HDD thus this mapping can be used or referred to avoid those cost of breakdown due to future HDD works which can be caused by inaccurate underground utility mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyro%20Orientation%20Measurement%20Unit%20%28Gyro%20OMU%29" title="Gyro Orientation Measurement Unit (Gyro OMU)">Gyro Orientation Measurement Unit (Gyro OMU)</a>, <a href="https://publications.waset.org/abstracts/search?q=Horizontal%20Directional%20Drilling%20%28HDD%29" title=" Horizontal Directional Drilling (HDD)"> Horizontal Directional Drilling (HDD)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ground%20Penetrating%20Radar%20%28GPR%29" title=" Ground Penetrating Radar (GPR)"> Ground Penetrating Radar (GPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Electromagnetic%20Locator%20%28EML%29" title=" Electromagnetic Locator (EML)"> Electromagnetic Locator (EML)</a> </p> <a href="https://publications.waset.org/abstracts/128215/technology-of-gyro-orientation-measurement-unit-gyro-omu-for-underground-utility-mapping-practice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2303</span> Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gherbi%20Nabil">Gherbi Nabil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20sensing" title="compressive sensing">compressive sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20complex%20data" title=" raw complex data"> raw complex data</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title=" synthetic aperture radar"> synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMM" title=" ADMM"> ADMM</a> </p> <a href="https://publications.waset.org/abstracts/191958/efficient-ground-targets-detection-using-compressive-sensing-in-ground-based-synthetic-aperture-radar-sar-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2302</span> A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Jaysaval">Vinod Kumar Jaysaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Agarwal"> Prateek Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20radar" title="airborne radar">airborne radar</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20zone" title=" blind zone"> blind zone</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a> </p> <a href="https://publications.waset.org/abstracts/13998/a-generalized-model-for-performance-analysis-of-airborne-radar-in-clutter-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2301</span> Surface and Subsurface Characterization of a Fault along Boso-Boso River, Rizal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Jan%20Rafael%20C.%20Sicam">Marco Jan Rafael C. Sicam</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Daniella%20C.%20Yambao"> Maria Daniella C. Yambao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Philippines is a tectonically active archipelagic country situated near the Circum-Pacific Belt. Hence, seismic hazard assessments are important in the nation-building. In 2014, the Philippines Institute of Volcanology and Seismology (PHIVOLCS) mapped a 12-km NW-trending unnamed active fault near Boso-Boso River, Rizal. Given the limited nature of their technical report, they would like to further consolidate relevant data about this fault. As such, this study aims to characterize the surface and subsurface expression of the fault along Boso-Boso River using rangefront morphology, structural criteria, and ground penetrating radar. This fault is subdivided into two segments: the first segment located in the city of Antipolo is mainly manifested in the upper Kinabuan Formation and terminating near Mt. Qutago, and the second segment in Baras, Pinugay, Rizal cuts through recent fluvial deposits and to the Guadalupe Formation. IfSAR-derived DTM data reveals the morphological expression of the fault defined by offset streams and ridges, linear sidehill valleys, and linear valleys. Fault gouges, fault breccia, transtentional flower structures, slickensides, and other shear sense markers observed in the units of the upper Cretaceous Kinabuan Formation indicate a sinistral sense of displacement. GPR radargram profiles revealed the presence of displacement in reflectors at 3-5 meters below the surface which may be suggestive of the fault within the area. Finally, the fault in Boso-Boso river may be a segment of the larger sinistral Montalban Fault in the north or largely affected by the movement from the Marikina Valley Fault System. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NW%20unnamed%20fault" title="NW unnamed fault">NW unnamed fault</a>, <a href="https://publications.waset.org/abstracts/search?q=range-front%20morphology" title=" range-front morphology"> range-front morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20sense%20markers" title=" shear sense markers"> shear sense markers</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20radar" title=" ground penetrating radar"> ground penetrating radar</a>, <a href="https://publications.waset.org/abstracts/search?q=boso-boso%20river" title=" boso-boso river"> boso-boso river</a>, <a href="https://publications.waset.org/abstracts/search?q=antipolo" title=" antipolo"> antipolo</a> </p> <a href="https://publications.waset.org/abstracts/180046/surface-and-subsurface-characterization-of-a-fault-along-boso-boso-river-rizal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2300</span> Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chulsang%20Yoo">Chulsang Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gildo%20Kim"> Gildo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSU-HIDRO%20algorithm" title="CSU-HIDRO algorithm">CSU-HIDRO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20polarization%20radar" title=" dual polarization radar"> dual polarization radar</a>, <a href="https://publications.waset.org/abstracts/search?q=JPOLE%20algorithm" title=" JPOLE algorithm"> JPOLE algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20rainfall%20estimation%20algorithm" title=" radar rainfall estimation algorithm"> radar rainfall estimation algorithm</a> </p> <a href="https://publications.waset.org/abstracts/46874/evaluation-of-dual-polarization-rainfall-estimation-algorithm-applicability-in-korea-a-case-study-on-biseulsan-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2299</span> Relation of Radar and Hail Parameters in the Continetal Part of Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damir%20Po%C4%8Dakal">Damir Počakal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continental part Croatia is exposed, mainly in the summer months, to the frequent occurrence of severe thunderstorms and hail. In the 1960s, aiming to protect and reduce the damage, an operational hail suppression system was introduced in that area. The current protected area is 26800 km2 and has about 580 hail suppression stations (rockets and ground generators) which are managed with 8 radar centres (S-band radars). In order to obtain objective and precise hailstone measurement for different research studies, hailpads were installed on all this stations in 2001. Additionally the dense hailpad network with the dimensions of 20 km x 30 km (1 hailpad per 4 km2), was established in the area with the highest average number of days with hail in Croatia in 2002. This paper presents analysis of relation between radar measured parameters of Cb cells in the time of hail fall with physical parameters of hail (max. diameter, number of hail stones and kinetic energy) measured on hailpads in period 2002 -2014. In addition are compared radar parameters of Cb cells with and without hail on the ground located at the same time over the polygon area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cb%20cell" title="Cb cell">Cb cell</a>, <a href="https://publications.waset.org/abstracts/search?q=hail" title=" hail"> hail</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=hailpad" title=" hailpad"> hailpad</a> </p> <a href="https://publications.waset.org/abstracts/29183/relation-of-radar-and-hail-parameters-in-the-continetal-part-of-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2298</span> Liquefaction Potential Assessment Using Screw Driving Testing and Microtremor Data: A Case Study in the Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Daag">Arturo Daag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is enhancing its liquefaction hazard map towards a detailed probabilistic approach using SDS and geophysical data. Target sites for liquefaction assessment are public schools in Metro Manila. Since target sites are in highly urbanized-setting, the objective of the project is to conduct both non-destructive geotechnical studies using Screw Driving Testing (SDFS) combined with geophysical data such as refraction microtremor array (ReMi), 3 component microtremor Horizontal to Vertical Spectral Ratio (HVSR), and ground penetrating RADAR (GPR). Initial test data was conducted in liquefaction impacted areas from the Mw 6.1 earthquake in Central Luzon last April 22, 2019 Province of Pampanga. Numerous accounts of liquefaction events were documented areas underlain by quaternary alluvium and mostly covered by recent lahar deposits. SDS estimated values showed a good correlation to actual SPT values obtained from available borehole data. Thus, confirming that SDS can be an alternative tool for liquefaction assessment and more efficient in terms of cost and time compared to SPT and CPT. Conducting borehole may limit its access in highly urbanized areas. In order to extend or extrapolate the SPT borehole data, non-destructive geophysical equipment was used. A 3-component microtremor obtains a subsurface velocity model in 1-D seismic shear wave velocity of the upper 30 meters of the profile (Vs30). For the ReMi, 12 geophone array with 6 to 8-meter spacing surveys were conducted. Microtremor data were computed through the Factor of Safety, which is the quotient of Cyclic Resistance Ratio (CRR) and Cyclic Stress Ratio (CSR). Complementary GPR was used to study the subsurface structure and used to inferred subsurface structures and groundwater conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=screw%20drive%20testing" title="screw drive testing">screw drive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=microtremor" title=" microtremor"> microtremor</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR" title=" ground penetrating RADAR"> ground penetrating RADAR</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a> </p> <a href="https://publications.waset.org/abstracts/123754/liquefaction-potential-assessment-using-screw-driving-testing-and-microtremor-data-a-case-study-in-the-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2297</span> Application of Ground Penetrating Radar and Light Falling Weight Deflectometer in Ballast Quality Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Cafiso">S. Cafiso</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Capace"> B. Capace</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Di%20Graziano"> A. Di Graziano</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20D%E2%80%99Agostino"> C. D’Agostino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systematic monitoring of the trackbed is necessary to assure safety and quality of service in the railway system. Moreover, to produce effective management of the maintenance treatments, the assessment of bearing capacity of the railway trackbed must include ballast, sub-ballast and subgrade layers at different depths. Consequently, there is an increasing interest in obtaining a consistent measure of ballast bearing capacity with no destructive tests (NDTs) able to work in the physical and time restrictions of railway tracks in operation. Moreover, in the case of the local railway with reduced gauge, the use of the traditional high-speed track monitoring systems is not feasible. In that framework, this paper presents results from in site investigation carried out on ballast and sleepers with Ground Penetrating Radar (GPR) and Light Falling Weight Deflectometer (LWD). These equipment are currently used in road pavement maintenance where they have shown their reliability and effectiveness. Application of such Non-Destructive Tests in railway maintenance is promising but in the early stage of the investigation. More specifically, LWD was used to estimate the stiffness of ballast and sleeper support, as well. LWD, despite the limited load (6 kN in the trial test) applied directly on the sleeper, was able to detect defects in the bearing capacity at the Sleeper/Ballast interface. A dual frequency GPR was applied to detect the presence of layers’ discontinuities at different depths due to fouling phenomena that are the main causes of changing in the layer dielectric proprieties within the ballast thickness. The frequency of 2000Mhz provided high-resolution data to approximately 0.4m depth, while frequency of 600Mhz showed greater depth penetration up to 1.5 m. In the paper literature review and trial in site experience are used to identify Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) of the application of GPR and LWD for the assessment of bearing capacity of railway track-bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=LWD" title=" LWD"> LWD</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20destructive%20test" title=" no destructive test"> no destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20track" title=" railway track"> railway track</a> </p> <a href="https://publications.waset.org/abstracts/108589/application-of-ground-penetrating-radar-and-light-falling-weight-deflectometer-in-ballast-quality-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2296</span> Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Hajri">Hatem Hajri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed-Cherif%20Rahal"> Mohamed-Cherif Rahal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20truth" title="ground truth">ground truth</a>, <a href="https://publications.waset.org/abstracts/search?q=Hungarian%20algorithm" title=" Hungarian algorithm"> Hungarian algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=lidar%20Radar%20data%20fusion" title=" lidar Radar data fusion"> lidar Radar data fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20nearest%20neighbor%20filter" title=" global nearest neighbor filter"> global nearest neighbor filter</a> </p> <a href="https://publications.waset.org/abstracts/95451/real-time-lidar-and-radar-high-level-fusion-for-obstacle-detection-and-tracking-with-evaluation-on-a-ground-truth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2295</span> Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Shafiei%20Dizaji">Mehrdad Shafiei Dizaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Azari"> Hoda Azari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physics-informed%20neural%20networks" title="physics-informed neural networks">physics-informed neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ground-penetrating%20radar%20%28GPR%29" title=" ground-penetrating radar (GPR)"> ground-penetrating radar (GPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=NDE" title=" NDE"> NDE</a>, <a href="https://publications.waset.org/abstracts/search?q=ConvLSTM" title=" ConvLSTM"> ConvLSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20driven" title=" data driven"> data driven</a> </p> <a href="https://publications.waset.org/abstracts/188443/predicting-subsurface-abnormalities-growth-using-physics-informed-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2294</span> Analysis of Weather Radar Data for the Cloud Seeding in Korea, 2018</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonghun%20Ro">Yonghun Ro</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Wan%20Cha"> Joo-Wan Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghee%20Chae"> Sanghee Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Areum%20Ko"> Areum Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Woonseon%20Jung"> Woonseon Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Chul%20Ha"> Jong-Chul Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> National Institute of Meteorological Science (NIMS) in South Korea has performed the cloud seeding to support the field of cloud physics. This is to determine the precipitation occurrence analyzing the changes in the microphysical schemes of clouds. NIMS conducted 12 times of cloud seeding in the lower height of the troposphere at Kangwon and Kyunggi provinces throughout 2018. The change in the reflectivity of the weather radar was analyzed to verify the enhancement of precipitation according to the cloud seeding in this study. First, the natural system in the near of the target area was separated to clear the seeding effect. The radar reflectivity in the point of ground gauge station was extracted in every 10 minutes and the increased values during the reaction time of cloud particles and seeding materials were estimated as a seeding effect considering the cloud temperature, wind speed and direction, and seeding line that the aircraft had passed by. The radar reflectivity affected by seeding materials was showed an increment of 5 to 10 dBZ, and enhanced precipitation cloud was also detected in the 11 cases of cloud seeding experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20seeding" title="cloud seeding">cloud seeding</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20radar" title=" weather radar"> weather radar</a>, <a href="https://publications.waset.org/abstracts/search?q=seeding%20effect" title=" seeding effect"> seeding effect</a> </p> <a href="https://publications.waset.org/abstracts/112767/analysis-of-weather-radar-data-for-the-cloud-seeding-in-korea-2018" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2293</span> Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaz%C4%B1m%20Kaba">Kazım Kaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdem%20Erdi"> Erdem Erdi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akif%20Erdo%C4%9Fan"> M. Akif Erdoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mustafa%20Kand%C4%B1rmaz"> H. Mustafa Kandırmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteosat" title="meteosat">meteosat</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-gauge" title=" rain-gauge"> rain-gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/61709/evaluation-of-satellite-and-radar-rainfall-product-over-seyhan-plain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2292</span> Impairments Correction of Six-Port Based Millimeter-Wave Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dan%20Ohev%20Zion">Dan Ohev Zion</a>, <a href="https://publications.waset.org/abstracts/search?q=Alon%20Cohen"> Alon Cohen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=FMCW%20Radar" title=" FMCW Radar"> FMCW Radar</a>, <a href="https://publications.waset.org/abstracts/search?q=IQ%20mismatch" title=" IQ mismatch"> IQ mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20port" title=" six port"> six port</a> </p> <a href="https://publications.waset.org/abstracts/117510/impairments-correction-of-six-port-based-millimeter-wave-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2291</span> Retrospective Data Analysis of Penetrating Injuries Admitted to Jigme Dorji Wangchuck National Referral Hospital (JDWNRH), Thimphu, Bhutan, Due to Traditional Sports over a Period of 3 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Kelzang">Sonam Kelzang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Penetrating injuries as a result of traditional sports (Archery and Khuru) are commonly seen in Bhutan. To our knowledge, there is no study carried out looking into the data of penetrating injuries due to traditional sports. Aim: This is a retrospective analysis of cases of penetrating injuries as a result of traditional sports admitted to JDWNRH over the last 3 years to draw an inference on the pattern of injury and associated morbidity and mortality. Method: Data on penetrating injuries related to traditional sports (Archery and Khuru) were collected and reviewed over the period of 3 years. Assault cases were excluded. For each year we analysed age, sex, parts of the body affected, agent of injury and whether admission was required or not. Results: Out of the total 44 victims of penetrating injury by traditional sports (Archery and Khuru) between 2013 and 2015 (average of 15 cases of penetrating injuries per year). Eighty-five percent were male and 15% were female. Their age ranged from 4 yrs to 62 years. Sixty-one percent of the victims were in the working age group of 19-58 years; 30% of the victims were referred from various district hospitals; 38% of the victims needed admission; 42 % of the victims suffered injury to the head; and 54% of the injuries were caused by Khuru. Conclusion: Penetrating injuries due to traditional sports admitted to JDWNRH, Thimphu, remained same over the three years period despite safety regulations in place. Although there were no deaths during the last three years, morbidity still remains high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=archery" title="archery">archery</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhutan" title=" Bhutan"> Bhutan</a>, <a href="https://publications.waset.org/abstracts/search?q=Khuru" title=" Khuru"> Khuru</a>, <a href="https://publications.waset.org/abstracts/search?q=darts" title=" darts"> darts</a> </p> <a href="https://publications.waset.org/abstracts/59907/retrospective-data-analysis-of-penetrating-injuries-admitted-to-jigme-dorji-wangchuck-national-referral-hospital-jdwnrh-thimphu-bhutan-due-to-traditional-sports-over-a-period-of-3-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=77">77</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ground%20penetrating%20RADAR&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10