CINXE.COM

Search results for: infrastructure transportation sustainability

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: infrastructure transportation sustainability</title> <meta name="description" content="Search results for: infrastructure transportation sustainability"> <meta name="keywords" content="infrastructure transportation sustainability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="infrastructure transportation sustainability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="infrastructure transportation sustainability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5441</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: infrastructure transportation sustainability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5441</span> Assessment of Negative Impacts Affecting Public Transportation Modes and Infrastructure in Burgersfort Town towards Building Urban Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ntloana%20Hlabishi%20Peter">Ntloana Hlabishi Peter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of public transportation modes and qualitative infrastructure is a burning issue that affects urban sustainability. Public transportation is indispensable in providing adequate transportation means to people at an affordable price, and it promotes public transport reliance. Burgersfort town has a critical condition on the urban public transportation infrastructure which affects the bus and taxi public transport modes and the existing infrastructure. The municipality is regarded as one of the mining towns in Limpopo Province considering the availability of mining activities and proposal on establishment of a Special Economic Zone (SEZ). The study aim is to assess the efficacy of current public transportation infrastructure and to propose relevant recommendations that will unlock the possibility of future supportable public transportation systems. The Key Informant Interview (KII) was used to acquire data on the views from commuters and stakeholders involved. There KII incorporated three relevant questions in relation to services rendered in public transportation. Relevant literature relating to public transportation modes and infrastructure revealed the imperatives of public transportation infrastructure, and relevant legislation was reviewed concerning public transport infrastructure. The finding revealed poor conditions on the public transportation ranks and also inadequate parking space for public transportation modes. The study reveals that 100% of people interviewed were not satisfied with the condition of public transportation infrastructure and 100% are not satisfied with the services offered by public transportation sectors. The findings revealed that the municipality is the main player who can upgrade the existing conditions of public transportation. The study recommended that an intermodal transportation facility must be established to resolve the emerging challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20transportation" title="public transportation">public transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=modes" title=" modes"> modes</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20sustainability" title=" urban sustainability"> urban sustainability</a> </p> <a href="https://publications.waset.org/abstracts/129975/assessment-of-negative-impacts-affecting-public-transportation-modes-and-infrastructure-in-burgersfort-town-towards-building-urban-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5440</span> Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Bella%20Octoria%20Bella">Nur Bella Octoria Bella</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayomi%20Dita%20Rarasati"> Ayomi Dita Rarasati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transportation%20sustainability" title="transportation sustainability">transportation sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20transportation" title=" railway transportation"> railway transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=DKI%20Jakarta" title=" DKI Jakarta"> DKI Jakarta</a> </p> <a href="https://publications.waset.org/abstracts/145104/evaluation-of-railway-network-and-service-performance-based-on-transportation-sustainability-in-dki-jakarta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5439</span> Assessing Sustainability Dimensions of Transportation as a Critical Infrastructure: Jordan as a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malak%20M.%20Shatnawi">Malak M. Shatnawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrastructure is the fundamental facility that plays an important part in socio-economic development for modern societies, if such sector is well planned, managed by decision makers in a way that is compatible with the population growth, safety, and national security needs; it will enrich progress, prosperity, awareness, social and economic welfare for any country. Infrastructure is the most important aspect of life because it can provide materials, products, and services that will improve and facilitate living conditions and maintain sustainability at the same time, and in order to study critical infrastructure, in general, we must think sustainability. Otherwise there will be a significant gap. The planning processes for sustainability include urban infrastructure and public transportation are considered the most important sectors for economic development for both developed and developing countries as they are linked to the civilizational and urban development, meanwhile, choosing the appropriate transportation mode that will provide a good level of service, and increase the satisfaction of the potential users is a difficult task. This research paper tries to assess where is Jordan located vs. each transportation sustainability dimensions in aspects related to social, economic and environmental dimensions based on (Zietsman et al. 2006) adopted model for sustainability transportation infrastructure. Measures of performance indicators for each dimensional goal were traced and supported with needed data, figures and statistical findings. The study uses analytical, descriptive style and methodology based on different references and previous studies from secondary data sources to support the case. Recommendations for enhancing sustainability were concluded, and future reform directions were proposed which can be applied to Jordan and generalized for other developing countries with similar circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability" title="infrastructure transportation sustainability">infrastructure transportation sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a>, <a href="https://publications.waset.org/abstracts/search?q=social" title=" social"> social</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a> </p> <a href="https://publications.waset.org/abstracts/93191/assessing-sustainability-dimensions-of-transportation-as-a-critical-infrastructure-jordan-as-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5438</span> Sustainable Development Variables to Assess Transport Infrastructure in Remote Destinations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20J.%20Dimitriou">Dimitrios J. Dimitriou</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20F.%20Sartzetaki"> Maria F. Sartzetaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment variables of the accessibility and the sustainability of access infrastructure for remote regions may vary significant by location and a wide range of factors may affect the decision process. In this paper, the environmental disturbance implications of transportation system to key demand and supply variables impact the economic system in remote destination are descripted. According to a systemic approach, the key sustainability variables deals with decision making process that have to be included in strategic plan for the critical transport infrastructure development and their relationship to regional socioeconomic system are presented. The application deals with the development of railway in remote destinations, where the traditional CBA not include the external cost generated by the environmental impacts that may have a range of diverse impacts on transport infrastructure and services. The analysis output provides key messages to decision and policy makers towards sustainable development of transport infrastructure, especially for remote destinations where accessibility is a key factor of regional economic development and social stability. The key conclusion could be essential useful for relevant applications in remote regions in the same latitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20in%20remote%20regions" title="sustainable development in remote regions">sustainable development in remote regions</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20infrastructure" title=" transport infrastructure"> transport infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20planning" title=" strategic planning"> strategic planning</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20variables" title=" sustainability variables"> sustainability variables</a> </p> <a href="https://publications.waset.org/abstracts/56894/sustainable-development-variables-to-assess-transport-infrastructure-in-remote-destinations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5437</span> A Case Study Approach to the Rate the Eco Sensitivity of Green Infrastructure Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Saroop">S. Saroop</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Allopi"> D. Allopi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the area of civil infrastructure, there is an urgent need to apply technologies that deliver infrastructure sustainably in a way that is cost-effective. Civil engineering projects can have a significant impact on ecological and social systems if not correctly planned, designed and implemented. It can impact climate change by addressing the issue of flooding and sustainability. Poor design choices now can result in future generations to live in a climate with depleted resources and without green spaces. The objectives of the research study were to rate the sensitivity of various greener infrastructure technologies that can be used in township infrastructure, at the various stages of the project. This paper discusses the Green Township Infrastructure Design Toolkit, that is used to rate the sustainability of infrastructure service projects. Various case studies were undertaken on a range of infrastructure projects to test the sensitivity of various design solution against sustainability criteria. The Green reporting tools ensure efficient, economical and sustainable provision of infrastructure services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-efficiency" title="eco-efficiency">eco-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title=" green infrastructure"> green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20design" title=" infrastructure design"> infrastructure design</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/79903/a-case-study-approach-to-the-rate-the-eco-sensitivity-of-green-infrastructure-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5436</span> Sustainability as a Criterion in the Reconstruction of Libya’s Public Transport Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitam%20Emhemad">Haitam Emhemad</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Agnew"> Brian Agnew</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Greenwood"> David Greenwood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst the many priorities facing Libya following the 2011 uprising is the provision of a transport infrastructure that will meet the nation’s needs and not undermine its prospects for economic prosperity as with many developing economies non-technical issues such as management, planning and financing are the major barriers to the efficient and effective provision of transport infrastructure. This is particularly true in the case of the effective incorporation of sustainability criteria, and the research upon which this paper is based involves the examination of alternative ways of approaching this problem. It is probably fair to say that criteria that relate to sustainability have not, historically, featured strongly in Libya’s approach to the development of its transport infrastructure. However, the current reappraisal of how best to redevelop the country’s transport infrastructure that has been afforded by recent events may offer the opportunity to alter this. The research examines recent case studies from a number of countries to explore ways in which sustainability has been included as a criterion for planning and procurement decisions. There will also be an in-depth investigation into the Libyan planning and legislative context to examine the feasibility of the introduction of such sustainability criteria into the process of planning and procurement of Libya’s transport infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Libya%20reconstruction" title="Libya reconstruction">Libya reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20criteria" title=" sustainability criteria"> sustainability criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20infrastructure" title=" transport infrastructure"> transport infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transport" title=" public transport"> public transport</a> </p> <a href="https://publications.waset.org/abstracts/11938/sustainability-as-a-criterion-in-the-reconstruction-of-libyas-public-transport-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5435</span> Sustainability Rating System for Infrastructure Projects in UAE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrutha%20Venugopal">Amrutha Venugopal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabee%20Rustum"> Rabee Rustum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In spite of huge investments and the vital role infrastructure plays in the economy of UAE, the country has not yet developed an assessment scheme to measure the sustainability of infrastructure projects/development. The aim of this study was to develop a sustainability rating system for infrastructure projects in UAE using weighted indicator scoring. The identification of the list of 66 indicators was done by content analysis. The sources of content analysis were from government guidelines, research literature and sustainability rating system for infrastructure projects namely BCA Greenmark for Infrastructure (Singapore), ISCA (Australia) and Envision (USA). These indicators were shortlisted based on their relevance in the UAE. A mixture of qualitative and quantitative research methods is utilized to find the weightage to be applied to the indicators and to find suggestive measures to improve infrastructure sustainability in this region. Interviews and surveys were conducted with a good mix of experts from the industry. The data collected from the interviews were collated to provide suggestive measures for improving infrastructure sustainability. The collected survey data were analyzed using statistical analysis techniques to find the indicator weighing. The indicators were shortlisted by 75% to minimize the effort and investment into the process. The weighing of the deleted indicators was distributed among the critical clusters identified by Pareto analysis. Finally a simple Microsoft Excel tool was developed as the rating tool by using the calculated weighing for the indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title="infrastructure">infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=rating%20system" title=" rating system"> rating system</a>, <a href="https://publications.waset.org/abstracts/search?q=suggestive%20measures" title=" suggestive measures"> suggestive measures</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=UAE" title=" UAE"> UAE</a> </p> <a href="https://publications.waset.org/abstracts/39523/sustainability-rating-system-for-infrastructure-projects-in-uae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5434</span> Investigation of Suitable Linkage System for Transportation Sustainability: The Instance of Bursa in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvan%20Ender">Elvan Ender</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozge%20Celik"> Ozge Celik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation systems play a vital role in access and egress in our lives. Concerns about environmental quality, social equity, economic vitality, and the threat of climate change have converged to produce a growing interest in the concept of sustainability, sustainable development, and sustainable transportation. Cities should respect nature, consider the urban ecological environment as an asset, integrate environmental issues into urban planning and administration, and accelerate the transition to sustainable development. This paper reviews current pedestrian and bike transportation in Bursa and proves the effects of unbalanced distribution to neighbourhoods of this presence. In this way creating proposal map for walking and bicycling to constitute a preliminary base for the physical urban planning of Bursa, has been aimed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bursa" title="Bursa">Bursa</a>, <a href="https://publications.waset.org/abstracts/search?q=proposal%20map" title=" proposal map"> proposal map</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/51383/investigation-of-suitable-linkage-system-for-transportation-sustainability-the-instance-of-bursa-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5433</span> Assessment of Intra-City Road Infrastructure in Ado-Ekiti, Ekiti State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Kemisola%20Kehinde">Aruna Kemisola Kehinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyinloye%20Michael%20Ajide"> Oyinloye Michael Ajide</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboluje%20Oluwafemi%20Bolarinwa"> Aboluje Oluwafemi Bolarinwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of the nation's overall growth is directly impacted by the vital substructure of the transportation system. The majority of developing countries experience issues with road transportation, including limited and low-quality infrastructure. The study assessed intra-city road infrastructure in Ado-Ekiti with a view to identifying its adequacy and functionality for efficient transport in the town. To this end, the study examined the locations of the road infrastructure, characteristics of the road infrastructure, and condition of the road infrastructure. A systematic random sampling method was adopted to select respondents for the study. Data were sourced from both primary and secondary sources. A 2.5% of 20,160 households, amounting to 503 households, was used as the sample size. Data analysis was based on responses from 500 questionnaires retrieved, and the data were analyzed using descriptive statistics. The results of this study showed that based on the locations of road infrastructure, disparity exists in the distribution of infrastructure amongst the major roads. Inferences from the results gathered also demonstrated that the infrastructure that is available is very much less than the non-available infrastructure. About 50% of the respondents are satisfied that the condition of road infrastructure in Ado-Ekiti is fair. The study's recommendations for the Ekiti state government include quantifying the number of existing road infrastructure, establishing a state maintenance board to expedite their renovation, and diversifying its goals for providing road infrastructure through public-private partnership (PPP) agreements with the private sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20transportation" title="road transportation">road transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=intra-city" title=" intra-city"> intra-city</a> </p> <a href="https://publications.waset.org/abstracts/187409/assessment-of-intra-city-road-infrastructure-in-ado-ekiti-ekiti-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5432</span> An Index to Measure Transportation Sustainable Performance in Construction Projects </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sareh%20Rajabi">Sareh Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Anjamrooz"> Taha Anjamrooz</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Bheiry"> Salwa Bheiry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuous increase in the world population, resource shortage and the warning of climate change cause various environmental and social issues to the world. Thus, sustainability concept is much needed nowadays. Organizations are progressively falling under strong worldwide pressure to integrate sustainability practices into their project decision-making development. Construction projects in the industry are amongst the most significant, since it is one of the biggest divisions and of main significance for the national economy and hence has a massive effect on the environment and society. So, it is important to discover approaches to incorporate sustainability into the management of those projects. This study presents a combined sustainability index of projects with sustainable transportation which has been formed as per a comprehensive literature review and survey study. Transportation systems enable the movement of goods and services worldwide, and it is leading to economic growth and creating jobs while creating negative impacts on the environment and society. This research is study to quantify the sustainability indicators, through 1) identifying the importance of sustainable transportation indicators that are based on the sustainable practices used for the construction projects and 2) measure the effectiveness of practices through these indicators on the three sustainable pillars. A total 26 sustainability indicators have been selected and grouped under each related sustainability pillars. A survey was used to collect the opinion about the sustainability indicators by a scoring system. A combined sustainability index considering three sustainable pillars can be helpful in evaluating the transportation sustainable practices of a project and making decisions regarding project selection. In addition to focus on the issue of financial resource allocation in a project selection, the decision-maker could take into account the sustainability as an important key in addition to the project’s return and risk. The purpose of this study is to measure the performance of transportation sustainability which allow companies to assess multiple projects selection. This is useful to decision makers to rank and focus more on future sustainable projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20transportation" title="sustainable transportation">sustainable transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20performances" title=" transportation performances"> transportation performances</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20indicators" title=" sustainable indicators"> sustainable indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction%20practice" title=" sustainable construction practice"> sustainable construction practice</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/128123/an-index-to-measure-transportation-sustainable-performance-in-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5431</span> Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dan%20Han">Dan Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukun%20Zhang"> Yukun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Zheng"> Jie Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Zhang"> Rui Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20road%20economic%20belt" title=" silk road economic belt"> silk road economic belt</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20infrastructure" title=" transportation infrastructure"> transportation infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/81065/development-of-solar-energy-resources-for-land-along-the-transportation-infrastructure-taking-the-lan-xin-railway-in-the-silk-road-economic-belt-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5430</span> Evaluation of Cirata Reservoir Sustainability Using Multi Dimensionalscaling (MDS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kholil%20Kholil">Kholil Kholil</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniwidayati"> Aniwidayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MDS (Multi-Dimensional Scaling) is one method that has been widely used to evaluate the use of natural resources. By using Raffish software tool, we will able to analyze sustainability level of the natural resources use. This paper will discuss the level of sustainability of the reservoir using MDS (Multi-Dimensional Scaling) based on five dimensions: (1) Ecology & Layout, (2) Economics, (3) Social & Culture, (4) Regulations & Institutional, and (5) Infrastructure and Technology. MDS analysis results show that the dimension of ecological and layout, institutional and the regulation are lack of sustainability due to the low index score of 45.76 and 42.24. While for the economic, social and culture, and infrastructure and technology dimension reach each score of 63.12, 64.42, and 68.64 (only the sufficient sustainability category). It means that the sustainability performance of Cirata Reservoir seriously threatened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MDS" title="MDS">MDS</a>, <a href="https://publications.waset.org/abstracts/search?q=cirata%20reservoir" title=" cirata reservoir"> cirata reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=carrying%20capacity" title=" carrying capacity"> carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20index" title=" sustainability index"> sustainability index</a> </p> <a href="https://publications.waset.org/abstracts/30764/evaluation-of-cirata-reservoir-sustainability-using-multi-dimensionalscaling-mds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5429</span> Progress Toward More Resilient Infrastructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Golalipour">Amir Golalipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, resilience emerged as an important topic in transportation infrastructure practice, planning, and design to address the myriad stressors of future climate facing the Nation. Climate change has increased the frequency of extreme weather events and also causes climate and weather patterns to diverge from historic trends, culminating in circumstances where transportation infrastructure and assets are operating outside the scope of their design. To design and maintain transportation infrastructure that can continue meeting objectives over the infrastructure’s design life, these systems must be made adaptable to the changing climate by incorporating resilience wherever practically and financially feasible. This study is focused on the adaptation strategies and incorporation of resilience in infrastructure construction, maintenance, rehabilitation, and preservation processes. This study will include highlights from some of the recent FHWA activities on resilience. This study describes existing resilience planning and decision-making practices related to transportation infrastructure; mechanisms to identify, analyze, and prioritize adaptation options; and the strain that future climate and extreme weather event pressures place on existing transportation assets and the stressors these systems face for both single and combined stressor scenarios. Results of two case studies from Transportation Engineering Approaches to Climate Resiliency (TEACR) projects with focus on temperature and precipitation impacts on transportation infrastructures will be presented. These case studies looked at the impact of infrastructure performance using future temperature and precipitation compared to traditional climate design parameters. The research team used the adaptation decision making assessment and Coupled Model Intercomparison Project (CMIP) processing tool to determine which solution is best to pursue. The CMIP tool provided project climate data for temperature and precipitation which then could be incorporated into the design procedure to estimate the performance. As a result, using the future climate scenarios would impact the design. These changes were noted to have only a slight increase in costs, however it is acknowledged that network wide these costs could be significant. This study will also focus on what we have learned from recent storms, floods, and climate related events that will help us be better prepared to ensure our communities have a resilient transportation network. It should be highlighted that standardized mechanisms to incorporate resilience practices are required to encourage widespread implementation, mitigate the effects of climate stressors, and ensure the continuance of transportation systems and assets in an evolving climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation%20strategies" title="adaptation strategies">adaptation strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20events" title=" extreme events"> extreme events</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20infrastructure" title=" transportation infrastructure"> transportation infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/194652/progress-toward-more-resilient-infrastructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5428</span> Effect of Urban Solid Waste Management Practices on the Sustainability of Urban Infrastructure in Sokoto Metropolis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rilwanu">Rilwanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bello"> Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Usmn%20Bello%20Saad"> Usmn Bello Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Umar%20Yaro"> Hamza Umar Yaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Isyka%20Ibrahim"> Isyka Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20Oluwole"> Adebayo Oluwole</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimoh%20Abdurrahman"> Jimoh Abdurrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban solid waste management is a critical issue affecting the sustainability of urban infrastructure globally. In rapidly growing cities like Sokoto metropolis inefficient waste management practices led to significant environmental and economic challenges. The research aimed at assessing the effect of waste management practices on the sustainability of urban infrastructure in Sokoto. It also includes assessing the current state of solid waste management practices and its impact on the sustainability of sokoto urban infrastructure. The methodology adopted both primary and secondary sources of data. The targeted population include the staff of SUDA, STEPA and some of the resident in the metropolis. Descriptive method was adopted in the analysis and presentation of data. The study revealed that the waste management practice adopted is solid metropolis was very poor as its associated with poor funding, no availability of sufficient vehicles, bad attitude of resident upon waste disposal which led to blockage of streets and water channels which can subsequently lead to flood. The study recommended that the state government need to increase in funding the relevant authority and also provide the waste dumping sites as well as modern vehicles and equipment to ensure effective solid waste management and disposal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste" title="waste">waste</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=S" title=" S"> S</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20infrastructure" title=" urban infrastructure"> urban infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/191491/effect-of-urban-solid-waste-management-practices-on-the-sustainability-of-urban-infrastructure-in-sokoto-metropolis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5427</span> Assessing Sustainability of Bike Sharing Projects Using Envision™ Rating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Trop">Tamar Trop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bike sharing systems can be important elements of smart cities as they have the potential for impact on multiple levels. These systems can add a significant alternative to other modes of mass transit in cities that are continuously looking for measures to become more livable and maintain their attractiveness for citizens, businesses and tourism. Bike-sharing began in Europe in 1965, and a viable format emerged in the mid-2000s thanks to the introduction of information technology. The rate of growth in bike-sharing schemes and fleets has been very rapid since 2008 and has probably outstripped growth in every other form of urban transport. Today, public bike-sharing systems are available on five continents, including over 700 cities, operating more than 800,000 bicycles at approximately 40,000 docking stations. Since modern bike sharing systems have become prevalent only in the last decade, the existing literature analyzing these systems and their sustainability is relatively new. The purpose of the presented study is to assess the sustainability of these newly emerging transportation systems, by using the Envision™ rating system as a methodological framework and the Israeli 'Tel -O-Fun' – bike sharing project as a case study. The assessment was conducted by project team members. Envision™ is a new guidance and rating system used to assess and improve the sustainability of all types and sizes of infrastructure projects. This tool provides a holistic framework for evaluating and rating the community, environmental, and economic benefits of infrastructure projects over the course of their life cycle. This evaluation method has 60 sustainability criteria divided into five categories: Quality of life, leadership, resource allocation, natural world, and climate and risk. 'Tel -O-Fun' project was launched in Tel Aviv-Yafo on 2011 and today provides about 1,800 bikes for rent, at 180 rental stations across the city. The system is based on a complex computer terminal that is located in the docking stations. The highest-rated sustainable features that the project scored include: (a) Improving quality of life by: offering a low cost and efficient form of public transit, improving community mobility and access, enabling the flexibility of travel within a multimodal transportation system, saving commuters time and money, enhancing public health and reducing air and noise pollution; (b) improving resource allocation by: offering inexpensive and flexible last-mile connectivity, reducing space, materials and energy consumption, reducing wear and tear on public roads, and maximizing the utility of existing infrastructure, and (c) reducing of greenhouse gas emissions from transportation. Overall, 'Tel -O-Fun' project was highly scored as an environmentally sustainable and socially equitable infrastructure. The use of this practical framework for evaluation also yielded various interesting insights on the shortcoming of the system and the characteristics of good solutions. This can contribute to the improvement of the project and may assist planners and operators of bike sharing systems to develop a sustainable, efficient and reliable transportation infrastructure within smart cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bike%20sharing" title="bike sharing">bike sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=Envision%E2%84%A2" title=" Envision™"> Envision™</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20rating%20system" title=" sustainability rating system"> sustainability rating system</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20infrastructure" title=" sustainable infrastructure"> sustainable infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/34588/assessing-sustainability-of-bike-sharing-projects-using-envision-rating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5426</span> Affordable Housing and Economic Sustainability: The Case of the Poorest of the Poor Housing in Debre Markos City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Menberu">Michael Menberu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Housing affordability is a crucial policy objective. Incorporating economic sustainability in affordable housing in the development of the poorest of the poor's housing programs has become a major concern. This paper examines the affordability and economic sustainability of the poorest of the poor affordable housing in Debre Markos city. To address this, this study uses both quantitative and qualitative methods, Using a questionnaire survey, Interviews, field observation, household survey, and Pearson correlation analysis. The findings show that households in the expansion area have lower monthly incomes than in the past, but they are satisfied with the housing quality, rental pricing, and tenure security of their homes. This demonstrates in providing affordable housing for the poorest of the poor the location of the houses must be considered in order to have affordable and economically sustainable development. The findings show that housing is not truly affordable if it is in an inaccessible place with a long commute to work, high transportation expenditures, and land use that is homogeneous. Increasing the supply of affordable housing in accessible locations helps the poorest of the poor achieve multiple planning objectives: it reduces transportation costs, improves incomes, provides infrastructure, and reduces the distance to the work area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=housing" title="housing">housing</a>, <a href="https://publications.waset.org/abstracts/search?q=affordable%20housing" title=" affordable housing"> affordable housing</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20sustainability" title=" economic sustainability"> economic sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20poorest%20of%20the%20poor%20housing" title=" the poorest of the poor housing"> the poorest of the poor housing</a> </p> <a href="https://publications.waset.org/abstracts/186702/affordable-housing-and-economic-sustainability-the-case-of-the-poorest-of-the-poor-housing-in-debre-markos-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5425</span> Social Construction of Sustainability and Quality of Life Indicators for Urban Passenger Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzay-An%20Shiau">Tzay-An Shiau</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Lin%20Ho"> Kuan-Lin Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study developed sustainability and quality of life indicators for urban passenger transportation by using Social Construction of Technology (SCOT). The initial indicators were proposed by referring to literatures and were summarized by using impact-based framework. Subsequently, the stakeholders were defined according to their interest, power and then classified into scientific, operational, policy making, policy monitoring and nonprofessional frames. The scientific frame consisted of nine scholars in transportation field. Ten representatives from Taipei Rapid Transit Corporation (TRTC), Taiwan Railways Administration (TRA) and bus operators were grouped into the operational frame. The policy making frame comprised of ten representatives from Department of Transportation, Taipei City Government (DOT, TCG), Department of Railways and Highways, Ministry of Transportation and Communication (DORH, MOTC), Directorate General of Highways, Ministry of Transportation and Communication (DGOH, MOTC) and Institute of Transportation, Ministry of Transportation and Communication (IOT, MOTC). The policy monitoring frame consisted of 15 representatives from Taipei City Councilor, legislator and reporter. The nonprofessional frame comprised of 72 Taipei citizens. The stakeholders were asked to evaluate the relative importance of indicators using Delphi survey method. Social construction of 14 transport sustainability indicators and 12 transport quality of life indicators were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=Social%20Construction%20of%20Technology%20%28SCOT%29" title=" Social Construction of Technology (SCOT)"> Social Construction of Technology (SCOT)</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder" title=" stakeholder"> stakeholder</a> </p> <a href="https://publications.waset.org/abstracts/23831/social-construction-of-sustainability-and-quality-of-life-indicators-for-urban-passenger-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5424</span> Evolution of Bombings against Transportation Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20K.%20Hill">Jonathan K. Hill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transportation networks throughout Africa remain the only transportation infrastructure system in the world that is attacked by terrorists at a high frequency, so the international community can learn from each attack. The targeting of transportation should be recognized as a direct attack against a civilian population, so the international community should work to better understand the types of attacks utilized, the types of improvised explosive device designs adapted to transportation targets, and the ways the various modes of transportation have been attacked throughout the continent. Some countries have seen grenade attacks that have resulted in only injuries, while some countries have experienced large vehicle bombings that have resulted in hundreds of injuries and numerous deaths. With insurgencies, explosive devices have been small, complex, and generally target an enemy of the insurgency. With terrorist bombings, the explosive devices have been large, brazen, and targeted at civilian populations. And, these civilian populations are easily targeted within the transportation system. The presentation provided by Assess Africa LLC is titled ‘Evolution of Bombings Against Transportation Infrastructure’ and covers improvised explosive device characteristics, how improvised explosive devices have been adapted to transportation targets in Africa, analyses recent incidents, and provides some advice for effective protective measures. A main component of the improvised explosive device characteristics portion of the presentation focuses on the link between explosive device components, the intelligence network, and the bomb-builder’s network. By understanding the components, how the use of various components can be linked to a terrorist group’s capabilities, and how the bomb-builder acquires materials, the analysis of improvised explosive device attacks takes on a new direction – one that focuses on defeating the network instead of merely reviewing incidents of the past. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Africa" title="Africa">Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=bombings" title=" bombings"> bombings</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure%20protection" title=" critical infrastructure protection"> critical infrastructure protection</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20security" title=" transportation security"> transportation security</a> </p> <a href="https://publications.waset.org/abstracts/29778/evolution-of-bombings-against-transportation-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5423</span> The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shian%20Saroop">Shian Saroop</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhiren%20Allopi"> Dhiren Allopi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-efficiency" title="eco-efficiency">eco-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title=" green infrastructure"> green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20design" title=" infrastructure design"> infrastructure design</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/55705/the-use-of-sustainability-criteria-on-infrastructure-design-to-encourage-sustainable-engineering-solutions-on-infrastructure-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5422</span> Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debasis%20Sarkar">Debasis Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling%20%28BIM%29" title="building information modeling (BIM)">building information modeling (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation" title=" infrastructure transportation"> infrastructure transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20risk%20management" title=" project risk management"> project risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20metro%20rail" title=" underground metro rail"> underground metro rail</a> </p> <a href="https://publications.waset.org/abstracts/46712/risk-based-building-information-modeling-bim-for-urban-infrastructure-transportation-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5421</span> A Literature Review on Sustainability Appraisal Methods for Highway Infrastructure Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kaira">S. Kaira</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohamed"> S. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rahman"> A. Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, highway infrastructure projects are initiated based on their economic benefits, thereafter environmental, social and governance impacts are addressed discretely for the selected project from a set of pre-determined alternatives. When opting for cost-benefit analysis (CBA), multi-criteria decision-making (MCDM) has been used as the default assessment tool. But this tool has been critiqued as it does not mimic the real-world dynamic environment. Indeed, it is because of the fact that public sector projects like highways have to experience intense exposure to dynamic environments. Therefore, it is essential to appreciate the impacts of various dynamic factors (factors that change or progress with the system) on project performance. Thus, this paper presents various sustainability assessment tools that have been globally developed to determine sustainability performance of infrastructure projects during the design, procurement and commissioning phase. Indeed, identification of the current gaps in the available assessment methods provides a potential to add prominent part of knowledge in the field of ‘road project development systems and procedures’ that are generally used by road agencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20impact%20factors" title="dynamic impact factors">dynamic impact factors</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20and%20macro%20factors" title=" micro and macro factors"> micro and macro factors</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20assessment%20framework" title=" sustainability assessment framework"> sustainability assessment framework</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20performance" title=" sustainability performance"> sustainability performance</a> </p> <a href="https://publications.waset.org/abstracts/109023/a-literature-review-on-sustainability-appraisal-methods-for-highway-infrastructure-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5420</span> Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Jamshidi">Ali Jamshidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiyofumi%20Kurumisawa"> Kiyofumi Kurumisawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toyoharu%20Nawa"> Toyoharu Nawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zero%20energy%20infrastructure" title="zero energy infrastructure">zero energy infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emission" title=" greenhouse gas emission"> greenhouse gas emission</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20pavement" title=" asphalt pavement"> asphalt pavement</a> </p> <a href="https://publications.waset.org/abstracts/35642/effects-of-thermal-properties-of-aggregate-materials-on-energy-consumption-and-ghg-emissions-of-transportation-infrastructure-assets-construction-case-study-for-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5419</span> Optimizing Road Transportation Network Considering the Durability Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yapegue%20Bayogo">Yapegue Bayogo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadou%20Halassi%20Dicko"> Ahmadou Halassi Dicko</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahima%20Songore"> Brahima Songore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing countries, the road transportation system occupies an important place because of its flexibility and the low prices of infrastructure and rolling stock. While road transport is necessary for economic development, the movement of people and their goods, it is urgent to use transportation systems that minimize carbon emissions in order to ensure sustainable development. One of the main objectives of OEDC and the Word Bank is to ensure sustainable economic’ development. This paper aims to develop a road transport network taking into account environmental impacts. The methodology adopted consists of formulating a model optimizing the flow of goods and then collecting information relating to the transport of products. Our model was tested with data on product transport in CMDT areas in the Republic of Mali. The results of our study indicate that emissions from the transport sector can be significantly reduced by minimizing the traffic volume. According to our study, optimizing the transportation network, we benefit from a significant amount of tons of CO₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20transport" title="road transport">road transport</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20sustainability" title=" transport sustainability"> transport sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20network" title=" optimized network"> optimized network</a> </p> <a href="https://publications.waset.org/abstracts/143969/optimizing-road-transportation-network-considering-the-durability-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5418</span> Sustainability and Promotion of Inland Waterway Transportation Projects in Colombia: Case of the Magdalena River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Julian%20Bernal%20Melgarejo">David Julian Bernal Melgarejo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inland Waterway Transportation (IWT) is playing an important role in national transport systems, water transportation is considered to be safe, energy efficient and environmentally friendly mode of transport, considering all the benefits of IWT the Colombian government is planning to restore the Magdalena’s River navigability, embrace waterway transportation in Colombia could strength competitiveness while reduce most of the transport externalities. However, the current situation of the Magdalena deplorable, the most important river of Colombia has been abandoned for decades and the solution is beyond of a single administrative entity. This paper analyzes the outcomes of the Navigation And Inland Waterway Action and Development in Europe (NAIADES) program as a prospective to develop a sustainable program in Colombia. In order to guarantee the long-term future, and the adaptability of the program a research based on individual interviews with stakeholders and policy experts were carried out, findings support the idea of lack of integration within governmental institution, develop marketing strategies and human resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inland%20waterway%20transportation" title="inland waterway transportation">inland waterway transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics" title=" logistics"> logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20transport%20systems" title=" multimodal transport systems"> multimodal transport systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20transportation" title=" water transportation"> water transportation</a> </p> <a href="https://publications.waset.org/abstracts/16707/sustainability-and-promotion-of-inland-waterway-transportation-projects-in-colombia-case-of-the-magdalena-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5417</span> Configuring Resilience and Environmental Sustainability to Achieve Superior Performance under Differing Conditions of Transportation Disruptions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henry%20Ataburo">Henry Ataburo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominic%20Essuman"> Dominic Essuman</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Kwabena%20Anin"> Emmanuel Kwabena Anin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent trends of catastrophic events, such as the Covid-19 pandemic, the Suez Canal blockage, the Russia-Ukraine conflict, the Israel-Hamas conflict, and the climate change crisis, continue to devastate supply chains and the broader society. Prior authors have advocated for a simultaneous pursuit of resilience and sustainability as crucial for navigating these challenges. Nevertheless, the relationship between resilience and sustainability is a rather complex one: resilience and sustainability are considered unrelated, substitutes, or complements. Scholars also suggest that different firms prioritize resilience and sustainability differently for varied strategic reasons. However, we know little about whether, how, and when these choices produce different typologies of firms to explain differences in financial and market performance outcomes. This research draws inferences from the systems configuration approach to organizational fit to contend that a taxonomy of firms may emerge based on how firms configure resilience and environmental sustainability. The study further examines the effects of these taxonomies on financial and market performance in differing transportation disruption conditions. Resilience is operationalized as a firm’s ability to adjust current operations, structure, knowledge, and resources in response to disruptions, whereas environmental sustainability is operationalized as the extent to which a firm deploys resources judiciously and keeps the ecological impact of its operations to the barest minimum. Using primary data from 199 firms in Ghana and cluster analysis as an analytical tool, the study identifies four clusters of firms based on how they prioritize resilience and sustainability: Cluster 1 - "strong, moderate resilience, high sustainability firms," Cluster 2 - "sigh resilience, high sustainability firms," Cluster 3 - "high resilience, strong, moderate sustainability firms," and Cluster 4 - "weak, moderate resilience, strong, moderate sustainability firms". In addition, ANOVA and regression analysis revealed the following findings: Only clusters 1 and 2 were significantly associated with both market and financial performance. Under high transportation disruption conditions, cluster 1 firms excel better in market performance, whereas cluster 2 firms excel better in financial performance. Conversely, under low transportation disruption conditions, cluster 1 firms excel better in financial performance, whereas cluster 2 firms excel better in market performance. The study provides theoretical and empirical evidence of how resilience and environmental sustainability can be configured to achieve specific performance objectives under different disruption conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20economy" title=" developing economy"> developing economy</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20disruption" title=" transportation disruption"> transportation disruption</a> </p> <a href="https://publications.waset.org/abstracts/174768/configuring-resilience-and-environmental-sustainability-to-achieve-superior-performance-under-differing-conditions-of-transportation-disruptions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5416</span> An Equitable Strategy to Amend Zero-Emission Vehicles Incentives for Travelers: A Policy Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marie%20Louis">Marie Louis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though many stakeholders are doing their very best to promote public transportation around the world, many areas are still public transportation non-accessible. With travelers purchasing and driving their private vehicles can be considered as a threat to all three aspects of the sustainability (e.g., economical, social, environmental). However, most studies that considered simultaneously all three aspects of the sustainability concept when planning and designing public transportation for a corridor have found tradeoffs among the said three aspects.One of the tradeoffs was identified by looking at tipping points of the travel demands to question whether transit agencies/and or transportation policymakers should either operate smaller buses or provide incentives to purchase Leadership in Energy and Environmental Design (LEED)-Qualified low-emission vehicles or greener vehicles (e.g., hybrid). However, how and when do the department of environmental protection (DEP) and the department of revenue (DOR) figure out how much incentives to give to each traveler who lives in a zoning that is considered as public transportation inaccessible or accessible? To answer this policy question, this study aims to compare the greenhouse gases (GHGs) emissions when hybrid and conventional cars are used to access public transportation stops/stations. Additionally, this study also intends to review previous states that have already adopted low-emissions vehicle (LEVs) or Zero-Emissions Vehicles (ZEVs) to diminish the daily GHGs pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEED-qualified%20vehicles" title="LEED-qualified vehicles">LEED-qualified vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transit%20accessibility" title=" public transit accessibility"> public transit accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20vehicles%20incentives" title=" hybrid vehicles incentives"> hybrid vehicles incentives</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20trade-offs" title=" sustainability trade-offs"> sustainability trade-offs</a> </p> <a href="https://publications.waset.org/abstracts/76087/an-equitable-strategy-to-amend-zero-emission-vehicles-incentives-for-travelers-a-policy-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5415</span> Trends of Public-Private Partnership Infrastructure in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wasaporn%20Techapeeraparnich">Wasaporn Techapeeraparnich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bringing private investor involving in providing public infrastructure have been increasingly used worldwide, and there is no exception for developing countries like Thailand. Recently, there is a huge investment opportunity for public-private partnership (PPP) in Thailand, especially in the transportation sector. This paper analyses the development of the PPP since the early beginning of PPP in different service sectors. It also summarizes the development of PPP and its application in terms of usage, opportunities and trends particularly in the transport sector. The results are aimed to draw some lessons learned for future development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20study" title="case study">case study</a>, <a href="https://publications.waset.org/abstracts/search?q=public-private%20partnership" title=" public-private partnership"> public-private partnership</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/54643/trends-of-public-private-partnership-infrastructure-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5414</span> Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danijela%20Tuljak-Suban">Danijela Tuljak-Suban</a>, <a href="https://publications.waset.org/abstracts/search?q=Valter%20Suban"> Valter Suban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing of its physical or chemical characteristics considerably influences the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure stability conditions that limit the deterioration, since the value of the deterioration rate could be easily influenced by the transportation mode. Fuzzy definition of variables allows taking into account these variations. Furthermore an appropriate choice of the defuzzification method permits to adapt results, as much as possible, to real conditions. In the article will be applied the those methods to the relationship between the deterioration rate of perishable goods and transportation by ship, with the aim: (a) to minimize the total costs function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) to improve supply chain sustainability by reducing the environmental impact and waste disposal costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perishable%20goods" title="perishable goods">perishable goods</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20reasoning" title=" fuzzy reasoning"> fuzzy reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20by%20ship" title=" transport by ship"> transport by ship</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20sustainability" title=" supply chain sustainability"> supply chain sustainability</a> </p> <a href="https://publications.waset.org/abstracts/16462/influence-of-transportation-mode-to-the-deterioration-rate-case-study-of-food-transport-by-ship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5413</span> The Use of Space Syntax in Urban Transportation Planning and Evaluation: Limits and Potentials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan%20Yang">Chuan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Bie"> Jing Bie</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueh-Lung%20Lin"> Yueh-Lung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Wang"> Zhong Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation planning is an academic integration discipline combining research and practice with the aim of mobility and accessibility improvements at both strategic-level policy-making and operational dimensions of practical planning. Transportation planning could build the linkage between traffic and social development goals, for instance, economic benefits and environmental sustainability. The transportation planning analysis and evaluation tend to apply empirical quantitative approaches with the guidance of the fundamental principles, such as efficiency, equity, safety, and sustainability. Space syntax theory has been applied in the spatial distribution of pedestrian movement or vehicle flow analysis, however rare has been written about its application in transportation planning. The correlated relationship between the variables of space syntax analysis and authentic observations have declared that the urban configurations have a significant effect on urban dynamics, for instance, land value, building density, traffic, crime. This research aims to explore the potentials of applying Space Syntax methodology to evaluate urban transportation planning through studying the effects of urban configuration on cities transportation performance. By literature review, this paper aims to discuss the effects that urban configuration with different degrees of integration and accessibility have on three elementary components of transportation planning - transportation efficiency, transportation safety, and economic agglomeration development - via intensifying and stabilising the nature movements generated by the street network. And then the potential and limits of Space Syntax theory to study the performance of urban transportation and transportation planning would be discussed in the paper. In practical terms, this research will help future research explore the effects of urban design on transportation performance, and identify which patterns of urban street networks would allow for most efficient and safe transportation performance with higher economic benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transportation%20planning" title="transportation planning">transportation planning</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20syntax" title=" space syntax"> space syntax</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20agglomeration" title=" economic agglomeration"> economic agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20efficiency" title=" transportation efficiency"> transportation efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20safety" title=" transportation safety"> transportation safety</a> </p> <a href="https://publications.waset.org/abstracts/102622/the-use-of-space-syntax-in-urban-transportation-planning-and-evaluation-limits-and-potentials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5412</span> Sustainable Urban Mobility: Rethinking the Bus Stop Infrastructures of Dhaka South </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasnun%20Wara%20Khondker">Hasnun Wara Khondker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tarek%20Morad"> M. Tarek Morad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is one of the most populous countries of the world in terms of density. Dhaka, the capital of Bangladesh currently has a population of approximately 15-16 million of which around 9 million people are accommodated in Dhaka South City Corporation (DSCC) within around 109 square kilometer area. Despite having various urban issues, country is at its pick of economic progress and Dhaka is the core of this economic growth. To ensure the proper economic development and citizens wellbeing, city needs an ingenious, congestion-free public transportation network. Bus stop/bus bay is an essential infrastructure for ensuring efficient public transportation flow within the city along with enhancing accessibility, user comfort, and safety through public amenities. At present, there is no established Mass Rapid Transit or Bus Rapid Transit network within the city and therefore these private owned buses are the only major mode of mass transportation of Dhaka city. DSCC has undertaken a project to re-design several bus stops and bus bays according to the universal standard for better urban mobility and user satisfaction. This paper will analyze the design approach of the bus stop/bay infrastructure within Dhaka South, putting the research lens on sustainable urban mobility with case studies of similar kind of urban context. The paper will also study the design process with setting several parameters, i.e., accessibility, passenger safety, comfort, sustainability, etc. Moreover, this research will recommend a guideline for designing a bus stop based on the analysis of the design methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bus%20stop" title="bus stop">bus stop</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhaka" title=" Dhaka"> Dhaka</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transportation" title=" public transportation"> public transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20mobility" title=" sustainable urban mobility"> sustainable urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20accessibility" title=" universal accessibility"> universal accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20safety" title=" user safety"> user safety</a> </p> <a href="https://publications.waset.org/abstracts/75888/sustainable-urban-mobility-rethinking-the-bus-stop-infrastructures-of-dhaka-south" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=181">181</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=182">182</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infrastructure%20transportation%20sustainability&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10