CINXE.COM
Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="google-site-verification" content="5fPGCLllnWrvFxH9QWI0l1TadV7byeEvfPcyK2VkS_s"/> <meta name="google-site-verification" content="Rp5zp04IKW-s1IbpTOGB7Z6XY60oloZD5C3kTM-AiY4"/> <meta name="generator" content="InvenioRDM 13.0"/> <meta name="robots" content="noindex, nofollow"> <meta name="description" content="Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases." /> <meta name="citation_title" content="Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks" /> <meta name="citation_doi" content="10.5281/zenodo.1071568" /> <meta name="citation_keywords" content="Multivariate quality control" /> <meta name="citation_keywords" content="Artificial Intelligence" /> <meta name="citation_keywords" content="Neural Networks" /> <meta name="citation_keywords" content="Computer Applications" /> <meta name="citation_abstract_html_url" content="https://zenodo.org/records/1071568" /> <meta property="og:title" content="Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks" /> <meta property="og:description" content="Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases." /> <meta property="og:url" content="https://zenodo.org/records/1071568" /> <meta property="og:site_name" content="Zenodo" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@zenodo_org" /> <meta name="twitter:title" content="Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks" /> <meta name="twitter:description" content="Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases." /> <meta name="citation_pdf_url" content="https://zenodo.org/records/1071568/files/8798.pdf"/> <link rel="alternate" type="application/pdf" href="https://zenodo.org/records/1071568/files/8798.pdf"> <link rel="canonical" href="https://zenodo.org/records/1071568"> <title>Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks</title> <link rel="shortcut icon" type="image/x-icon" href="/static/favicon.ico"/> <link rel="apple-touch-icon" sizes="120x120" href="/static/apple-touch-icon-120.png"/> <link rel="apple-touch-icon" sizes="152x152" href="/static/apple-touch-icon-152.png"/> <link rel="apple-touch-icon" sizes="167x167" href="/static/apple-touch-icon-167.png"/> <link rel="apple-touch-icon" sizes="180x180" href="/static/apple-touch-icon-180.png"/> <link rel="stylesheet" href="/static/dist/css/3526.0d9b3c8be998e2e93a52.css" /> <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries --> <!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> </head> <body data-invenio-config='{"isMathJaxEnabled": "//cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.js?config=TeX-AMS-MML_HTMLorMML"}' itemscope itemtype="http://schema.org/WebPage" data-spy="scroll" data-target=".scrollspy-target"> <a id="skip-to-main" class="ui button primary ml-5 mt-5 skip-link" href="#main">Skip to main</a> <!--[if lt IE 8]> <p class="browserupgrade">You are using an <strong>outdated</strong> browser. Please <a href="http://browsehappy.com/">upgrade your browser</a> to improve your experience.</p> <![endif]--> <div> <header class="theme header"> <div class="outer-navbar"> <div class="ui container invenio-header-container"> <nav id="invenio-nav" class="ui inverted menu borderless p-0"> <div class="item logo p-0"> <a class="logo-link" href="/"> <img class="ui image rdm-logo" src="/static/images/invenio-rdm.svg" alt="Zenodo home"/> </a> </div> <div id="rdm-burger-toggle"> <button id="rdm-burger-menu-icon" class="ui button transparent" aria-label="Menu" aria-haspopup="menu" aria-expanded="false" aria-controls="invenio-menu" > <span class="navicon" aria-hidden="true"></span> </button> </div> <nav id="invenio-menu" aria-labelledby="rdm-burger-menu-icon" class="ui fluid menu borderless mobile-hidden" > <button id="rdm-close-burger-menu-icon" class="ui button transparent" aria-label="Close menu" > <span class="navicon" aria-hidden="true"></span> </button> <div class="item p-0 search-bar"> <div id="header-search-bar" data-options='[{"key": "communities", "text": "In this community", "value": "/communities/waset/records"}, {"key": "records", "text": "All Zenodo", "value": "/search"}]'> <div class="ui fluid search"> <div class="ui icon input"> <input autocomplete="off" aria-label="Search records" placeholder="Search records..." type="text" tabindex="0" class="prompt" value="" > <i aria-hidden="true" class="search icon"></i> </div> </div> </div> </div> <div class="item"> <a href="/communities">Communities</a> </div> <div class="item"> <a href="/me/uploads">My dashboard</a> </div> <div class="right menu item"> <form> <a href="/login/?next=%2Frecords%2F1071568" class="ui button auth-button" aria-busy="false" aria-live="polite" aria-label="Log in" > <i class="sign-in icon auth-icon" aria-hidden="true"></i> Log in </a> <a href="/signup/" class="ui button signup"> <i class="edit outline icon"></i> Sign up </a> </form> </div> </nav> </nav> </div> </header> </div> <main id="main"> <div class="invenio-page-body"> <section id="banners" class="banners" aria-label="Information banner"> <!-- COMMUNITY HEADER: hide it when displaying the submission request --> <div class="ui fluid container page-subheader-outer with-submenu compact ml-0-mobile mr-0-mobile"> <div class="ui container page-subheader"> <div class="page-subheader-element"> <img class="ui rounded image community-header-logo" src="https://zenodo.org/api/communities/a59dd046-9a86-4a47-97ce-b51f1bb8fc3f/logo" alt="" /> </div> <div class="page-subheader-element"> <div class="ui header"> <a href="/communities/waset/records" class="ui small header"> World Academy of Science, Engineering and Technology </a> <!-- Show the icon for subcommunities --> </div> </div> </div> </div> <!-- /COMMUNITY HEADER --> <!-- PREVIEW HEADER --> <!-- /PREVIEW HEADER --> </section> <div class="ui container"> <div class="ui relaxed grid mt-5"> <div class="two column row top-padded"> <article class="sixteen wide tablet eleven wide computer column main-record-content"> <section id="record-info" aria-label="Publication date and version number"> <div class="ui grid middle aligned"> <div class="two column row"> <div class="left floated left aligned column"> <span class="ui" title="Publication date"> Published January 26, 2010 </span> <span class="label text-muted"> | Version 8798</span> </div> <div class="right floated right aligned column"> <span role="note" class="ui label horizontal small neutral mb-5" aria-label="Resource type" > Journal article </span> <span role="note" class="ui label horizontal small access-status open mb-5" data-tooltip="The record and files are publicly accessible." data-inverted="" aria-label="Access status" > <i class="icon unlock" aria-hidden="true"></i> <span aria-label="The record and files are publicly accessible."> Open </span> </span> </div> </div> </div> </section> <div class="ui divider hidden"></div><section id="record-title-section" aria-label="Record title and creators"> <h1 id="record-title" class="wrap-overflowing-text">Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks</h1> <section id="creatibutors" aria-label="Creators and contributors"> <div class="ui grid"> <div class="row ui accordion affiliations"> <div class="sixteen wide mobile twelve wide tablet thirteen wide computer column"> <h3 class="sr-only">Creators</h3> <ul class="creatibutors"> <li class="creatibutor-wrap separated"> <a class="ui creatibutor-link" href="/search?q=metadata.creators.person_or_org.name%3A%22Francisco+Aparisi%22" > <span class="creatibutor-name">Francisco Aparisi</span></a> </li> <li class="creatibutor-wrap separated"> <a class="ui creatibutor-link" href="/search?q=metadata.creators.person_or_org.name%3A%22Jos%C3%A9+Sanz%22" > <span class="creatibutor-name">Jos茅 Sanz</span></a> </li> </ul> </div> </div> </div> </section> </section> <section id="description" class="rel-mt-2 rich-input-content" aria-label="Record description"> <h2 id="description-heading" class="sr-only">Description</h2> <div style="word-wrap: break-word;"> <p><p>Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.</p></p> </div> </section> <section id="record-files" class="rel-mt-2 rel-mb-3" aria-label="Files" ><h2 id="files-heading">Files</h2> <div class="ui accordion panel mb-10 open" href="#files-preview-accordion-panel"> <h3 class="active title panel-heading open m-0"> <div role="button" id="files-preview-accordion-trigger" aria-controls="files-preview-accordion-panel" aria-expanded="true" tabindex="0" class="trigger" aria-label="File preview" > <span id="preview-file-title">8798.pdf</span> <i class="angle right icon" aria-hidden="true"></i> </div> </h3> <div role="region" id="files-preview-accordion-panel" aria-labelledby="files-preview-accordion-trigger" class="active content preview-container pt-0 open" > <div> <iframe title="Preview" class="preview-iframe" id="preview-iframe" name="preview-iframe" src="/records/1071568/preview/8798.pdf?include_deleted=0" > </iframe> </div> </div> </div> <div class="ui accordion panel mb-10 open" href="#files-list-accordion-panel"> <h3 class="active title panel-heading open m-0"> <div role="button" id="files-list-accordion-trigger" aria-controls="files-list-accordion-panel" aria-expanded="true" tabindex="0" class="trigger"> Files <small class="text-muted"> (379.4 kB)</small> <i class="angle right icon" aria-hidden="true"></i> </div> </h3> <div role="region" id="files-list-accordion-panel" aria-labelledby="files-list-accordion-trigger" class="active content pt-0"> <div> <table class="ui striped table files fluid open"> <thead> <tr> <th>Name</th> <th>Size</th> <th class> <a role="button" class="ui compact mini button right floated archive-link" href="https://zenodo.org/api/records/1071568/files-archive"> <i class="file archive icon button" aria-hidden="true"></i> Download all </a> </th> </tr> </thead> <tbody> <tr> <td class="ten wide"> <div> <a href="/records/1071568/files/8798.pdf?download=1">8798.pdf</a> </div> <small class="ui text-muted font-tiny">md5:9f137a2db6ad259a0cb4493da74c5264 <div class="ui icon inline-block" data-tooltip="This is the file fingerprint (checksum), which can be used to verify the file integrity."> <i class="question circle checksum icon"></i> </div> </small> </td> <td>379.4 kB</td> <td class="right aligned"> <span> <a role="button" class="ui compact mini button preview-link" href="/records/1071568/preview/8798.pdf?include_deleted=0" target="preview-iframe" data-file-key="8798.pdf"> <i class="eye icon" aria-hidden="true"></i>Preview </a> <a role="button" class="ui compact mini button" href="/records/1071568/files/8798.pdf?download=1"> <i class="download icon" aria-hidden="true"></i>Download </a> </span> </td> </tr> </tbody> </table> </div> </div> </div> </section> <section id="additional-details" class="rel-mt-2" aria-label="Additional record details"> <h2 id="record-details-heading">Additional details</h2> <div class="ui divider"></div> <div class="ui fluid accordion padded grid rel-mb-1"> <div class="active title sixteen wide mobile four wide tablet three wide computer column"> <h3 class="ui header"> <div id="references-accordion-trigger" role="button" tabindex="0" aria-expanded="true" aria-controls="references-panel" class="trigger" > <i class="caret right icon" aria-hidden="true"></i>References </div> </h3> </div> <div id="references-panel" role="region" aria-labelledby="references-accordion-trigger" class="active content sixteen wide mobile twelve wide tablet thirteen wide computer column" > <ul class="ui bulleted list details-list"> <li class="item">Lowry, C.A., Woodall, W.H., Champ, C.W., and Rigdon, S.E. A multivariate exponentially weighted moving average control chart. Technometrics, 1992, 34 (1), 46-53.</li> <li class="item">Prabhu, SS. And Runger, GC. Designing a multivariate EWMA control chart. Journal of Quality Technology, 1997, 29:8-15.</li> <li class="item">Roberts, S. W. (1959). Control Chart Test Based on Geometrics Moving Averages. Technometrics, 1959, 1, pp. 239-250.</li> <li class="item">Montgomery, D.C. Introduction to Statistical Quality Control .4rd. John Wiley. New York. 2001</li> <li class="item">Lowry CA. and, Montgomery, DC. A review of multivariate control charts. IIE Transactions, 1995; 27: 800-810.</li> <li class="item">Blazek, L.W., Novic B .and Scott M.D. Displaying Multivariate Data Using Polyplots. Journal of Quality Technology, 1987, 19(2), 69-74.</li> <li class="item">Subramanyan, N. and Houshmand, A.A. Simultaneous representation of multivariate and corresponding univariate charts using line graph. Quality Engineering, 1995, 4, 681-682.</li> <li class="item">Fuchs, C. and Benjamin, Y. Multivariate profile charts for statistical process control. Technometrics, 1994, 36(2), 182-195.</li> <li class="item">Iglewicz, B. and Hoaglin, D.C. Use of boxplots for process evaluation. Journal of Quality Technology, 1987, 19(4), 180-190. [10] Atienza, O.O., Ching L.T. and Wah, B.A. Simultaneous monitoring of univariante and multivariate SPC information using boxplots. International Journal of Quality Science, 1988, 3(2). [11] Doganaksoy, N., Faltin, F.W. and Tucker, W.T. Identification of-out-of control characteristics in a multivariate manufacturing environment. Communications in Statistics Theory and Methods, 1991, 20, 2775- 2790. [12] Runger, G.C., Alt, F.B., and Montgomery, D.C. Contributors to a multivariate statistical process control chart signal. Communications in Statistics. Theory Methods, 1996, 25, 2203-2213. [13] Mason, R. L., Tracy, N.D. and Young, J.C. Decomposition of T2 multivariate control chart interpretation. Journal of Quality Technology, 1995, 27(2), 99-108. [14] Mason, R.L., Tracy, N.D. and Young, J.C. A practical approach for interpreting multivariate T2 control chart signals. Journal of Quality Technology, 1997, 29(4), 396-406. [15] Aparisi, F., Avenda鈹溾枓o, G. and Sanz, J. Interpreting T2 Control Chart Signals: Effectiveness of MTY decomposition vs. a Neural Network, IIE Transactions, 2006, 38(8), 647-657.</li> </ul> </div> </div> <div class="ui divider"></div> </section> <section id="citations-search" data-record-pids='{"doi": {"client": "datacite", "identifier": "10.5281/zenodo.1071568", "provider": "datacite"}, "oai": {"identifier": "oai:zenodo.org:1071568", "provider": "oai"}}' data-record-parent-pids='{"doi": {"client": "datacite", "identifier": "10.5281/zenodo.1071567", "provider": "datacite"}}' data-citations-endpoint="https://zenodo-broker.web.cern.ch/api/relationships" aria-label="Record citations" class="rel-mb-1" > </section> </article> <aside class="sixteen wide tablet five wide computer column sidebar" aria-label="Record details"> <section id="metrics" aria-label="Metrics" class="ui segment rdm-sidebar sidebar-container"> <div class="ui tiny two statistics rel-mt-1"> <div class="ui statistic"> <div class="value">59</div> <div class="label"> <i aria-hidden="true" class="eye icon"></i> Views </div> </div> <div class="ui statistic"> <div class="value">47</div> <div class="label"> <i aria-hidden="true" class="download icon"></i> Downloads </div> </div> </div> <div class="ui accordion rel-mt-1 centered"> <div class="title"> <i class="caret right icon" aria-hidden="true"></i> <span tabindex="0" class="trigger" data-open-text="Show more details" data-close-text="Show less details" > Show more details </span> </div> <div class="content"> <table id="record-statistics" class="ui definition table fluid"> <thead> <tr> <th></th> <th class="right aligned">All versions</th> <th class="right aligned">This version</th> </tr> </thead> <tbody> <tr> <td> Views <i tabindex="0" role="button" style="position:relative" class="popup-trigger question circle small icon" aria-expanded="false" aria-label="More info" data-variation="mini inverted" > </i> <p role="tooltip" class="popup-content ui flowing popup transition hidden"> Total views </p> </td> <td data-label="All versions" class="right aligned"> 59 </td> <td data-label="This version" class="right aligned"> 59 </td> </tr> <tr> <td> Downloads <i tabindex="0" role="button" style="position:relative" class="popup-trigger question circle small icon" aria-expanded="false" aria-label="More info" data-variation="mini inverted" > </i> <p role="tooltip" class="popup-content ui flowing popup transition hidden"> Total downloads </p> </td> <td data-label="All versions" class="right aligned"> 47 </td> <td data-label="This version" class="right aligned"> 47 </td> </tr> <tr> <td> Data volume <i tabindex="0" role="button" style="position:relative" class="popup-trigger question circle small icon" aria-expanded="false" aria-label="More info" data-variation="mini inverted" > </i> <p role="tooltip" class="popup-content ui flowing popup transition hidden"> Total data volume </p> </td> <td data-label="All versions" class="right aligned">18.6 MB</td> <td data-label="This version" class="right aligned">18.6 MB</td> </tr> </tbody> </table> <p class="text-align-center rel-mt-1"> <small> <a href="/help/statistics">More info on how stats are collected....</a> </small> </p> </div> </div> </section> <div class="sidebar-container"> <h2 class="ui medium top attached header mt-0">Versions</h2> <div id="record-versions" class="ui segment rdm-sidebar bottom attached pl-0 pr-0 pt-0"> <div class="versions"> <div id="recordVersions" data-record='{"access": {"embargo": {"active": false, "reason": null}, "files": "public", "record": "public", "status": "open"}, "created": "2018-01-24T20:40:52.041677+00:00", "custom_fields": {}, "deletion_status": {"is_deleted": false, "status": "P"}, "expanded": {"parent": {"access": {"owned_by": {"active": null, "blocked_at": null, "confirmed_at": null, "email": "", "id": "32148", "is_current_user": false, "links": {"avatar": "https://zenodo.org/api/users/32148/avatar.svg", "records_html": "https://zenodo.org/search/records?q=parent.access.owned_by.user:32148", "self": "https://zenodo.org/api/users/32148"}, "profile": {"affiliations": "", "full_name": ""}, "username": "WASET", "verified_at": null}}, "communities": {"default": {"access": {"review_policy": "open", "visibility": "public"}, "id": "a59dd046-9a86-4a47-97ce-b51f1bb8fc3f", "links": {"logo": "https://zenodo.org/api/communities/a59dd046-9a86-4a47-97ce-b51f1bb8fc3f/logo"}, "metadata": {"description": "", "title": "World Academy of Science, Engineering and Technology", "type": null}, "slug": "waset"}}}}, "files": {"count": 1, "enabled": true, "entries": {"8798.pdf": {"access": {"hidden": false}, "checksum": "md5:9f137a2db6ad259a0cb4493da74c5264", "ext": "pdf", "id": "152b35b2-7296-4442-b7e2-e7e9f4a3dfd1", "key": "8798.pdf", "links": {"content": "https://zenodo.org/api/records/1071568/files/8798.pdf/content", "iiif_api": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/full/0/default.png", "iiif_base": "https://zenodo.org/api/iiif/record:1071568:8798.pdf", "iiif_canvas": "https://zenodo.org/api/iiif/record:1071568/canvas/8798.pdf", "iiif_info": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/info.json", "self": "https://zenodo.org/api/records/1071568/files/8798.pdf"}, "metadata": null, "mimetype": "application/pdf", "size": 379376, "storage_class": "L"}}, "order": [], "total_bytes": 379376}, "id": "1071568", "is_draft": false, "is_published": true, "links": {"access": "https://zenodo.org/api/records/1071568/access", "access_grants": "https://zenodo.org/api/records/1071568/access/grants", "access_links": "https://zenodo.org/api/records/1071568/access/links", "access_request": "https://zenodo.org/api/records/1071568/access/request", "access_users": "https://zenodo.org/api/records/1071568/access/users", "archive": "https://zenodo.org/api/records/1071568/files-archive", "archive_media": "https://zenodo.org/api/records/1071568/media-files-archive", "communities": "https://zenodo.org/api/records/1071568/communities", "communities-suggestions": "https://zenodo.org/api/records/1071568/communities-suggestions", "doi": "https://doi.org/10.5281/zenodo.1071568", "draft": "https://zenodo.org/api/records/1071568/draft", "files": "https://zenodo.org/api/records/1071568/files", "latest": "https://zenodo.org/api/records/1071568/versions/latest", "latest_html": "https://zenodo.org/records/1071568/latest", "media_files": "https://zenodo.org/api/records/1071568/media-files", "parent": "https://zenodo.org/api/records/1071567", "parent_doi": "https://doi.org/10.5281/zenodo.1071567", "parent_doi_html": "https://zenodo.org/doi/10.5281/zenodo.1071567", "parent_html": "https://zenodo.org/records/1071567", "requests": "https://zenodo.org/api/records/1071568/requests", "reserve_doi": "https://zenodo.org/api/records/1071568/draft/pids/doi", "self": "https://zenodo.org/api/records/1071568", "self_doi": "https://doi.org/10.5281/zenodo.1071568", "self_doi_html": "https://zenodo.org/doi/10.5281/zenodo.1071568", "self_html": "https://zenodo.org/records/1071568", "self_iiif_manifest": "https://zenodo.org/api/iiif/record:1071568/manifest", "self_iiif_sequence": "https://zenodo.org/api/iiif/record:1071568/sequence/default", "thumbnails": {"10": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^10,/0/default.jpg", "100": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^100,/0/default.jpg", "1200": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^1200,/0/default.jpg", "250": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^250,/0/default.jpg", "50": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^50,/0/default.jpg", "750": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^750,/0/default.jpg"}, "versions": "https://zenodo.org/api/records/1071568/versions"}, "media_files": {"count": 1, "enabled": true, "entries": {"8798.pdf.ptif": {"access": {"hidden": true}, "ext": "ptif", "id": "76b605b6-870c-44d3-9899-c06aa7a6c8d4", "key": "8798.pdf.ptif", "links": {"content": "https://zenodo.org/api/records/1071568/files/8798.pdf.ptif/content", "self": "https://zenodo.org/api/records/1071568/files/8798.pdf.ptif"}, "metadata": null, "mimetype": "application/octet-stream", "processor": {"source_file_id": "152b35b2-7296-4442-b7e2-e7e9f4a3dfd1", "status": "finished", "type": "image-tiles"}, "size": 0, "storage_class": "L"}}, "order": [], "total_bytes": 0}, "metadata": {"creators": [{"person_or_org": {"family_name": "Francisco Aparisi", "name": "Francisco Aparisi", "type": "personal"}}, {"person_or_org": {"family_name": "Jos\u00e9 Sanz", "name": "Jos\u00e9 Sanz", "type": "personal"}}], "description": "\u003cp\u003eMultivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.\u003c/p\u003e", "languages": [{"id": "eng", "title": {"en": "English"}}], "publication_date": "2010-01-26", "publisher": "Zenodo", "references": [{"reference": "Lowry, C.A., Woodall, W.H., Champ, C.W., and Rigdon, S.E. A\nmultivariate exponentially weighted moving average control chart.\nTechnometrics, 1992, 34 (1), 46-53."}, {"reference": "Prabhu, SS. And Runger, GC. Designing a multivariate EWMA control\nchart. Journal of Quality Technology, 1997, 29:8-15."}, {"reference": "Roberts, S. W. (1959). Control Chart Test Based on Geometrics Moving\nAverages. Technometrics, 1959, 1, pp. 239-250."}, {"reference": "Montgomery, D.C. Introduction to Statistical Quality Control .4rd. John\nWiley. New York. 2001"}, {"reference": "Lowry CA. and, Montgomery, DC. A review of multivariate control\ncharts. IIE Transactions, 1995; 27: 800-810."}, {"reference": "Blazek, L.W., Novic B .and Scott M.D. Displaying Multivariate Data\nUsing Polyplots. Journal of Quality Technology, 1987, 19(2), 69-74."}, {"reference": "Subramanyan, N. and Houshmand, A.A. Simultaneous representation of\nmultivariate and corresponding univariate charts using line graph.\nQuality Engineering, 1995, 4, 681-682."}, {"reference": "Fuchs, C. and Benjamin, Y. Multivariate profile charts for statistical\nprocess control. Technometrics, 1994, 36(2), 182-195."}, {"reference": "Iglewicz, B. and Hoaglin, D.C. Use of boxplots for process evaluation.\nJournal of Quality Technology, 1987, 19(4), 180-190.\n[10] Atienza, O.O., Ching L.T. and Wah, B.A. Simultaneous monitoring of\nunivariante and multivariate SPC information using boxplots.\nInternational Journal of Quality Science, 1988, 3(2).\n[11] Doganaksoy, N., Faltin, F.W. and Tucker, W.T. Identification of-out-of\ncontrol characteristics in a multivariate manufacturing environment.\nCommunications in Statistics Theory and Methods, 1991, 20, 2775-\n2790.\n[12] Runger, G.C., Alt, F.B., and Montgomery, D.C. Contributors to a\nmultivariate statistical process control chart signal. Communications in\nStatistics. Theory Methods, 1996, 25, 2203-2213.\n[13] Mason, R. L., Tracy, N.D. and Young, J.C. Decomposition of T2\nmultivariate control chart interpretation. Journal of Quality Technology,\n1995, 27(2), 99-108.\n[14] Mason, R.L., Tracy, N.D. and Young, J.C. A practical approach for\ninterpreting multivariate T2 control chart signals. Journal of Quality\nTechnology, 1997, 29(4), 396-406.\n[15] Aparisi, F., Avenda\u251c\u2592o, G. and Sanz, J. Interpreting T2 Control Chart\nSignals: Effectiveness of MTY decomposition vs. a Neural Network, IIE\nTransactions, 2006, 38(8), 647-657."}], "resource_type": {"id": "publication-article", "title": {"de": "Zeitschriftenartikel", "en": "Journal article"}}, "rights": [{"description": {"en": "The Creative Commons Attribution license allows re-distribution and re-use of a licensed work on the condition that the creator is appropriately credited."}, "icon": "cc-by-icon", "id": "cc-by-4.0", "props": {"scheme": "spdx", "url": "https://creativecommons.org/licenses/by/4.0/legalcode"}, "title": {"en": "Creative Commons Attribution 4.0 International"}}], "subjects": [{"subject": "Multivariate quality control"}, {"subject": "Artificial Intelligence"}, {"subject": "Neural Networks"}, {"subject": "Computer Applications"}], "title": "Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks", "version": "8798"}, "parent": {"access": {"owned_by": {"user": "32148"}, "settings": {"accept_conditions_text": null, "allow_guest_requests": false, "allow_user_requests": false, "secret_link_expiration": 0}}, "communities": {"default": "a59dd046-9a86-4a47-97ce-b51f1bb8fc3f", "entries": [{"access": {"member_policy": "open", "members_visibility": "public", "record_submission_policy": "open", "review_policy": "open", "visibility": "public"}, "children": {"allow": false}, "created": "2017-05-31T21:24:26.028360+00:00", "custom_fields": {}, "deletion_status": {"is_deleted": false, "status": "P"}, "id": "a59dd046-9a86-4a47-97ce-b51f1bb8fc3f", "links": {}, "metadata": {"curation_policy": "", "description": "", "page": "", "title": "World Academy of Science, Engineering and Technology"}, "revision_id": 0, "slug": "waset", "updated": "2017-11-15T12:37:31.935319+00:00"}], "ids": ["a59dd046-9a86-4a47-97ce-b51f1bb8fc3f"]}, "id": "1071567", "pids": {"doi": {"client": "datacite", "identifier": "10.5281/zenodo.1071567", "provider": "datacite"}}}, "pids": {"doi": {"client": "datacite", "identifier": "10.5281/zenodo.1071568", "provider": "datacite"}, "oai": {"identifier": "oai:zenodo.org:1071568", "provider": "oai"}}, "revision_id": 8, "stats": {"all_versions": {"data_volume": 18589424.0, "downloads": 49, "unique_downloads": 47, "unique_views": 59, "views": 59}, "this_version": {"data_volume": 18589424.0, "downloads": 49, "unique_downloads": 47, "unique_views": 59, "views": 59}}, "status": "published", "ui": {"access_status": {"description_l10n": "The record and files are publicly accessible.", "embargo_date_l10n": null, "icon": "unlock", "id": "open", "message_class": "", "title_l10n": "Open"}, "created_date_l10n_long": "January 24, 2018", "creators": {"affiliations": [], "creators": [{"person_or_org": {"family_name": "Francisco Aparisi", "name": "Francisco Aparisi", "type": "personal"}}, {"person_or_org": {"family_name": "Jos\u00e9 Sanz", "name": "Jos\u00e9 Sanz", "type": "personal"}}]}, "custom_fields": {}, "description_stripped": "Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.", "is_draft": false, "languages": [{"id": "eng", "title_l10n": "English"}], "publication_date_l10n_long": "January 26, 2010", "publication_date_l10n_medium": "Jan 26, 2010", "resource_type": {"id": "publication-article", "title_l10n": "Journal article"}, "rights": [{"description_l10n": "The Creative Commons Attribution license allows re-distribution and re-use of a licensed work on the condition that the creator is appropriately credited.", "icon": "cc-by-icon", "id": "cc-by-4.0", "props": {"scheme": "spdx", "url": "https://creativecommons.org/licenses/by/4.0/legalcode"}, "title_l10n": "Creative Commons Attribution 4.0 International"}], "updated_date_l10n_long": "August 2, 2024", "version": "8798"}, "updated": "2024-08-02T23:37:35.807431+00:00", "versions": {"index": 1, "is_latest": true}}' data-preview='false'> <div class="rel-p-1"></div> <div class="ui fluid placeholder rel-mr-1 rel-ml-1"></div> <div class="header"> <div class="line"></div> <div class="line"></div> <div class="line"></div> </div> </div> </div> </div> </div><div class="sidebar-container"> <h2 class="ui small top attached header">External resources</h2> <div id="external-resource" aria-label="External resources" class="ui bottom attached segment rdm-sidebar external resource"> <h3 class="ui small header">Indexed in</h3> <ul class="ui relaxed list no-bullet"> <li class="item flex align-items-center"> <img class="ui image" src="/static/images/openaire.svg" alt="" width="32"> <div class="content"> <a class="header" href="https://explore.openaire.eu/search/publication?pid=10.5281/zenodo.1071568" target="_blank" rel="noreferrer" >OpenAIRE </a> </div> </li></ul></div> </div><div id="sidebar-communities-manage" data-user-communities-memberships='{}' data-record-community-endpoint="https://zenodo.org/api/records/1071568/communities" data-record-community-search-endpoint="https://zenodo.org/api/records/1071568/communities-suggestions" data-record-user-community-search-endpoint="" data-can-manage-record='false' data-pending-communities-search-config='{"aggs": [{"aggName": "type", "field": "type", "title": "Type"}, {"aggName": "status", "field": "status", "title": "Status"}], "appId": "InvenioAppRdm.RecordRequests", "defaultSortingOnEmptyQueryString": [{"sortBy": "newest"}], "initialQueryState": {"filters": [], "hiddenParams": [["expand", "1"], ["is_open", "true"], ["type", "community-inclusion"], ["type", "community-submission"]], "layout": "list", "page": 1, "size": 10, "sortBy": "bestmatch"}, "layoutOptions": {"gridView": false, "listView": true}, "paginationOptions": {"defaultValue": 10, "maxTotalResults": 10000, "resultsPerPage": [{"text": "10", "value": 10}, {"text": "20", "value": 20}, {"text": "50", "value": 50}]}, "searchApi": {"axios": {"headers": {"Accept": "application/json"}, "url": "https://zenodo.org/api/records/1071568/requests", "withCredentials": true}, "invenio": {"requestSerializer": "InvenioRecordsResourcesRequestSerializer"}}, "sortOptions": [{"sortBy": "bestmatch", "text": "Best match"}, {"sortBy": "newest", "text": "Newest"}, {"sortBy": "oldest", "text": "Oldest"}], "sortOrderDisabled": true}' data-record-community-search-config='{"aggs": [{"aggName": "type", "field": "type", "title": "Type"}, {"aggName": "funder", "field": "metadata.funding.funder", "title": "Funders"}, {"aggName": "organization", "field": "metadata.organizations", "title": "Organizations"}], "appId": "InvenioAppRdm.RecordCommunitiesSuggestions", "defaultSortingOnEmptyQueryString": [{"sortBy": "newest"}], "initialQueryState": {"filters": [], "hiddenParams": null, "layout": "list", "page": 1, "size": 10, "sortBy": "bestmatch"}, "layoutOptions": {"gridView": false, "listView": true}, "paginationOptions": {"defaultValue": 10, "maxTotalResults": 10000, "resultsPerPage": [{"text": "10", "value": 10}, {"text": "20", "value": 20}]}, "searchApi": {"axios": {"headers": {"Accept": "application/vnd.inveniordm.v1+json"}, "url": "https://zenodo.org/api/records/1071568/communities-suggestions", "withCredentials": true}, "invenio": {"requestSerializer": "InvenioRecordsResourcesRequestSerializer"}}, "sortOptions": [{"sortBy": "bestmatch", "text": "Best match"}, {"sortBy": "newest", "text": "Newest"}, {"sortBy": "oldest", "text": "Oldest"}], "sortOrderDisabled": true}' data-record-user-community-search-config='{"aggs": [{"aggName": "type", "field": "type", "title": "Type"}, {"aggName": "funder", "field": "metadata.funding.funder", "title": "Funders"}, {"aggName": "organization", "field": "metadata.organizations", "title": "Organizations"}], "appId": "InvenioAppRdm.RecordUserCommunitiesSuggestions", "defaultSortingOnEmptyQueryString": [{"sortBy": "newest"}], "initialQueryState": {"filters": [], "hiddenParams": [["membership", "true"]], "layout": "list", "page": 1, "size": 10, "sortBy": "bestmatch"}, "layoutOptions": {"gridView": false, "listView": true}, "paginationOptions": {"defaultValue": 10, "maxTotalResults": 10000, "resultsPerPage": [{"text": "10", "value": 10}, {"text": "20", "value": 20}]}, "searchApi": {"axios": {"headers": {"Accept": "application/vnd.inveniordm.v1+json"}, "url": "https://zenodo.org/api/records/1071568/communities-suggestions", "withCredentials": true}, "invenio": {"requestSerializer": "InvenioRecordsResourcesRequestSerializer"}}, "sortOptions": [{"sortBy": "bestmatch", "text": "Best match"}, {"sortBy": "newest", "text": "Newest"}, {"sortBy": "oldest", "text": "Oldest"}], "sortOrderDisabled": true}' data-permissions='{"can_edit": false, "can_manage": false, "can_media_read_files": true, "can_moderate": false, "can_new_version": false, "can_read_files": true, "can_review": false, "can_update_draft": false, "can_view": false}' class="sidebar-container" > <h2 class="ui medium top attached header">Communities</h2> <div class="ui segment bottom attached rdm-sidebar"> <div class="ui fluid placeholder"> <div class="image header"> <div class="line"></div> <div class="line"></div> </div> <div class="image header"> <div class="line"></div> <div class="line"></div> </div> <div class="image header"> <div class="line"></div> <div class="line"></div> </div> </div> </div> </div> <div class="sidebar-container"> <h2 class="ui medium top attached header mt-0">Keywords and subjects</h2> <div id="keywords-and-subjects" aria-label="Keywords and subjects" class="ui segment bottom attached rdm-sidebar"> <h3 class="hidden">Keywords</h3> <ul class="ui horizontal list no-bullets subjects"> <li class="item"> <a href="/search?q=metadata.subjects.subject%3A%22Multivariate+quality+control%22" class="subject" title="Search results for Multivariate quality control" > Multivariate quality control </a> </li> <li class="item"> <a href="/search?q=metadata.subjects.subject%3A%22Artificial+Intelligence%22" class="subject" title="Search results for Artificial Intelligence" > Artificial Intelligence </a> </li> <li class="item"> <a href="/search?q=metadata.subjects.subject%3A%22Neural+Networks%22" class="subject" title="Search results for Neural Networks" > Neural Networks </a> </li> <li class="item"> <a href="/search?q=metadata.subjects.subject%3A%22Computer+Applications%22" class="subject" title="Search results for Computer Applications" > Computer Applications </a> </li> </ul> </div> </div> <div class="sidebar-container"> <h2 class="ui medium top attached header mt-0">Details</h2> <div id="record-details" class="ui segment bottom attached rdm-sidebar"> <dl class="details-list"> <dt class="ui tiny header">DOI <dd> <span class="get-badge" data-toggle="tooltip" data-placement="bottom" style="cursor: pointer;" title="Get the DOI badge!"> <img id='record-doi-badge' data-target="[data-modal='10.5281/zenodo.1071568']" src="/badge/DOI/10.5281/zenodo.1071568.svg" alt="10.5281/zenodo.1071568" /> </span> <div id="doi-modal" class="ui modal fade badge-modal" data-modal="10.5281/zenodo.1071568"> <div class="header">DOI Badge</div> <div class="content"> <h4> <small>DOI</small> </h4> <h4> <pre>10.5281/zenodo.1071568</pre> </h4> <h3 class="ui small header"> Markdown </h3> <div class="ui message code"> <pre>[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1071568.svg)](https://doi.org/10.5281/zenodo.1071568)</pre> </div> <h3 class="ui small header"> reStructuredText </h3> <div class="ui message code"> <pre>.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1071568.svg :target: https://doi.org/10.5281/zenodo.1071568</pre> </div> <h3 class="ui small header"> HTML </h3> <div class="ui message code"> <pre><a href="https://doi.org/10.5281/zenodo.1071568"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.1071568.svg" alt="DOI"></a></pre> </div> <h3 class="ui small header"> Image URL </h3> <div class="ui message code"> <pre>https://zenodo.org/badge/DOI/10.5281/zenodo.1071568.svg</pre> </div> <h3 class="ui small header"> Target URL </h3> <div class="ui message code"> <pre>https://doi.org/10.5281/zenodo.1071568</pre> </div> </div> </div> </dd> <dt class="ui tiny header">Resource type</dt> <dd>Journal article</dd> <dt class="ui tiny header">Publisher</dt> <dd>Zenodo</dd> <dt class="ui tiny header">Languages</dt> <dd> English </dd> </dl> </div> </div> <div class="sidebar-container"> <h2 class="ui medium top attached header mt-0">Rights</h2> <div id="licenses" class="ui segment bottom attached rdm-sidebar"> <ul class="details-list m-0 p-0"> <li id="license-cc-by-4.0-1" class="has-popup"> <div id="title-cc-by-4.0-1" class="license clickable" tabindex="0" aria-haspopup="dialog" aria-expanded="false" role="button" aria-label="Creative Commons Attribution 4.0 International" > <span class="icon-wrap"> <img class="icon" src="/static/icons/licenses/cc-by-icon.svg" alt="cc-by-4.0 icon"/> </span> <span class="title-text"> Creative Commons Attribution 4.0 International </span> </div> <div id="description-cc-by-4.0-1" class="licenses-description ui flowing popup transition hidden" role="dialog" aria-labelledby="title-cc-by-4.0-1" > <i role="button" tabindex="0" class="close icon text-muted" aria-label="Close"></i> <div id="license-description-1" class="description"> <span class="text-muted"> The Creative Commons Attribution license allows re-distribution and re-use of a licensed work on the condition that the creator is appropriately credited. </span> <a class="license-link" href="https://creativecommons.org/licenses/by/4.0/legalcode" target="_blank" title="Opens in new tab">Read more</a> </div> </div> </li> </ul> </div> </div> <div class="sidebar-container"> <h2 class="ui medium top attached header mt-0">Citation</h2> <div id="citation" class="ui segment bottom attached rdm-sidebar"> <div id="recordCitation" data-record='{"access": {"embargo": {"active": false, "reason": null}, "files": "public", "record": "public", "status": "open"}, "created": "2018-01-24T20:40:52.041677+00:00", "custom_fields": {}, "deletion_status": {"is_deleted": false, "status": "P"}, "expanded": {"parent": {"access": {"owned_by": {"active": null, "blocked_at": null, "confirmed_at": null, "email": "", "id": "32148", "is_current_user": false, "links": {"avatar": "https://zenodo.org/api/users/32148/avatar.svg", "records_html": "https://zenodo.org/search/records?q=parent.access.owned_by.user:32148", "self": "https://zenodo.org/api/users/32148"}, "profile": {"affiliations": "", "full_name": ""}, "username": "WASET", "verified_at": null}}, "communities": {"default": {"access": {"review_policy": "open", "visibility": "public"}, "id": "a59dd046-9a86-4a47-97ce-b51f1bb8fc3f", "links": {"logo": "https://zenodo.org/api/communities/a59dd046-9a86-4a47-97ce-b51f1bb8fc3f/logo"}, "metadata": {"description": "", "title": "World Academy of Science, Engineering and Technology", "type": null}, "slug": "waset"}}}}, "files": {"count": 1, "enabled": true, "entries": {"8798.pdf": {"access": {"hidden": false}, "checksum": "md5:9f137a2db6ad259a0cb4493da74c5264", "ext": "pdf", "id": "152b35b2-7296-4442-b7e2-e7e9f4a3dfd1", "key": "8798.pdf", "links": {"content": "https://zenodo.org/api/records/1071568/files/8798.pdf/content", "iiif_api": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/full/0/default.png", "iiif_base": "https://zenodo.org/api/iiif/record:1071568:8798.pdf", "iiif_canvas": "https://zenodo.org/api/iiif/record:1071568/canvas/8798.pdf", "iiif_info": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/info.json", "self": "https://zenodo.org/api/records/1071568/files/8798.pdf"}, "metadata": null, "mimetype": "application/pdf", "size": 379376, "storage_class": "L"}}, "order": [], "total_bytes": 379376}, "id": "1071568", "is_draft": false, "is_published": true, "links": {"access": "https://zenodo.org/api/records/1071568/access", "access_grants": "https://zenodo.org/api/records/1071568/access/grants", "access_links": "https://zenodo.org/api/records/1071568/access/links", "access_request": "https://zenodo.org/api/records/1071568/access/request", "access_users": "https://zenodo.org/api/records/1071568/access/users", "archive": "https://zenodo.org/api/records/1071568/files-archive", "archive_media": "https://zenodo.org/api/records/1071568/media-files-archive", "communities": "https://zenodo.org/api/records/1071568/communities", "communities-suggestions": "https://zenodo.org/api/records/1071568/communities-suggestions", "doi": "https://doi.org/10.5281/zenodo.1071568", "draft": "https://zenodo.org/api/records/1071568/draft", "files": "https://zenodo.org/api/records/1071568/files", "latest": "https://zenodo.org/api/records/1071568/versions/latest", "latest_html": "https://zenodo.org/records/1071568/latest", "media_files": "https://zenodo.org/api/records/1071568/media-files", "parent": "https://zenodo.org/api/records/1071567", "parent_doi": "https://doi.org/10.5281/zenodo.1071567", "parent_doi_html": "https://zenodo.org/doi/10.5281/zenodo.1071567", "parent_html": "https://zenodo.org/records/1071567", "requests": "https://zenodo.org/api/records/1071568/requests", "reserve_doi": "https://zenodo.org/api/records/1071568/draft/pids/doi", "self": "https://zenodo.org/api/records/1071568", "self_doi": "https://doi.org/10.5281/zenodo.1071568", "self_doi_html": "https://zenodo.org/doi/10.5281/zenodo.1071568", "self_html": "https://zenodo.org/records/1071568", "self_iiif_manifest": "https://zenodo.org/api/iiif/record:1071568/manifest", "self_iiif_sequence": "https://zenodo.org/api/iiif/record:1071568/sequence/default", "thumbnails": {"10": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^10,/0/default.jpg", "100": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^100,/0/default.jpg", "1200": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^1200,/0/default.jpg", "250": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^250,/0/default.jpg", "50": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^50,/0/default.jpg", "750": "https://zenodo.org/api/iiif/record:1071568:8798.pdf/full/^750,/0/default.jpg"}, "versions": "https://zenodo.org/api/records/1071568/versions"}, "media_files": {"count": 1, "enabled": true, "entries": {"8798.pdf.ptif": {"access": {"hidden": true}, "ext": "ptif", "id": "76b605b6-870c-44d3-9899-c06aa7a6c8d4", "key": "8798.pdf.ptif", "links": {"content": "https://zenodo.org/api/records/1071568/files/8798.pdf.ptif/content", "self": "https://zenodo.org/api/records/1071568/files/8798.pdf.ptif"}, "metadata": null, "mimetype": "application/octet-stream", "processor": {"source_file_id": "152b35b2-7296-4442-b7e2-e7e9f4a3dfd1", "status": "finished", "type": "image-tiles"}, "size": 0, "storage_class": "L"}}, "order": [], "total_bytes": 0}, "metadata": {"creators": [{"person_or_org": {"family_name": "Francisco Aparisi", "name": "Francisco Aparisi", "type": "personal"}}, {"person_or_org": {"family_name": "Jos\u00e9 Sanz", "name": "Jos\u00e9 Sanz", "type": "personal"}}], "description": "\u003cp\u003eMultivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.\u003c/p\u003e", "languages": [{"id": "eng", "title": {"en": "English"}}], "publication_date": "2010-01-26", "publisher": "Zenodo", "references": [{"reference": "Lowry, C.A., Woodall, W.H., Champ, C.W., and Rigdon, S.E. A\nmultivariate exponentially weighted moving average control chart.\nTechnometrics, 1992, 34 (1), 46-53."}, {"reference": "Prabhu, SS. And Runger, GC. Designing a multivariate EWMA control\nchart. Journal of Quality Technology, 1997, 29:8-15."}, {"reference": "Roberts, S. W. (1959). Control Chart Test Based on Geometrics Moving\nAverages. Technometrics, 1959, 1, pp. 239-250."}, {"reference": "Montgomery, D.C. Introduction to Statistical Quality Control .4rd. John\nWiley. New York. 2001"}, {"reference": "Lowry CA. and, Montgomery, DC. A review of multivariate control\ncharts. IIE Transactions, 1995; 27: 800-810."}, {"reference": "Blazek, L.W., Novic B .and Scott M.D. Displaying Multivariate Data\nUsing Polyplots. Journal of Quality Technology, 1987, 19(2), 69-74."}, {"reference": "Subramanyan, N. and Houshmand, A.A. Simultaneous representation of\nmultivariate and corresponding univariate charts using line graph.\nQuality Engineering, 1995, 4, 681-682."}, {"reference": "Fuchs, C. and Benjamin, Y. Multivariate profile charts for statistical\nprocess control. Technometrics, 1994, 36(2), 182-195."}, {"reference": "Iglewicz, B. and Hoaglin, D.C. Use of boxplots for process evaluation.\nJournal of Quality Technology, 1987, 19(4), 180-190.\n[10] Atienza, O.O., Ching L.T. and Wah, B.A. Simultaneous monitoring of\nunivariante and multivariate SPC information using boxplots.\nInternational Journal of Quality Science, 1988, 3(2).\n[11] Doganaksoy, N., Faltin, F.W. and Tucker, W.T. Identification of-out-of\ncontrol characteristics in a multivariate manufacturing environment.\nCommunications in Statistics Theory and Methods, 1991, 20, 2775-\n2790.\n[12] Runger, G.C., Alt, F.B., and Montgomery, D.C. Contributors to a\nmultivariate statistical process control chart signal. Communications in\nStatistics. Theory Methods, 1996, 25, 2203-2213.\n[13] Mason, R. L., Tracy, N.D. and Young, J.C. Decomposition of T2\nmultivariate control chart interpretation. Journal of Quality Technology,\n1995, 27(2), 99-108.\n[14] Mason, R.L., Tracy, N.D. and Young, J.C. A practical approach for\ninterpreting multivariate T2 control chart signals. Journal of Quality\nTechnology, 1997, 29(4), 396-406.\n[15] Aparisi, F., Avenda\u251c\u2592o, G. and Sanz, J. Interpreting T2 Control Chart\nSignals: Effectiveness of MTY decomposition vs. a Neural Network, IIE\nTransactions, 2006, 38(8), 647-657."}], "resource_type": {"id": "publication-article", "title": {"de": "Zeitschriftenartikel", "en": "Journal article"}}, "rights": [{"description": {"en": "The Creative Commons Attribution license allows re-distribution and re-use of a licensed work on the condition that the creator is appropriately credited."}, "icon": "cc-by-icon", "id": "cc-by-4.0", "props": {"scheme": "spdx", "url": "https://creativecommons.org/licenses/by/4.0/legalcode"}, "title": {"en": "Creative Commons Attribution 4.0 International"}}], "subjects": [{"subject": "Multivariate quality control"}, {"subject": "Artificial Intelligence"}, {"subject": "Neural Networks"}, {"subject": "Computer Applications"}], "title": "Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks", "version": "8798"}, "parent": {"access": {"owned_by": {"user": "32148"}, "settings": {"accept_conditions_text": null, "allow_guest_requests": false, "allow_user_requests": false, "secret_link_expiration": 0}}, "communities": {"default": "a59dd046-9a86-4a47-97ce-b51f1bb8fc3f", "entries": [{"access": {"member_policy": "open", "members_visibility": "public", "record_submission_policy": "open", "review_policy": "open", "visibility": "public"}, "children": {"allow": false}, "created": "2017-05-31T21:24:26.028360+00:00", "custom_fields": {}, "deletion_status": {"is_deleted": false, "status": "P"}, "id": "a59dd046-9a86-4a47-97ce-b51f1bb8fc3f", "links": {}, "metadata": {"curation_policy": "", "description": "", "page": "", "title": "World Academy of Science, Engineering and Technology"}, "revision_id": 0, "slug": "waset", "updated": "2017-11-15T12:37:31.935319+00:00"}], "ids": ["a59dd046-9a86-4a47-97ce-b51f1bb8fc3f"]}, "id": "1071567", "pids": {"doi": {"client": "datacite", "identifier": "10.5281/zenodo.1071567", "provider": "datacite"}}}, "pids": {"doi": {"client": "datacite", "identifier": "10.5281/zenodo.1071568", "provider": "datacite"}, "oai": {"identifier": "oai:zenodo.org:1071568", "provider": "oai"}}, "revision_id": 8, "stats": {"all_versions": {"data_volume": 18589424.0, "downloads": 49, "unique_downloads": 47, "unique_views": 59, "views": 59}, "this_version": {"data_volume": 18589424.0, "downloads": 49, "unique_downloads": 47, "unique_views": 59, "views": 59}}, "status": "published", "ui": {"access_status": {"description_l10n": "The record and files are publicly accessible.", "embargo_date_l10n": null, "icon": "unlock", "id": "open", "message_class": "", "title_l10n": "Open"}, "created_date_l10n_long": "January 24, 2018", "creators": {"affiliations": [], "creators": [{"person_or_org": {"family_name": "Francisco Aparisi", "name": "Francisco Aparisi", "type": "personal"}}, {"person_or_org": {"family_name": "Jos\u00e9 Sanz", "name": "Jos\u00e9 Sanz", "type": "personal"}}]}, "custom_fields": {}, "description_stripped": "Multivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.", "is_draft": false, "languages": [{"id": "eng", "title_l10n": "English"}], "publication_date_l10n_long": "January 26, 2010", "publication_date_l10n_medium": "Jan 26, 2010", "resource_type": {"id": "publication-article", "title_l10n": "Journal article"}, "rights": [{"description_l10n": "The Creative Commons Attribution license allows re-distribution and re-use of a licensed work on the condition that the creator is appropriately credited.", "icon": "cc-by-icon", "id": "cc-by-4.0", "props": {"scheme": "spdx", "url": "https://creativecommons.org/licenses/by/4.0/legalcode"}, "title_l10n": "Creative Commons Attribution 4.0 International"}], "updated_date_l10n_long": "August 2, 2024", "version": "8798"}, "updated": "2024-08-02T23:37:35.807431+00:00", "versions": {"index": 1, "is_latest": true}}' data-styles='[["apa", "APA"], ["harvard-cite-them-right", "Harvard"], ["modern-language-association", "MLA"], ["vancouver", "Vancouver"], ["chicago-fullnote-bibliography", "Chicago"], ["ieee", "IEEE"]]' data-defaultstyle='"apa"' data-include-deleted='false'> </div> </div> </div> <div class="sidebar-container"> <h2 class="ui medium top attached header mt-0">Export</h2> <div id="export-record" class="ui segment bottom attached exports rdm-sidebar"> <div id="recordExportDownload" data-formats='[{"export_url": "/records/1071568/export/json", "name": "JSON"}, {"export_url": "/records/1071568/export/json-ld", "name": "JSON-LD"}, {"export_url": "/records/1071568/export/csl", "name": "CSL"}, {"export_url": "/records/1071568/export/datacite-json", "name": "DataCite JSON"}, {"export_url": "/records/1071568/export/datacite-xml", "name": "DataCite XML"}, {"export_url": "/records/1071568/export/dublincore", "name": "Dublin Core XML"}, {"export_url": "/records/1071568/export/marcxml", "name": "MARCXML"}, {"export_url": "/records/1071568/export/bibtex", "name": "BibTeX"}, {"export_url": "/records/1071568/export/geojson", "name": "GeoJSON"}, {"export_url": "/records/1071568/export/dcat-ap", "name": "DCAT"}, {"export_url": "/records/1071568/export/codemeta", "name": "Codemeta"}, {"export_url": "/records/1071568/export/cff", "name": "Citation File Format"}]'></div> </div> </div> <section id="upload-info" role="note" aria-label="Upload information" class="sidebar-container ui segment rdm-sidebar text-muted" > <h2 class="ui small header text-muted p-0 mb-5"><small>Technical metadata</small></h2> <dl class="m-0"> <dt class="inline"><small>Created</small></dt> <dd class="inline"> <small>January 24, 2018</small> </dd> <div> <dt class="rel-mt-1 inline"><small>Modified</small></dt> <dd class="inline"> <small>August 2, 2024</small> </dd> </div> </dl> </section> </aside> </div> </div> <div class="ui container"> <div class="ui relaxed grid"> <div class="two column row"> <div class="sixteen wide tablet eleven wide computer column"> <div class="ui grid"> <div class="centered row rel-mt-1"> <button id="jump-btn" class="jump-to-top ui button labeled icon" aria-label="Jump to top of page"> <i class="arrow alternate circle up outline icon"></i> Jump up </button> </div> </div></div> </div> </div> </div> </div> </div> </main> <footer id="rdm-footer-element"> <div class="footer-top"> <div class="ui container app-rdm-footer"> <div class="ui equal width stackable grid zenodo-footer"> <div class="column"> <h2 class="ui inverted tiny header">About</h2> <ul class="ui inverted link list"> <li class="item"> <a href="https://about.zenodo.org">About</a> </li> <li class="item"> <a href="https://about.zenodo.org/policies">Policies</a> </li> <li class="item"> <a href="https://about.zenodo.org/infrastructure">Infrastructure</a> </li> <li class="item"> <a href="https://about.zenodo.org/principles">Principles</a> </li> <li class="item"> <a href="https://about.zenodo.org/projects/">Projects</a> </li> <li class="item"> <a href="https://about.zenodo.org/roadmap/">Roadmap</a> </li> <li class="item"> <a href="https://about.zenodo.org/contact">Contact</a> </li> </ul> </div> <div class="column"> <h2 class="ui inverted tiny header">Blog</h2> <ul class="ui inverted link list"> <li class="item"> <a href="https://blog.zenodo.org">Blog</a> </li> </ul> </div> <div class="column"> <h2 class="ui inverted tiny header">Help</h2> <ul class="ui inverted link list"> <li class="item"> <a href="https://help.zenodo.org">FAQ</a> </li> <li class="item"> <a href="https://help.zenodo.org/docs/">Docs</a> </li> <li class="item"> <a href="https://help.zenodo.org/guides/">Guides</a> </li> <li class="item"> <a href="https://zenodo.org/support">Support</a> </li> </ul> </div> <div class="column"> <h2 class="ui inverted tiny header">Developers</h2> <ul class="ui inverted link list"> <li class="item"> <a href="https://developers.zenodo.org">REST API</a> </li> <li class="item"> <a href="https://developers.zenodo.org#oai-pmh">OAI-PMH</a> </li> </ul> </div> <div class="column"> <h2 class="ui inverted tiny header">Contribute</h2> <ul class="ui inverted link list"> <li class="item"> <a href="https://github.com/zenodo/zenodo-rdm"> <i class="icon external" aria-hidden="true"></i> GitHub </a> </li> <li class="item"> <a href="/donate"> <i class="icon external" aria-hidden="true"></i> Donate </a> </li> </ul> </div> <div class="six wide column right aligned"> <h2 class="ui inverted tiny header">Funded by</h2> <ul class="ui horizontal link list"> <li class="item"> <a href="https://home.cern" aria-label="CERN"> <img src="/static/images/cern.png" width="60" height="60" alt="" /> </a> </li> <li class="item"> <a href="https://www.openaire.eu" aria-label="OpenAIRE"> <img src="/static/images/openaire.png" width="60" height="60" alt="" /> </a> </li> <li class="item"> <a href="https://commission.europa.eu/index_en" aria-label="European Commission"> <img src="/static/images/eu.png" width="88" height="60" alt="" /> </a> </li> </ul> </div> </div> </div> </div> <div class="footer-bottom"> <div class="ui inverted container"> <div class="ui grid"> <div class="eight wide column left middle aligned"> <p class="m-0"> Powered by <a href="http://information-technology.web.cern.ch/about/computer-centre">CERN Data Centre</a> & <a href="https://inveniordm.docs.cern.ch/">InvenioRDM</a> </p> </div> <div class="eight wide column right aligned"> <ul class="ui inverted horizontal link list"> <li class="item"> <a href="https://stats.uptimerobot.com/vlYOVuWgM/">Status</a> </li> <li class="item"> <a href="https://about.zenodo.org/privacy-policy">Privacy policy</a> </li> <li class="item"> <a href="https://about.zenodo.org/cookie-policy">Cookie policy</a> </li> <li class="item"> <a href="https://about.zenodo.org/terms">Terms of Use</a> </li> <li class="item"> <a href="/support">Support</a> </li> </ul> </div> </div> </div> </div> </footer> <script type="text/javascript"> window.MathJax = { tex: { inlineMath: [['$', '$'], ['\\(', '\\)']], processEscapes: true // Allows escaping $ signs if needed } }; </script> <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/mathjax/3.2.2/es5/tex-mml-chtml.js?config=TeX-AMS-MML_HTMLorMML"></script> <script src="/static/dist/js/manifest.85914225ed5d447be325.js"></script> <script src="/static/dist/js/73.c39079ca1fc2ae113347.js"></script> <script src="/static/dist/js/3526.e89ca3df1ebb93426a28.js"></script> <script src="/static/dist/js/theme.df2465216f8b783a462f.js"></script> <script src="/static/dist/js/9630.668b690274e548f98163.js"></script> <script src="/static/dist/js/1057.7d75f7650dc82016b0de.js"></script> <script src="/static/dist/js/7655.822a63bb4ea3764acdae.js"></script> <script src="/static/dist/js/9621.6535c4e4a93e5683c079.js"></script> <script src="/static/dist/js/5373.4d3c97d870fcbcceede3.js"></script> <script src="/static/dist/js/8871.6edcd2191521fae14176.js"></script> <script src="/static/dist/js/621.a65ad81b760d669506ff.js"></script> <script src="/static/dist/js/9827.77cd5b562048a6591df4.js"></script> <script src="/static/dist/js/742.c9ff6bca3a608a9bce7d.js"></script> <script src="/static/dist/js/base-theme-rdm.9d9bbd310b84172faad3.js"></script> <script src="/static/dist/js/i18n_app.99c66e0dc76dcd873a86.js"></script> <script src="/static/dist/js/4709.939b30788057693c892e.js"></script> <script src="/static/dist/js/5941.416c32bce9b1f6137489.js"></script> <script src="/static/dist/js/9736.60a1726b721ad3d427db.js"></script> <script src="/static/dist/js/5965.a9d2e38c2dcdd42ebc70.js"></script> <script src="/static/dist/js/1677.b755f75684136ec3634e.js"></script> <script src="/static/dist/js/8102.8ca37a7a6650ce75a7fa.js"></script> <script src="/static/dist/js/5368.01a2200ad661130e2972.js"></script> <script src="/static/dist/js/8585.f6b02d1a40609affd664.js"></script> <script src="/static/dist/js/1990.4198c9b3429de6dfebed.js"></script> <script src="/static/dist/js/3532.e8cb76db2b7edf78ccfa.js"></script> <script src="/static/dist/js/overridable-registry.d865c1ea4ce3e4ded8b7.js"></script> <script type='application/ld+json'>{"@context": "http://schema.org", "@id": "https://doi.org/10.5281/zenodo.1071568", "@type": "https://schema.org/ScholarlyArticle", "author": [{"@type": "Person", "familyName": "Francisco Aparisi", "name": "Francisco Aparisi"}, {"@type": "Person", "familyName": "Jos\u00e9 Sanz", "name": "Jos\u00e9 Sanz"}], "contentSize": "370.48 KB", "creator": [{"@type": "Person", "familyName": "Francisco Aparisi", "name": "Francisco Aparisi"}, {"@type": "Person", "familyName": "Jos\u00e9 Sanz", "name": "Jos\u00e9 Sanz"}], "dateCreated": "2018-01-24T20:40:52.041677+00:00", "dateModified": "2024-08-02T23:37:35.807431+00:00", "datePublished": "2010-01-26", "description": "\u003cp\u003eMultivariate quality control charts show some advantages to monitor several variables in comparison with the simultaneous use of univariate charts, nevertheless, there are some disadvantages. The main problem is how to interpret the out-ofcontrol signal of a multivariate chart. For example, in the case of control charts designed to monitor the mean vector, the chart signals showing that it must be accepted that there is a shift in the vector, but no indication is given about the variables that have produced this shift. The MEWMA quality control chart is a very powerful scheme to detect small shifts in the mean vector. There are no previous specific works about the interpretation of the out-of-control signal of this chart. In this paper neural networks are designed to interpret the out-of-control signal of the MEWMA chart, and the percentage of correct classifications is studied for different cases.\u003c/p\u003e", "identifier": "https://doi.org/10.5281/zenodo.1071568", "inLanguage": {"@type": "Language", "alternateName": "eng", "name": "English"}, "keywords": "Multivariate quality control, Artificial Intelligence, Neural Networks, Computer Applications", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "name": "Interpreting the Out-of-Control Signals of Multivariate Control Charts Employing Neural Networks", "publisher": {"@type": "Organization", "name": "Zenodo"}, "size": "370.48 KB", "url": "https://zenodo.org/records/1071568", "version": "8798"}</script> <script src="/static/dist/js/invenio-app-rdm-landing-page-theme.9b56690388e335810f04.js"></script> <script src="/static/dist/js/9945.e11a5a6ff50535c72070.js"></script> <script src="/static/dist/js/1357.4e237807ffba81b213b0.js"></script> <script src="/static/dist/js/1644.2b2007bc83e4beeabfaf.js"></script> <script src="/static/dist/js/8962.cfabe841decd009221fd.js"></script> <script src="/static/dist/js/9300.a81535ba51a38f1472fe.js"></script> <script src="/static/dist/js/9693.dac033d778162b60d96f.js"></script> <script src="/static/dist/js/invenio-app-rdm-landing-page.024f3c02bb324ddef007.js"></script> <script src="/static/dist/js/previewer_theme.77f20174699c7786038a.js"></script> <script src="/static/dist/js/zenodo-rdm-citations.f6ca22bc7712ee9b03f7.js"></script> <div class="ui container info message cookie-banner hidden"> <i class="close icon"></i> <div> <i aria-hidden="true" class="info icon"></i> <p class="inline">This site uses cookies. Find out more on <a href="https://about.zenodo.org/cookie-policy">how we use cookies</a></p> </div> <div class="buttons"> <button class="ui button small primary" id="cookies-all">Accept all cookies</button> <button class="ui button small" id="cookies-essential">Accept only essential cookies</button> </div> </div> <script> var _paq = window._paq = window._paq || []; _paq.push(['requireCookieConsent']); (function() { var u="https://webanalytics.web.cern.ch/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '366']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); const cookieConsent = document.cookie .split("; ") .find((row) => row.startsWith("cookie_consent=")) ?.split("=")[1]; if (cookieConsent) { if (cookieConsent === "all") { matomo(); } } else { document.querySelector(".cookie-banner").classList.remove("hidden") _paq.push(['forgetConsentGiven']); } $('.cookie-banner .close') .on('click', function () { $(this) .closest('.message') .transition('fade'); setCookie("cookie_consent","essential"); }); $('#cookies-essential') .on('click', function () { $(this) .closest('.message') .transition('fade'); setCookie("cookie_consent","essential"); }); $('#cookies-all') .on('click', function () { $(this) .closest('.message') .transition('fade'); setCookie("cookie_consent","all"); _paq.push(['rememberCookieConsentGiven']); matomo(); }); function matomo() { /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); } function setCookie(cname, cvalue) { var d = new Date(); d.setTime(d.getTime() + (365 * 24 * 60 * 60 * 1000)); // one year var expires = "expires=" + d.toUTCString(); var cookie = cname + "=" + cvalue + ";" + expires + ";" cookie += "Domain=zenodo.org;Path=/;SameSite=None; Secure"; document.cookie = cookie; } </script> </body> </html>