CINXE.COM
Search results for: guava
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: guava</title> <meta name="description" content="Search results for: guava"> <meta name="keywords" content="guava"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="guava" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="guava"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: guava</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Microwave Assisted Foam-Mat Drying of Guava Pulp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ovais%20S.%20Qadri">Ovais S. Qadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhaya%20K.%20Srivastava"> Abhaya K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foam%20mat%20drying" title="foam mat drying">foam mat drying</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20mat%20guava" title=" foam mat guava"> foam mat guava</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20powder" title=" guava powder"> guava powder</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title=" microwave drying "> microwave drying </a> </p> <a href="https://publications.waset.org/abstracts/26184/microwave-assisted-foam-mat-drying-of-guava-pulp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Effect of Hydroxy Propyl Methyl Cellulose (HPMC) Coating in Combination with MGSO4 on Some Guava Cultivars </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Randhawa">Muhammad Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem"> Muhammad Nadeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guava (Psidium guajava L.) is a vital source of minerals, vitamins, dietary fiber and antioxidants. Owing to highly perishable nature and proning towards chilling injury, diseases, insect-pests and physical damage the main drawbacks of guava after harvesting, present study was designed. Due to its delicacy in physiology, economic importance, effects of pre and postharvest factors and maturity indices, guava fruits should be given prime importance for good quality attributes. In this study guava fruits were stored at 10°C with 80% relative humidity after treating with different levels of sulphate salt of magnesium followed by dipping in cellulose based edible coating hydroxy propyl methyl cellulose (HPMC). The main objective of this coating was to enhance the shelf life of guava by inhibiting the respiration and also by binding the dissolved solids with salt application. Characterization for quality attributes including physical, physiological and bio chemical analysis was performed after every 7 days interval till the fruit remains edible during the storage period of 4 weeks. Finally, data obtained was subjected to statistical analysis. It was concluded on statistical basis that Surahi variety (treated with 5% MgSO4) showed best storage stability and kept its original quality up to almost 23 days during storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20coating" title="edible coating">edible coating</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20cultivars" title=" guava cultivars"> guava cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20attributes" title=" physicochemical attributes"> physicochemical attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/41480/effect-of-hydroxy-propyl-methyl-cellulose-hpmc-coating-in-combination-with-mgso4-on-some-guava-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Morpho-Genetic Assessment of Guava (Psidium guajava L.) Genetic Resources in Pakistan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Mehmood">Asim Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Karim"> Abdul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20J.%20Jaskani"> Muhammad J. Jaskani</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20S.%20Awan"> Faisal S. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20W.%20Sajid"> Muhammad W. Sajid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Guava (Psidium guajava L.) is an important commercial fruit crop of Pakistan. It is an allogamous crop having 25-40% cross pollination which on the one hand leads to clonal degradation and on the other hand can add variations to generated new cultivars. Morpho-genetic characterization of 37 guava accessions was carried out for study of the genetic diversity among guava accessions located in province Punjab, Pakistan. For morphological analysis, 17 morphological traits were studied, and strong positive correlation was found among the 7 morphological traits which included thickness of outer flesh in relation to core diameter, fruit length, fruit width, fruit juiciness, fruit size, fruit sweetness and number of seeds. For genetic characterization, 18 microsatellites were used, and the sizes of reproducible and scorable bands ranged from 150 to 320 bp. These 18 primer pairs amplified a total of 85 alleles in P. guajava, with an average total number of 4.7 alleles per locus and no more than two displayed bands (nuclear SSR loci). The phylogenetic tree based on the morphological and genetic traits showed the diversity of these 37 guava genotypes into two major groups. These results indicated that Pakistani guava is quite diverse and a more detail study is needed to define the level of genetic variability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Psidium%20guajava%20L" title="Psidium guajava L">Psidium guajava L</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=SSR%20markers" title=" SSR markers"> SSR markers</a>, <a href="https://publications.waset.org/abstracts/search?q=polymorphism" title=" polymorphism"> polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrogram" title=" dendrogram "> dendrogram </a> </p> <a href="https://publications.waset.org/abstracts/83595/morpho-genetic-assessment-of-guava-psidium-guajava-l-genetic-resources-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daudi%20S.%20Simbeye">Daudi S. Simbeye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mbazingwa%20E.%20Mkiramweni"> Mbazingwa E. Mkiramweni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20identification" title="early identification">early identification</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20plants" title=" guava plants"> guava plants</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20diseases" title=" fruit diseases"> fruit diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/161619/iot-based-early-identification-of-guava-psidium-guajava-leaves-and-fruits-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Comparative Assessment of Organo-Chlorine Pesticides Residue in Fruits and Fruit Juices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saidu%20Garba%20Okereafor%20Stella">Saidu Garba Okereafor Stella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of 15 organochlorine pesticides residue was assessed from 29 different fruits and fruit juice samples from selected farms in Kaduna and Niger States using the quick easy cheap effective rugged and safe (QuEChERS), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The results showed the presence of varying concentrations of ten (10) organochlorine pesticide residues in all the samples with Endrin ketone showing the highest concentration in 3 samples from Kaduna (guava juice 1 and 2 0.099 to 0.145 mg/kg) and Niger States (orange juice J19 0.102 mg/kg). The heptachlor was detected at high concentration in 11 samples, 7 samples from Kaduna State (mango juice 0.011 mg/kg, Washington orange 0.014 mg/kg, Valencia orange fruit 0.020 mg/kg, orange juice 0.011, white guava fruit 0.024 mg/kg, guava juice 0.023 mg/kg, guava juice 2 0.024 mg/kg) and 4 samples from (mango juice 1 0.015 mg/kg, pineapple juice 1 0.0120 mg/kg pineapple juice 2 011 mg/kg and mix juice 2 0.012 mg/kg) from Niger State. Dieldrine and endosulfansulfate were detected at high levels in one sample each from Niger (guava fruit 0.019 mg/kg and mixed juice1 0.011mg/kg), respectively. However, all were above the maximum residue limits (MRLs) set by WHO/FAO which suggest that people consuming these type of contaminated fruits and fruits juices may contact diseases associated with those organochlorine pesticides residue. Minute concentrations of other organochlorines (α- BHC, δ- BHC, β- BHC, Lindane, and p’p DDT) ranged from 0.003 to 0.015 were recorded below the MRLs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruits%20and%20fruits%20juices" title="fruits and fruits juices">fruits and fruits juices</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide%20residue" title=" organochlorine pesticide residue"> organochlorine pesticide residue</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20studies" title=" comparative studies"> comparative studies</a>, <a href="https://publications.waset.org/abstracts/search?q=gc-ms%20spectrophometer" title=" gc-ms spectrophometer"> gc-ms spectrophometer</a> </p> <a href="https://publications.waset.org/abstracts/136919/comparative-assessment-of-organo-chlorine-pesticides-residue-in-fruits-and-fruit-juices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Determination of Vitamin C Red Guava (Psidium guajava Linn) Fruit Juice, with Variation of Beverage Packaging by Titrimetic Method Using 2,6- Dichlorophenol Indophenol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Novriyanti%20Lubis">Novriyanti Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Riska%20Prasetiawati"> Riska Prasetiawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Wulan%20%20Septiani"> Wulan Septiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quantitative analysis of vitamin C content from variations beverage packaging containing red guava (Psidium Guajava Linn) fruit juice had been done. In this study, four samples were obtained from the shopping center in Garut and Bandung City. Samples were tested quantitatively by 2,6-dichlorophenol indophenol titration method. The results showed different concentration of 4 samples consist of tetra pack packaging, tin, glass, and plastic bottles, such as; 17.99 mg/100 gr, 31.46 mg/100 gr, 13.00 mg/100 gr, and 12.01 mg/100 gr, respectively. These results indicated that the packaging variations affected the level of vitamin C content which was characterized by decreased levels of vitamin C. It means the levels of vitamin C from this research were not in accordance with nutritional value information on the packaging. Tetra pack packaging was the most stable compared to other packaging even though it had a shorter expired date than with other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title="vitamin C">vitamin C</a>, <a href="https://publications.waset.org/abstracts/search?q=variations%20beverage%20packaging" title=" variations beverage packaging"> variations beverage packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20guava" title=" red guava"> red guava</a>, <a href="https://publications.waset.org/abstracts/search?q=titration%202" title=" titration 2"> titration 2</a>, <a href="https://publications.waset.org/abstracts/search?q=6-%20dichlorophenol%20indophenol" title="6- dichlorophenol indophenol">6- dichlorophenol indophenol</a> </p> <a href="https://publications.waset.org/abstracts/76541/determination-of-vitamin-c-red-guava-psidium-guajava-linn-fruit-juice-with-variation-of-beverage-packaging-by-titrimetic-method-using-26-dichlorophenol-indophenol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Development of Paper Based Analytical Devices for Analysis of Iron (III) in Natural Water Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakchai%20Satienperakul">Sakchai Satienperakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoch%20Thanomwat"> Manoch Thanomwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jutiporn%20Seedasama"> Jutiporn Seedasama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A paper based analytical devices (PADs) for the analysis of Fe (III) ion in natural water samples is developed, using reagent from guava leaf extract. The extraction is simply performed in deionized water pH 7, where tannin extract is obtained and used as an alternative natural reagent. The PADs are fabricated by ink-jet printing using alkenyl ketene dimer (AKD) wax. The quantitation of Fe (III) is carried out using reagent from guava leaf extract prepared in acetate buffer at the ratio of 1:1. A color change to gray-purple is observed by naked eye when dropping sample contained Fe (III) ion on PADs channel. The reflective absorption measurement is performed for creating a standard curve. The linear calibration range is observed over the concentration range of 2-10 mg L-1. Detection limited of Fe (III) is observed at 2 mg L-1. In its optimum form, the PADs is stable for up to 30 days under oxygen free conditions. The small dimensions, low volume requirement and alternative natural reagent make the proposed PADs attractive for on-site environmental monitoring and analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20chemical%20analysis" title="green chemical analysis">green chemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20leaf%20extract" title=" guava leaf extract"> guava leaf extract</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20on%20a%20chip" title=" lab on a chip"> lab on a chip</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20based%20analytical%20device" title=" paper based analytical device"> paper based analytical device</a> </p> <a href="https://publications.waset.org/abstracts/54607/development-of-paper-based-analytical-devices-for-analysis-of-iron-iii-in-natural-water-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Reducing the Cooking Time of Bambara Groundnut (BGN)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auswell%20Amfo-Antiri">Auswell Amfo-Antiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Eshun"> Esther Eshun</a>, <a href="https://publications.waset.org/abstracts/search?q=Theresa%20A.%20Amu"> Theresa A. Amu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooking Bambara groundnut (Bambara beans) is time and energy-consuming. Over time, some substances have been used to help reduce cooking time and save energy. This experimental study was carried out to find ways of reducing the cooking time of Bambara groundnut using selected organic substances. Twenty grams (20g) each of fresh pawpaw leaves, guava leaves, ginger, onion, and palm kernel were cooked with five samples of 200g of the creamy variety of raw Bambara groundnut. A control was cooked without any organic substance added. All six samples were cooked with equal quantities of water (4L); the gas mark used for cooking the samples was marked 5, the highest for the largest burner, using the same cooking pot. Gas matter. The control sample used 192 minutes to cook thoroughly. The ginger-treated sample (AET02) had the shortest cooking time of 145 minutes, followed by the onion-treated sample (AET05), with a cooking time of 157 minutes. The sample cooked with Palm kernel (AET06) and Pawpaw (AET04) used 172 minutes and 174 minutes, respectively, while sample AET03, cooked with Guava, used 185 minutes for cooking. The difference in cooking time for the sample treated with ginger (AET02) and onion (AET05) was 47 minutes and 35 minutes, respectively, as compared with the control. The comparison between Control and Pawpaw produced [p=0.163>0.05]; Control and Ginger yielded [p=0.006<0.05]; Control and Kernel resulted in [p=0.128>0.05]; Control and Guava resulted in [p=0.560>0.05]. The study concluded that ginger and onions comparatively reduced the cooking time for Bambara ground nut appreciably. The study recommended that ginger and onions could be used to reduce the cooking time of Bambara groundnut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooking%20time" title="cooking time">cooking time</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20substances" title=" organic substances"> organic substances</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=onions" title=" onions"> onions</a>, <a href="https://publications.waset.org/abstracts/search?q=pawpaw%20leaves" title=" pawpaw leaves"> pawpaw leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20leaves" title=" guava leaves"> guava leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bambara%20groundnut" title=" bambara groundnut"> bambara groundnut</a> </p> <a href="https://publications.waset.org/abstracts/164850/reducing-the-cooking-time-of-bambara-groundnut-bgn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Evaluation of Different Food Baits by Using Kill Traps for the Control of Lesser Bandicoot Rat (Bandicota bengalensis) in Field Crops of Pothwar Plateau, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20Munawar">Nadeem Munawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Hussain"> Iftikhar Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20%20Mahmood"> Tariq Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lesser bandicoot rat (Bandicota bengalensis) is widely distributed and a serious agricultural pest in Pakistan. It has wide adaptation with rice-wheat-sugarcane cropping systems of Punjab, Sindh and Khyber Pakhtunkhwa and wheat-groundnut cropping system of Pothwar area, thus inflicting heavy losses to these crops. Comparative efficacies of four food baits (onion, guava, potato and peanut butter smeared bread/Chapatti) were tested in multiple feeding tests for kill trapping of this rat species in the Pothwar Plateau between October 2013 to July 2014 at the sowing, tilling, flowering and maturity stages of wheat, groundnut and millet crops. The results revealed that guava was the most preferred bait as compared to the rest of three, presumably due to particular taste and smell of the guava. The relative efficacies of all four tested baits guava also scoring the highest trapping success of 16.94 ± 1.42 percent, followed by peanut butter, potato, and onion with trapping successes of 10.52 ± 1.30, 7.82 ± 1.21 and 4.5 ± 1.10 percent, respectively. In various crop stages and season-wise the highest trapping success was achieved at maturity stages of the crops, presumably due to higher surface activity of the rat because of favorable climatic conditions, good shelter, and food abundance. Moreover, the maturity stage of wheat crop coincided with spring breeding season and maturity stages of millet and groundnut match with monsoon/autumn breeding peak of the lesser bandicoot rat in Pothwar area. The preferred order among four baits tested was guava > peanut butter > potato > onion. The study recommends that the farmers should periodically carry out rodent trapping at the beginning of each crop season and during non-breeding seasons of this rodent pest when the populations are low in numbers and restricted under crop boundary vegetation, particularly during very hot and cold months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandicota%20bengalensis" title="Bandicota bengalensis">Bandicota bengalensis</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20baits" title=" food baits"> food baits</a>, <a href="https://publications.waset.org/abstracts/search?q=Pothwar" title=" Pothwar"> Pothwar</a> </p> <a href="https://publications.waset.org/abstracts/74271/evaluation-of-different-food-baits-by-using-kill-traps-for-the-control-of-lesser-bandicoot-rat-bandicota-bengalensis-in-field-crops-of-pothwar-plateau-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erika%20K.%20M%C3%A9ndez">Erika K. Méndez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20E.%20Orrego"> Carlos E. Orrego</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20L.%20Manrique"> Diana L. Manrique</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20D.%20Gonzalez"> Juan D. Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Dom%C3%A9nica%20Vallejo"> Doménica Vallejo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=banana" title="banana">banana</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20diffusivity" title=" effective diffusivity"> effective diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=guava" title=" guava"> guava</a>, <a href="https://publications.waset.org/abstracts/search?q=mango" title=" mango"> mango</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/32987/power-ultrasound-application-on-convective-drying-of-banana-musa-paradisiaca-mango-mangifera-indica-l-and-guava-psidium-guajava-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Study on Shelf Life and Textural Properties of Minimal Processed Mixed Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaavya%20Rathnakumar">Kaavya Rathnakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimally processed fruits have the attributes of convenience and fresh like quality. In minimally processed products, the cells of the tissue are alive, and the essential nutrients and flavours are retained. Some of the procedures include washing, trimming, sorting, cutting, slicing and shredding. Fruits such as pineapple and guava were taken for the study of textural properties for a period of five days. After the performance of various unit operations 50g cubes of pineapple and guava has been weighed. For determining the textural properties, samples were taken in which set of 12 samples were treated by using 1% citric acid solution and dried for 5 minutes the remaining set of 12 samples were untreated. In set of treated samples 6 were vacuum packed and stored in the refrigerator, and the other sample was normally stored. For untreated samples was done in a similar way. In texture profile analysis the force required for 1cm penetration of 2mm cylindrical needle inside the fruits were recorded for all packages. It was observed that guava the fresh sample had a force of penetration of 3250mm and as the days increased the force decreased to 357.4 mm for vacuum packed refrigerated storage. In the case of pineapple, the force of penetration of the fresh sample was 2325mm which was decreased to 26.3mm on the fourth day and very low at the fifth day for vacuum packed refrigerated storage. But in case of untreated samples, the fruits were spoiled may be because of no pre-treatment and packaging. Comparatively, it was found that vacuum packed refrigerated samples had higher shelf life than normal packed samples in ambient conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1%25%20citric%20acid%20solution" title="1% citric acid solution">1% citric acid solution</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20packed" title=" normal packed"> normal packed</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerated%20storage" title=" refrigerated storage"> refrigerated storage</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20packed" title=" vacuum packed"> vacuum packed</a> </p> <a href="https://publications.waset.org/abstracts/56556/study-on-shelf-life-and-textural-properties-of-minimal-processed-mixed-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Feeding Habitat of Parrot (Ringed Necked Parakeet) in District Mirpurkhas Sindh Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Liaquat%20Ali">Aisha Liaquat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Sarwar%20Gachal"> Ghulam Sarwar Gachal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yusuf%20Sheikh"> Muhammad Yusuf Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The parrot (Rose Ringed) commonly known as tota, belongs to the order ‘psiitaciformes’ and family ‘Psittacidea’, Four species of parakeet inhabits tropical and subtropical regions of Pakistan mostly adopted parks in cities deciduous woodlands, light secondary jungles, semidesert, and scrubland and in orchards and cultivated farmlands. They are mostly feed on citrus fruits, guava, mango, green unripen seed and almond nuts as well as bud and flowers etc. the core aim of the present study was to investigate the Feeding Habitat of Parrot (Ringed Necked Parakeet) in District Mirpurkhas Sindh Pakistan. Sampling was obtained from various adjoining areas of District Mirpurkhas by Non-Random Method, which was conducted from June to Nov 2017. During the present study, a total no: of 84 specimens were collected from different localities of City Mirpurkhas (42.8%) were male ♂ and (57.1%) were female ♀. Maximum population density of Psittaculla Krameri Borealis (50.0%) was collected from Guava (Psidium Guajava) Orchards, Mango (Mangifera Indica) orchard (41.6%), chekoo (Manilkara Zapota) orchard (5.9%) and the Minimum No: of Psittaculla krameri Borealis (2.3%) collected Date (Phoenix Dactylifera) orchard. It was observed that Psittaculla krameri Borealis were highly consumed Guava (Psidium Guajava) and the minimum consume food was Date (Phoenix Dactylifera). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20Mirpur%20Khas%20Sindh%20Pakistan" title="district Mirpur Khas Sindh Pakistan">district Mirpur Khas Sindh Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding" title=" feeding"> feeding</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat" title=" habitat"> habitat</a>, <a href="https://publications.waset.org/abstracts/search?q=parrot%20%28ringed%20necked%20parakeet%29" title=" parrot (ringed necked parakeet)"> parrot (ringed necked parakeet)</a> </p> <a href="https://publications.waset.org/abstracts/91976/feeding-habitat-of-parrot-ringed-necked-parakeet-in-district-mirpurkhas-sindh-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Physicochemical Properties of Palm Stearin (PS) and Palm Kernel Olein (PKOO) Blends as Potential Edible Coating Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Ruzaina">I. Ruzaina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Rashid"> A. B. Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Halimahton%20Zahrah"> M. S. Halimahton Zahrah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Cheow"> C. S. Cheow</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Adi"> M. S. Adi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine the potential of palm stearin (PS) as edible coating materials for fruits. The palm stearin was blended with 20-80% palm kernel olein (PKOo) and the properties of the blends were evaluated in terms of the slip melting point (SMP), solid fat content (SFC), fatty acid and triacylglycerol compositions (TAG), and polymorphism. Blending of PS with PKOo reduced the SMP, SFC, altered the FAC and TAG composition and changed the crystal polymorphism from β to mixture of β and β′. The changes in the physicochemical properties of PS were due to the replacement of the high melting TAG in PS with medium chain TAG in PKOo. From the analysis, 1:1 and 3:2 were the better PSPKOo blend formulations in slowing down the weight loss, respiration gases and gave better appearance when compared to other PSPKOo blends formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guava" title="guava">guava</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20stearin" title=" palm stearin"> palm stearin</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20olein" title=" palm kernel olein"> palm kernel olein</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical "> physicochemical </a> </p> <a href="https://publications.waset.org/abstracts/28629/physicochemical-properties-of-palm-stearin-ps-and-palm-kernel-olein-pkoo-blends-as-potential-edible-coating-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Polymerase Chain Reaction Analysis and Random Amplified Polymorphic DNA of Agrobacterium Tumefaciens </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20M.%20Algeblawi">Abeer M. Algeblawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifteen isolates of Agrobacterium tumefaciens were obtained from crown gall samples collected from six locations (Tripoli, Alzahra, Ain-Zara, Alzawia, Alazezia in Libya) from Grape (Vitis vinifera L.), Pear (Pyrus communis L.), Peach (Prunus persica L.) and Alexandria in Egypt from Guava (Psidium guajava L.) trees, Artichoke (Cynara cardunculus L.) and Sugar beet (Beta vulgaris L.). Total DNA was extracted from the eight isolates as well as the identification of six isolates used into Polymerase Chain Reaction (PCR) analysis and Random Amplified Polymorphic DNA (RAPD) technique were used. High similarity (55.5%) was observed among the eight A. tumefaciens isolates (Agro1, Agro2, Agro3, Agro4, Agro5, Agro6, Agro7, and Agro8). The PCR amplification products were resulting from the use of two specific primers (virD2A-virD2C). Analysis induction six isolates of A. tumefaciens obtained from different hosts. A visible band was specific to A. tumefaciens of (220 bp, 224 bp) and 338 bp produced with total DNA extracted from bacterial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agrobacterium%20tumefaciens" title="Agrobacterium tumefaciens">Agrobacterium tumefaciens</a>, <a href="https://publications.waset.org/abstracts/search?q=crown%20gall" title=" crown gall"> crown gall</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20characterization" title=" molecular characterization"> molecular characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD" title=" RAPD"> RAPD</a> </p> <a href="https://publications.waset.org/abstracts/113521/polymerase-chain-reaction-analysis-and-random-amplified-polymorphic-dna-of-agrobacterium-tumefaciens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Fiber Optic Asparagine Biosensor for Fruit Juices by Co-Immobilization of L-Asparaginase and Phenol Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandeep%20Kataria">Mandeep Kataria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Narula"> Ritu Narula</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur"> Navneet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asparagine is vital amino acid which is required for the development of brain and it regulates the equilibrium of central nervous system. Asparagine is the chief amino acid that forms acrylamide in baked food by reacting with reducing sugars at high temperature ( Millard Reaction i.e. amino acids and sugars give new flavors at high temperature). It can also be a parameter of freshness in fruit juices because on storage of juices at 37°C caused an 87% loss in the total free amino acids and major decrease was recorded in asparagine contents. With this significance of monitoring asparagine, in the present work a biosensor for determining asparagine in fruit juices is developed. For the construction of biosensor L-asparaginase enzyme (0.5 IU) was co-immobilized with phenol red on TEOS chitosan sol-gel plastic disc and fixed on the fiber optic tip. Tip was immersed in a cell having 5ml of substrate and absorption was noted at response time of 5 min with 10-1 - 10-10 M concentrations of asparagine at 538 nm. L-asparaginase was extracted and from Solanum nigrum Asparagine biosensor was applied fruit juices on the monitoring asparagine contents. L-asparagine concentration found to be present in fruit juices like Guava Juice, Apple Juice, Mango Juice, Litchi juice, Strawberry juice, Pineapple juice Lemon juice, and Orange juice. Hence the developed biosensor has commercial aspects in quality insurance of fruit juices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic%20biosensor" title="fiber optic biosensor">fiber optic biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=teos" title=" teos"> teos</a>, <a href="https://publications.waset.org/abstracts/search?q=l-asparaginase" title=" l-asparaginase"> l-asparaginase</a> </p> <a href="https://publications.waset.org/abstracts/47241/fiber-optic-asparagine-biosensor-for-fruit-juices-by-co-immobilization-of-l-asparaginase-and-phenol-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Determinant Factor of Farm Household Fruit Tree Planting: The Case of Habru Woreda, North Wollo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getamesay%20Kassaye%20Dimru">Getamesay Kassaye Dimru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cultivation of fruit tree in degraded areas has two-fold importance. Firstly, it improves food availability and income, and secondly, it promotes the conservation of soil and water improving, in turn, the productivity of the land. The main objectives of this study are to identify the determinant of farmer's fruit trees plantation decision and to major fruit production challenges and opportunities of the study area. The analysis was made using primary data collected from 60 sample household selected randomly from the study area in 2016. The primary data was supplemented by data collected from a key informant. In addition to the descriptive statistics and statistical tests (Chi-square test and t-test), a logit model was employed to identify the determinant of fruit tree plantation decision. Drought, pest incidence, land degradation, lack of input, lack of capital and irrigation schemes maintenance, lack of misuse of irrigation water and limited agricultural personnel are the major production constraints identified. The opportunities that need to further exploited are better access to irrigation, main road access, endowment of preferred guava variety, experience of farmers, and proximity of the study area to research center. The result of logit model shows that from different factors hypothesized to determine fruit tree plantation decision, age of the household head accesses to market and perception of farmers about fruits' disease and pest resistance are found to be significant. The result has revealed important implications for the promotion of fruit production for both land degradation control and rehabilitation and increasing the livelihood of farming households. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit" title=" fruit"> fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=pest" title=" pest "> pest </a> </p> <a href="https://publications.waset.org/abstracts/89796/determinant-factor-of-farm-household-fruit-tree-planting-the-case-of-habru-woreda-north-wollo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>