CINXE.COM
Search results for: aeroacoustics
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aeroacoustics</title> <meta name="description" content="Search results for: aeroacoustics"> <meta name="keywords" content="aeroacoustics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aeroacoustics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aeroacoustics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aeroacoustics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Computational Aerodynamics and Aeroacoustics of a Nose Landing Gear</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Haider">Kamal Haider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations over landing gear of simplified and partially-dressed configurations with closed cavity have been performed to compute aerodynamically and aeroacoustics parameters using commercial engineering software. The objective of numerical computations is two folds. Firstly, to validate experimental data of newly built nose landing gear and secondly perform high-fidelity calculations using CFD/FW-H hybrid approach, as future engineering challenges need more advanced aircraft configurations such as performance noise and efficiency. Both geometries are used for multi-block structured, and unstructured/hybrid meshed to develop some understanding of physics in terms of aerodynamics and aeroacoustics. Detached Eddy Simulation (DES) approach is employed to compute surface pressure. Also far-field noise calculations have been generated by Ffowcs-William and Hawking solver. Both results of aerodynamics and aeroacoustics are compared with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landing%20gear" title="landing gear">landing gear</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics" title=" computational aeroacoustics"> computational aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aerodynamics" title=" computational aerodynamics"> computational aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=detached%20eddy%20simulation" title=" detached eddy simulation"> detached eddy simulation</a> </p> <a href="https://publications.waset.org/abstracts/59488/computational-aerodynamics-and-aeroacoustics-of-a-nose-landing-gear" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Numerical Aeroacoustics Investigation of Eroded and Coated Leading Edge of NACA 64- 618 Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Gharibi">Zeinab Gharibi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Stoevesandt"> B. Stoevesandt</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Peinke"> J. Peinke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long term surface erosion of wind turbine blades, especially at the leading edge, impairs aerodynamic performance; therefore, lowers efficiency of the blades mostly in the high-speed rotor tip regions. Blade protection provides significant improvements in annual energy production, reduces costly downtime, and protects the integrity of the blades. However, this protection still influences the aerodynamic behavior, and broadband noise caused by interaction between the impinging turbulence and blade’s leading edge. This paper presents an extensive numerical aeroacoustics approach by investigating the sound power spectra of the eroded and coated NACA 64-618 wind turbine airfoil and evaluates aeroacoustics improvements after the protection procedure. Using computational fluid dynamics (CFD), different quasi 2D numerical grids were implemented and special attention was paid to the refinement of the boundary layers. The noise sources were captured and decoupled with acoustic propagation via the derived formulation of Curle’s analogy implemented in OpenFOAM. Therefore, the noise spectra were compared for clean, coated and eroded profiles in the range of chord-based Reynolds number (1.6e6 ≤ Re ≤ 11.5e6). Angle of attack was zero in all cases. Verifications were conducted for the clean profile using available experimental data. Sensitivity studies for the far-field were done on different observational positions. Furthermore, beamforming studies were done simulating an Archimedean spiral microphone array for far-field noise directivity patterns. Comparing the noise spectra of the coated and eroded geometries, results show that, coating clearly improves aerodynamic and acoustic performance of the eroded airfoil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20aeroacoustics" title=" computational aeroacoustics"> computational aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge" title=" leading edge"> leading edge</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a> </p> <a href="https://publications.waset.org/abstracts/77658/numerical-aeroacoustics-investigation-of-eroded-and-coated-leading-edge-of-naca-64-618-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Investigation of Flow Effects of Soundwaves Incident on an Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirsa%20Sherry">Thirsa Sherry</a>, <a href="https://publications.waset.org/abstracts/search?q=Utkarsh%20Shrivastav"> Utkarsh Shrivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannan%20B.%20T."> Kannan B. T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Iynthezhuton%20K."> Iynthezhuton K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of aerodynamics and aeroacoustics remains one of the most poignant and well-researched fields of today. The current paper aims to investigate the predominant problem concerning the effects of noise of varying frequencies and waveforms on airflow surrounding an airfoil. Using a single speaker beneath the airfoil at different positions, we wish to simulate the effects of sound directly impinging on an airfoil and study its direct effects on airflow. We wish to study the same using smoke visualization methods with incense as our smoke-generating material in a variable-speed subsonic wind tunnel. Using frequencies and wavelengths similar to those of common engine noise, we wish to simulate real-world conditions of engine noise interfering with airflow and document the arising trends. These results will allow us to look into the real-world effects of noise on airflow and how to minimize them and expand on the possible relation between waveforms and noise. The parameters used in the study include frequency, Reynolds number, waveforms, angle of attack, and the effects on airflow when varying these parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine%20noise" title="engine noise">engine noise</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20excitation" title=" acoustic excitation"> acoustic excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20speed" title=" low speed"> low speed</a> </p> <a href="https://publications.waset.org/abstracts/159050/investigation-of-flow-effects-of-soundwaves-incident-on-an-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20Eldin%20Afyouni">Nour Eldin Afyouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Assoum"> Hassan Assoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Abed-Meraim"> Kamel Abed-Meraim</a>, <a href="https://publications.waset.org/abstracts/search?q=Anas%20Sakout"> Anas Sakout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet" title="impinging jet">impinging jet</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20structures" title=" coherent structures"> coherent structures</a>, <a href="https://publications.waset.org/abstracts/search?q=SPIV" title=" SPIV"> SPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a> </p> <a href="https://publications.waset.org/abstracts/172777/experimental-investigation-of-the-aeroacoustics-field-for-a-rectangular-jet-impinging-on-a-slotted-plate-stereoscopic-particle-image-velocimetry-measurement-before-and-after-the-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haydar%20Kepek%C3%A7i">Haydar Kepekçi</a>, <a href="https://publications.waset.org/abstracts/search?q=Baha%20Zafer"> Baha Zafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20R%C4%B1za%20G%C3%BCven"> Hasan Rıza Güven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20blade%20profile" title="3D blade profile">3D blade profile</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20disturbance" title=" noise disturbance"> noise disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs-Williams%20and%20Hawkings%20%28FW-H%29%20equations" title=" Ffowcs-Williams and Hawkings (FW-H) equations"> Ffowcs-Williams and Hawkings (FW-H) equations</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CF%89-SST%20turbulence%20model" title=" k-ω-SST turbulence model"> k-ω-SST turbulence model</a> </p> <a href="https://publications.waset.org/abstracts/92117/aeroacoustics-investigations-of-unsteady-3d-airfoil-for-different-angle-using-computational-fluid-dynamics-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Effect of Synthetic Jet on Wind Turbine Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reda%20Mankbadi">Reda Mankbadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work explores the use of Synthetic Jet Actuators (SJAs) for control of the acoustic radiation of a low-speed transitioning airfoil in a uniform stream. In the adopted numerical procedure, the actuator is modeled without its resonator cavity through imposing a simple fluctuating-velocity boundary condition at the bottom of the actuator's orifice. The orifice cavity, with the properly defined boundary condition, is then embedded into the airfoil surface. High-accuracy viscous simulations are then conducted to study the effects of the actuation on sound radiated by the airfoil. Results show that SJA can considerably suppress the radiated sound of the airfoil in uniform incoming stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulations" title="simulations">simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20noise" title=" wind turbine noise"> wind turbine noise</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20jet%20actuators%20%28SJAs%29" title=" synthetic jet actuators (SJAs)"> synthetic jet actuators (SJAs)</a> </p> <a href="https://publications.waset.org/abstracts/28530/effect-of-synthetic-jet-on-wind-turbine-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Introduction of the Fluid-Structure Coupling into the Force Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oc%C3%A9ane%20Grosset">Océane Grosset</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20P%C3%A9zerat"> Charles Pézerat</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Hugh%20Thomas"> Jean-Hugh Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Ablitzer"> Frédéric Ablitzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20coupling" title=" fluid-structure coupling"> fluid-structure coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20methods" title=" inverse methods"> inverse methods</a>, <a href="https://publications.waset.org/abstracts/search?q=naval" title=" naval"> naval</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/58380/introduction-of-the-fluid-structure-coupling-into-the-force-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suprabha%20Islam">Suprabha Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sifat%20Ullah%20Tanzil"> Sifat Ullah Tanzil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetics" title=" biomimetics"> biomimetics</a>, <a href="https://publications.waset.org/abstracts/search?q=serrations" title=" serrations"> serrations</a> </p> <a href="https://publications.waset.org/abstracts/90649/study-the-effect-of-leading-edge-serration-at-owl-wing-feathers-on-flow-induced-noise-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arthur%20D.%20Wiedemann">Arthur D. Wiedemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Fuller"> Christopher Fuller</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20A.%20Pascioni"> Kyle A. Pascioni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=propeller" title=" propeller"> propeller</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor" title=" rotor"> rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20guided%20machine%20learning" title=" physics guided machine learning"> physics guided machine learning</a> </p> <a href="https://publications.waset.org/abstracts/142280/constructing-a-physics-guided-machine-learning-neural-network-to-predict-tonal-noise-emitted-by-a-propeller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Large-Eddy Simulations for Flow Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reda%20Mankbadi">Reda Mankbadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title=" aeroacoustics"> aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20flow%20control%20%28AFC%29" title=" active flow control (AFC)"> active flow control (AFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Large-Eddy%20Simulations%20%28LES%29" title=" Large-Eddy Simulations (LES)"> Large-Eddy Simulations (LES)</a> </p> <a href="https://publications.waset.org/abstracts/74075/large-eddy-simulations-for-flow-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Large-Eddy Simulations for Aeronautical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Mankbadi">R. R. Mankbadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is embedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating, and cooling, etc. In this work will present an overview of the development of this field. Some examples will include Airfoil Noise Suppression: Large-Eddy Simulations (LES) is used to simulate the effect of synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In vertical takeoff of Aircrafts or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protecting the structure and payload from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulations" title=" large eddy simulations"> large eddy simulations</a> </p> <a href="https://publications.waset.org/abstracts/74281/large-eddy-simulations-for-aeronautical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youngsun%20Moon">Youngsun Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong-Ju%20Go"> Yeong-Ju Go</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Soo%20Choi"> Jong-Soo Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20source%20detection" title=" acoustic source detection"> acoustic source detection</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20difference%20of%20arrival" title=" time difference of arrival"> time difference of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20arrival" title=" direction of arrival"> direction of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20source%20separation" title=" blind source separation"> blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=drone" title=" drone"> drone</a> </p> <a href="https://publications.waset.org/abstracts/94236/study-on-acoustic-source-detection-performance-improvement-of-microphone-array-installed-on-drones-using-blind-source-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Effect of Mach Number for Gust-Airfoil Interatcion Noise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShuJiang%20Jiang">ShuJiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=gust-airfoil%20interaction" title=" gust-airfoil interaction"> gust-airfoil interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=CAA" title=" CAA"> CAA</a> </p> <a href="https://publications.waset.org/abstracts/168371/effect-of-mach-number-for-gust-airfoil-interatcion-noise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>