CINXE.COM
Search results for: energy metabolism
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: energy metabolism</title> <meta name="description" content="Search results for: energy metabolism"> <meta name="keywords" content="energy metabolism"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy metabolism" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy metabolism"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8780</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy metabolism</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8780</span> Cellular Energy Metabolism Decreases with Age in the Trophocytes and Oenocytes of Honeybees (Apis Mellifera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chin-Yuan%20Hsu">Chin-Yuan Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Lung%20Chuang"> Yu-Lung Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The expression, concentration, and activity of mitochondrial energy-utilized molecules and cellular energy-regulated molecules decreased with age in the trophocytes and oenocytes of honeybees (Apis mellifera), but those of cellular energy-metabolized molecules is unknown. In this study, the expression, concentration, and activity of cellular energy-metabolized molecules were assayed in the trophocytes and fat cells of young and old worker bees by using the techniques of cell and biochemistry. The results showed that (i) the •-hydroxylacyl-coenzyme A dehydrogenase (HOAD) activity/citrate synthase (CS) activity ratio, non-esterified fatty acids concentrations, the expression of eukaryotic initiation factor 4E, and the expression of phosphorylated eIF4E binding protein 1 decreased with age; (ii) fat and glycogen accumulation increased with age; and (iii) the pyruvate dehydrogenase (PDH) activity/citrate synthase (CS) activity ratio was not correlated with age. These finding indicated that •-oxidation (HOAD/CS) and protein synthsis decreased with age. Glycolysis (PDH/CS) was unchanged with age. The most likely reason is that sugars are the vital food of worker bees. Taken together these data reveal that young workers have higher cellular energy metabolism than old workers and that aging results in a decline in the cellular energy metabolism in worker honeybees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging" title="aging">aging</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=honeybee" title=" honeybee"> honeybee</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism "> metabolism </a> </p> <a href="https://publications.waset.org/abstracts/23207/cellular-energy-metabolism-decreases-with-age-in-the-trophocytes-and-oenocytes-of-honeybees-apis-mellifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8779</span> Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naif%20Albelwi">Naif Albelwi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Kwan"> Alan Kwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yacine%20Rezgui"> Yacine Rezgui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20water%20consumption" title="energy and water consumption">energy and water consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20metabolism" title=" urban metabolism"> urban metabolism</a> </p> <a href="https://publications.waset.org/abstracts/55550/temporal-trends-in-the-urban-metabolism-of-riyadh-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8778</span> The Metabolism of Built Environment: Energy Flow and Greenhouse Gas Emissions in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20U.%20Datti">Yusuf U. Datti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is becoming increasingly clear that the consumption of resources now enjoyed in the developed nations will be impossible to be sustained worldwide. While developing countries still have the advantage of low consumption and a smaller ecological footprint per person, they cannot simply develop in the same way as other western cities have developed in the past. The severe reality of population and consumption inequalities makes it contentious whether studies done in developed countries can be translated and applied to developing countries. Additional to this disparities, there are few or no metabolism of energy studies in Nigeria. Rather more contentious majority of energy metabolism studies have been done only in developed countries. While researches in Nigeria concentrate on other aspects/principles of sustainability such as water supply, sewage disposal, energy supply, energy efficiency, waste disposal, etc., which will not accurately capture the environmental impact of energy flow in Nigeria, this research will set itself apart by examining the flow of energy in Nigeria and the impact that the flow will have on the environment. The aim of the study is to examine and quantify the metabolic flows of energy in Nigeria and its corresponding environmental impact. The study will quantify the level and pattern of energy inflow and the outflow of greenhouse emissions in Nigeria. This study will describe measures to address the impact of existing energy sources and suggest alternative renewable energy sources in Nigeria that will lower the emission of greenhouse gas emissions. This study will investigate the metabolism of energy in Nigeria through a three-part methodology. The first step involved selecting and defining the study area and some variables that would affect the output of the energy (time of the year, stability of the country, income level, literacy rate and population). The second step involves analyzing, categorizing and quantifying the amount of energy generated by the various energy sources in the country. The third step involves analyzing what effect the variables would have on the environment. To ensure a representative sample of the study area, Africa’s most populous country, with economy that is the second biggest and that is among the top largest oil producing countries in the world is selected. This is due to the understanding that countries with large economy and dense populations are ideal places to examine sustainability strategies; hence, the choice of Nigeria for the study. National data will be utilized unless where such data cannot be found, then local data will be employed which will be aggregated to reflect the national situation. The outcome of the study will help policy-makers better target energy conservation and efficiency programs and enables early identification and mitigation of any negative effects in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built%20environment" title="built environment">built environment</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20metabolism" title=" energy metabolism"> energy metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gas%20emissions%20and%20sustainability" title=" greenhouse gas emissions and sustainability"> greenhouse gas emissions and sustainability</a> </p> <a href="https://publications.waset.org/abstracts/77178/the-metabolism-of-built-environment-energy-flow-and-greenhouse-gas-emissions-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8777</span> Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C%20.D.%20Kulathilake">C. C .D. Kulathilake</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jayatilake"> M. Jayatilake</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Takahashi"> T. Takahashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoradiographs" title="autoradiographs">autoradiographs</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar" title=" sugar"> sugar</a> </p> <a href="https://publications.waset.org/abstracts/33660/determination-of-myocardial-function-using-heart-accumulated-radiopharmaceuticals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8776</span> Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bosiacki%20Mateusz">Bosiacki Mateusz</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lubkowska"> Anna Lubkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Chlubek"> Dariusz Chlubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Irena%20Baranowska-Bosiacka"> Irena Baranowska-Bosiacka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20water%20immersion" title="cold water immersion">cold water immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20responses" title=" adaptive responses"> adaptive responses</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20energy%20metabolism" title=" muscle energy metabolism"> muscle energy metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/163000/energy-metabolism-and-mitochondrial-biogenesis-in-muscles-of-rats-subjected-to-cold-water-immersion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8775</span> Biosynthesis and Metabolism of Anthraquinone Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Yu.%20Korulkin">Dmitry Yu. Korulkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raissa%20A.%20Muzychkina"> Raissa A. Muzychkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In review the generalized data about biosynthetic routs formation anthraquinone molecules in natural cells. The basic possibilities of various ways of biosynthesis of different quinoid substances are shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthraquinones" title="anthraquinones">anthraquinones</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20evolution" title=" biochemical evolution"> biochemical evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a> </p> <a href="https://publications.waset.org/abstracts/11435/biosynthesis-and-metabolism-of-anthraquinone-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8774</span> Energy Potential of Organic Fraction of Municipal Solid Waste - Colombian Housing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Hincapie">Esteban Hincapie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing climate change, global warming and population growth have contributed to the energy crisis, aggravated by the generation of organic solid waste, as a material with high energy potential. From the context of waste generation in the Metropolitan Area of the Aburrá Valley, was evaluated the potential of energy content in organic solid waste generated in La Herradura housing complex, through anaerobic digestion process in batch reactors, with mixtures of substrate, water and inoculum 1: 3: 0.2 and 1: 3: 0, reaching a total biogas production of 0,2 m³/Kg y 0,14 m³/Kg respectively, in a period of 38 days under temperature conditions of 24°C. The volume of biogas obtained was equivalent to the monthly consumption of natural gas for 75 apartments or 1.856 Kw of electric power. For the Metropolitan Area of the Aburrá Valley, a production of 7.152Kw of electric power was estimated for a month, from the treatment of 22.319 tons of organic solid waste that would not be taken to the landfill. The results indicate that the treatment of organic waste from anaerobic digestion is a sustainable option to reduce pollution, contribute to the production of alternative energies and improve the efficiency of urban metabolism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20energies" title="alternative energies">alternative energies</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20construction" title=" sustainable construction"> sustainable construction</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20metabolism" title=" urban metabolism"> urban metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/86641/energy-potential-of-organic-fraction-of-municipal-solid-waste-colombian-housing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8773</span> Cardioprotective Effects of Grape Seed Extract against Lipo-toxicity and Energy Metabolism Alterations in High-Fat-Diet-Induced Obese Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thouraya%20Majoul">Thouraya Majoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is now a real public health issue throughout the world, and it is well-established that obesity leads to cardiovascular diseases. The prevention and treatment of obesity using nutritional supplements has become a realistic and effective approach. This study was carried out to analyze the incidence of a high-fat diet on rat heart metabolism as well as on fatty acids composition, then to investigate the eventual protective effects of a grape seed extract (GSE). The experimental design consisted of three rat groups subjected to three different conditions; standard (SD), high-fat diet (HFD) and HFD+GSE (HG). We showed that GSE counteracted the effect of HFD on fatty acid composition, namely, docosapentaenoic acid, docosahexaenoic acid, arachidonic acid (ARA), palmitic acid (PA) and palmitoleic acid. Besides, GSE treatment restored HFD-altered metabolic pathways through the recovery of some cardiac enzyme activities such as lipase, glucose 6 phosphate dehydrogenase and pyruvate dehydrogenase. The cardiac lactate level and lactate dehydrogenase activity were also analyzed in relation to HFD and GSE administration. To our knowledge, this is the first study showing the anti-obesity and cardioprotective effects of GSE in relation to fatty acid composition and some cardiac enzymes, supporting its role as a therapeutic agent of obesity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grape%20seed%20extract" title="Grape seed extract">Grape seed extract</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic" title=" phenolic"> phenolic</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=cardioprotective" title=" cardioprotective"> cardioprotective</a>, <a href="https://publications.waset.org/abstracts/search?q=lipotoxicity" title=" lipotoxicity"> lipotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20metabolism" title=" energy metabolism"> energy metabolism</a> </p> <a href="https://publications.waset.org/abstracts/166483/cardioprotective-effects-of-grape-seed-extract-against-lipo-toxicity-and-energy-metabolism-alterations-in-high-fat-diet-induced-obese-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8772</span> A Proposal to Integrate Spatially Explicit Ecosystem Services with Urban Metabolic Modelling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Elliot">Thomas Elliot</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Babi%20Almenar"> Javier Babi Almenar</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedetto%20Rugani"> Benedetto Rugani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of urban metabolism (UM) with spatially explicit ecosystem service (ES) stocks has the potential to advance sustainable urban development. It will correct the lack of spatially specificity of current urban metabolism models. Furthermore, it will include into UM not only the physical properties of material and energy stocks and flows, but also the implications to the natural capital that provides and maintains human well-being. This paper presents the first stages of a modelling framework by which urban planners can assess spatially the trade-offs of ES flows resulting from urban interventions of different character and scale. This framework allows for a multi-region assessment which takes into account sustainability burdens consequent to an urban planning event occurring elsewhere in the environment. The urban boundary is defined as the Functional Urban Audit (FUA) method to account for trans-administrative ES flows. ES are mapped using CORINE land use within the FUA. These stocks and flows are incorporated into a UM assessment method to demonstrate the transfer and flux of ES arising from different urban planning implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20economics" title="ecological economics">ecological economics</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20planning" title=" spatial planning"> spatial planning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20metabolism" title=" urban metabolism"> urban metabolism</a> </p> <a href="https://publications.waset.org/abstracts/75964/a-proposal-to-integrate-spatially-explicit-ecosystem-services-with-urban-metabolic-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8771</span> Fatty Acid Metabolism in Hypertension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yin%20Hua%20Zhang">Yin Hua Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiac metabolism is essential in myocardial contraction. In addition to glucose, fatty acids (FA) are essential in producing energy in the myocardium since FA-dependent beta-oxidation accounts for > 70-90% of cellular ATP under resting conditions. However, metabolism shifts from FAs to glucose utilization during disease progression (e.g. hypertrophy and ischemic myocardium), where glucose oxidation and glycolysis become the predominant sources of cellular ATP. At advanced failing stage, both glycolysis and beta-oxidation are dysregulated, result in insufficient supply of intracellular ATP and weakened myocardial contractility. Undeniably, our understandings of myocyte function in healthy and diseased hearts are based on glucose (10 mM)-dependent metabolism because glucose is the “sole” metabolic substrate in most of the physiological experiments. In view of the importance of FAs in cardiovascular health and diseases, we aimed to elucidate the impacts of FA supplementation on myocyte contractility and evaluate cellular mechanisms those mediate the functions in normal heart and with pathological stress. In particular, we have investigated cardiac excitation-contraction (E-C) coupling in the presence and absence of FAs in normal and hypertensive rat left ventricular (LV) myocytes. Our results reveal that FAs increase mitochondrial activity, intracellular [Ca²+]i, and LV myocyte contraction in healthy LV myocytes, whereas FA-dependent cardiac inotropyis attenuated in hypertension. FA-dependent myofilament Ca²+ desensitization could be fundamental in regulating [Ca²+]i. Collectively, FAs supplementation resets cardiac E-C coupling scheme in healthy and diseased hearts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension" title="hypertension">hypertension</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a> </p> <a href="https://publications.waset.org/abstracts/147617/fatty-acid-metabolism-in-hypertension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8770</span> The Pharmacology and Physiology of Steroid Oral Contraceptives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ragy%20Raafat%20Gaber%20Attaalla">Ragy Raafat Gaber Attaalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PIP: This review, based on 2 large-scale studies, discusses the pharmacology and physiology of oral steroid contraceptives (OCs). The pharmacological distinction between synthetic and naturally occurring steroids centers on changes in biological activity dependent on compound formulation and an individual's metabolism. OC mechanism of action is explained as the main prevention of ovulation by interference with gonadotropin-releasing hormone. Since some 52 metabolic alterations have been reported in OC users, these phenomena are dealt with in 3 categories: 1) effects on the primary target organs of the female reproductive tract (ovary, myometrium, endometrium, cervix, vagina, breasts, and hypothalamus), 2) general metabolic effects (serum proteins, carbohydrate metabolism, lipid metabolism, water and electrolyte metabolism, body weight, tryptophan metabolism, and vitamins and minerals), and 3) effects on other organ systems (liver, central nervous system, skin, genitourinary, gastrointestinal tract, eye, immune phenomena, and effect on subsequent fertility). The choice of the proper OC formulation and use of OCs by adolescents are discussed. Assessment of OC safety, contraindications, and patient monitoring are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steroid%20oral%20contraceptives" title="steroid oral contraceptives">steroid oral contraceptives</a>, <a href="https://publications.waset.org/abstracts/search?q=ovulation" title=" ovulation"> ovulation</a>, <a href="https://publications.waset.org/abstracts/search?q=female%20reproductive%20tract" title=" female reproductive tract"> female reproductive tract</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20effects" title=" metabolic effects"> metabolic effects</a> </p> <a href="https://publications.waset.org/abstracts/160813/the-pharmacology-and-physiology-of-steroid-oral-contraceptives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8769</span> Protective Effects of Coenzyme Q10 and N-Acetylcysteine on Myocardial Oxidative Stress, Inflammation, and Impaired Energy metabolism in Carbon Tetrachloride Intoxicated Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayira%20A.%20Abd%20Elbaky">Nayira A. Abd Elbaky</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20J.%20Fatani"> Amal J. Fatani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazar%20Yaqub"> Hazar Yaqub</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouf%20M.%20Al-Rasheed"> Nouf M. Al-Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Naglaa%20El-Orabi"> Naglaa El-Orabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mai%20Osman"> Mai Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is aimed to evaluate the protective effect of N-acetyl cystiene (NAC), coenzyme Q10 (CoQ10), and their combination against carbon tetrachloride (CCl4)-induced cardiotoxicity in rats. CCl4 treatment significantly elevated the levels of cardiac oxidative stress bio markers including nitric oxide (NO) and malondialdehyde (MDA). A concomitant decrease in the level of reduced glutathione and the activity of membrane bound enzyme, calcium-adenosine triphosphatase were observed in the hearts of rats exposed to CCl4 compared to respective values in normal group. Quantitative analysis of myocardial energy metabolism revealed a significant decrease in the glucose content coupled with depletion in the activities of myocardial glycolytic enzymes as hexokinase (HK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) after CCl4 treatment. In addition, a significant elevation in myocardial hydroxyproline level was observed in CCl4 intoxicated rats indicating interstitial collagen accumulation. Pretreatment with either NAC, CoQ10 or their combination successively alleviated the alterations in myocardial oxidative stress and antioxidant markers, as well as effectively up-regulated the decrease in cardiac energetic biomarkers in CCl4 intoxicated rats. Moreover, these antioxidants markedly reduced myocardial hydroxyproline level versus that of CCl4-treated animals. In conclusion, the present results illustrated that the prophylactic use of the current antioxidant resulted in a remarkable cardioprotective effect against CCl4 induced myocardial damage, which suggest that they may candidates as prophylactic agents against different cardio-toxins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20tetrachloride" title="carbon tetrachloride">carbon tetrachloride</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20metabolism" title=" energy metabolism"> energy metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyproline" title=" hydroxyproline"> hydroxyproline</a> </p> <a href="https://publications.waset.org/abstracts/16274/protective-effects-of-coenzyme-q10-and-n-acetylcysteine-on-myocardial-oxidative-stress-inflammation-and-impaired-energy-metabolism-in-carbon-tetrachloride-intoxicated-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8768</span> Study and Melanocyte Adrenocorticotropic Effects on Sugar Metabolism and Immune Response in Rabbits Oryctolagus cuniculus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouaouiche">A. Bouaouiche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Boulakoud"> M. S. Boulakoud </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The functioning of the pineal gland, the transducer body of environmental information to the neuroendocrine system is subject to a circadian rhythm. Melatonin is the main neuro-hormone expressing this operation. It is synthesized in the pinealocytes after conversion serotonin via N-acetyl-transferase enzyme, itself subject to a photoperiodic modulation (activation dark inhibition by light). Some authors have suggested that melatonin is involved in diabetic disease and found that it could have a diabetogenic effect. To this study the effect of this hormone on glucose metabolism has long been subject to controversy. Agreeing in effect and hyperinsulinemic hypoglycemic effect. In order to illustrate the level of interaction of melatonin with neuro-immune- corticotropin axis and its impact on carbohydrate metabolism, we studied the impact homeostatic (glucose) through the solicitation of two control systems (gland pineal and corticotropin axis). We then found that melatonin could have an indirect influence on insulin control (glucose metabolism) to the levels of the growth hormone axis (somatostatin) and adrenocorticotropic (corticotropin). In addition, we have suggested that melatonin might limit the hyperglycemic action of corticosteroids by direct action at peripheral level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pin%C3%A9al%20gland" title="pinéal gland">pinéal gland</a>, <a href="https://publications.waset.org/abstracts/search?q=melatonin" title=" melatonin"> melatonin</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-immuno-corticotrop" title=" neuro-immuno-corticotrop"> neuro-immuno-corticotrop</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism "> metabolism </a> </p> <a href="https://publications.waset.org/abstracts/23778/study-and-melanocyte-adrenocorticotropic-effects-on-sugar-metabolism-and-immune-response-in-rabbits-oryctolagus-cuniculus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8767</span> A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20M.%20Salem">Mona M. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20S.%20Al-Hagla"> Khaled S. Al-Hagla</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Ayad"> Hany M. Ayad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecology" title="ecology">ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20resource" title=" land resource"> land resource</a>, <a href="https://publications.waset.org/abstracts/search?q=LULCC" title=" LULCC"> LULCC</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=scenarios" title=" scenarios"> scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20dynamics" title=" system dynamics"> system dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a> </p> <a href="https://publications.waset.org/abstracts/84347/a-system-dynamic-based-dss-for-ecological-urban-management-in-alexandria-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8766</span> Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Saeidi">Maryam Saeidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Motamedian"> Ehsan Motamedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abbas%20Shojaosadati"> Seyed Abbas Shojaosadati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome-scale%20metabolic%20model" title="genome-scale metabolic model">genome-scale metabolic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Zymomonas%20mobilis" title=" Zymomonas mobilis"> Zymomonas mobilis</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupled%20growth" title=" uncoupled growth"> uncoupled growth</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20distribution" title=" flux distribution"> flux distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=ATP%20dissipation" title=" ATP dissipation"> ATP dissipation</a> </p> <a href="https://publications.waset.org/abstracts/15686/reconstruction-of-a-genome-scale-metabolic-model-to-simulate-uncoupled-growth-of-zymomonas-mobilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8765</span> Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solange%20Adechian">Solange Adechian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mich%C3%A8le%20Balage"> Michèle Balage</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Remond"> Didier Remond</a>, <a href="https://publications.waset.org/abstracts/search?q=Carole%20Mign%C3%A9"> Carole Migné</a>, <a href="https://publications.waset.org/abstracts/search?q=Annie%20Quignard-Boulang%C3%A9"> Annie Quignard-Boulangé</a>, <a href="https://publications.waset.org/abstracts/search?q=Agn%C3%A8s%20Marset-Baglieri"> Agnès Marset-Baglieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvie%20Rousset"> Sylvie Rousset</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Boirie"> Yves Boirie</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Gaudichon"> Claire Gaudichon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Dardevet"> Dominique Dardevet</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Mosoni"> Laurent Mosoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20body%20mass" title="lean body mass">lean body mass</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20mass" title=" fat mass"> fat mass</a>, <a href="https://publications.waset.org/abstracts/search?q=casein" title=" casein"> casein</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20metabolism" title=" protein metabolism"> protein metabolism</a> </p> <a href="https://publications.waset.org/abstracts/175765/protein-feeding-pattern-casein-feeding-or-milk-soluble-protein-feeding-did-not-change-the-evolution-of-body-composition-during-a-short-term-weight-loss-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8764</span> The Effect of Gibberellic Acid on Gamma-Aminobutyric Acid (GABA) Metabolism in Phaseolus Vulgaris L. Plant Exposed to Drought and Salt Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazilet%20%C3%96zlem%20%C3%87eki%C3%A7">Fazilet Özlem Çekiç</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyda%20Y%C4%B1lmaz"> Seyda Yılmaz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity and drought are important environmental problems in the world and have negative effects on plant metabolism. Gamma-aminobutyric acid (GABA), four-carbon non-protein amino acid, is a significant component of the free amino acid pool. GABA is widely distributed in prokaryotic and eukaryotic organisms. Environmental stress factors increase GABA accumulation in plants. Our aim was to evaluate the effect of gibberellic acid (GA) on GABA metabolism system during drought and salt stress factors in Phaseolus vulgaris L. plants. GABA, Glutamate dehydrogenase (GDH) activity, chlorophyll, and lipid peroxidation (MDA) analyses were determined. According to our results we can suggest that GA play a role in GABA metabolism during salt and drought stresses in bean plants. Also GABA shunt is an important metabolic pathway and key signaling allowing to adapt to drought and salt stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gibberellic%20acid" title="gibberellic acid">gibberellic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=GABA" title=" GABA"> GABA</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaseolus%20vulgaris%20L." title=" Phaseolus vulgaris L."> Phaseolus vulgaris L.</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought "> drought </a> </p> <a href="https://publications.waset.org/abstracts/16184/the-effect-of-gibberellic-acid-on-gamma-aminobutyric-acid-gaba-metabolism-in-phaseolus-vulgaris-l-plant-exposed-to-drought-and-salt-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8763</span> Enhancing Mitochondrial Activity and Metabolism in Aging Female Germ Cells: Synergistic Effects of Dual ROCK and ROS Inhibition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuan-Hao%20Tsui">Kuan-Hao Tsui</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Te%20Lin"> Li-Te Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jung%20Li"> Chia-Jung Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combination of Y-27632 and Vitamin C significantly enhances the quality of aging germ cells by reducing reactive oxygen species (ROS) production, restoring mitochondrial membrane potential balance, and promoting mitochondrial fusion. The age-related decline in oocyte quality contributes to reduced fertility, increased aneuploidy, and diminished embryo quality, with mitochondrial dysfunction in both oocytes and granulosa cells being a key factor in this decline. Experiments on aging germ cells investigated the effects of the Y-27632 and Vitamin C combination. In vivo studies involved aged mice to assess oocyte maturation and ROS accumulation during culture. The assessment included mitochondrial activity, ROS levels, mitochondrial membrane potential, and mitochondrial dynamics. Cellular energy metabolism and ATP production were also measured. The combination treatment effectively addressed mitochondrial dysfunction and regulated cellular energy metabolism, promoting oxygen respiration and increasing ATP production. In aged mice, this supplement treatment enhanced in vitro oocyte maturation and prevented ROS accumulation in aging oocytes during culture. While these findings are promising, further research is needed to explore the long-term effects and potential side effects of the Y-27632 and Vitamin C combination. Additionally, translating these findings to human subjects requires careful consideration. Overall, the study suggests that the Y-27632 and Vitamin C combination could be a promising intervention to mitigate aging-related dysfunction in germ cells, potentially enhancing oocyte quality, particularly in the context of in vitro fertilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ovarian%20aging" title="ovarian aging">ovarian aging</a>, <a href="https://publications.waset.org/abstracts/search?q=supplements" title=" supplements"> supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title=" mitochondria"> mitochondria</a> </p> <a href="https://publications.waset.org/abstracts/186480/enhancing-mitochondrial-activity-and-metabolism-in-aging-female-germ-cells-synergistic-effects-of-dual-rock-and-ros-inhibition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8762</span> Human Metabolism of the Drug Candidate PBTZ169</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vadim%20Makarov">Vadim Makarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stewart%20T.Cole"> Stewart T.Cole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PBTZ169 is novel drug candidate with high efficacy in animals models, and its combination treatment of PBTZ169 with BDQ and pyrazinamide was shown to be more efficacious than the standard treatment for tuberculosis in a mouse model. The target of PBTZ169 is famous DprE1, an essential enzyme in cell wall biosynthesis. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Furthermore, this drug candidate demonstrated during preclinical research ‘drug like’ properties what made it an attractive drug candidate to treat tuberculosis in humans. During first clinical trials several cohorts of the healthy volunteers were treated by the single doses of PBTZ169 as well as two weeks repeated treatment was chosen for two maximal doses. As expected PBTZ169 was well tolerated, and no significant toxicity effects were observed during the trials. The study of the metabolism shown that human metabolism of PBTZ169 is very different from microbial or animals compound transformation. So main pathway of microbial, mice and less rats metabolism connected with reduction processes, but human metabolism mainly connected with oxidation processes. Due to this difference we observed several metabolites of PBTZ169 in humans with antitubercular activity, and now we can conclude that animal antituberculosis activity of PBTZ169 is a result not only activity of the drug itself, but it is a result of the sum activity of the drug and its metabolites. Direct antimicrobial plasma activity was studied, and such activity was observed for 24 hours after human treatment for some doses. This data gets high chance for good efficacy of PBTZ169 in human for treatment TB infection. Second phase of clinical trials was started summer of 2017 and continues to the present day. Available data will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20trials" title="clinical trials">clinical trials</a>, <a href="https://publications.waset.org/abstracts/search?q=DprE1" title=" DprE1"> DprE1</a>, <a href="https://publications.waset.org/abstracts/search?q=PBTZ169" title=" PBTZ169"> PBTZ169</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a> </p> <a href="https://publications.waset.org/abstracts/88320/human-metabolism-of-the-drug-candidate-pbtz169" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8761</span> Robustness Analysis of the Carbon and Nitrogen Co-Metabolism Model of Mucor mucedo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Banihashemi">Nahid Banihashemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An emerging important area of the life sciences is systems biology, which involves understanding the integrated behavior of large numbers of components interacting via non-linear reaction terms. A centrally important problem in this area is an understanding of the co-metabolism of protein and carbohydrate, as it has been clearly demonstrated that the ratio of these metabolites in diet is a major determinant of obesity and related chronic disease. In this regard, we have considered a systems biology model for the co-metabolism of carbon and nitrogen in colonies of the fungus Mucor mucedo. Oscillations are an important diagnostic of underlying dynamical processes of this model. The maintenance of specific patterns of oscillation and its relation to the robustness of this system are the important issues which have been targeted in this paper. In this regard, parametric sensitivity approach as a theoretical approach has been considered for the analysis of the robustness of this model. As a result, the parameters of the model which produce the largest sensitivities have been identified. Furthermore, the largest changes that can be made in each parameter of the model without losing the oscillations in biomass production have been computed. The results are obtained from the implementation of parametric sensitivity analysis in Matlab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20biology" title="system biology">system biology</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20sensitivity%20analysis" title=" parametric sensitivity analysis"> parametric sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20and%20nitrogen%20co-metabolism" title=" carbon and nitrogen co-metabolism"> carbon and nitrogen co-metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=Mucor%20mucedo" title=" Mucor mucedo"> Mucor mucedo</a> </p> <a href="https://publications.waset.org/abstracts/16288/robustness-analysis-of-the-carbon-and-nitrogen-co-metabolism-model-of-mucor-mucedo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8760</span> Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Jung%20Li">Chia-Jung Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Hao%20Tsui"> Kuan-Hao Tsui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-omics" title="multi-omics">multi-omics</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroptosis" title=" ferroptosis"> ferroptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=ovarian%20aging" title=" ovarian aging"> ovarian aging</a> </p> <a href="https://publications.waset.org/abstracts/167764/multi-omics-investigation-of-ferroptosis-related-gene-expression-in-ovarian-aging-and-the-impact-of-nutritional-intervention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8759</span> Effect of Juvenile Hormone on Respiratory Metabolism during Non-Diapausing Sesamia cretica Wandering Larvae (Lepidoptera: Noctuidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Abdel-Hakim">E. A. Abdel-Hakim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corn stemborer Sesamia cretica (Lederer), has been viewed in many parts of the world as a major pest of cultivated maize, graminaceous crops and sugarcane. Its life cycle is comprised of two different phases, one is the growth and developmental phase (non-diapause) and the other is diapause phase which takes place at the last larval instar. Several problems associated with the use of conventional insecticides, have strongly demonstrated the need for applying alternative safe compounds. Prominent among the prototypes of such prospective chemicals are the juvenoids; i.e. the insect (JH) mimics. In fact, the hormonal effect on metabolism has long been viewed as a secondary consequence of its direct action on specific energy-requiring biosynthetic mechanisms. Therefore, the present study was undertaken essentially in a rather systematic fashion as a contribution towards clarifying metabolic and energetic changes taking place during non-diapause wandering larvae as regulated by (JH) mimic. For this purpose, we applied two different doses of JH mimic (Ro 11-0111) in a single (standard) dose of 100µg or in a single dose of 20 µg/g bw in1µl acetone topically at the onset of nondiapause wandering larvae (WL). Energetic data were obtained by indirect calorimetry methods by conversion of respiratory gas exchange volumetric data, as measured manometrically using a Warburg constant respirometer, to caloric units (g-cal/g fw/h). The findings obtained can be given in brief; these treated larvae underwent supernumerary larval moults. However, this potential the wandering larvae proved to possess whereby restoration of larval programming for S. cretica to overcome stresses even at this critical developmental period. The results obtained, particularly with the high dose used, show that 98% wandering larvae were rescued to survive up to one month (vs. 5 days for normal controls), finally the formation of larval-adult intermediates. Also, the solvent controls had resulted in about 22% additional, but stationary moultings. The basal respiratory metabolism (O2 uptake and CO2 output) of the (WL), whether un-treated or larvae not had followed reciprocal U-shaped curves all along of their developmental duration. The lowest points stood nearly to the day of prepupal formation (571±187 µl O2/gfw/h and 553±181 µl CO2/gfw/h) during un-treated in contrast to the larvae treated with JH (210±48 µl O2/gfw/h and 335±81 µl CO2/gfw/h). Un-treated (normal) larvae proved to utilize carbohydrates as the principal source for energy supply; being fully oxidised without sparing any appreciable amount for endergonic conversion to fats. While, the juvenoid-treated larvae and compared with the acetone-treated control equivalents, there existed no distinguishable differences between them; both had been observed utilising carbohydrates as the sole source of energy demand and converting endergonically almost similar percentages to fats. The overall profile, treated and un-treated (WL) utilized carbohydrates as the principal source for energy demand during this stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=juvenile%20hormone" title="juvenile hormone">juvenile hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20metabolism" title=" respiratory metabolism"> respiratory metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesamia%20cretica" title=" Sesamia cretica"> Sesamia cretica</a>, <a href="https://publications.waset.org/abstracts/search?q=wandering%20phase" title=" wandering phase"> wandering phase</a> </p> <a href="https://publications.waset.org/abstracts/46917/effect-of-juvenile-hormone-on-respiratory-metabolism-during-non-diapausing-sesamia-cretica-wandering-larvae-lepidoptera-noctuidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8758</span> Energy Initiatives for Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Beril%20Tugrul">A.Beril Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Selahattin%20Cimen"> Selahattin Cimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dependency of humanity on the energy is ever-increasing today and the energy policies are reaching undeniable and un-ignorable dimensions steering the political events as well. Therefore, energy has the highest priority for Turkey like any other country. In this study, the energy supply security for Turkey evaluated according to the strategic criteria of energy policy. Under these circumstances, different alternatives are described and assessed with in terms of the energy expansion of Turkey. With this study, different opportunities in the energy expansion of Turkey is clarified and emphasized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title="energy policy">energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20strategy" title=" energy strategy"> energy strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20projection" title=" future projection"> future projection</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey "> Turkey </a> </p> <a href="https://publications.waset.org/abstracts/2137/energy-initiatives-for-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8757</span> Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wesley%20A.%20Saltarelli">Wesley A. Saltarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20R.%20Finkler"> Nicolas R. Finkler</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20C.%20P.%20Miwa"> Adriana C. P. Miwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Calijuri"> Maria C. Calijuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Davi%20G.%20F.%20Cunha"> Davi G. F. Cunha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-order%20streams" title="low-order streams">low-order streams</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20primary%20production" title=" net primary production"> net primary production</a>, <a href="https://publications.waset.org/abstracts/search?q=trophic%20state" title=" trophic state"> trophic state</a> </p> <a href="https://publications.waset.org/abstracts/50600/modeling-diel-trends-of-dissolved-oxygen-for-estimating-the-metabolism-in-pristine-streams-in-the-brazilian-cerrado" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8756</span> Effect of Brown Algae, Ecklonia arborea and Silvetia compressa, in Lipidemic and Hepatic Metabolism in Wistar Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Acevedo-Pacheco">Laura Acevedo-Pacheco</a>, <a href="https://publications.waset.org/abstracts/search?q=Janet%20Alejandra%20Gutierrez-Uribe"> Janet Alejandra Gutierrez-Uribe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Elizabeth%20Cruz-Suarez"> Lucia Elizabeth Cruz-Suarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Segio%20Othon%20Serna-Saldivar"> Segio Othon Serna-Saldivar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seaweeds can generate changes in the metabolism of lipids; as a consequence, this may diminish cholesterol and other lipids in the blood. However, the consumption of marine algae may also alter the functions of other organs. Therefore, the objective of this research was to study the effect of two different sorts of algae (Ecklonia arborea and Silvetia compressa) in the metabolism of lipids, as well as, in the physiology of the liver. Wistar male rats were fed for two months with independent diets composed of 20% of fat and 2.5% of E. arborea and S. compressa each. Blood parameters (cholesterol, lipoproteins, triglycerides, hepatic enzymes) and triglycerides in the liver were quantified, and also hepatic histology analyses were performed. While S. compressa reduced 18% total cholesterol compared to the positive control, E. arborea increased it 5.8%. Animals fed with S. compressa presented a decrement, compared to the positive control, not only in low density lipoproteins levels (53%) but also in triglycerides (67%). The presence of steatosis in the histologies and the high levels of triglycerides showed an evident lipid accumulation in hepatic tissues of rats fed with both algae. These results indicate that even though S. compressa showed a promising resource to decrease total cholesterol and low-density lipoproteins in blood, a detrimental effect was observed in liver physiology. Further investigations should be made to find out if toxic compounds associated with these seaweeds may cause liver damage especially in terms of heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown%20algae" title="brown algae">brown algae</a>, <a href="https://publications.waset.org/abstracts/search?q=Eisenia%20arborea" title=" Eisenia arborea"> Eisenia arborea</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20metabolism" title=" hepatic metabolism"> hepatic metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=lipidemic%20metabolism" title=" lipidemic metabolism"> lipidemic metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=Pelvetia%20compressa" title=" Pelvetia compressa"> Pelvetia compressa</a>, <a href="https://publications.waset.org/abstracts/search?q=steatosis" title=" steatosis"> steatosis</a> </p> <a href="https://publications.waset.org/abstracts/106805/effect-of-brown-algae-ecklonia-arborea-and-silvetia-compressa-in-lipidemic-and-hepatic-metabolism-in-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8755</span> Effect of cold water immersion on bone mineral metabolism in aging rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irena%20Baranowska-Bosiacka">Irena Baranowska-Bosiacka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Bosiacki"> Mateusz Bosiacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrycja%20Kupnicka"> Patrycja Kupnicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lubkowska"> Anna Lubkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Chlubek"> Dariusz Chlubek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swimming%20in%20cold%20water" title="swimming in cold water">swimming in cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20to%20cold%20water" title=" adaptation to cold water"> adaptation to cold water</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20mineral%20metabolism" title=" bone mineral metabolism"> bone mineral metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/163011/effect-of-cold-water-immersion-on-bone-mineral-metabolism-in-aging-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8754</span> Linking Metabolism, Pluripotency and Epigenetic Changes during Early Differentiation of Embryonic Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arieh%20Moussaieff">Arieh Moussaieff</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9n%C3%A9dicte%20Elena-Herrmann"> Bénédicte Elena-Herrmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaakov%20Nahmias"> Yaakov Nahmias</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Aberdam"> Daniel Aberdam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Differentiation of pluripotent stem cells is a slow process, marked by the gradual loss of pluripotency factors over days in culture. While the first few days of differentiation show minor changes in the cellular transcriptome, intracellular signaling pathways remain largely unknown. Recently, several groups demonstrated that the metabolism of pluripotent mouse and human cells is different from that of somatic cells, showing a marked increase in glycolysis previously identified in cancer as the Warburg effect. Here, we sought to identify the earliest metabolic changes induced at the first hours of differentiation. High-resolution NMR analysis identified 35 metabolites and a distinct, gradual transition in metabolism during early differentiation. Metabolic and transcriptional analyses showed the induction of glycolysis toward acetate and acetyl-coA in pluripotent cells, and an increase in cholesterol biosynthesis during early differentiation. Importantly, this metabolic pathway regulated differentiation of human and mouse embryonic stem cells. Acetate delayed differentiation preventing differentiation-induced histone de-acetylation in a dose-dependent manner. Glycolytic inhibitors upstream of acetate caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our data suggests that a rapid loss of glycolysis in early differentiation down-regulates acetate and acetyl-coA production, causing a loss of histone acetylation and concomitant loss of pluripotency. It demonstrate that pluripotent stem cells utilize a novel metabolism pathway to maintain pluripotency through acetate/acetyl-coA and highlights the important role metabolism plays in pluripotency and early differentiation of stem cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pluripotency" title="pluripotency">pluripotency</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetics" title=" epigenetics"> epigenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=acetyl-coA" title=" acetyl-coA"> acetyl-coA</a> </p> <a href="https://publications.waset.org/abstracts/26521/linking-metabolism-pluripotency-and-epigenetic-changes-during-early-differentiation-of-embryonic-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8753</span> Improving Energy Efficiency through Industrial Symbiosis: A Conceptual Framework of Energy Management in Energy-Intensive Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanjun%20Chen">Yuanjun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjiang%20Shi"> Yongjiang Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rising energy prices have drawn a focus to global energy issues, and the severe pollution that has resulted from energy-intensive industrial sectors has yet to be addressed. By combining Energy Efficiency with Industrial Symbiosis, the practices of efficient energy utilization and improvement can be not only enriched at the factory level but also upgraded into “within and/or between firm level”. The academic contribution of this paper provides a conceptual framework of energy management through IS. The management of waste energy within/between firms can contribute to the reduction of energy consumption and provides a solution to the environmental issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20symbiosis" title=" industrial symbiosis"> industrial symbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-intensive%20industry" title=" energy-intensive industry"> energy-intensive industry</a> </p> <a href="https://publications.waset.org/abstracts/64381/improving-energy-efficiency-through-industrial-symbiosis-a-conceptual-framework-of-energy-management-in-energy-intensive-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8752</span> Coffee Consumption and Glucose Metabolism: a Systematic Review of Clinical Trials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caio%20E.%20G.%20Reis">Caio E. G. Reis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20G.%20D%C3%B3rea"> Jose G. Dórea</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20H.%20M.%20da%20Costa"> Teresa H. M. da Costa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Epidemiological data shows an inverse association of coffee consumption with risk of type 2 diabetes mellitus. However, the clinical effects of coffee consumption on the glucose metabolism biomarkers remain controversial. Thus, this paper reviews clinical trials that evaluated the effects of coffee consumption on glucose metabolism. Research Design and Methods: We identified studies published until December 2014 by searching electronic databases and reference lists. We included randomized clinical trials which the intervention group received caffeinated and/or decaffeinated coffee and the control group received water or placebo treatments and measured biomarkers of glucose metabolism. The Jadad Score was applied to evaluate the quality of the studies whereas studies that scored ≥ 3 points were considered for the analyses. Results: Seven clinical trials (total of 237 subjects) were analyzed involving adult healthy, overweight and diabetic subjects. The studies were divided in short-term (1 to 3h) and long-term (2 to 16 weeks) duration. The results for short-term studies showed that caffeinated coffee consumption may increase the area under the curve for glucose response, while for long-term studies caffeinated coffee may improve the glycemic metabolism by reducing the glucose curve and increasing insulin response. These results seem to show that the benefits of coffee consumption occur in the long-term as has been shown in the reduction of type 2 diabetes mellitus risk in epidemiological studies. Nevertheless, until the relationship between long-term coffee consumption and type 2 diabetes mellitus is better understood and any mechanism involved identified, it is premature to make claims about coffee preventing type 2 diabetes mellitus. Conclusion: The findings suggest that caffeinated coffee may impairs glucose metabolism in short-term but in the long-term the studies indicate reduction of type 2 diabetes mellitus risk. More clinical trials with comparable methodology are needed to unravel this paradox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coffee" title="coffee">coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus%20type%202" title=" diabetes mellitus type 2"> diabetes mellitus type 2</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a> </p> <a href="https://publications.waset.org/abstracts/33693/coffee-consumption-and-glucose-metabolism-a-systematic-review-of-clinical-trials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8751</span> Reducing Metabolism Residues in Maintenance Goldfish (Carrasius auratus auratus) by Phytoremediation Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Nurkhasanah">Anna Nurkhasanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamzah%20Muhammad%20Ihsan"> Hamzah Muhammad Ihsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Wulandari"> Nurul Wulandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality affects the body condition of aquatic organisms. One of the methods to manage water quality, usually called phytoremediation, involves using aquatic plants. The purpose of this study is to find out the best aquatic plants to reducing metabolism residues from aquatic organism. 5 aquariums (40x30x30 cm) containing 100 grams from each 4 different plants such as water hyacinth (Eichhornia crassipes), salvinia (Salvinia molesta), cabomba (Cabomba caroliniana), and hydrilla (Hydrilla verticillata), thirteen goldfis (Carrasius auratus auratus) are maintained. The maintenance is conducted through a week and water quality measurements are performed three times. The results show that pH value tends to range between 7,22-8,72. The temperature varies between 25-26 °C. DO values varies between 5,2-10,5 mg/L. Amoniac value is between 0,005–5,2 mg/L. Nitrite value is between 0,005 mg/L-2,356 mg/L. Nitrate value is between 0,791 mg/L-1,737 mg/L. CO2 value is between 2,2 mg/L-6,1 mg/L. The result of survival rate of goldfish for all treatments is 100%. Based on this study, the best aquatic plant to reduce metabolism residues is hydrilla. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=goldfish" title=" goldfish"> goldfish</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20plants" title=" aquatic plants"> aquatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/6221/reducing-metabolism-residues-in-maintenance-goldfish-carrasius-auratus-auratus-by-phytoremediation-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=292">292</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=293">293</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20metabolism&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>