CINXE.COM

Search results for: software receiver

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: software receiver</title> <meta name="description" content="Search results for: software receiver"> <meta name="keywords" content="software receiver"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="software receiver" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="software receiver"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5072</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: software receiver</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5072</span> Design of Low Power FSK Receiver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Aeysha%20Parvin">M. Aeysha Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Asha"> J. Asha</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Jenifer"> J. Jenifer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This letter presents a novel frequency-shift keying(FSK) receiver using PLL-based FSK demodulator, thereby achieving high sensitivity and low power consumption. The proposed receiver comprises a power amplifier, mixer, 3-stage ring oscillator, PLL based demodulator. Moreover, the proposed receiver is fabricated using 0.12µm CMOS process and consumes 0.7Mw. Measurement results demonstrate that the proposed receiver has a sensitivity of -93dbm with 1Mbps data rate in receiving a 2.4 GHz FSK signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20FSK%20receiver" title="CMOS FSK receiver">CMOS FSK receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20locked%20loop%20%28PLL%29" title=" phase locked loop (PLL)"> phase locked loop (PLL)</a>, <a href="https://publications.waset.org/abstracts/search?q=3-stage%20ring%20oscillator" title=" 3-stage ring oscillator"> 3-stage ring oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=FSK%20signal" title=" FSK signal"> FSK signal</a> </p> <a href="https://publications.waset.org/abstracts/29983/design-of-low-power-fsk-receiver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5071</span> Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hung-Yuan%20Chang">Hung-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Lung%20Chiang"> Wen-Lung Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Liang%20Wu"> Kuo-Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Tsung%20Lin"> Chen-Tsung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space-borne" title="space-borne">space-borne</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20receiver" title=" GPS receiver"> GPS receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=DSP" title=" DSP"> DSP</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-mode%20multi-band" title=" multi-mode multi-band"> multi-mode multi-band</a> </p> <a href="https://publications.waset.org/abstracts/37292/performance-demonstration-of-extendable-nspo-space-borne-gps-receiver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5070</span> A Low-Power, Low-Noise and High-Gain 58~66 GHz CMOS Receiver Front-End for Short-Range High-Speed Wireless Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yo-Sheng%20Lin">Yo-Sheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-How%20Lee"> Jen-How Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chin%20Wang"> Chien-Chin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 60-GHz receiver front-end using standard 90-nm CMOS technology is reported. The receiver front-end comprises a wideband low-noise amplifier (LNA), and a double-balanced Gilbert cell mixer with a current-reused RF single-to-differential (STD) converter, an LO Marchand balun and a baseband amplifier. The receiver front-end consumes 34.4 mW and achieves LO-RF isolation of 60.7 dB, LO-IF isolation of 45.3 dB and RF-IF isolation of 41.9 dB at RF of 60 GHz and LO of 59.9 GHz. At IF of 0.1 GHz, the receiver front-end achieves maximum conversion gain (CG) of 26.1 dB at RF of 64 GHz and CG of 25.2 dB at RF of 60 GHz. The corresponding 3-dB bandwidth of RF is 7.3 GHz (58.4 GHz to 65.7 GHz). The measured minimum noise figure was 5.6 dB at 64 GHz, one of the best results ever reported for a 60 GHz CMOS receiver front-end. In addition, the measured input 1-dB compression point and input third-order inter-modulation point are -33.1 dBm and -23.3 dBm, respectively, at 60 GHz. These results demonstrate the proposed receiver front-end architecture is very promising for 60 GHz direct-conversion transceiver applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=60%20GHz" title=" 60 GHz"> 60 GHz</a>, <a href="https://publications.waset.org/abstracts/search?q=direct-conversion%20transceiver" title=" direct-conversion transceiver"> direct-conversion transceiver</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=down-conversion%20mixer" title=" down-conversion mixer"> down-conversion mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=marchand%20balun" title=" marchand balun"> marchand balun</a>, <a href="https://publications.waset.org/abstracts/search?q=current-reused" title=" current-reused"> current-reused</a> </p> <a href="https://publications.waset.org/abstracts/32604/a-low-power-low-noise-and-high-gain-5866-ghz-cmos-receiver-front-end-for-short-range-high-speed-wireless-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5069</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiver%20tube" title="receiver tube">receiver tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/38149/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5068</span> A 1.57ghz Mixer Design for GPS Receiver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamd%20Ahmed">Hamd Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the Persian Gulf War in 1991s, The confederation forces were surprised when they were being shot at by friendly forces in Iraqi desert. As obvious was the fact that they were mislead due to the lack of proper guidance and technology resulting in unnecessary loss of life and bloodshed. This unforeseen incident along with many others led the US department of defense to open the doors of GPS. In the very beginning, this technology was for military use, but now it is being widely used and increasingly popular among the public due to its high accuracy and immeasurable significance. The GPS system simply consists of three segments, the space segment (the satellite), the control segment (ground control) and the user segment (receiver). This project work is about designing a 1.57GHZ mixer for triple conversion GPS receiver .The GPS Front-End receiver based on super heterodyne receiver which improves selectivity and image frequency. However the main principle of the super heterodyne receiver depends on the mixer. Many different types of mixers (single balanced mixer, Single Ended mixer, Double balanced mixer) can be used with GPS receiver, it depends on the required specifications. This research project will provide an overview of the GPS system and details about the basic architecture of the GPS receiver. The basic emphasis of this report in on investigating general concept of the mixer circuit some terms related to the mixer along with their definitions and present the types of mixer, then gives some advantages of using singly balanced mixer and its application. The focus of this report is on how to design mixer for GPS receiver and discussing the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS ">GPS </a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20filter" title=" RF filter"> RF filter</a>, <a href="https://publications.waset.org/abstracts/search?q=heterodyne" title=" heterodyne"> heterodyne</a>, <a href="https://publications.waset.org/abstracts/search?q=mixer" title=" mixer "> mixer </a> </p> <a href="https://publications.waset.org/abstracts/2479/a-157ghz-mixer-design-for-gps-receiver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5067</span> The Secrecy Capacity of the Semi-Deterministic Wiretap Channel with Three State Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20El-Halabi">Mustafa El-Halabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general model of wiretap channel with states is considered, where the legitimate receiver and the wiretapper’s observations depend on three states S1, S2 and S3. State S1 is non-causally known to the encoder, S2 is known to the receiver, and S3 remains unknown. A secure coding scheme, based using structured-binning, is proposed, and it is shown to achieve the secrecy capacity when the signal at legitimate receiver is a deterministic function of the input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20layer%20security" title="physical layer security">physical layer security</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20information" title=" side information"> side information</a>, <a href="https://publications.waset.org/abstracts/search?q=secrecy%20capacity" title=" secrecy capacity"> secrecy capacity</a> </p> <a href="https://publications.waset.org/abstracts/48861/the-secrecy-capacity-of-the-semi-deterministic-wiretap-channel-with-three-state-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5066</span> QI Wireless Charging a Scope of Magnetic Inductive Coupling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreenesh%20Shashidharan">Sreenesh Shashidharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Gaikwad"> Umesh Gaikwad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inductive%20electric%20power" title="inductive electric power">inductive electric power</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20induction" title=" electromagnetic induction"> electromagnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20flux" title=" magnetic flux"> magnetic flux</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a> </p> <a href="https://publications.waset.org/abstracts/20622/qi-wireless-charging-a-scope-of-magnetic-inductive-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5065</span> A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Qandil">Hassan Qandil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COMSOL" title="COMSOL">COMSOL</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrator" title=" concentrator"> concentrator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fresnel" title=" fresnel"> fresnel</a>, <a href="https://publications.waset.org/abstracts/search?q=optics" title=" optics"> optics</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable" title=" renewable"> renewable</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a> </p> <a href="https://publications.waset.org/abstracts/88802/a-statistical-algorithmic-approach-for-the-design-and-evaluation-of-a-fresnel-solar-concentrator-receiver-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5064</span> 3D Receiver Operator Characteristic Histogram</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoli%20Zhang">Xiaoli Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongfei%20Li"> Xiongfei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuncong%20Feng"> Yuncong Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, the <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20histogram" title=" receiver operating characteristic histogram"> receiver operating characteristic histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20prediction" title=" hardness prediction"> hardness prediction</a> </p> <a href="https://publications.waset.org/abstracts/44143/3d-receiver-operator-characteristic-histogram" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5063</span> Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Fekhar">H. Fekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microcontrollers" title="microcontrollers">microcontrollers</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic%20liquid%20cristal%20display" title=" graphic liquid cristal display"> graphic liquid cristal display</a>, <a href="https://publications.waset.org/abstracts/search?q=protocol" title=" protocol"> protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/16552/design-and-implementation-wireless-system-by-using-microcontrollersapplication-for-drive-acquisition-system-with-multiple-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5062</span> Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temidayo%20Otunniyi">Temidayo Otunniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20radio" title="software defined radio">software defined radio</a>, <a href="https://publications.waset.org/abstracts/search?q=channelization" title=" channelization"> channelization</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20sample%20rate" title=" critical sample rate"> critical sample rate</a>, <a href="https://publications.waset.org/abstracts/search?q=over-sample%20rate" title=" over-sample rate"> over-sample rate</a> </p> <a href="https://publications.waset.org/abstracts/154901/critically-sampled-hybrid-trigonometry-generalized-discrete-fourier-transform-for-multistandard-receiver-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5061</span> Low-Noise Amplifier Design for Improvement of Communication Range for Wake-Up Receiver Based Wireless Sensor Network Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilef%20Ketata">Ilef Ketata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Khalil%20Baazaoui"> Mohamed Khalil Baazaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Fromm"> Robert Fromm</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Fakhfakh"> Ahmad Fakhfakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Derbel"> Faouzi Derbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of wireless communication, e. g. in real-or quasi-real-time applications, is related to many challenges such as energy consumption, communication range, latency, quality of service, and reliability. To minimize the latency without increasing energy consumption, wake-up receiver (WuRx) nodes have been introduced in recent works. Low-noise amplifiers (LNAs) are introduced to improve the WuRx sensitivity but increase the supply current severely. Different WuRx approaches exist with always-on, power-gated, or duty-cycled receiver designs. This paper presents a comparative study for improving communication range and decreasing the energy consumption of wireless sensor nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=wake-up%20receiver" title=" wake-up receiver"> wake-up receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=duty-cycled" title=" duty-cycled"> duty-cycled</a>, <a href="https://publications.waset.org/abstracts/search?q=low-noise%20amplifier" title=" low-noise amplifier"> low-noise amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20detector" title=" envelope detector"> envelope detector</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20study" title=" range study"> range study</a> </p> <a href="https://publications.waset.org/abstracts/156750/low-noise-amplifier-design-for-improvement-of-communication-range-for-wake-up-receiver-based-wireless-sensor-network-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5060</span> Impact of Capture Effect on Receiver Initiated Collision Detection with Sequential Resolution in WLAN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sethu%20Lekshmi">Sethu Lekshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahanas"> Shahanas</a>, <a href="https://publications.waset.org/abstracts/search?q=Prettha%20P."> Prettha P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All existing protocols in wireless networks are mainly based on Carrier Sense Multiple Access with Collision avoidance. By applying collision detection in wireless networks, the time spent on collision can be reduced and thus improves system throughput. However in a real WLAN scenario due to the use of nonlinear modulation techniques only receiver can decided whether a packet loss take place, even there are multiple transmissions. In this proposed method, the receiver or Access Point detects the collision when multiple data packets are transmitted from different wireless stations. Whenever the receiver detects a collision, it transmits a jamming signal to all the transmitting stations so that they can immediately stop their on-going transmissions. We also provide preferential access to all collided packet to reduce unfairness and to increase system throughput by reducing contention. However, this preferential access will not block the channel for the long time. Here, an in-band transmission is considered in which both the data frames and control frames are transmitted in the same channel. We also provide a simple mathematical model for the proposed protocol and give the simulation result of WLAN scenario under various capture thresholds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=802.11" title="802.11">802.11</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=capture%20effect" title=" capture effect"> capture effect</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20detection" title=" collision detection"> collision detection</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20resolution" title=" collision resolution"> collision resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20initiated" title=" receiver initiated"> receiver initiated</a> </p> <a href="https://publications.waset.org/abstracts/31968/impact-of-capture-effect-on-receiver-initiated-collision-detection-with-sequential-resolution-in-wlan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5059</span> Secure Content Centric Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Umair%20Aziz">Syed Umair Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faheem"> Muhammad Faheem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Hussain"> Sameer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Idris"> Faraz Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Content centric network is the network based on the mechanism of sending and receiving the data based on the interest and data request to the specified node (which has cached data). In this network, the security is bind with the content not with the host hence making it host independent and secure. In this network security is applied by taking content’s MAC (message authentication code) and encrypting it with the public key of the receiver. On the receiver end, the message is first verified and after verification message is saved and decrypted using the receiver's private key. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=content%20centric%20network" title="content centric network">content centric network</a>, <a href="https://publications.waset.org/abstracts/search?q=client-server" title=" client-server"> client-server</a>, <a href="https://publications.waset.org/abstracts/search?q=host%20security%20threats" title=" host security threats"> host security threats</a>, <a href="https://publications.waset.org/abstracts/search?q=message%20authentication%20code" title=" message authentication code"> message authentication code</a>, <a href="https://publications.waset.org/abstracts/search?q=named%20data%20network" title=" named data network"> named data network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20caching" title=" network caching"> network caching</a>, <a href="https://publications.waset.org/abstracts/search?q=peer-to-peer" title=" peer-to-peer"> peer-to-peer</a> </p> <a href="https://publications.waset.org/abstracts/32149/secure-content-centric-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5058</span> Bank ATM Monitoring System Using IR Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Saravanakumar">P. Saravanakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Raja"> N. Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rameshkumar"> M. Rameshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mohankumar"> D. Mohankumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sateeshkumar"> R. Sateeshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Maheshwari"> B. Maheshwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work is designed using Microsoft VB. Net as front end and MySQL as back end. The project deals with secure the user transaction in the ATM system. This application contains the option for sending the failed transaction details to the particular customer by using the SMS. When the customer withdraws the amount from the Bank ATM system, sometimes the amount will not be dispatched but the amount will be debited to the particular account. This application is used to avoid this type of problems in the ATM system. In this proposed system using IR technique to detect the dispatched amount. IR Transmitter and IR Receiver are placed in the path of cash dispatch. It is connected each other through the IR signal. When the customers withdraw the amount in the ATM system then the amount will be dispatched or not is monitored by IR Receiver. If the amount will be dispatched then the signal will be interrupted between the IR Receiver and the IR Transmitter. At that time, the monitoring system will be reduced their particular withdraw amount on their account. If the cash will not be dispatched, the signal will not be interrupted, at that time the particular withdraw amount will not be reduced their account. If the transaction completed successfully, the transaction details such as withdraw amount and current balance can be sent to the customer via the SMS. If the transaction fails, the transaction failed message can be send to the customer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATM%20system" title="ATM system">ATM system</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20system" title=" monitoring system"> monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20Transmitter" title=" IR Transmitter"> IR Transmitter</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20Receiver" title=" IR Receiver"> IR Receiver</a> </p> <a href="https://publications.waset.org/abstracts/1706/bank-atm-monitoring-system-using-ir-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5057</span> A SiGe Low Power RF Front-End Receiver for 5.8GHz Wireless Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunwon%20Moon">Hyunwon Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is necessary to realize new biomedical wireless communication systems which send the signals collected from various bio sensors located at human body in order to monitor our health. Also, it should seamlessly connect to the existing wireless communication systems. A 5.8 GHz ISM band low power RF front-end receiver for a biomedical wireless communication system is implemented using a 0.5 &micro;m SiGe BiCMOS process. To achieve low power RF front-end, the current optimization technique for selecting device size is utilized. The implemented low noise amplifier (LNA) shows a power gain of 9.8 dB, a noise figure (NF) of below 1.75 dB, and an IIP3 of higher than 7.5 dBm while current consumption is only 6 mA at supply voltage of 2.5 V. Also, the performance of a down-conversion mixer is measured as a conversion gain of 11 dB and SSB NF of 10 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical" title="biomedical">biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=mixer" title=" mixer"> mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver" title=" receiver"> receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20front-end" title=" RF front-end"> RF front-end</a>, <a href="https://publications.waset.org/abstracts/search?q=SiGe" title=" SiGe"> SiGe</a> </p> <a href="https://publications.waset.org/abstracts/53327/a-sige-low-power-rf-front-end-receiver-for-58ghz-wireless-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5056</span> Software Cloning and Agile Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kumar">Ravi Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhrubajit%20Barman"> Dhrubajit Barman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nomi%20Baruah"> Nomi Baruah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Cloning has grown an active area in software engineering research community yielding numerous techniques, various tools and other methods for clone detection and removal. The copying, modifying a block of code is identified as cloning as it is the most basic means of software reuse. Agile Software Development is an approach which is currently being used in various software projects, so that it helps to respond the unpredictability of building software through incremental, iterative, work cadences. Software Cloning has been introduced to Agile Environment and many Agile Software Development approaches are using the concept of Software Cloning. This paper discusses the various Agile Software Development approaches. It also discusses the degree to which the Software Cloning concept is being introduced in the Agile Software Development approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agile%20environment" title="agile environment">agile environment</a>, <a href="https://publications.waset.org/abstracts/search?q=refactoring" title=" refactoring"> refactoring</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20cloning" title=" software cloning"> software cloning</a> </p> <a href="https://publications.waset.org/abstracts/16005/software-cloning-and-agile-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5055</span> Preliminary Findings from a Research Survey on Evolution of Software Defined Radio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Srilatha">M. Srilatha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hemalatha"> R. Hemalatha</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sri%20Aditya"> T. Sri Aditya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communication of today world is dominated by wireless technology. This is mainly due to the revolutionary development of new wireless communication system generations. The evolving new generations of wireless systems are accommodating the demand through better resource management including improved transmission technologies with optimized communication devices. To keep up with the evolution of technologies, the communication systems must be designed to optimize transparent insertion of newly evolved technologies virtually at all stages of their life cycle. After the insertion of new technologies, the upgraded devices should continue the communication without squalor in quality. The concern of improving spectrum access and spectrum efficiency combined with both the introduction of Software Defined Radios (SDR) and the possibility of the software application to radios has led to an evolution of wireless radio research. The software defined radio term was coined in the 1970s to overcome the problems in the application of software to wireless radios which eliminates the requirement of hardware changes. SDR has become the prime theme of research since it eliminates the drawbacks associated with conventional wireless communication systems implementation. This paper identifies and discusses key enabling technologies and possibility of research and development in SDRs. In addition transmitter and receiver architectures of SDR are also discussed along with their feasibility for reconfigurable radio application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20radios" title="software defined radios">software defined radios</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title=" reconfigurable"> reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20transmitter" title=" reconfigurable transmitter"> reconfigurable transmitter</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20receivers" title=" reconfigurable receivers"> reconfigurable receivers</a>, <a href="https://publications.waset.org/abstracts/search?q=FPGA" title=" FPGA"> FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=DSP" title=" DSP"> DSP</a> </p> <a href="https://publications.waset.org/abstracts/11812/preliminary-findings-from-a-research-survey-on-evolution-of-software-defined-radio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5054</span> Development of an Integrated Route Information Management Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluibukun%20G.%20Ajayi">Oluibukun G. Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20O.%20Odumosu"> Joseph O. Odumosu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladimeji%20T.%20Babafemi"> Oladimeji T. Babafemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeez%20Z.%20Opeyemi"> Azeez Z. Opeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asaleye%20O.%20Samuel"> Asaleye O. Samuel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need for the complete automation of every procedure of surveying and most especially, its engineering applications cannot be overemphasized due to the many demerits of the conventional manual or analogue approach. This paper presents the summarized details of the development of a Route Information Management (RIM) software. The software, codenamed ‘AutoROUTE’, was encoded using Microsoft visual studio-visual basic package, and it offers complete automation of the computational procedures and plan production involved in route surveying. It was experimented using a route survey data (longitudinal profile and cross sections) of a 2.7 km road which stretches from Dama to Lunko village in Minna, Niger State, acquired with the aid of a Hi-Target DGPS receiver. The developed software (AutoROUTE) is capable of computing the various simple curve parameters, horizontal curve, and vertical curve, and it can also plot road alignment, longitudinal profile, and cross-section with a capability to store this on the SQL incorporated into the Microsoft visual basic software. The plotted plans with AutoROUTE were compared with the plans produced with the conventional AutoCAD Civil 3D software, and AutoROUTE proved to be more user-friendly and accurate because it plots in three decimal places whereas AutoCAD plots in two decimal places. Also, it was discovered that AutoROUTE software is faster in plotting and the stages involved is less cumbersome compared to AutoCAD Civil 3D software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20systems" title="automated systems">automated systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20sections" title=" cross sections"> cross sections</a>, <a href="https://publications.waset.org/abstracts/search?q=curves" title=" curves"> curves</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20construction" title=" engineering construction"> engineering construction</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20profile" title=" longitudinal profile"> longitudinal profile</a>, <a href="https://publications.waset.org/abstracts/search?q=route%20surveying" title=" route surveying"> route surveying</a> </p> <a href="https://publications.waset.org/abstracts/107424/development-of-an-integrated-route-information-management-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5053</span> Determination of Crustal Structure and Moho Depth within the Jammu and Kashmir Region, Northwest Himalaya through Receiver Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Jyoti%20Pandey">Shiv Jyoti Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shveta%20Puri"> Shveta Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Bhat"> G. M. Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Raina"> Neha Raina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Jammu and Kashmir (J&K) region of Northwest Himalaya has a long history of earthquake activity which falls within Seismic Zones IV and V. To know the crustal structure beneath this region, we utilized teleseismic receiver function method. This paper presents the results of the analyses of the teleseismic earthquake waves recorded by 10 seismic observatories installed in the vicinity of major thrusts and faults. The teleseismic waves at epicentral distance between 30o and 90o with moment magnitudes greater than or equal to 5.5 that contains large amount of information about the crust and upper mantle structure directly beneath a receiver has been used. The receiver function (RF) technique has been widely applied to investigate crustal structures using P-to-S converted (Ps) phases from velocity discontinuities. The arrival time of the Ps, PpPs and PpSs+ PsPs converted and reverberated phases from the Moho can be combined to constrain the mean crustal thickness and Vp/Vs ratio. Over 500 receiver functions from 10 broadband stations located in the Jammu & Kashmir region of Northwest Himalaya were analyzed. With the help of H-K stacking method, we determined the crustal thickness (H) and average crustal Vp/Vs ratio (K) in this region. We also used Neighbourhood algorithm technique to verify our results. The receiver function results for these stations show that the crustal thickness under Jammu & Kashmir ranges from 45.0 to 53.6 km with an average value of 50.01 km. The Vp/Vs ratio varies from 1.63 to 1.99 with an average value of 1.784 which corresponds to an average Poisson’s ratio of 0.266 with a range from 0.198 to 0.331. High Poisson’s ratios under some stations may be related to partial melting in the crust near the uppermost mantle. The crustal structure model developed from this study can be used to refine the velocity model used in the precise epicenter location in the region, thereby increasing the knowledge to understand current seismicity in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=H-K%20stacking" title="H-K stacking">H-K stacking</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%E2%80%99s%20ratios" title=" Poisson’s ratios"> Poisson’s ratios</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20function" title=" receiver function"> receiver function</a>, <a href="https://publications.waset.org/abstracts/search?q=teleseismic" title=" teleseismic"> teleseismic</a> </p> <a href="https://publications.waset.org/abstracts/60687/determination-of-crustal-structure-and-moho-depth-within-the-jammu-and-kashmir-region-northwest-himalaya-through-receiver-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5052</span> Software Engineering Revolution Driven by Complexity Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jay%20Xiong">Jay Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lin"> Li Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a new software engineering paradigm based on complexity science, called NSE (Nonlinear Software Engineering paradigm). The purpose of establishing NSE is to help software development organizations double their productivity, half their cost, and increase the quality of their products in several orders of magnitude simultaneously. NSE complies with the essential principles of complexity science. NSE brings revolutionary changes to almost all aspects in software engineering. NSE has been fully implemented with its support platform Panorama++. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexity%20science" title="complexity science">complexity science</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20development" title=" software development"> software development</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20maintenance" title=" software maintenance"> software maintenance</a> </p> <a href="https://publications.waset.org/abstracts/41084/software-engineering-revolution-driven-by-complexity-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5051</span> Software Architectural Design Ontology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Irfan%20Marwat">Muhammad Irfan Marwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadaqat%20Jan"> Sadaqat Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Zafar%20Ali%20Shah"> Syed Zafar Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software architecture plays a key role in software development but absence of formal description of software architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for software architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate software architectural design information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic-based%20software%20architecture" title="semantic-based software architecture">semantic-based software architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20architecture" title=" software architecture"> software architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a> </p> <a href="https://publications.waset.org/abstracts/2056/software-architectural-design-ontology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5050</span> Influence of Security Attributes in Component-Based Software Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Zeinali">Somayeh Zeinali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A component is generally defined as a piece of executable software with a published interface. Component-based software engineering (CBSE) has become recognized as a new sub-discipline of software engineering. In the component-based software development, components cannot be completely secure and thus easily become vulnerable. Some researchers have investigated this issue and proposed approaches to detect component intrusions or protect distributed components. Software security also refers to the process of creating software that is considered secure.The terms “dependability”, “trustworthiness”, and “survivability” are used interchangeably to describe the properties of software security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component-based%20software%20development" title="component-based software development">component-based software development</a>, <a href="https://publications.waset.org/abstracts/search?q=component-based%20software%20engineering" title=" component-based software engineering "> component-based software engineering </a>, <a href="https://publications.waset.org/abstracts/search?q=software%20security%20attributes" title="software security attributes">software security attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=dependability" title=" dependability"> dependability</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a> </p> <a href="https://publications.waset.org/abstracts/26037/influence-of-security-attributes-in-component-based-software-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5049</span> Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Animut%20Meseret%20Simachew">Animut Meseret Simachew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20PCSA" title="adaptive PCSA">adaptive PCSA</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20and%20estimation" title=" detection and estimation"> detection and estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20signal%20acquisition" title=" GPS signal acquisition"> GPS signal acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20software%20receiver" title=" GPS software receiver"> GPS software receiver</a> </p> <a href="https://publications.waset.org/abstracts/101811/adaptive-multipath-mitigation-acquisition-approach-for-global-positioning-system-software-receivers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5048</span> A &#039;Four Method Framework&#039; for Fighting Software Architecture Erosion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sundus%20Ayyaz">Sundus Ayyaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Rehman"> Saad Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Qamar"> Usman Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20architecture" title="software architecture">software architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture%20erosion" title=" architecture erosion"> architecture erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=prescriptive%20architecture" title=" prescriptive architecture"> prescriptive architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20architecture" title=" descriptive architecture"> descriptive architecture</a> </p> <a href="https://publications.waset.org/abstracts/19650/a-four-method-framework-for-fighting-software-architecture-erosion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5047</span> Artificial Neural Networks Based Calibration Approach for Six-Port Receiver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Chagtmi">Nadia Chagtmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nejla%20Rejab"> Nejla Rejab</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Boulejfen"> Noureddine Boulejfen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=six-port%20based%20receiver%3B%20calibration" title="six-port based receiver; calibration">six-port based receiver; calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearity" title=" nonlinearity"> nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20effect" title=" memory effect"> memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a> </p> <a href="https://publications.waset.org/abstracts/172006/artificial-neural-networks-based-calibration-approach-for-six-port-receiver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5046</span> Analysis of Solar Thermal Power Plant in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Laissaoui">M. Laissaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work has for objective the simulation of a hybrid solar combined cycle power plant, compared with combined cycle conventional (gas turbine and steam turbine), this type of power plants disposed an solar tour (heliostat field and volumetric receiver) insurant a part of the thermal energy necessary for the functioning of the gas turbine. This solar energy serves to feed with heat the combustion air of the gas turbine when he out of the compressor and the front entered the combustion chamber. The simulation of even central and made for three zones deferential to know the zone of Hassi R' mel, Bechare, and the zone of Messaad wilaya of El djelfa. The radiometric and meteorological data arise directly from the software meteonorme 7. The simulation of the energy performances is made by the software TRNSYS 16.1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrating%20solar%20power" title="concentrating solar power">concentrating solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=heliostat" title=" heliostat"> heliostat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/17428/analysis-of-solar-thermal-power-plant-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5045</span> Measurement of Ionospheric Plasma Distribution over Myanmar Using Single Frequency Global Positioning System Receiver </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Win%20Zaw%20Hein">Win Zaw Hein</a>, <a href="https://publications.waset.org/abstracts/search?q=Khin%20Sandar%20Linn"> Khin Sandar Linn</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Su%20Yi%20Mon"> Su Su Yi Mon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshitaka%20Goto"> Yoshitaka Goto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Earth ionosphere is located at the altitude of about 70 km to several 100 km from the ground, and it is composed of ions and electrons called plasma. In the ionosphere, these plasma makes delay in GPS (Global Positioning System) signals and reflect in radio waves. The delay along the signal path from the satellite to the receiver is directly proportional to the total electron content (TEC) of plasma, and this delay is the largest error factor in satellite positioning and navigation. Sounding observation from the top and bottom of the ionosphere was popular to investigate such ionospheric plasma for a long time. Recently, continuous monitoring of the TEC using networks of GNSS (Global Navigation Satellite System) observation stations, which are basically built for land survey, has been conducted in several countries. However, in these stations, multi-frequency support receivers are installed to estimate the effect of plasma delay using their frequency dependence and the cost of multi-frequency support receivers are much higher than single frequency support GPS receiver. In this research, single frequency GPS receiver was used instead of expensive multi-frequency GNSS receivers to measure the ionospheric plasma variation such as vertical TEC distribution. In this measurement, single-frequency support ublox GPS receiver was used to probe ionospheric TEC. The location of observation was assigned at Mandalay Technological University in Myanmar. In the method, the ionospheric TEC distribution is represented by polynomial functions for latitude and longitude, and parameters of the functions are determined by least-squares fitting on pseudorange data obtained at a known location under an assumption of thin layer ionosphere. The validity of the method was evaluated by measurements obtained by the Japanese GNSS observation network called GEONET. The performance of measurement results using single-frequency of GPS receiver was compared with the results by dual-frequency measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionosphere" title="ionosphere">ionosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20positioning%20system" title=" global positioning system"> global positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=ionospheric%20delay" title=" ionospheric delay"> ionospheric delay</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20electron%20content" title=" total electron content"> total electron content</a>, <a href="https://publications.waset.org/abstracts/search?q=TEC" title=" TEC"> TEC</a> </p> <a href="https://publications.waset.org/abstracts/111009/measurement-of-ionospheric-plasma-distribution-over-myanmar-using-single-frequency-global-positioning-system-receiver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5044</span> Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair">Muhammad Umair</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Qasim%20Gilani"> Syed Qasim Gilani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20equalization" title="blind equalization">blind equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20signal%20separation" title=" blind signal separation"> blind signal separation</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization" title=" equalization"> equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20impairments" title=" transmission impairments"> transmission impairments</a>, <a href="https://publications.waset.org/abstracts/search?q=QAM%20receiver" title=" QAM receiver"> QAM receiver</a> </p> <a href="https://publications.waset.org/abstracts/94433/exploiting-fast-independent-component-analysis-based-algorithm-for-equalization-of-impaired-baseband-received-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5043</span> Design Of High Sensitivity Transceiver for WSN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Anitha">A. Anitha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aishwariya"> M. Aishwariya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The realization of truly ubiquitous wireless sensor networks (WSN) demands Ultra-low power wireless communication capability. Because the radio transceiver in a wireless sensor node consumes more power when compared to the computation part it is necessary to reduce the power consumption. Hence, a low power transceiver is designed and implemented in a 120 nm CMOS technology for wireless sensor nodes. The power consumption of the transceiver is reduced still by maintaining the sensitivity. The transceiver designed combines the blocks including differential oscillator, mixer, envelope detector, power amplifiers, and LNA. RF signal modulation and demodulation is carried by On-Off keying method at 2.4 GHz which is said as ISM band. The transmitter demonstrates an output power of 2.075 mW while consuming a supply voltage of range 1.2 V-5.0 V. Here the comparison of LNA and power amplifier is done to obtain an amplifier which produces a high gain of 1.608 dB at receiver which is suitable to produce a desired sensitivity. The multistage RF amplifier is used to improve the gain at the receiver side. The power dissipation of the circuit is in the range of 0.183-0.323 mW. The receiver achieves a sensitivity of about -95 dBm with data rate of 1 Mbps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope%20detector" title=" envelope detector"> envelope detector</a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%20band" title=" ISM band"> ISM band</a>, <a href="https://publications.waset.org/abstracts/search?q=LNA" title=" LNA"> LNA</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20electronics" title=" low power electronics"> low power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=PA" title=" PA"> PA</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20transceiver" title=" wireless transceiver"> wireless transceiver</a> </p> <a href="https://publications.waset.org/abstracts/29995/design-of-high-sensitivity-transceiver-for-wsn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=169">169</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=170">170</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=software%20receiver&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10