CINXE.COM

{"title":"OILU Tag: A Projective Invariant Fiducial System","authors":"Youssef Chahir, Messaoud Mostefai, Salah Khodja","volume":177,"journal":"International Journal of Computer and Information Engineering","pagesStart":531,"pagesEnd":536,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10012229","abstract":"<p>This paper presents the development of a 2D visual marker, derived from a recent patented work in the field of numbering systems. The proposed fiducial uses a group of projective invariant straight-line patterns, easily detectable and remotely recognizable. Based on an efficient data coding scheme, the developed marker enables producing a large panel of unique real time identifiers with highly distinguishable patterns. The proposed marker Incorporates simultaneously decimal and binary information, making it readable by both humans and machines. This important feature opens up new opportunities for the development of efficient visual human-machine communication and monitoring protocols. Extensive experiment tests validate the robustness of the marker against acquisition and geometric distortions.<\/p>","references":"[1]\tSarmadi H, et al., 3D Reconstruction and alignment by consumer RGB-D sensors and fiducial planar markers for patient positioning in radiation therapy, Computer Methods and Programs in Biomedicine. 2019.\r\n[2]\tF.-E. Ababsa and M. Mallem, Robust camera pose estimation using 2D fiducials tracking for real-time augmented reality systems, in Proc. ACM SIGGRAPH Int. Conf. (VRCAI), 2004, pp. 431-435. \r\n[3]\tN. Mohammad et al., Automated Localization of UAVs in GPS-Denied Indoor Construction Environments Using Fiducial Markers, 2018.\r\n[4]\tJ. Wubben et al., Accurate Landing of UAV Using Ground Pattern Recognition. Electronics 2019, 8, 1532.\r\n[5]\tE. Olson, AprilTag: A robust and flexible visual fiducial system,\" IEEE International Conference on Robotics and Automation, Shanghai, 2011, pp. 3400-3407, 2011.\r\n[6]\tJ. \u010cejka et al., Detecting Square Markers in Underwater Environments. Remote Sens. 2019, 11, 459.\r\n[7]\tG.C. La Delfa et al., Performance analysis of visual markers for indoor navigation systems, Frontiers Inf Technol Electronic Eng 17, 730\u2013740 (2016).\r\n[8]\tP. Lightbody et al., An efficient visual fiducial localisation system, AC Review, 17 (3). pp. 28-37. (2017). \r\n[9]\tS.M. Abbas et al., A. Analysis and Improvements in AprilTag Based State Estimation. Sensors 2019, 19, 5480, https:\/\/doi.org\/10.3390\/s19245480.\r\n[10]\tP. Jin et al., Sensor fusion for fiducial tags: Highly robust pose estimation from single frame RGBD,\" 2017 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 5770-5776.\r\n[11]\tA. Zea and U. D. Hanebeck, Refined Pose Estimation for Square Markers Using Shape Fitting, 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2019, pp. 1-8.\r\n[12]\tT. Birdal et al., X-Tag: A Fiducial Tag for Flexible and Accurate Bundle Adjustment, Fourth International Conference on 3D Vision (3DV), Stanford, CA, 2016, pp. 556-564, doi: 10.1109\/3DV.2016.65.\r\n[13]\tL. Calvet et al., Detection and Accurate Localization of Circular Fiducials under Highly Challenging Conditions, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 562-570.\r\n[14]\tA. C. Rice et al., Cantag: an open source software toolkit for designing and deploying marker-based vision systems, (PERCOM'06) Conference, Pisa, pp. 10-21.2006.\r\n[15]\tF. Bergamasco et al., Pi-Tag: a fast image-space marker design based on projective invariants, Machine Vision and Applications 24, 1295\u20131310 (2013). https:\/\/doi.org\/10.1007\/s00138-012-0469-6.\r\n[16]\tR. van Liere and J. D. Mulder, Optical tracking using projective invariant marker pattern properties, IEEE Virtual Reality Proceedings, Los Angeles, CA, USA, 2003, pp. 191-198, doi: 10.1109\/VR.2003.1191138.\r\n[17]\tM.Mostefai and S.Khodja, OILU Symbolic, US patent application No 63-424, 2020.\r\n[18]\tD. Gentry Steele and Claud A. Bramblett, The Anatomy and Biology of the Human Skeleton, Texas A&M University Press, 1988.\r\n[19]\tA. Sophie et al., Action recognition based on 2D skeletons extracted from RGB videos, MATEC Web Conf. 277 02034 (2019), DOI: 10.1051\/matecconf\/201927702034.\r\n[20]\tPedro F. Felzenszwalb and Daniel P. Huttenlocher, Distance Transforms of Sampled Functions, Theory of Computing, Volume 8(19), pp. 415-428, 2012.\r\n[21]\tM.G. \u00d3scar et al., 2D array design based on Fermat spiral for ultrasound imaging, Ultrasonics. 50. 280-9. 10.1016\/j.ultras.2009.09.010.\r\n[22]\tS. Osher, J. Sethian, Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, Jour Computing Phys. 79, pp.12-49, 1988.\r\n[23]\tD. Adalsteinsson, J. Sethian, A Fast Level Set Method for Propagating Interfaces, Jour. Computing Phys., Vol. 118, pp. 269-277,1995.\r\n[24]\tY. Xiong et al., Process planning for adaptive contour parallel tool path in additive manufacturing with variable bead width, Int J Adv Manuf Technol 105, 4159\u20134170 (2019). https:\/\/doi.org\/10.1007\/s00170-019-03954-1.\r\n[25]\tOILU code web site: http:\/\/oilucode.net","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 177, 2021"}