CINXE.COM
Search results for: planck’s energy as a limiting case of einstein’s energy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: planck’s energy as a limiting case of einstein’s energy</title> <meta name="description" content="Search results for: planck’s energy as a limiting case of einstein’s energy"> <meta name="keywords" content="planck’s energy as a limiting case of einstein’s energy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="planck’s energy as a limiting case of einstein’s energy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="planck’s energy as a limiting case of einstein’s energy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19211</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: planck’s energy as a limiting case of einstein’s energy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19211</span> Quantum Mechanics as A Limiting Case of Relativistic Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Almajid">Ahmad Almajid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lorentz%20quantum%20factor" title="lorentz quantum factor">lorentz quantum factor</a>, <a href="https://publications.waset.org/abstracts/search?q=new" title=" new"> new</a>, <a href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy" title=" planck’s energy as a limiting case of einstein’s energy"> planck’s energy as a limiting case of einstein’s energy</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20quantum%20mechanics" title=" real quantum mechanics"> real quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20equations%20for%20quantum%20mechanics" title=" new equations for quantum mechanics"> new equations for quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/159579/quantum-mechanics-as-a-limiting-case-of-relativistic-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19210</span> The Introduction of the Revolution Einstein’s Relative Energy Equations in Even 2n and Odd 3n Light Dimension Energy States Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiradeach%20Kalayaruan">Jiradeach Kalayaruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosawat%20Seetawan"> Tosawat Seetawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the energy of the nature systems by looking at the overall image throughout the universe. The energy of the nature systems was developed from the Einstein’s energy equation. The researcher used the new ideas called even 2n and odd 3n light dimension energy states systems, which were developed from Einstein’s relativity energy theory equation. In this study, the major methodology the researchers used was the basic principle ideas or beliefs of some religions such as Buddhism, Christianity, Hinduism, Islam, or Tao in order to get new discoveries. The basic beliefs of each religion - Nivara, God, Ether, Atman, and Tao respectively, were great influential ideas on the researchers to use them greatly in the study to form new ideas from philosophy. Since the philosophy of each religion was alive with deep insight of the physical nature relative energy, it connected the basic beliefs to light dimension energy states systems. Unfortunately, Einstein’s original relative energy equation showed only even 2n light dimension energy states systems (if n = 1,…,∞). But in advance ideas, the researchers multiplied light dimension energy by Einstein’s original relative energy equation and get new idea of theoritical physics in odd 3n light dimension energy states systems (if n = 1,…,∞). Because from basic principle ideas or beliefs of some religions philosophy of each religion, you had to add the media light dimension energy into Einstein’s original relative energy equation. Consequently, the simple meaning picture in deep insight showed that you could touch light dimension energy of Nivara, God, Ether, Atman, and Tao by light dimension energy. Since light dimension energy was transferred by Nivara, God, Ether, Atman and Tao, the researchers got the new equation of odd 3n light dimension energy states systems. Moreover, the researchers expected to be able to solve overview problems of all light dimension energy in all nature relative energy, which are developed from Eistein’s relative energy equation.The finding of the study was called 'super nature relative energy' ( in odd 3n light dimension energy states systems (if n = 1,…,∞)). From the new ideas above you could do the summation of even 2n and odd 3n light dimension energy states systems in all of nature light dimension energy states systems. In the future time, the researchers will expect the new idea to be used in insight theoretical physics, which is very useful to the development of quantum mechanics, all engineering, medical profession, transportation, communication, scientific inventions, and technology, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2n%20light%20dimension%20energy%20states%20systems%20effect" title="2n light dimension energy states systems effect">2n light dimension energy states systems effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Ether" title=" Ether"> Ether</a>, <a href="https://publications.waset.org/abstracts/search?q=even%202n%20light%20dimension%20energy%20states%20systems" title=" even 2n light dimension energy states systems"> even 2n light dimension energy states systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20relativity" title=" nature relativity"> nature relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=Nivara" title=" Nivara"> Nivara</a>, <a href="https://publications.waset.org/abstracts/search?q=odd%203n%20light%20dimension%20energy%20states%20systems" title=" odd 3n light dimension energy states systems"> odd 3n light dimension energy states systems</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20points%20energy" title=" perturbation points energy"> perturbation points energy</a>, <a href="https://publications.waset.org/abstracts/search?q=relax%20point%20energy%20states%20systems" title=" relax point energy states systems"> relax point energy states systems</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20perturbation%20energy%20states%20systems%20effect" title=" stress perturbation energy states systems effect"> stress perturbation energy states systems effect</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20relative%20energy" title=" super relative energy"> super relative energy</a> </p> <a href="https://publications.waset.org/abstracts/91995/the-introduction-of-the-revolution-einsteins-relative-energy-equations-in-even-2n-and-odd-3n-light-dimension-energy-states-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19209</span> Classification of Cosmological Wormhole Solutions in the Framework of General Relativity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usamah%20Al-Ali">Usamah Al-Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We explore the effect of expanding space on the exoticity of the matter supporting a traversable Lorentzian wormhole of zero radial tide whose line element is given by ds2 = dt^2 − a^2(t)[ dr^2/(1 − kr2 −b(r)/r)+ r2dΩ^2 in the context of General Relativity. This task is achieved by deriving the Einstein field equations for anisotropic matter field corresponding to the considered cosmological wormhole metric and performing a classification of their solutions on the basis of a variable equations of state (EoS) of the form p = ω(r)ρ. Explicit forms of the shape function b(r) and the scale factor a(t) arising in the classification are utilized to construct the corresponding energy-momentum tensor where the energy conditions for each case is investigated. While the violation of energy conditions is inevitable in case of static wormholes, the classification we performed leads to interesting solutions in which this violation is either reduced or eliminated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20field%20equations" title=" Einstein field equations"> Einstein field equations</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conditions" title=" energy conditions"> energy conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmological%20wormhole" title=" cosmological wormhole"> cosmological wormhole</a> </p> <a href="https://publications.waset.org/abstracts/150239/classification-of-cosmological-wormhole-solutions-in-the-framework-of-general-relativity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19208</span> A Low-Cost Experimental Approach for Teaching Energy Quantization: Determining the Planck Constant with Arduino and Led</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gast%C3%A3o%20Soares%20Ximenes%20de%20Oliveira">Gastão Soares Ximenes de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Richar%20Nicol%C3%A1s%20Dur%C3%A1n"> Richar Nicolás Durán</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20Micah%20Szmoski"> Romeo Micah Szmoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Eloiza%20Aparecida%20Avila%20de%20Matos"> Eloiza Aparecida Avila de Matos</a>, <a href="https://publications.waset.org/abstracts/search?q=Elano%20Gustavo%20Rein"> Elano Gustavo Rein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to present an experimental method to determine Planck's constant by calculating the cutting potential V₀ from LEDs with different wavelengths. The experiment is designed using Arduino as a central tool in order to make the experimental activity more engaging and attractive for students with the use of digital technologies. From the characteristic curves of each LED, graphical analysis was used to obtain the cutting potential, and knowing the corresponding wavelength, it was possible to calculate Planck's constant. This constant was also obtained from the linear adjustment of the cutting potential graph by the frequency of each LED. Given the relevance of Planck's constant in physics, it is believed that this experiment can offer teachers the opportunity to approach concepts from modern physics, such as the quantization of energy, in a more accessible and applied way in the classroom. This will not only enrich students' understanding of the fundamental nature of matter but also encourage deeper engagement with the principles of quantum physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physics%20teaching" title="physics teaching">physics teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20technology" title=" educational technology"> educational technology</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20physics" title=" modern physics"> modern physics</a>, <a href="https://publications.waset.org/abstracts/search?q=Planck%20constant" title=" Planck constant"> Planck constant</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino" title=" Arduino"> Arduino</a> </p> <a href="https://publications.waset.org/abstracts/173953/a-low-cost-experimental-approach-for-teaching-energy-quantization-determining-the-planck-constant-with-arduino-and-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19207</span> Nonlocal Phenomena in Quantum Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazim%20G.%20Atman">Kazim G. Atman</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Sirin"> Hüseyin Sirin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Einstein%E2%80%99s%20Coefficients" title="Einstein’s Coefficients">Einstein’s Coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Calculus" title=" Fractional Calculus"> Fractional Calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Quantum%20Mechanics" title=" Fractional Quantum Mechanics"> Fractional Quantum Mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlocal%20Theories" title=" Nonlocal Theories"> Nonlocal Theories</a> </p> <a href="https://publications.waset.org/abstracts/124566/nonlocal-phenomena-in-quantum-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19206</span> De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Orozovi%C4%87">K. Orozović</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Balon"> B. Balon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein's theory of relativity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=de%20Brogli%20wavelength" title="de Brogli wavelength">de Brogli wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20physics" title=" relativistic physics"> relativistic physics</a>, <a href="https://publications.waset.org/abstracts/search?q=rest%20energy" title=" rest energy"> rest energy</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title=" quantum physics"> quantum physics</a> </p> <a href="https://publications.waset.org/abstracts/135170/de-broglie-wavelength-defined-by-the-rest-energy-e0-and-its-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19205</span> Energy Audit: A Case Study of a Hot Rolling Mill in Steel Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Dhingra">Arvind Dhingra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejinder%20Singh%20Saggu"> Tejinder Singh Saggu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the energy demands rise and the pollution levels grow, it becomes imperative for us to save energy in all the fields in which it is used. The industrial sector is the major commercial energy consuming sector in India, where electrical energy is the most common and widely used type of energy. As the demand and price of energy are increasing day by day, therefore, the subject of energy conservation is a concern for most energy users particularly industry. Judicious use of energy becomes imperative for third world developing country being presence of energy crisis. This paper provides some measure for energy saving that can be commonly recommended for a rolling unit of steel industry. A case of hot rolling unit in JSL Stainless Ltd., Hisar for energy conservation is given. Overall improvement in energy consumption in light of the stated recommendation is illustrated along with the proposed utilization of the techniques and their applications. Energy conservation in conventional motor with replacement or use of star delta star converter, reduction in cable losses, replacement of filament of LED lamps, replacement of conventional transformer with cast resin dry type transformer and provision of energy management system for energy conservation and per unit production cost reduction are elaborated in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20audit" title="energy audit">energy audit</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation"> energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20motors" title=" energy efficient motors "> energy efficient motors </a> </p> <a href="https://publications.waset.org/abstracts/25172/energy-audit-a-case-study-of-a-hot-rolling-mill-in-steel-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19204</span> Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhu">Li Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Binghua%20Wang"> Binghua Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Sun"> Yong Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agritourism%20complex" title="agritourism complex">agritourism complex</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title=" energy planning"> energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20simulation" title=" energy demand simulation"> energy demand simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure%20model" title=" hierarchical structure model"> hierarchical structure model</a> </p> <a href="https://publications.waset.org/abstracts/103773/energy-planning-analysis-of-an-agritourism-complex-based-on-energy-demand-simulation-a-case-study-of-wuxi-yangshan-agritourism-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19203</span> A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeriya%20Tyo">Valeriya Tyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Serikbolat%20Yessengabulov"> Serikbolat Yessengabulov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regions with extreme climate conditions such as Astana city require energy saving measures to increase the energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of the key factors to be considered. The architectural form of a building has the impact on space heating and cooling energy use, however, the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20geometry" title="building geometry">building geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20gain" title=" heat gain"> heat gain</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loss" title=" heat loss"> heat loss</a> </p> <a href="https://publications.waset.org/abstracts/37694/a-comparative-case-study-of-the-impact-of-square-and-yurt-shape-buildings-on-energy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19202</span> Calculating All Dark Energy and Dark Matter Effects Through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Kinney">Sean Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifest. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, using the math of Dynamic Gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need of exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title=" dynamic gravity"> dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162095/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19201</span> Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Michael%20Kinney">Sean Michael Kinney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20gravity" title="dynamic gravity">dynamic gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a> </p> <a href="https://publications.waset.org/abstracts/162838/calculating-all-dark-energy-and-dark-matter-effects-through-dynamic-gravity-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19200</span> Agegraphic Dark Energy with GUP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Fazlollahi">H. R. Fazlollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dark Energy origin is unknown and so describing this mysterious component in large scale structure needs to manipulate our theories in general relativity. Although in most models, dark energy arises from extra terms through modifying Einstein-Hilbert action, maybe its origin traces back to fundamental aspects of ground energy of space-time given in quantum mechanics. Hence, diluting space-time in general relativity with quantum mechanics properties leads to the Karolyhazy relation corresponding energy density of quantum fluctuations of space-time. Through generalized uncertainty principle and an eye to Karolyhazy approach in this study we extend energy density of quantum fluctuations of space-time. Also, the application of this idea is considered in late time evolution and we have shown how extra term in generalized uncertainty principle plays as a plausible interaction term role in suggested model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20uncertainty%20principle" title="generalized uncertainty principle">generalized uncertainty principle</a>, <a href="https://publications.waset.org/abstracts/search?q=karolyhazy%20approach" title=" karolyhazy approach"> karolyhazy approach</a>, <a href="https://publications.waset.org/abstracts/search?q=agegraphic%20dark%20energy" title=" agegraphic dark energy"> agegraphic dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmology" title=" cosmology"> cosmology</a> </p> <a href="https://publications.waset.org/abstracts/165000/agegraphic-dark-energy-with-gup" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19199</span> Energy Initiatives for Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Beril%20Tugrul">A.Beril Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Selahattin%20Cimen"> Selahattin Cimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dependency of humanity on the energy is ever-increasing today and the energy policies are reaching undeniable and un-ignorable dimensions steering the political events as well. Therefore, energy has the highest priority for Turkey like any other country. In this study, the energy supply security for Turkey evaluated according to the strategic criteria of energy policy. Under these circumstances, different alternatives are described and assessed with in terms of the energy expansion of Turkey. With this study, different opportunities in the energy expansion of Turkey is clarified and emphasized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title="energy policy">energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20strategy" title=" energy strategy"> energy strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20projection" title=" future projection"> future projection</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey "> Turkey </a> </p> <a href="https://publications.waset.org/abstracts/2137/energy-initiatives-for-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19198</span> Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkarim%20Ait%20Brik">Abdelkarim Ait Brik</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Khoukh"> Abdelaziz Khoukh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Jammali"> Mustapha Jammali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Chaikhy"> Hamid Chaikhy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20audit" title="energy audit">energy audit</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20diagnosis" title=" energy diagnosis"> energy diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption" title=" consumption"> consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=lighting%20audit" title=" lighting audit"> lighting audit</a> </p> <a href="https://publications.waset.org/abstracts/77563/contribution-to-the-success-of-the-energy-audit-in-the-industrial-environment-a-case-study-about-audit-of-interior-lighting-for-an-industrial-site-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">695</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19197</span> Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwame%20B.%20O.%20Amoah">Kwame B. O. Amoah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20analysis" title=" building energy analysis"> building energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20retrofits" title=" energy retrofits"> energy retrofits</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-efficiency" title=" energy-efficiency"> energy-efficiency</a> </p> <a href="https://publications.waset.org/abstracts/156385/defining-a-pathway-to-zero-energy-building-a-case-study-on-retrofitting-an-old-office-building-into-a-net-zero-energy-building-for-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19196</span> Improving Energy Efficiency through Industrial Symbiosis: A Conceptual Framework of Energy Management in Energy-Intensive Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanjun%20Chen">Yuanjun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjiang%20Shi"> Yongjiang Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rising energy prices have drawn a focus to global energy issues, and the severe pollution that has resulted from energy-intensive industrial sectors has yet to be addressed. By combining Energy Efficiency with Industrial Symbiosis, the practices of efficient energy utilization and improvement can be not only enriched at the factory level but also upgraded into “within and/or between firm level”. The academic contribution of this paper provides a conceptual framework of energy management through IS. The management of waste energy within/between firms can contribute to the reduction of energy consumption and provides a solution to the environmental issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20symbiosis" title=" industrial symbiosis"> industrial symbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-intensive%20industry" title=" energy-intensive industry"> energy-intensive industry</a> </p> <a href="https://publications.waset.org/abstracts/64381/improving-energy-efficiency-through-industrial-symbiosis-a-conceptual-framework-of-energy-management-in-energy-intensive-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19195</span> Energy Box Programme in the Netherlands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20E.%20Weber">B. E. Weber</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Vrielink"> N. Vrielink</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Rietbergen"> M. G. Rietbergen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-saving%20behavior" title="energy-saving behavior">energy-saving behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20poverty" title=" energy poverty"> energy poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=poverty" title=" poverty"> poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20rental%20sector" title=" private rental sector"> private rental sector</a> </p> <a href="https://publications.waset.org/abstracts/159939/energy-box-programme-in-the-netherlands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19194</span> Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kehinde%20Damilola%20Ilesanmi">Kehinde Damilola Ilesanmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dev%20Datt%20Tewari"> Dev Datt Tewari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causality" title="causality">causality</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=hypothesis" title=" hypothesis"> hypothesis</a>, <a href="https://publications.waset.org/abstracts/search?q=sectoral%20output" title=" sectoral output"> sectoral output</a> </p> <a href="https://publications.waset.org/abstracts/36529/sectoral-energy-consumption-in-south-africa-and-its-implication-for-economic-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19193</span> Evaluating the Energy Efficiency Measures for an Educational Building in a Hot-Humid Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafia%20Akbar">Rafia Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper assesses different Energy Efficiency Measures (EEMs) and their impact on energy consumption and carbon footprint of an educational building located in Islamabad. A base case was first developed in accordance with typical construction practices in Pakistan. Several EEMs were separately applied to the baseline design to quantify their impact on operational energy reduction of the building and the resultant carbon emissions. Results indicate that by applying these measures, there is a potential to reduce energy consumption up to 49% as compared to the base case. It was observed that energy efficient ceiling fans and lights, insulation of the walls and roof and an efficient air conditioning system for the building can provide significant energy savings. The results further indicate that the initial investment cost of these energy efficiency measures can be recovered within 6 to 7 years of building’s service life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20savings" title="CO2 savings">CO2 savings</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20building" title=" educational building"> educational building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20measures" title=" energy efficiency measures"> energy efficiency measures</a>, <a href="https://publications.waset.org/abstracts/search?q=payback%20period" title=" payback period"> payback period</a> </p> <a href="https://publications.waset.org/abstracts/125250/evaluating-the-energy-efficiency-measures-for-an-educational-building-in-a-hot-humid-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19192</span> SWOT Analysis of Renewable Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahad%C4%B1r%20Ayd%C4%B1n">Bahadır Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being one of the most important elements of social evolution, energy has a vital role for a sustainable economy and development. Energy has great importance to level up the welfare. By this importance, countries having rich resources can apply energy as an political instrument. While needs of energy is increasing, sources to respond this need is very limited. Therefore, countries seek for alternative resources to meet their needs. Renewable energy sources have firstly taken into consideration. Being clean and belonging to countries own sources, renewable energy resources have been widely applied during the last decades. However, renewable energy cannot meet all the expectation of energy needs. In this respect, energy efficiency can be seen as an alternative. Energy efficiency can minimize energy consumption without degrading standard of living, lessening quality of products and without increasing energy bills. In this article, energy resources, SWOT analysis of renewable sources, and energy efficiency topics are mainly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20regulations" title=" energy regulations"> energy regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20relations" title=" international relations"> international relations</a> </p> <a href="https://publications.waset.org/abstracts/4120/swot-analysis-of-renewable-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19191</span> Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusefzad">M. Yusefzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power" title="power">power</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20energy%20conservation" title=" law of energy conservation"> law of energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20wave" title=" electromagnetic wave"> electromagnetic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%E2%80%99s%20equations" title=" Maxwell’s equations"> Maxwell’s equations</a> </p> <a href="https://publications.waset.org/abstracts/88981/investigating-the-invalidity-of-the-law-of-energy-conservation-based-on-waves-interference-phenomenon-inside-a-ringed-waveguide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19190</span> Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorena%20Polovina">Lorena Polovina</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddy%20%20Kennedy-Parrott"> Maddy Kennedy-Parrott</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fakoor"> Mohammad Fakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title="embodied carbon">embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modeling" title=" energy modeling"> energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20step%20code" title=" energy step code"> energy step code</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a> </p> <a href="https://publications.waset.org/abstracts/130565/comparing-the-embodied-carbon-impacts-of-a-passive-house-with-the-bc-energy-step-code-using-life-cycle-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19189</span> Non-Singular Gravitational Collapse of a Dust Cloud in Einstein-Cartan Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hadi%20Ziaie">Amir Hadi Ziaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Hashemi"> Mostafa Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Jalalzadeh"> Shahram Jalalzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is now known that the end state of the collapse process of a dense star under its own gravity is the formation of a spacetime singularity. This is the spacetime event where the energy density and spacetime curvature diverge, and the classical general relativity breaks down. As we know, a realistic star is composed of fermions so that their spin effects could alter the final fate of the collapse scenario. The underlying theory within which the inclusion of spin effects can be worked out is the Einstein-Cartan theory. In this theory, the spacetime torsion which is defined as a geometrical quantity, is related to an intrinsic angular momentum of fermions (spin). In this work, we study the collapse process of a homogeneous spin fluid in such a framework and show that taking into account the spin effects of the collapsing cloud could prevent the formation of spacetime singularity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravitational%20collapse" title="gravitational collapse">gravitational collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=einstein-cartan%20theory" title=" einstein-cartan theory"> einstein-cartan theory</a>, <a href="https://publications.waset.org/abstracts/search?q=spacetime%20singularity" title=" spacetime singularity"> spacetime singularity</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20hole%20physics" title=" black hole physics"> black hole physics</a> </p> <a href="https://publications.waset.org/abstracts/50866/non-singular-gravitational-collapse-of-a-dust-cloud-in-einstein-cartan-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19188</span> A Case Study on Smart Energy City of the UK: Based on Business Model Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minzheong%20Song">Minzheong Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title="smart city">smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20energy" title=" smart energy"> smart energy</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20model" title=" business model"> business model</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20model%20innovation%20%28BMI%29" title=" business model innovation (BMI)"> business model innovation (BMI)</a> </p> <a href="https://publications.waset.org/abstracts/110461/a-case-study-on-smart-energy-city-of-the-uk-based-on-business-model-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19187</span> Development of Mobile Application for Energy Consumption Assessment of University Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MinHee%20Chung">MinHee Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=BoYeob%20Lee"> BoYeob Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Kim"> Yuri Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eon%20Ku%20Rhee"> Eon Ku Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With an increase in the interest in the energy conservation for buildings, and the emergence of many methods and easily-understandable approaches to it, energy conservation has now become the public’s main interest, as compared to in the past when it was only focused upon by experts. This study aims to help the occupants of a building to understand the energy efficiency and consumption of the building by providing them information on the building’s energy efficiency through a mobile application. The energy performance assessment models are proposed on the basis of the actual energy usage and building characteristics such as the architectural scheme and the building equipment. The university buildings in Korea are used as a case to demonstrate the mobile application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20performance%20assessment" title=" energy performance assessment"> energy performance assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20buildings" title=" university buildings "> university buildings </a> </p> <a href="https://publications.waset.org/abstracts/1751/development-of-mobile-application-for-energy-consumption-assessment-of-university-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19186</span> Energy Efficiency Analysis of Crossover Technologies in Industrial Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Schellong">W. Schellong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crossover%20technologies" title="crossover technologies">crossover technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20management" title=" data management"> data management</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20control" title=" process control"> process control</a> </p> <a href="https://publications.waset.org/abstracts/78480/energy-efficiency-analysis-of-crossover-technologies-in-industrial-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19185</span> Systematic Approach for Energy-Supply-Orientated Production Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Keller">F. Keller</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Reinhart"> G. Reinhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficient and economic allocation of resources is one main goal in the field of production planning and control. Nowadays, a new variable gains in importance throughout the planning process: Energy. Energy-efficiency has already been widely discussed in literature, but with a strong focus on reducing the overall amount of energy used in production. This paper provides a brief systematic approach, how energy-supply-orientation can be used for an energy-cost-efficient production planning and thus combining the idea of energy-efficiency and energy-flexibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title="production planning">production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20control" title=" production control"> production control</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-efficiency" title=" energy-efficiency"> energy-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-flexibility" title=" energy-flexibility"> energy-flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-supply" title=" energy-supply"> energy-supply</a> </p> <a href="https://publications.waset.org/abstracts/26038/systematic-approach-for-energy-supply-orientated-production-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">647</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19184</span> Energy Efficiency Retrofitting of Residential Buildings Case Study: Multi-Family Apartment Building in Tripoli, Lebanon </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yathreb%20Sabsaby">Yathreb Sabsaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy efficiency retrofitting of existing buildings was long ignored by public authorities who favored energy efficiency policies in new buildings, which are easier to implement. Indeed, retrofitting is more complex and difficult to organize because of the extreme diversity in existing buildings, administrative situations and occupation. Energy efficiency retrofitting of existing buildings has now become indispensable in all economies—even emerging countries—given the constraints imposed by energy security and climate change, and because it represents considerable potential energy savings. Addressing energy efficiency in the existing building stock has been acknowledged as one of the most critical yet challenging aspects of reducing our environmental footprint on the ecosystem. Tripoli, Lebanon chosen as case study area is a typical Mediterranean metropolis in the North Lebanon, where multifamily residential buildings are all around the city. This generally implies that the density of energy demand is extremely high, even the renewable energy facilities are involved, they can just play as a minor energy provider at the current technology level in the single family house. It seems only the low energy design for buildings can be made possible, not the zero energy certainly in developing country. This study reviews the latest research and experience and provides recommendations for deep energy retrofits that aim to save more than 50% of the energy used in a typical Tripoli apartment building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-efficiency" title="energy-efficiency">energy-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=existing%20building" title=" existing building"> existing building</a>, <a href="https://publications.waset.org/abstracts/search?q=multifamily%20residential%20building" title=" multifamily residential building"> multifamily residential building</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a> </p> <a href="https://publications.waset.org/abstracts/24113/energy-efficiency-retrofitting-of-residential-buildings-case-study-multi-family-apartment-building-in-tripoli-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19183</span> Metaphysics of the Unified Field of the Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kaware">Santosh Kaware</a>, <a href="https://publications.waset.org/abstracts/search?q=Dnyandeo%20Patil"> Dnyandeo Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Moninder%20Modgil"> Moninder Modgil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Bhoir"> Hemant Bhoir</a>, <a href="https://publications.waset.org/abstracts/search?q=Debendra%20Behera"> Debendra Behera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Unified Field Theory has been an area of intensive research since many decades. This paper focuses on philosophy and metaphysics of unified field theory at Planck scale - and its relationship with super string theory and Quantum Vacuum Dynamic Physics. We examined the epistemology of questions such as - (1) what is the Unified Field of universe? (2) can it actually - (a) permeate the complete universe - or (b) be localized in bound regions of the universe - or, (c) extend into the extra dimensions? - -or (d) live only in extra dimensions? (3) What should be the emergent ontological properties of Unified field? (4) How the universe is manifesting through its Quantum Vacuum energies? (5) How is the space time metric coupled to the Unified field? We present a number of ansatz - which we outline below. It is proposed that the unified field possesses consciousness as well as a memory - a recording of past history - analogous to ‘Consistent Histories’ interpretation of quantum mechanics. We proposed Planck scale geometry of Unified Field with circle like topology and having 32 energy points on its periphery which are the connected to each other by 10 dimensional meta-strings which are sources for manifestation of different fundamentals forces and particles of universe through its Quantum Vacuum energies. It is also proposed that the sub energy levels of ‘Conscious Unified Field’ are used for the process of creation, preservation and rejuvenation of the universe over a period of time by means of negentropy. These epochs can be for the complete universe, or for localized regions such as galaxies or cluster of galaxies. It is proposed that Unified field operates through geometric patterns of its Quantum Vacuum energies - manifesting as various elementary particles by giving spins to zero point energy elements. Epistemological relationship between unified field theory and super-string theories is examined. Properties of ‘consciousness’ and 'memory' cascades from universe, into macroscopic objects - and further onto the elementary particles - via a fractal pattern. Other properties of fundamental particles - such as mass, charge, spin, iso-spin also spill out of such a cascade. The manifestations of the unified field can reach into the parallel universes or the ‘multi-verse’ and essentially have an existence independent of the space-time. It is proposed that mass, length, time scales of the unified theory are less than even the Planck scale - and can be called at a level which we call that of 'Super Quantum Gravity (SQG)'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20string%20theory" title="super string theory">super string theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Planck%20scale%20geometry" title=" Planck scale geometry"> Planck scale geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=negentropy" title=" negentropy"> negentropy</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20quantum%20gravity" title=" super quantum gravity"> super quantum gravity</a> </p> <a href="https://publications.waset.org/abstracts/53809/metaphysics-of-the-unified-field-of-the-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19182</span> Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Barcelos%20Cordeiro">Juliana Barcelos Cordeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Khashayar%20Mahani"> Khashayar Mahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Farbod%20Farzan"> Farbod Farzan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20A.%20Jafari"> Mohsen A. Jafari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption%20forecasting" title="energy consumption forecasting">energy consumption forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20disaggregation" title=" load disaggregation"> load disaggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition%20approach" title=" pattern recognition approach"> pattern recognition approach</a> </p> <a href="https://publications.waset.org/abstracts/44047/disaggregating-and-forecasting-the-total-energy-consumption-of-a-building-a-case-study-of-a-high-cooling-demand-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=640">640</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=641">641</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>