CINXE.COM
Search results for: laminar separation bubble.
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: laminar separation bubble.</title> <meta name="description" content="Search results for: laminar separation bubble."> <meta name="keywords" content="laminar separation bubble."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="laminar separation bubble." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="laminar separation bubble."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 574</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: laminar separation bubble.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> DNS of a Laminar Separation Bubble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20K.%20Singh">N. K. Singh</a>, <a href="https://publications.waset.org/search?q=S.%20Sarkar"> S. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Direct numerical simulation (DNS) is used to study the evolution of a boundary layer that was laminar initially followed by separation and then reattachment owing to generation of turbulence. This creates a closed region of recirculation, known as the laminar-separation bubble. The present simulation emulates the flow environment encountered in a modern LP turbine blade, where a laminar separation bubble may occur on the suction surface. The unsteady, incompressible three-dimensional (3-D) Navier-Stokes (NS) equations have been solved over a flat plate in the Cartesian coordinates. The adverse pressure gradient, which causes the flow to separate, is created by a boundary condition. The separated shear layer undergoes transition through appearance of ╬ø vortices, stretching of these create longitudinal streaks. Breakdown of the streaks into small and irregular structures makes the flow turbulent downstream.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adverse%20pressure%20gradient" title="Adverse pressure gradient">Adverse pressure gradient</a>, <a href="https://publications.waset.org/search?q=direct%20numerical%20simulation" title=" direct numerical simulation"> direct numerical simulation</a>, <a href="https://publications.waset.org/search?q=laminar%20separation%20bubble." title=" laminar separation bubble."> laminar separation bubble.</a> </p> <a href="https://publications.waset.org/11403/dns-of-a-laminar-separation-bubble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11403/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11403/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11403/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11403/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11403/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11403/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11403/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11403/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11403/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11403/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2603</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> CFD Simulation of Condensing Vapor Bubble using VOF Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seong-Su%20Jeon">Seong-Su Jeon</a>, <a href="https://publications.waset.org/search?q=Seong-Jin%20Kim"> Seong-Jin Kim</a>, <a href="https://publications.waset.org/search?q=Goon-Cherl%20Park"> Goon-Cherl Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble%20condensation" title="Bubble condensation">Bubble condensation</a>, <a href="https://publications.waset.org/search?q=CFD%20modeling" title=" CFD modeling"> CFD modeling</a>, <a href="https://publications.waset.org/search?q=Subcooled%20boiling%20flow" title=" Subcooled boiling flow"> Subcooled boiling flow</a>, <a href="https://publications.waset.org/search?q=VOF%20model." title=" VOF model."> VOF model.</a> </p> <a href="https://publications.waset.org/1307/cfd-simulation-of-condensing-vapor-bubble-using-vof-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1307/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1307/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1307/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1307/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1307/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1307/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1307/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1307/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1307/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1307/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6747</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yongseok%20Kwon">Yongseok Kwon</a>, <a href="https://publications.waset.org/search?q=Woowon%20Jeong"> Woowon Jeong</a>, <a href="https://publications.waset.org/search?q=Eunjin%20Cho"> Eunjin Cho</a>, <a href="https://publications.waset.org/search?q=Sangkug%20Chung"> Sangkug Chung</a>, <a href="https://publications.waset.org/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Steady streaming flow fields induced by a 500 mm bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the sagittal plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytical solution, and they also showed a reasonable agreement.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Oscillating%20bubble" title="Oscillating bubble">Oscillating bubble</a>, <a href="https://publications.waset.org/search?q=Particle-Image-Velocimetry%20microstreaming." title=" Particle-Image-Velocimetry microstreaming. "> Particle-Image-Velocimetry microstreaming. </a> </p> <a href="https://publications.waset.org/9996686/measurement-of-steady-streaming-from-an-oscillating-bubble-using-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996686/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996686/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996686/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996686/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996686/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996686/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996686/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996686/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996686/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996686/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1818</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder with a Deposit Rib</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Mehran">S. Mehran</a>, <a href="https://publications.waset.org/search?q=S.%20Rouhi"> S. Rouhi</a>, <a href="https://publications.waset.org/search?q=F.Rouzbahani"> F.Rouzbahani</a>, <a href="https://publications.waset.org/search?q=E.%20Haghgoo"> E. Haghgoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper dynamics of a vapour bubble generated due to a local energy input inside a vertical rigid cylinder and in the absence of buoyancy forces is investigated. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. The Boundary Integral Equation Method is employed for numerical simulation of the problem. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. Results also show that existence of a deposit rib inside the vertical rigid cylinder slightly increases the life time of the bubble. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vapour%20bubble" title="Vapour bubble">Vapour bubble</a>, <a href="https://publications.waset.org/search?q=Vertical%20rigid%20cylinder" title=" Vertical rigid cylinder"> Vertical rigid cylinder</a>, <a href="https://publications.waset.org/search?q=Boundaryelement%20method." title=" Boundaryelement method."> Boundaryelement method.</a> </p> <a href="https://publications.waset.org/6864/dynamics-of-a-vapour-bubble-inside-a-vertical-rigid-cylinder-with-a-deposit-rib" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6864/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6864/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6864/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6864/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6864/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6864/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6864/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6864/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6864/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6864/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1986</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Study of the Particle Size Effect on Bubble Rise Velocities in a Three-Phase Bubble Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Weiling%20Li">Weiling Li</a>, <a href="https://publications.waset.org/search?q=Wenqi%20Zhong"> Wenqi Zhong</a>, <a href="https://publications.waset.org/search?q=Baosheng%20Jin"> Baosheng Jin</a>, <a href="https://publications.waset.org/search?q=Rui%20Xiao"> Rui Xiao</a>, <a href="https://publications.waset.org/search?q=Yong%20Lu"> Yong Lu</a>, <a href="https://publications.waset.org/search?q=Tingting%20He"> Tingting He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Experiments were performed in a three-phase bubble column to study variations of bubble rise velocities. The dynamic gas disengagement (DGD) technique and the fast response pressure transducers were utilized to investigate the bubble rise in the column. The superficial gas velocity of large bubbles and small bubbles, the rise velocities of larger and small bubble fractions were studied considering the effect of particle sizes. The results show that the superficial gas velocity associated with large bubbles linearly increase as superficial gas velocity increasing. Particle size has little effect on the both large and small bubble superficial gas velocities. The rise velocities of larger bubble fractions are larger than that of small bubble fractions, and it had different tendency at low and high superficial gas velocities when changing the particle sizes. The rise velocities of small bubble fractions increased and then had a decrease tendency when the particle size became greater.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble%20rise%20velocity" title="Bubble rise velocity">Bubble rise velocity</a>, <a href="https://publications.waset.org/search?q=gas%E2%80%93liquid%E2%80%93solid" title=" gas–liquid–solid"> gas–liquid–solid</a>, <a href="https://publications.waset.org/search?q=particle%20size%20effect" title=" particle size effect"> particle size effect</a>, <a href="https://publications.waset.org/search?q=three%E2%80%93phase%20bubble%20column." title=" three–phase bubble column."> three–phase bubble column.</a> </p> <a href="https://publications.waset.org/9996735/study-of-the-particle-size-effect-on-bubble-rise-velocities-in-a-three-phase-bubble-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996735/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996735/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996735/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996735/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996735/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996735/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996735/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996735/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996735/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996735/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3403</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Bubble Growth in a Two Phase Upward Flow in a Miniature Tube </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20S.%20Hassani">R. S. Hassani</a>, <a href="https://publications.waset.org/search?q=S.%20Chikh"> S. Chikh</a>, <a href="https://publications.waset.org/search?q=L.%20Tadrist"> L. Tadrist</a>, <a href="https://publications.waset.org/search?q=S.%20Radev"> S. Radev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Two%20phase%20flow" title="Two phase flow">Two phase flow</a>, <a href="https://publications.waset.org/search?q=bubble%20growth" title=" bubble growth"> bubble growth</a>, <a href="https://publications.waset.org/search?q=minichannel" title=" minichannel"> minichannel</a>, <a href="https://publications.waset.org/search?q=generation%20frequency." title=" generation frequency."> generation frequency.</a> </p> <a href="https://publications.waset.org/9998138/bubble-growth-in-a-two-phase-upward-flow-in-a-miniature-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998138/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998138/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998138/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998138/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998138/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998138/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998138/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998138/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998138/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998138/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1806</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.T.%20Shervani-Tabar">M.T. Shervani-Tabar</a>, <a href="https://publications.waset.org/search?q=M.%20Rezaee"> M. Rezaee</a>, <a href="https://publications.waset.org/search?q=E.%20Madadi%20Kandjani"> E. Madadi Kandjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Dynamics of a vapour bubble generated due to a high local energy input near a circular thin bronze plate in the absence of the buoyancy forces is numerically investigated in this paper. The bubble is generated near a thin bronze plate and during the growth and collapse of the bubble, it deforms the nearby plate. The Boundary Integral Equation Method is employed for numerical simulation of the problem. The fluid is assumed to be incompressible, irrotational and inviscid and the surface tension on the bubble boundary is neglected. Therefore the fluid flow around the vapour bubble can be assumed as a potential flow. Furthermore, the thin bronze plate is assumed to have perfectly plastic behaviour. Results show that the displacement of the circular thin bronze plate has considerable effect on the dynamics of its nearby vapour bubble. It is found that by decreasing the thickness of the thin bronze plate, the growth and collapse rate of the bubble becomes higher and consequently the lifetime of the bubble becomes shorter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vapour%20Bubble" title="Vapour Bubble">Vapour Bubble</a>, <a href="https://publications.waset.org/search?q=Thin%20Bronze%20Plate" title=" Thin Bronze Plate"> Thin Bronze Plate</a>, <a href="https://publications.waset.org/search?q=Boundary%20Integral%0D%0AEquation%20Method." title=" Boundary Integral Equation Method."> Boundary Integral Equation Method.</a> </p> <a href="https://publications.waset.org/8731/perfect-plastic-deformation-of-a-circular-thin-bronze-plate-due-to-the-growth-and-collapse-of-a-vapour-bubble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8731/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8731/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8731/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8731/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8731/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8731/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8731/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8731/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8731/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8731/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1526</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Hydrodynamic Force on Acoustically Driven Bubble in Sulfuric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zeinab%20Galavani">Zeinab Galavani</a>, <a href="https://publications.waset.org/search?q=Reza%20Rezaei-Nasirabad"> Reza Rezaei-Nasirabad</a>, <a href="https://publications.waset.org/search?q=Rasoul%20Sadighi-Bonabi"> Rasoul Sadighi-Bonabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a force balanced translational-radial dynamics, phase space of the moving single bubble sonoluminescence (m- SBSL) in 85% wt sulfuric acid has been numerically calculated. This phase space is compared with that of single bubble sonoluminescence (SBSL) in pure water which has been calculated by using the mere radial dynamics. It is shown that in 85% wt sulfuric acid, in a general agreement with experiment, the bubble-s positional instability threshold lays under the shape instability threshold. At the onset of spatial instability of moving sonoluminescing (SL) bubble in 85% wt sulfuric acid, temporal effects of the hydrodynamic force on the bubble translational-radial dynamics have been investigated. The appearance of non-zero history force on the moving SL bubble is because of proper condition which was produced by high viscosity of acid. Around the moving bubble collapse due to the rapid contraction of the bubble wall, the inertial based added mass force overcomes the viscous based history force and induces acceleration on the bubble translational motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bjerknes%20force" title="Bjerknes force">Bjerknes force</a>, <a href="https://publications.waset.org/search?q=History%20force" title=" History force"> History force</a>, <a href="https://publications.waset.org/search?q=Reynolds%0Anumber" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=Sonoluminescence." title=" Sonoluminescence."> Sonoluminescence.</a> </p> <a href="https://publications.waset.org/6260/hydrodynamic-force-on-acoustically-driven-bubble-in-sulfuric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6260/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6260/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6260/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6260/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6260/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6260/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6260/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6260/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6260/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6260/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1543</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mehdi%20Habibnia%20Rami">Mehdi Habibnia Rami</a>, <a href="https://publications.waset.org/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/search?q=Mohammad%20H.%20Sabour"> Mohammad H. Sabour</a>, <a href="https://publications.waset.org/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/search?q=Hossein%20Hassannia"> Hossein Hassannia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=T106A%20turbine%20cascade" title="T106A turbine cascade">T106A turbine cascade</a>, <a href="https://publications.waset.org/search?q=shear-layer%20separation" title=" shear-layer separation"> shear-layer separation</a>, <a href="https://publications.waset.org/search?q=steady%20and%20unsteady%20conditions" title=" steady and unsteady conditions"> steady and unsteady conditions</a>, <a href="https://publications.waset.org/search?q=turbulence%20models" title=" turbulence models"> turbulence models</a>, <a href="https://publications.waset.org/search?q=OpenFOAM." title=" OpenFOAM."> OpenFOAM.</a> </p> <a href="https://publications.waset.org/10010162/shear-layer-investigation-through-a-high-load-cascade-in-low-pressure-gas-turbine-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010162/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010162/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010162/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010162/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010162/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010162/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010162/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010162/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010162/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010162/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">736</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Role of Acoustic Pressure on the Dynamics of Moving Single-Bubble Sonoluminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reza%20Rezaei-Nasirabad">Reza Rezaei-Nasirabad</a>, <a href="https://publications.waset.org/search?q=Zeinab%20Galavani"> Zeinab Galavani</a>, <a href="https://publications.waset.org/search?q=Rasoul%20Sadighi-Bonabi"> Rasoul Sadighi-Bonabi</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Asgarian"> Mohammad Asgarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Role of acoustic driving pressure on the translational-radial dynamics of a moving single bubble sonoluminescence (m-SBSL) has been numerically investigated. The results indicate that increase in the amplitude of the driving pressure leads to increase in the bubble peak temperature. The length and the shape of the trajectory of the bubble depends on the acoustic pressure and because of the spatially dependence of the radial dynamics of the moving bubble, its peak temperature varies during the acoustical pulses. The results are in good agreement with the experimental reports on m-SBSL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble%20dynamics" title="Bubble dynamics">Bubble dynamics</a>, <a href="https://publications.waset.org/search?q=Equation%20of%20the%20gas%20state" title=" Equation of the gas state"> Equation of the gas state</a>, <a href="https://publications.waset.org/search?q=Hydrodynamic%20force" title=" Hydrodynamic force"> Hydrodynamic force</a>, <a href="https://publications.waset.org/search?q=Moving%20sonoluminescence." title=" Moving sonoluminescence."> Moving sonoluminescence.</a> </p> <a href="https://publications.waset.org/746/role-of-acoustic-pressure-on-the-dynamics-of-moving-single-bubble-sonoluminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/746/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/746/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/746/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/746/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/746/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/746/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/746/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/746/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/746/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/746/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1785</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder in the Absence of Buoyancy Forces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Mehran">S. Mehran</a>, <a href="https://publications.waset.org/search?q=S.%20Rouhi"> S. Rouhi</a>, <a href="https://publications.waset.org/search?q=F.Rouzbahani"> F.Rouzbahani</a>, <a href="https://publications.waset.org/search?q=E.%20Haghgoo"> E. Haghgoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, growth and collapse of a vapour bubble generated due to a local energy input inside a rigid cylinder and in the absence of buoyancy forces is investigated using Boundary Integral Equation Method and Finite Difference Method .The fluid is treated as potential flow and Boundary Integral Equation Method is used to solve Laplace-s equation for velocity potential. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vapour%20bubble" title="Vapour bubble">Vapour bubble</a>, <a href="https://publications.waset.org/search?q=Vertical%20rigid%20cylinder" title=" Vertical rigid cylinder"> Vertical rigid cylinder</a>, <a href="https://publications.waset.org/search?q=Boundaryelement%20method" title=" Boundaryelement method"> Boundaryelement method</a>, <a href="https://publications.waset.org/search?q=Finite%20difference%20method" title=" Finite difference method"> Finite difference method</a>, <a href="https://publications.waset.org/search?q=Buoyancy%20forces." title=" Buoyancy forces."> Buoyancy forces.</a> </p> <a href="https://publications.waset.org/2236/dynamics-of-a-vapour-bubble-inside-a-vertical-rigid-cylinder-in-the-absence-of-buoyancy-forces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2236/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2236/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2236/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2236/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2236/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2236/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2236/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2236/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2236/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2236/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1576</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Investigation of Bubble Growth during Nucleate Boiling Using CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Jagannath">K. Jagannath</a>, <a href="https://publications.waset.org/search?q=Akhilesh%20Kotian"> Akhilesh Kotian</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Sharma"> S. S. Sharma</a>, <a href="https://publications.waset.org/search?q=Achutha%20Kini%20U."> Achutha Kini U.</a>, <a href="https://publications.waset.org/search?q=P.%20R.%20Prabhu"> P. R. Prabhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained are compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble%20growth" title="Bubble growth">Bubble growth</a>, <a href="https://publications.waset.org/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=detachment%20diameter" title=" detachment diameter"> detachment diameter</a>, <a href="https://publications.waset.org/search?q=terminal%20velocity." title=" terminal velocity."> terminal velocity.</a> </p> <a href="https://publications.waset.org/10001785/investigation-of-bubble-growth-during-nucleate-boiling-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001785/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001785/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001785/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001785/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001785/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001785/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001785/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001785/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001785/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001785/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2117</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Investigation of Droplet Size Produced in Two-Phase Gravity Separators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kul%20Pun">Kul Pun</a>, <a href="https://publications.waset.org/search?q=F.%20A.%20Hamad"> F. A. Hamad</a>, <a href="https://publications.waset.org/search?q=T.%20Ahmed"> T. Ahmed</a>, <a href="https://publications.waset.org/search?q=J.%20O.%20Ugwu"> J. O. Ugwu</a>, <a href="https://publications.waset.org/search?q=J.%20Eyers"> J. Eyers</a>, <a href="https://publications.waset.org/search?q=G.%20Lawson"> G. Lawson</a>, <a href="https://publications.waset.org/search?q=P.%20A.%20Russell"> P. A. Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Two-phase%20separator" title="Two-phase separator">Two-phase separator</a>, <a href="https://publications.waset.org/search?q=average%20bubble%20droplet" title=" average bubble droplet"> average bubble droplet</a>, <a href="https://publications.waset.org/search?q=bubble%20size%20distribution" title=" bubble size distribution"> bubble size distribution</a>, <a href="https://publications.waset.org/search?q=liquid-liquid%20phase." title=" liquid-liquid phase."> liquid-liquid phase.</a> </p> <a href="https://publications.waset.org/10012910/investigation-of-droplet-size-produced-in-two-phase-gravity-separators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012910/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012910/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012910/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012910/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012910/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012910/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012910/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012910/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012910/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012910/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">561</span> Vapor Bubble Dynamics in Upward Subcooled Flow Boiling During Void Evolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rouhollah%20Ahmadi">Rouhollah Ahmadi</a>, <a href="https://publications.waset.org/search?q=Tatsuya%20Ueno"> Tatsuya Ueno</a>, <a href="https://publications.waset.org/search?q=Tomio%20Okawa"> Tomio Okawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bubble generation was observed using a high-speed camera in subcooled flow boiling at low void fraction. Constant heat flux was applied on one side of an upward rectangular channel to make heated test channel. Water as a working fluid from high subcooling to near saturation temperature was injected step by step to investigate bubble behavior during void development. Experiments were performed in two different pressures condition close to 2bar and 4bar. It was observed that in high subcooling when boiling was commenced, bubble after nucleation departed its origin and slid beside heated surface. In an observation window mean release frequency of bubble fb,mean, nucleation site Ns and mean bubble volume Vb,mean in each step of experiments were measured to investigate wall vaporization rate. It was found that in proximity of PNVG vaporization rate was increased significantly in compare with condensation rate which remained in low value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Subcooled%20flow%20boiling" title="Subcooled flow boiling">Subcooled flow boiling</a>, <a href="https://publications.waset.org/search?q=Bubble%20dynamics" title=" Bubble dynamics"> Bubble dynamics</a>, <a href="https://publications.waset.org/search?q=Void%0Afraction" title=" Void fraction"> Void fraction</a>, <a href="https://publications.waset.org/search?q=Sliding%20bubble." title=" Sliding bubble."> Sliding bubble.</a> </p> <a href="https://publications.waset.org/12496/vapor-bubble-dynamics-in-upward-subcooled-flow-boiling-during-void-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12496/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12496/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12496/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12496/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12496/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12496/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12496/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12496/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12496/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12496/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2043</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">560</span> Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hussein%20Togun">Hussein Togun</a>, <a href="https://publications.waset.org/search?q=Tuqa%20Abdulrazzaq"> Tuqa Abdulrazzaq</a>, <a href="https://publications.waset.org/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/search?q=A.%20Badarudin"> A. Badarudin</a>, <a href="https://publications.waset.org/search?q=M.%20K.%20A.%20Ariffin"> M. K. A. Ariffin</a>, <a href="https://publications.waset.org/search?q=M.%20N.%20M.%20Zubir"> M. N. M. Zubir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectively, the range of Reynolds number varied from 75 to 225, constant heat flux subjected on downstream of wall was 2000W/m<sup>2</sup>, and length of obstacle was 1.5, 3, and 4.5mm with width 1.5mm. The separation length noticed increase with increase Reynolds number and height of obstacle. The result shows increase of heat transfer coefficient for backward facing step with obstacle in compared to those without obstacle. The maximum enhancement of heat transfer observed at 4.5mm of height obstacle due to increase recirculation flow after the obstacle in addition that at backward. Streamline of velocity showing the increase of recirculation region with used obstacle in compared without obstacle and highest recirculation region observed at obstacle height 4.5mm. The amount of enhancement heat transfer was varied between 3-5% compared to backward without obstacle.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Separation%20flow" title="Separation flow">Separation flow</a>, <a href="https://publications.waset.org/search?q=Backward%20facing%20step" title=" Backward facing step"> Backward facing step</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer" title=" Heat transfer"> Heat transfer</a>, <a href="https://publications.waset.org/search?q=Laminar%20flow." title=" Laminar flow."> Laminar flow.</a> </p> <a href="https://publications.waset.org/9997529/numerical-study-of-heat-transfer-and-laminar-flow-over-a-backward-facing-step-with-and-without-obstacle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997529/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997529/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997529/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997529/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997529/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997529/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997529/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997529/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997529/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997529/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4306</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">559</span> Simulations of Cryogenic Cavitation of Low Temperature Fluids with Thermodynamics Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Alhelfi">A. Alhelfi</a>, <a href="https://publications.waset.org/search?q=B.%20Sunden"> B. Sunden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Cavitation in cryogenic liquids is widely present in contemporary science. In the current study, we re-examine a previously validated acoustic cavitation model which was developed for a gas bubble in liquid water. Furthermore, simulations of cryogenic fluids including the thermal effect, the effect of acoustic pressure amplitude and the frequency of sound field on the bubble dynamics are presented. A gas bubble (Helium) in liquids Nitrogen, Oxygen and Hydrogen in an acoustic field at ambient pressure and low temperature is investigated numerically. The results reveal that the oscillation of the bubble in liquid Hydrogen fluctuates more than in liquids Oxygen and Nitrogen. The oscillation of the bubble in liquids Oxygen and Nitrogen is approximately similar.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cryogenic%20liquids" title="Cryogenic liquids">Cryogenic liquids</a>, <a href="https://publications.waset.org/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/search?q=rocket%20engineering" title=" rocket engineering"> rocket engineering</a>, <a href="https://publications.waset.org/search?q=ultrasound." title=" ultrasound."> ultrasound.</a> </p> <a href="https://publications.waset.org/10000233/simulations-of-cryogenic-cavitation-of-low-temperature-fluids-with-thermodynamics-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000233/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000233/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000233/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000233/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000233/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000233/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000233/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000233/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000233/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000233/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2741</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">558</span> Design and Fabrication of Micro-Bubble Oxygenator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chiang-Ho%20Cheng">Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/search?q=An-Shik%20Yang"> An-Shik Yang</a>, <a href="https://publications.waset.org/search?q=Hong-Yih%20Cheng"> Hong-Yih Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Micro-bubble" title="Micro-bubble">Micro-bubble</a>, <a href="https://publications.waset.org/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/search?q=oxygenator" title=" oxygenator"> oxygenator</a>, <a href="https://publications.waset.org/search?q=piezoelectric." title=" piezoelectric. "> piezoelectric. </a> </p> <a href="https://publications.waset.org/10007551/design-and-fabrication-of-micro-bubble-oxygenator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007551/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007551/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007551/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007551/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007551/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007551/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007551/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007551/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007551/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007551/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1354</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> Separation Characteristics of the Hollow Fiber Membrane Module Using Water Mixed with Small Sized Bubbles Composed of Synthesized Exhalations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pil%20Woo%20Heo">Pil Woo Heo</a>, <a href="https://publications.waset.org/search?q=Hyunse%20Kim"> Hyunse Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Fish can breathe freely under water using dissolved oxygen and survive for a long time without going out of the water. A human can also survive under water using dissolved oxygens, if properly used. He needs more dissolved oxygens than the fish, so efficient separation device is required. Since the amount of oxygen contained in water is weak, a person needs a lot of surface area to breathe in water, which leads to a large-sized device. It can be applied to various fields if it is developed as a device which is advantageous to carry in small size. In this paper, we have carried out a study on the effective use of exhalations and proposed the separation characteristics of the gas containing dissolved oxygen in the state of mixed gas considering the components of exhalation. The system was configured to have a fine bubble when the gas mixture injected into the front end of the separator. While the fluid containing the fine bubbles was supplied to the separator, the dissolved gas contained in water was separated using a vacuum pump. The gas separation amount of the separating apparatus with respect to the supplied mixed gas was measured. The amounts of separation of dissolved gas were increased as the amounts of mixed gas supplied were increased.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Small%20sized%20bubbles" title="Small sized bubbles">Small sized bubbles</a>, <a href="https://publications.waset.org/search?q=synthesized%20exhalations" title=" synthesized exhalations"> synthesized exhalations</a>, <a href="https://publications.waset.org/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/search?q=hollow%20fiber%20module." title=" hollow fiber module."> hollow fiber module.</a> </p> <a href="https://publications.waset.org/10009232/separation-characteristics-of-the-hollow-fiber-membrane-module-using-water-mixed-with-small-sized-bubbles-composed-of-synthesized-exhalations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009232/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009232/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009232/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009232/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009232/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009232/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009232/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009232/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009232/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009232/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">690</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Terminal Velocity of a Bubble Rise in a Liquid Column </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M%C3%A1rio%20A.%20R.%20Talaia">Mário A. R. Talaia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As it is known, buoyancy and drag forces rule bubble's rise velocity in a liquid column. These forces are strongly dependent on fluid properties, gravity as well as equivalent's diameter. This study reports a set of bubble rising velocity experiments in a liquid column using water or glycerol. Several records of terminal velocity were obtained. The results show that bubble's rise terminal velocity is strongly dependent on dynamic viscosity effect. The data set allowed to have some terminal velocities data interval of 8.0 ? 32.9 cm/s with Reynolds number interval 1.3 -7490. The bubble's movement was recorded with a video camera. The main goal is to present an original set data and results that will be discussed based on two-phase flow's theory. It will also discussed, the prediction of terminal velocity of a single bubble in liquid, as well as the range of its applicability. In conclusion, this study presents general expressions for the determination of the terminal velocity of isolated gas bubbles of a Reynolds number range, when the fluid proprieties are known. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubbles" title="Bubbles">Bubbles</a>, <a href="https://publications.waset.org/search?q=terminal%20velocity" title=" terminal velocity"> terminal velocity</a>, <a href="https://publications.waset.org/search?q=two%20phase-flow" title=" two phase-flow"> two phase-flow</a>, <a href="https://publications.waset.org/search?q=vertical%0Acolumn." title=" vertical column."> vertical column.</a> </p> <a href="https://publications.waset.org/8057/terminal-velocity-of-a-bubble-rise-in-a-liquid-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8057/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8057/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8057/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8057/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8057/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8057/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8057/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8057/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8057/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8057/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18606</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rahim%20Jafari">Rahim Jafari</a>, <a href="https://publications.waset.org/search?q=Tuba%20Okutucu-%C3%96zyurt"> Tuba Okutucu-Özyurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared well with the available experimental data in the literature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microchannel" title="Microchannel">Microchannel</a>, <a href="https://publications.waset.org/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/search?q=Cahn-Hilliard%20method" title=" Cahn-Hilliard method"> Cahn-Hilliard method</a>, <a href="https://publications.waset.org/search?q=Two-phase%0D%0Aflow" title=" Two-phase flow"> Two-phase flow</a>, <a href="https://publications.waset.org/search?q=Simulation." title=" Simulation."> Simulation.</a> </p> <a href="https://publications.waset.org/10001158/cfd-modeling-of-boiling-in-a-microchannel-based-on-phase-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001158/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001158/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001158/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001158/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001158/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001158/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001158/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001158/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001158/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001158/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3846</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> The Boundary Theory between Laminar and Turbulent Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tomasz%20M.%20Jankowski">Tomasz M. Jankowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basis of this paper is the assumption, that graviton is a measurable entity of molecular gravitational acceleration and this is not a hypothetical entity. The adoption of this assumption as an axiom is tantamount to fully opening the previously locked door to the boundary theory between laminar and turbulent flows. It leads to the theorem, that the division of flows of Newtonian (viscous) fluids into laminar and turbulent is true only, if the fluid is influenced by a powerful, external force field. The mathematical interpretation of this theorem, presented in this paper shows, that the boundary between laminar and turbulent flow can be determined theoretically. This is a novelty, because thus far the said boundary was determined empirically only and the reasons for its existence were unknown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Freed%20gravitons" title="Freed gravitons">Freed gravitons</a>, <a href="https://publications.waset.org/search?q=free%20gravitons." title=" free gravitons."> free gravitons.</a> </p> <a href="https://publications.waset.org/1425/the-boundary-theory-between-laminar-and-turbulent-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1425/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1425/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1425/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1425/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1425/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1425/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1425/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1425/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1425/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1425/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1464</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> A Frequency Dependence of the Phase Field Model in Laminar Boundary Layer with Periodic Perturbations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yasuo%20Obikane">Yasuo Obikane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The frequency dependence of the phase field model(PFM) is studied. A simple PFM is proposed, and is tested in a laminar boundary layer. The Blasius-s laminar boundary layer solution on a flat plate is used for the flow pattern, and several frequencies are imposed on the PFM, and the decay times of the interfaces are obtained. The computations were conducted for three cases: 1) no-flow, and 2) a half ball on the laminar boundary layer, 3) a line of mass sources in the laminar boundary layer. The computations show the decay time becomes shorter as the frequency goes larger, and also show that it is sensitive to both background disturbances and surface tension parameters. It is concluded that the proposed simple PFM can describe the properties of decay process, and could give the fundamentals for the decay of the interface in turbulent flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Phase%20field%20model" title="Phase field model">Phase field model</a>, <a href="https://publications.waset.org/search?q=two%20phase%20flows" title=" two phase flows"> two phase flows</a>, <a href="https://publications.waset.org/search?q=Laminarboundary%20Layer" title=" Laminarboundary Layer"> Laminarboundary Layer</a> </p> <a href="https://publications.waset.org/11703/a-frequency-dependence-of-the-phase-field-model-in-laminar-boundary-layer-with-periodic-perturbations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11703/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11703/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11703/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11703/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11703/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11703/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11703/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11703/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11703/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11703/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1509</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Water Boundary Layer Flow Over Rotating Sphere with Mass Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20Revathi">G. Revathi</a>, <a href="https://publications.waset.org/search?q=P.%20Saikrishnan"> P. Saikrishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An analysis is performed to study the influence of nonuniform double slot suction on a steady laminar boundary layer flow over a rotating sphere when fluid properties such as viscosity and Prandtl number are inverse linear functions of temperature. Nonsimilar solutions have been obtained from the starting point of the streamwise co-ordinate to the exact point of separation. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation have been overcome by applying an implicit finite difference scheme in combination with the quasi-linearization technique and an appropriate selection of the finer step sizes along the stream-wise direction. The present investigation shows that the point of ordinary separation can be delayed by nonuniform double slot suction if the mass transfer rate is increased and also if the slots are positioned further downstream. In addition, the investigation reveals that double slot suction is found to be more effective compared to a single slot suction in delaying ordinary separation. As rotation parameter increase the point of separation moves upstream direction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/search?q=suction" title=" suction"> suction</a>, <a href="https://publications.waset.org/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/search?q=rotating%20sphere." title=" rotating sphere."> rotating sphere.</a> </p> <a href="https://publications.waset.org/668/water-boundary-layer-flow-over-rotating-sphere-with-mass-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/668/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/668/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/668/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/668/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/668/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/668/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/668/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/668/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/668/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/668/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6374</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> Identification of the Main Transition Velocities in a Bubble Column Based on a Modified Shannon Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gas holdup fluctuations in a bubble column (0.15 m in ID) have been recorded by means of a conductivity wire-mesh sensor in order to extract information about the main transition velocities. These parameters are very important for bubble column design, operation and scale-up. For this purpose, the classical definition of the Shannon entropy was modified and used to identify both the onset (at <em>U</em><sub>G</sub>=0.034 m/s) of the transition flow regime and the beginning (at <em>U</em><sub>G</sub>=0.089 m/s) of the churn-turbulent flow regime. The results were compared with the Kolmogorov entropy (KE) results. A slight discrepancy was found, namely the transition velocities identified by means of the KE were shifted to somewhat higher (0.045 and 0.101 m/s) superficial gas velocities <em>U</em><sub>G</sub>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble%20column" title="Bubble column">Bubble column</a>, <a href="https://publications.waset.org/search?q=gas%20holdup%20fluctuations" title=" gas holdup fluctuations"> gas holdup fluctuations</a>, <a href="https://publications.waset.org/search?q=Modified%20Shannon%20entropy" title=" Modified Shannon entropy"> Modified Shannon entropy</a>, <a href="https://publications.waset.org/search?q=Kolmogorov%20entropy." title=" Kolmogorov entropy. "> Kolmogorov entropy. </a> </p> <a href="https://publications.waset.org/10003828/identification-of-the-main-transition-velocities-in-a-bubble-column-based-on-a-modified-shannon-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003828/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003828/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003828/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003828/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003828/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003828/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003828/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003828/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003828/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003828/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1695</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">550</span> A Comparison between Heterogeneous and Homogeneous Gas Flow Model in Slurry Bubble Column Reactor for Direct Synthesis of DME</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sadegh%20Papari">Sadegh Papari</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Kazemeini"> Mohammad Kazemeini</a>, <a href="https://publications.waset.org/search?q=Moslem%20Fattahi"> Moslem Fattahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimisation of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, using a churn-turbulent regime was developed. In the heterogeneous gas flow model the gas phase was distributed into two bubble phases: small and large, however in the homogeneous one, the gas phase was distributed into only one large bubble phase. The results indicated that the heterogeneous gas flow model was in more agreement with experimental pilot plant data than the homogeneous one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Modelling" title="Modelling">Modelling</a>, <a href="https://publications.waset.org/search?q=Slurry%20bubble%20column" title=" Slurry bubble column"> Slurry bubble column</a>, <a href="https://publications.waset.org/search?q=Dimethyl%20ether%0Asynthesis" title=" Dimethyl ether synthesis"> Dimethyl ether synthesis</a>, <a href="https://publications.waset.org/search?q=Homogeneous%20gas%20flow" title=" Homogeneous gas flow"> Homogeneous gas flow</a>, <a href="https://publications.waset.org/search?q=Heterogeneous%20gas%20flow" title=" Heterogeneous gas flow"> Heterogeneous gas flow</a> </p> <a href="https://publications.waset.org/4850/a-comparison-between-heterogeneous-and-homogeneous-gas-flow-model-in-slurry-bubble-column-reactor-for-direct-synthesis-of-dme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4850/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4850/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4850/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4850/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4850/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4850/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4850/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4850/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4850/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4850/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2169</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">549</span> Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities <em>U</em><sub>G</sub> in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at <em>U</em><sub>G</sub>=0.025 m/s and <em>U</em><sub>G</sub>=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at <em>U</em><sub>G</sub>=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble%20column" title="Bubble column">Bubble column</a>, <a href="https://publications.waset.org/search?q=ultrafast%20X-ray%20tomography" title=" ultrafast X-ray tomography"> ultrafast X-ray tomography</a>, <a href="https://publications.waset.org/search?q=information%20entropy" title=" information entropy"> information entropy</a>, <a href="https://publications.waset.org/search?q=reconstruction%20entropy." title=" reconstruction entropy. "> reconstruction entropy. </a> </p> <a href="https://publications.waset.org/10004308/entropy-analysis-in-a-bubble-column-based-on-ultrafast-x-ray-tomography-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004308/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004308/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004308/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004308/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004308/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004308/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004308/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004308/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004308/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004308/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1523</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">548</span> A Preliminary Study of Drug Perfusion Enhancement by Microstreaming Induced by an Oscillating Microbubble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jin%20Sun%20Oh">Jin Sun Oh</a>, <a href="https://publications.waset.org/search?q=Kyung%20Ho%20Lee"> Kyung Ho Lee</a>, <a href="https://publications.waset.org/search?q=S%20ang%20Gug%20Chung"> S ang Gug Chung</a>, <a href="https://publications.waset.org/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Microbubbbles incorporating ultrasound have been used to increase the efficacy of targeted drug delivery, because microstreaming induced by cavitating bubbles affects the drug perfusion into the target cells and tissues. In order to clarify the physical effects of microstreaming on drug perfusion into tissues, a preliminary experimental study of perfusion enhancement by a stably oscillating microbubble was performed. Microstreaming was induced by an oscillating bubble at 15 kHz, and perfusion of dye into an agar phantom was optically measured by histology on agar phantom. Surface color intensity and the penetration length of dye in the agar phantom were increased more than 70% and 30%, respectively, due to the microstreaming induced by an oscillating bubble. The mass of dye perfused into a tissue phantom for 30 s was increased about 80% in the phantom with an oscillating bubble. This preliminary experiment shows the physical effects of steady streaming by an oscillating bubble can enhance the drug perfusion into the tissues while minimizing the biological effects.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble" title="Bubble">Bubble</a>, <a href="https://publications.waset.org/search?q=Mass%20Transfer" title=" Mass Transfer"> Mass Transfer</a>, <a href="https://publications.waset.org/search?q=Microstreaming" title=" Microstreaming"> Microstreaming</a>, <a href="https://publications.waset.org/search?q=Drug%20Delivery" title=" Drug Delivery"> Drug Delivery</a>, <a href="https://publications.waset.org/search?q=Acoustic%20Wave." title=" Acoustic Wave."> Acoustic Wave.</a> </p> <a href="https://publications.waset.org/1313/a-preliminary-study-of-drug-perfusion-enhancement-by-microstreaming-induced-by-an-oscillating-microbubble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1313/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1313/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1313/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1313/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1313/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1313/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1313/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1313/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1313/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1313/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1885</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Heat Transfer to Laminar Flow over a Double Backward-Facing Step </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hussein%20Togun">Hussein Togun</a>, <a href="https://publications.waset.org/search?q=Tuqa%20Abdulrazzaq"> Tuqa Abdulrazzaq</a>, <a href="https://publications.waset.org/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/search?q=A.%20Badarudin"> A. Badarudin</a>, <a href="https://publications.waset.org/search?q=M.%20K.%20A.%20Ariffin"> M. K. A. Ariffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m<sup>2</sup>.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Laminar%20flow" title="Laminar flow">Laminar flow</a>, <a href="https://publications.waset.org/search?q=Double%20backward" title=" Double backward"> Double backward</a>, <a href="https://publications.waset.org/search?q=Separation%20flow" title=" Separation flow"> Separation flow</a>, <a href="https://publications.waset.org/search?q=Recirculation%20flow." title=" Recirculation flow."> Recirculation flow.</a> </p> <a href="https://publications.waset.org/16835/heat-transfer-to-laminar-flow-over-a-double-backward-facing-step" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16835/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16835/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16835/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16835/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16835/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16835/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16835/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16835/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16835/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16835/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3508</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> Electric Field Effect on the Rise of Single Bubbles during Boiling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Masoudnia">N. Masoudnia</a>, <a href="https://publications.waset.org/search?q=M.%20Fatahi"> M. Fatahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Single%20bubbles" title="Single bubbles">Single bubbles</a>, <a href="https://publications.waset.org/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/search?q=boiling" title=" boiling"> boiling</a>, <a href="https://publications.waset.org/search?q=effect." title=" effect. "> effect. </a> </p> <a href="https://publications.waset.org/10004724/electric-field-effect-on-the-rise-of-single-bubbles-during-boiling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004724/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004724/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004724/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004724/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004724/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004724/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004724/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004724/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004724/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004724/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1198</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20R.%20Nematollahi">M. R. Nematollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration characteristics of subcooled flow boiling on thin and long structures such as a heating rod were recently investigated by the author. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of the subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behaviors are the only sources to originate from SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 0.16 to 0.53m/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface during the bubble ebullition. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10-4 N. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Subcooled%20boiling" title="Subcooled boiling">Subcooled boiling</a>, <a href="https://publications.waset.org/search?q=vibration%20mechanism" title=" vibration mechanism"> vibration mechanism</a>, <a href="https://publications.waset.org/search?q=bubble%0Abehavior." title=" bubble behavior."> bubble behavior.</a> </p> <a href="https://publications.waset.org/11219/evaluation-of-exerting-force-on-the-heating-surface-due-to-bubble-ebullition-in-subcooled-flow-boiling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11219/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11219/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11219/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11219/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11219/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11219/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11219/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11219/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11219/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11219/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1542</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=laminar%20separation%20bubble.&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>