CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;8 of 8 results for author: <span class="mathjax">Weyn, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Weyn%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Weyn, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Weyn%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Weyn, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09371">arXiv:2409.09371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09371">pdf</a>, <a href="https://arxiv.org/format/2409.09371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Jin%2C+W">Weixin Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+P">Pengcheng Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Xiang%2C+S">Siqi Xiang</a>, <a href="/search/cs?searchtype=author&amp;query=Bian%2C+J">Jiang Bian</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+Z">Zuliang Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Sun%2C+H">Hongyu Sun</a>, <a href="/search/cs?searchtype=author&amp;query=Thambiratnam%2C+K">Kit Thambiratnam</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09371v1-abstract-short" style="display: inline;"> In recent years, AI-based weather forecasting models have matched or even outperformed numerical weather prediction systems. However, most of these models have been trained and evaluated on reanalysis datasets like ERA5. These datasets, being products of numerical models, often diverge substantially from actual observations in some crucial variables like near-surface temperature, wind, precipitati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09371v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09371v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09371v1-abstract-full" style="display: none;"> In recent years, AI-based weather forecasting models have matched or even outperformed numerical weather prediction systems. However, most of these models have been trained and evaluated on reanalysis datasets like ERA5. These datasets, being products of numerical models, often diverge substantially from actual observations in some crucial variables like near-surface temperature, wind, precipitation and clouds - parameters that hold significant public interest. To address this divergence, we introduce WeatherReal, a novel benchmark dataset for weather forecasting, derived from global near-surface in-situ observations. WeatherReal also features a publicly accessible quality control and evaluation framework. This paper details the sources and processing methodologies underlying the dataset, and further illustrates the advantage of in-situ observations in capturing hyper-local and extreme weather through comparative analyses and case studies. Using WeatherReal, we evaluated several data-driven models and compared them with leading numerical models. Our work aims to advance the AI-based weather forecasting research towards a more application-focused and operation-ready approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09371v1-abstract-full').style.display = 'none'; document.getElementById('2409.09371v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13063">arXiv:2405.13063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.13063">pdf</a>, <a href="https://arxiv.org/format/2405.13063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Aurora: A Foundation Model of the Atmosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bodnar%2C+C">Cristian Bodnar</a>, <a href="/search/cs?searchtype=author&amp;query=Bruinsma%2C+W+P">Wessel P. Bruinsma</a>, <a href="/search/cs?searchtype=author&amp;query=Lucic%2C+A">Ana Lucic</a>, <a href="/search/cs?searchtype=author&amp;query=Stanley%2C+M">Megan Stanley</a>, <a href="/search/cs?searchtype=author&amp;query=Brandstetter%2C+J">Johannes Brandstetter</a>, <a href="/search/cs?searchtype=author&amp;query=Garvan%2C+P">Patrick Garvan</a>, <a href="/search/cs?searchtype=author&amp;query=Riechert%2C+M">Maik Riechert</a>, <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Vaughan%2C+A">Anna Vaughan</a>, <a href="/search/cs?searchtype=author&amp;query=Gupta%2C+J+K">Jayesh K. Gupta</a>, <a href="/search/cs?searchtype=author&amp;query=Tambiratnam%2C+K">Kit Tambiratnam</a>, <a href="/search/cs?searchtype=author&amp;query=Archibald%2C+A">Alex Archibald</a>, <a href="/search/cs?searchtype=author&amp;query=Heider%2C+E">Elizabeth Heider</a>, <a href="/search/cs?searchtype=author&amp;query=Welling%2C+M">Max Welling</a>, <a href="/search/cs?searchtype=author&amp;query=Turner%2C+R+E">Richard E. Turner</a>, <a href="/search/cs?searchtype=author&amp;query=Perdikaris%2C+P">Paris Perdikaris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13063v2-abstract-short" style="display: inline;"> Deep learning foundation models are revolutionizing many facets of science by leveraging vast amounts of data to learn general-purpose representations that can be adapted to tackle diverse downstream tasks. Foundation models hold the promise to also transform our ability to model our planet and its subsystems by exploiting the vast expanse of Earth system data. Here we introduce Aurora, a large-sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13063v2-abstract-full').style.display = 'inline'; document.getElementById('2405.13063v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13063v2-abstract-full" style="display: none;"> Deep learning foundation models are revolutionizing many facets of science by leveraging vast amounts of data to learn general-purpose representations that can be adapted to tackle diverse downstream tasks. Foundation models hold the promise to also transform our ability to model our planet and its subsystems by exploiting the vast expanse of Earth system data. Here we introduce Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse weather and climate data. Aurora leverages the strengths of the foundation modelling approach to produce operational forecasts for a wide variety of atmospheric prediction problems, including those with limited training data, heterogeneous variables, and extreme events. In under a minute, Aurora produces 5-day global air pollution predictions and 10-day high-resolution weather forecasts that outperform state-of-the-art classical simulation tools and the best specialized deep learning models. Taken together, these results indicate that foundation models can transform environmental forecasting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13063v2-abstract-full').style.display = 'none'; document.getElementById('2405.13063v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15598">arXiv:2403.15598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15598">pdf</a>, <a href="https://arxiv.org/format/2403.15598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J+A">Jonathan A. Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Kumar%2C+D">Divya Kumar</a>, <a href="/search/cs?searchtype=author&amp;query=Berman%2C+J">Jeremy Berman</a>, <a href="/search/cs?searchtype=author&amp;query=Kazmi%2C+N">Najeeb Kazmi</a>, <a href="/search/cs?searchtype=author&amp;query=Klocek%2C+S">Sylwester Klocek</a>, <a href="/search/cs?searchtype=author&amp;query=Luferenko%2C+P">Pete Luferenko</a>, <a href="/search/cs?searchtype=author&amp;query=Thambiratnam%2C+K">Kit Thambiratnam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15598v1-abstract-short" style="display: inline;"> We present an operations-ready multi-model ensemble weather forecasting system which uses hybrid data-driven weather prediction models coupled with the European Centre for Medium-range Weather Forecasts (ECMWF) ocean model to predict global weather at 1-degree resolution for 4 weeks of lead time. For predictions of 2-meter temperature, our ensemble on average outperforms the raw ECMWF extended-ran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15598v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15598v1-abstract-full" style="display: none;"> We present an operations-ready multi-model ensemble weather forecasting system which uses hybrid data-driven weather prediction models coupled with the European Centre for Medium-range Weather Forecasts (ECMWF) ocean model to predict global weather at 1-degree resolution for 4 weeks of lead time. For predictions of 2-meter temperature, our ensemble on average outperforms the raw ECMWF extended-range ensemble by 4-17%, depending on the lead time. However, after applying statistical bias corrections, the ECMWF ensemble is about 3% better at 4 weeks. For other surface parameters, our ensemble is also within a few percentage points of ECMWF&#39;s ensemble. We demonstrate that it is possible to achieve near-state-of-the-art subseasonal-to-seasonal forecasts using a multi-model ensembling approach with data-driven weather prediction models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15598v1-abstract-full').style.display = 'none'; document.getElementById('2403.15598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.04610">arXiv:2310.04610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.04610">pdf</a>, <a href="https://arxiv.org/format/2310.04610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Song%2C+S+L">Shuaiwen Leon Song</a>, <a href="/search/cs?searchtype=author&amp;query=Kruft%2C+B">Bonnie Kruft</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+M">Minjia Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+C">Conglong Li</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+S">Shiyang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C">Chengming Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Tanaka%2C+M">Masahiro Tanaka</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+X">Xiaoxia Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Rasley%2C+J">Jeff Rasley</a>, <a href="/search/cs?searchtype=author&amp;query=Awan%2C+A+A">Ammar Ahmad Awan</a>, <a href="/search/cs?searchtype=author&amp;query=Holmes%2C+C">Connor Holmes</a>, <a href="/search/cs?searchtype=author&amp;query=Cai%2C+M">Martin Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Ghanem%2C+A">Adam Ghanem</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zhongzhu Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+Y">Yuxiong He</a>, <a href="/search/cs?searchtype=author&amp;query=Luferenko%2C+P">Pete Luferenko</a>, <a href="/search/cs?searchtype=author&amp;query=Kumar%2C+D">Divya Kumar</a>, <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+R">Ruixiong Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Klocek%2C+S">Sylwester Klocek</a>, <a href="/search/cs?searchtype=author&amp;query=Vragov%2C+V">Volodymyr Vragov</a>, <a href="/search/cs?searchtype=author&amp;query=AlQuraishi%2C+M">Mohammed AlQuraishi</a>, <a href="/search/cs?searchtype=author&amp;query=Ahdritz%2C+G">Gustaf Ahdritz</a>, <a href="/search/cs?searchtype=author&amp;query=Floristean%2C+C">Christina Floristean</a>, <a href="/search/cs?searchtype=author&amp;query=Negri%2C+C">Cristina Negri</a> , et al. (67 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.04610v2-abstract-short" style="display: inline;"> In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04610v2-abstract-full').style.display = 'inline'; document.getElementById('2310.04610v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.04610v2-abstract-full" style="display: none;"> In the upcoming decade, deep learning may revolutionize the natural sciences, enhancing our capacity to model and predict natural occurrences. This could herald a new era of scientific exploration, bringing significant advancements across sectors from drug development to renewable energy. To answer this call, we present DeepSpeed4Science initiative (deepspeed4science.ai) which aims to build unique capabilities through AI system technology innovations to help domain experts to unlock today&#39;s biggest science mysteries. By leveraging DeepSpeed&#39;s current technology pillars (training, inference and compression) as base technology enablers, DeepSpeed4Science will create a new set of AI system technologies tailored for accelerating scientific discoveries by addressing their unique complexity beyond the common technical approaches used for accelerating generic large language models (LLMs). In this paper, we showcase the early progress we made with DeepSpeed4Science in addressing two of the critical system challenges in structural biology research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.04610v2-abstract-full').style.display = 'none'; document.getElementById('2310.04610v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02998">arXiv:2212.02998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02998">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Super-resolution Probabilistic Rain Prediction from Satellite Data Using 3D U-Nets and EarthFormers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Fang%2C+Z">Zuliang Fang</a>, <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Luferenko%2C+P">Pete Luferenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02998v1-abstract-short" style="display: inline;"> Accurate and timely rain prediction is crucial for decision making and is also a challenging task. This paper presents a solution which won the 2 nd prize in the Weather4cast 2022 NeurIPS competition using 3D U-Nets and EarthFormers for 8-hour probabilistic rain prediction based on multi-band satellite images. The spatial context effect of the input satellite image has been deeply explored and opt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02998v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02998v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02998v1-abstract-full" style="display: none;"> Accurate and timely rain prediction is crucial for decision making and is also a challenging task. This paper presents a solution which won the 2 nd prize in the Weather4cast 2022 NeurIPS competition using 3D U-Nets and EarthFormers for 8-hour probabilistic rain prediction based on multi-band satellite images. The spatial context effect of the input satellite image has been deeply explored and optimal context range has been found. Based on the imbalanced rain distribution, we trained multiple models with different loss functions. To further improve the model performance, multi-model ensemble and threshold optimization were used to produce the final probabilistic rain prediction. Experiment results and leaderboard scores demonstrate that optimal spatial context, combined loss function, multi-model ensemble, and threshold optimization all provide modest model gain. A permutation test was used to analyze the effect of each satellite band on rain prediction, and results show that satellite bands signifying cloudtop phase (8.7 um) and cloud-top height (10.8 and 13.4 um) are the best predictors for rain prediction. The source code is available at https://github.com/bugsuse/weather4cast-2022-stage2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02998v1-abstract-full').style.display = 'none'; document.getElementById('2212.02998v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Weather4cast-2022 &amp; NeurIPS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09954">arXiv:2111.09954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09954">pdf</a>, <a href="https://arxiv.org/format/2111.09954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> MS-nowcasting: Operational Precipitation Nowcasting with Convolutional LSTMs at Microsoft Weather </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Klocek%2C+S">Sylwester Klocek</a>, <a href="/search/cs?searchtype=author&amp;query=Dong%2C+H">Haiyu Dong</a>, <a href="/search/cs?searchtype=author&amp;query=Dixon%2C+M">Matthew Dixon</a>, <a href="/search/cs?searchtype=author&amp;query=Kanengoni%2C+P">Panashe Kanengoni</a>, <a href="/search/cs?searchtype=author&amp;query=Kazmi%2C+N">Najeeb Kazmi</a>, <a href="/search/cs?searchtype=author&amp;query=Luferenko%2C+P">Pete Luferenko</a>, <a href="/search/cs?searchtype=author&amp;query=Lv%2C+Z">Zhongjian Lv</a>, <a href="/search/cs?searchtype=author&amp;query=Sharma%2C+S">Shikhar Sharma</a>, <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J">Jonathan Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Xiang%2C+S">Siqi Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09954v2-abstract-short" style="display: inline;"> We present the encoder-forecaster convolutional long short-term memory (LSTM) deep-learning model that powers Microsoft Weather&#39;s operational precipitation nowcasting product. This model takes as input a sequence of weather radar mosaics and deterministically predicts future radar reflectivity at lead times up to 6 hours. By stacking a large input receptive field along the feature dimension and co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09954v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09954v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09954v2-abstract-full" style="display: none;"> We present the encoder-forecaster convolutional long short-term memory (LSTM) deep-learning model that powers Microsoft Weather&#39;s operational precipitation nowcasting product. This model takes as input a sequence of weather radar mosaics and deterministically predicts future radar reflectivity at lead times up to 6 hours. By stacking a large input receptive field along the feature dimension and conditioning the model&#39;s forecaster with predictions from the physics-based High Resolution Rapid Refresh (HRRR) model, we are able to outperform optical flow and HRRR baselines by 20-25% on multiple metrics averaged over all lead times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09954v2-abstract-full').style.display = 'none'; document.getElementById('2111.09954v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Minor updates to reflect final submission to NeurIPS workshop</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning, 2021. https://www.climatechange.ai/papers/neurips2021/19 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.05107">arXiv:2102.05107</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.05107">pdf</a>, <a href="https://arxiv.org/format/2102.05107">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2021MS002502">10.1029/2021MS002502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-seasonal forecasting with a large ensemble of deep-learning weather prediction models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J+A">Jonathan A. Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Durran%2C+D+R">Dale R. Durran</a>, <a href="/search/cs?searchtype=author&amp;query=Caruana%2C+R">Rich Caruana</a>, <a href="/search/cs?searchtype=author&amp;query=Cresswell-Clay%2C+N">Nathaniel Cresswell-Clay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.05107v1-abstract-short" style="display: inline;"> We present an ensemble prediction system using a Deep Learning Weather Prediction (DLWP) model that recursively predicts key atmospheric variables with six-hour time resolution. This model uses convolutional neural networks (CNNs) on a cubed sphere grid to produce global forecasts. The approach is computationally efficient, requiring just three minutes on a single GPU to produce a 320-member set o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05107v1-abstract-full').style.display = 'inline'; document.getElementById('2102.05107v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.05107v1-abstract-full" style="display: none;"> We present an ensemble prediction system using a Deep Learning Weather Prediction (DLWP) model that recursively predicts key atmospheric variables with six-hour time resolution. This model uses convolutional neural networks (CNNs) on a cubed sphere grid to produce global forecasts. The approach is computationally efficient, requiring just three minutes on a single GPU to produce a 320-member set of six-week forecasts at 1.4掳 resolution. Ensemble spread is primarily produced by randomizing the CNN training process to create a set of 32 DLWP models with slightly different learned weights. Although our DLWP model does not forecast precipitation, it does forecast total column water vapor, and it gives a reasonable 4.5-day deterministic forecast of Hurricane Irma. In addition to simulating mid-latitude weather systems, it spontaneously generates tropical cyclones in a one-year free-running simulation. Averaged globally and over a two-year test set, the ensemble mean RMSE retains skill relative to climatology beyond two-weeks, with anomaly correlation coefficients remaining above 0.6 through six days. Our primary application is to subseasonal-to-seasonal (S2S) forecasting at lead times from two to six weeks. Current forecast systems have low skill in predicting one- or 2-week-average weather patterns at S2S time scales. The continuous ranked probability score (CRPS) and the ranked probability skill score (RPSS) show that the DLWP ensemble is only modestly inferior in performance to the European Centre for Medium Range Weather Forecasts (ECMWF) S2S ensemble over land at lead times of 4 and 5-6 weeks. At shorter lead times, the ECMWF ensemble performs better than DLWP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05107v1-abstract-full').style.display = 'none'; document.getElementById('2102.05107v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Journal of Advances in Modeling Earth Systems</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sub-Seasonal Forecasting With a Large Ensemble of Deep-Learning Weather Prediction Models. Journal of Advances in Modeling Earth Systems, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11927">arXiv:2003.11927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.11927">pdf</a>, <a href="https://arxiv.org/format/2003.11927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2020MS002109">10.1029/2020MS002109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Weyn%2C+J+A">Jonathan A. Weyn</a>, <a href="/search/cs?searchtype=author&amp;query=Durran%2C+D+R">Dale R. Durran</a>, <a href="/search/cs?searchtype=author&amp;query=Caruana%2C+R">Rich Caruana</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11927v1-abstract-short" style="display: inline;"> We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN) to forecast several basic atmospheric variables on a global grid. New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid, improvements to the CNN architecture, and the minimization of the loss function over multiple s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11927v1-abstract-full').style.display = 'inline'; document.getElementById('2003.11927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11927v1-abstract-full" style="display: none;"> We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN) to forecast several basic atmospheric variables on a global grid. New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid, improvements to the CNN architecture, and the minimization of the loss function over multiple steps in a prediction sequence. The cubed-sphere remapping minimizes the distortion on the cube faces on which convolution operations are performed and provides natural boundary conditions for padding in the CNN. Our improved model produces weather forecasts that are indefinitely stable and produce realistic weather patterns at lead times of several weeks and longer. For short- to medium-range forecasting, our model significantly outperforms persistence, climatology, and a coarse-resolution dynamical numerical weather prediction (NWP) model. Unsurprisingly, our forecasts are worse than those from a high-resolution state-of-the-art operational NWP system. Our data-driven model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables. On annual time scales, our model produces a realistic seasonal cycle driven solely by the prescribed variation in top-of-atmosphere solar forcing. Although it is currently less accurate than operational weather forecasting models, our data-driven CNN executes much faster than those models, suggesting that machine learning could prove to be a valuable tool for large-ensemble forecasting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11927v1-abstract-full').style.display = 'none'; document.getElementById('2003.11927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript submitted to Journal of Advances in Modeling Earth Systems</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10